IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ニューヨーク・ユニバーシティの特許一覧 ▶ イエダ リサーチ アンド ディベロップメント カンパニー リミテッドの特許一覧

特許7445243超音速画像のキャプチャを方向付けるシステムおよび方法
<>
  • 特許-超音速画像のキャプチャを方向付けるシステムおよび方法 図1
  • 特許-超音速画像のキャプチャを方向付けるシステムおよび方法 図2
  • 特許-超音速画像のキャプチャを方向付けるシステムおよび方法 図3A
  • 特許-超音速画像のキャプチャを方向付けるシステムおよび方法 図3B
  • 特許-超音速画像のキャプチャを方向付けるシステムおよび方法 図4
  • 特許-超音速画像のキャプチャを方向付けるシステムおよび方法 図5
  • 特許-超音速画像のキャプチャを方向付けるシステムおよび方法 図6
  • 特許-超音速画像のキャプチャを方向付けるシステムおよび方法 図7
  • 特許-超音速画像のキャプチャを方向付けるシステムおよび方法 図8A
  • 特許-超音速画像のキャプチャを方向付けるシステムおよび方法 図8B
  • 特許-超音速画像のキャプチャを方向付けるシステムおよび方法 図8C
  • 特許-超音速画像のキャプチャを方向付けるシステムおよび方法 図9
  • 特許-超音速画像のキャプチャを方向付けるシステムおよび方法 図10
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-02-28
(45)【発行日】2024-03-07
(54)【発明の名称】超音速画像のキャプチャを方向付けるシステムおよび方法
(51)【国際特許分類】
   A61B 8/00 20060101AFI20240229BHJP
【FI】
A61B8/00
【請求項の数】 16
(21)【出願番号】P 2020564470
(86)(22)【出願日】2019-05-15
(65)【公表番号】
(43)【公表日】2021-09-02
(86)【国際出願番号】 US2019032368
(87)【国際公開番号】W WO2019222317
(87)【国際公開日】2019-11-21
【審査請求日】2022-03-09
(31)【優先権主張番号】62/671,692
(32)【優先日】2018-05-15
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】511060836
【氏名又は名称】ニューヨーク・ユニバーシティ
(73)【特許権者】
【識別番号】500018608
【氏名又は名称】イエダ リサーチ アンド ディベロップメント カンパニー リミテッド
【住所又は居所原語表記】at the Weizmann Institute of Science,PO Box 95,7610002 Rehovot,Israel
(74)【代理人】
【識別番号】110001302
【氏名又は名称】弁理士法人北青山インターナショナル
(72)【発明者】
【氏名】ケズラー,イタエ
(72)【発明者】
【氏名】エシェル,ヨラム
(72)【発明者】
【氏名】ルドミルスキー,アチアウ
(72)【発明者】
【氏名】リップマン,ヤロン
【審査官】永田 浩司
(56)【参考文献】
【文献】米国特許出願公開第2017/0262982(US,A1)
【文献】米国特許出願公開第2007/0055153(US,A1)
【文献】米国特許第7092749(US,B2)
【文献】米国特許出願公開第2008/0086283(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
A61B 8/00
(57)【特許請求の範囲】
【請求項1】
超音波プローブを有する超音波ユニットのための装置であって、コンピューティングデバイス上に実装される装置において、
トレーニングされた方向付けニューラルネットワークであって、前記超音波ユニットから身体部分の非標準画像を受信し、標準画像に関連付けられた位置および回転と前記非標準画像に関連付けられた位置および回転との間で変換する変換を生成するトレーニングされた方向付けニューラルネットワークと、
前記変換を前記プローブの位置および/または回転の指示に変え、前記プローブの位置および/または回転を変更するために、ユーザに前記位置および/または回転の指示を表示する結果コンバータと、
前記プローブからの画像に応答して前記トレーニングされた方向付けニューラルネットワークから複数の変換を受信し、画像のセットおよびそれらに関連する変換を生成するセットクリエータと、
十分なセットが生成されたときを判定する十分性チェッカと、
身体部分の周期中に身体部分の変化を示す要約周期的標準画像のセットを生成するためのトレーニングされた周期的標準ビューニューラルネットワークと、を備えることを特徴とする装置。
【請求項2】
請求項1に記載の装置において、
身体部分の周期の各時点で、前記画像のセットと、それらに関連する変換と、それらに関連する要約周期的標準画像とを用いて、トレーニングされていない周期的標準ビューニューラルネットワークをトレーニングするための周期的標準ビュートレーナをさらに含むことを特徴とする装置。
【請求項3】
請求項1に記載の装置において、
前記身体部分の周期が、心周期であることを特徴とする装置。
【請求項4】
請求項1に記載の装置において、
各セットが単一の要素を含むことを特徴とする装置。
【請求項5】
超音波プローブを有するコンピューティングデバイスに実装される超音波ユニットのための装置であって、
身体部分の周囲でキャプチャされた複数の超音波画像の方向情報を提供するためのトレーニングされた方向付けニューラルネットワークであって、前記方向情報が、前記身体部分の標準ビューに対して前記画像を方向付けるためのものである、方向付けニューラルネットワークと、
前記方向情報に従って前記画像を方向付けし、断層再構成を使用して方向付けされた画像から前記身体部分のボリューム表示を生成し、前記ボリューム表示から標準ビューの標準画像を生成するためのボリューム再構成器とを備えることを特徴とする装置。
【請求項6】
請求項5に記載の装置において、
前記プローブからの画像に応答して前記トレーニングされた方向付けニューラルネットワークから方向を受信して、十分な画像が受信されたときを判定するための十分性チェッカと、
前記十分性チェッカに応答して前記トレーニングされた方向付けニューラルネットワークのために更なる画像を要求するための結果コンバータとをさらに備えることを特徴とする装置。
【請求項7】
請求項5に記載の装置において、
前記身体部分の前記ボリューム表示から診断を行う診断器をさらに含むことを特徴とする装置。
【請求項8】
超音波プローブを有する超音波ユニットのための装置であって、コンピューティングデバイス上に実装される装置において、
時間の経過とともに前記プローブから画像を受信し、画像のセットを生成するセットクリエータと、
十分なセットが生成されたときを判定する十分性チェッカと、
身体部分の周期中に身体部分の変化を示す要約周期的標準画像のセットを生成する周期的標準ビューニューラルネットワークとを備えることを特徴とする装置。
【請求項9】
請求項8に記載の装置において、
前記周期的標準ビューニューラルネットワークによって生成された最終画像から診断を行う診断器をさらに含むことを特徴とする装置。
【請求項10】
超音波プローブを有する超音波ユニットのための方法であって、コンピューティングデバイスに実装される方法において、
トレーニングされた方向付けニューラルネットワークを使用して、前記超音波ユニットから身体部分の非標準画像を受信して、標準画像に関連付けられた位置および回転と前記非標準画像に関連付けられた位置および回転との間で変換する変換を生成するステップと、
前記変換を前記プローブの位置および/または回転の指示に変え、前記プローブの位置および/または回転を変更するために、ユーザに前記位置および/または回転の指示を提供および表示するステップと、
前記プローブからの画像に応答して前記トレーニングされた方向付けニューラルネットワークから複数の変換を受信し、画像のセットおよびそれらに関連する変換を生成するステップと、
十分なセットが生成されたときを判定するステップと、
トレーニングされた周期的標準ビューニューラルネットワークを使用して、身体部分の周期中に身体部分の変化を示す要約周期的標準画像のセットを生成するステップと、を備えることを特徴とする方法。
【請求項11】
請求項10に記載の方法において、
身体部分の周期の各時点で、前記画像のセットと、それらに関連する変換と、それらに関連する要約周期的標準画像とを用いて、トレーニングされていない周期的標準ビューニューラルネットワークをトレーニングするステップをさらに含むことを特徴とする方法。
【請求項12】
請求項10に記載の方法において、
前記身体部分の周期が、心周期であることを特徴とする方法。
【請求項13】
請求項10に記載の方法において、
各セットが単一の要素を含むことを特徴とする方法。
【請求項14】
超音波プローブを有するコンピューティングデバイス上に実装される超音波ユニットのための方法であって、
トレーニングされた方向付けニューラルネットワークを使用して、身体部分の周囲でキャプチャされた複数の超音波画像の方向情報を提供するステップであって、前記方向情報が、前記身体部分の標準ビューに対して前記画像を方向付けるためのものである、ステップと、
前記方向情報に従って前記画像を方向付けし、断層再構成を使用して方向付けされた画像から前記身体部分のボリューム表示を生成し、前記ボリューム表示から標準ビューの標準画像を生成するステップとを含むことを特徴とする方法。
【請求項15】
請求項14に記載の方法において、
前記プローブからの画像に応答して前記トレーニングされた方向付けニューラルネットワークから方向を受信して、十分な画像が受信されたときを判定するステップと、
受信した方向に応答して前記トレーニングされた方向付けニューラルネットワークのために更なる画像を要求するステップとをさらに含むことを特徴とする方法。
【請求項16】
コンピューティングデバイス上に実装される、超音波プローブを有する超音波ユニットのための方法であって、
時間の経過とともに前記プローブから画像を受信し、画像のセットを生成するステップと、
十分なセットが生成されたときを判定するステップと、
周期的標準ビューニューラルネットワークにより、身体部分の周期中に身体部分の変化を示す要約周期的標準画像のセットを生成するステップとを備えることを特徴とする方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、概して移動式ハンドヘルド超音波装置に関し、特に、正しい使用のための方向付けに関するものである。
【0002】
関連出願の相互参照
本出願は、2018年5月15日に出願された米国仮特許出願第62/671,692号の優先権を主張するものであり、この出願は引用により本明細書に援用されるものとする。
【背景技術】
【0003】
医療用超音波検査(診断超音波検査または超音波検査としても知られている)は、超音波の適用に基づく画像診断技術である。これは、腱、筋肉、関節、血管、内臓などの体内構造の画像を作成するために使用される。
【0004】
効果的な検査および診断を行うために正確な画像を取得するには、図1に示すように、超音波トランスデューサを関連する臓器または身体部分と空間を介してある角度位置に配置する必要がある。図1は、トランスデューサ14で撮影された関心のある臓器12の超音波画像を示している。臓器12の最適または「標準」画像を得るために必要な正確な角度位置にトランスデューサ14をナビゲートする技術は、超音波検査を成功させるために極めて重要であることが理解されよう。このプロセスは、典型的には、訓練を受けた熟練した超音波検査者を必要とする。
【0005】
例えば、心エコー検査を実行するために、超音波検査者は、四腔像や二腔像などの様々な標準方向から心臓の画像を撮影する必要がある。トランスデューサの正しい位置決めは、左心室の最適なビューを受信して、それにより心臓の機能情報を抽出するために非常に重要である。
【0006】
移動式超音波装置またはデバイスは、当技術分野で知られており、例えばPhilips社から市販されているLumifyが挙げられる。これらの移動式超音波装置は、スマートフォンやタブレットなどの任意のポータブルハンドヘルドデバイスにダウンロード可能なプログラムと通信するトランスデューサの形態で利用可能である。
【0007】
このようなデバイスが利用できるということは、嵩張る高価な機器を必要とすることなく、超音波検査を、オフサイト(病院などから離れた場所)、例えば、救急車のトリアージツールとして、または戦場で、緊急治療施設、老人ホームなどで実行できることを意味している。
【発明の概要】
【0008】
本発明の好ましい実施形態によれば、超音波プローブを有する移動式超音波ユニットのためのダウンロード可能なナビゲータであって、ポータブルコンピューティングデバイス上に実装されるナビゲータが提供される。このナビゲータは、前記移動式超音波ユニットから身体部分の非標準画像(non-canonical image)を受信して、前記非標準画像に関連付けられた変換(transformation)を生成するトレーニングされた方向付けニューラルネットワーク(orientation neural network)であって、前記変換が、標準画像(canonical image)に関連付けられた位置および回転から前記非標準画像に関連付けられた位置および回転に変換する、トレーニングされた方向付けニューラルネットワークと、前記変換を前記プローブのユーザのための方向指示(orientation instructions)に変え、前記プローブの位置および回転を変更するために、前記ユーザに前記方向指示を提供および表示する結果コンバータ(result converter)とを含む。
【0009】
さらに、本発明の好ましい実施形態によれば、前記ナビゲータが、前記標準画像と、前記標準画像の周囲で撮影された非標準画像と、前記標準画像から前記非標準画像に関連付けられた空間内の位置および回転への変換とを用いて、前記方向付けニューラルネットワークをトレーニングするためのトレーナ(trainer)をさらに含む。
【0010】
さらに、本発明の好ましい実施形態によれば、前記トレーナが、トレーニングプローブに取り付けられたIMU(慣性測定ユニット)からトレーニングセッション中にIMUデータを受信するトレーニングコンバータを含み、前記IMUデータが、前記非標準画像および前記標準画像に関連付けられた位置および回転を提供し、それらの位置および回転を、前記標準画像に関連付けられた位置および回転から前記非標準画像に関連付けられた位置および回転への変換に変える。
【0011】
さらに、本発明の好ましい実施形態によれば、前記トレーナが、トレーニングされていない方向付けニューラルネットワークと、前記トレーニングされていない方向付けニューラルネットワークをトレーニングするための損失関数(loss function)とを含み、前記損失関数が、前記トレーニングされていない方向付けニューラルネットワークによって生成された計算された変換と、各非標準画像のグラウンドトルース変換(ground truth transformation)との間の距離を減少させる。
【0012】
さらに、本発明の好ましい実施形態によれば、前記損失関数が、前記計算された変換を複数の異なる標準方向のうちの1つに制約する確率(probability)をさらに含む。
【0013】
さらに、本発明の好ましい実施形態によれば、前記標準画像が、複数の標準画像のうちの1つである。
【0014】
さらに、本発明の好ましい実施形態によれば、前記ナビゲータが、前記標準画像を観察するときに、前記プローブによって生成された最終画像から診断を行う診断器(diagnoser)を含む。
【0015】
さらに、本発明の好ましい実施形態によれば、前記ポータブルコンピューティングデバイスが、スマートフォン、タブレット、ラップトップ、パーソナルコンピュータおよびスマートアプライアンスのうちの1つである。
【0016】
さらに、本発明の好ましい実施形態によれば、前記ナビゲータが、前記プローブからの画像に応答して前記トレーニングされた方向付けニューラルネットワークから複数の変換を受信し、画像のセットおよびそれらに関連する変換を生成するセットクリエータ(set creator)と、十分なセットが生成されたときを判定する十分性チェッカ(sufficiency checker)と、身体部分の周期中に身体部分の変化を示す要約周期的標準画像(summary cyclical canonical images)のセットを生成するためのトレーニングされた周期的標準ビューニューラルネットワーク(cyclical canonical view neural network)とを含む。
【0017】
さらに、本発明の好ましい実施形態によれば、前記ナビゲータが、身体の周期の各時点で、前記画像のセットと、それらに関連する変換と、それらに関連する要約周期的標準画像とを用いて、トレーニングされていない周期的標準ビューニューラルネットワークをトレーニングするための周期的標準ビュートレーナ(cyclical canonical view trainer)をさらに含む。
【0018】
さらに、本発明の好ましい実施形態によれば、身体部分の周期が心周期である。
【0019】
さらに、本発明の好ましい実施形態によれば、各セットが単一の要素を含む。
【0020】
本発明の好ましい実施形態によれば、超音波プローブを有するポータブルコンピューティングデバイスに実装される移動式超音波ユニットのためのナビゲータが提供される。このナビゲータは、身体部分の周囲でキャプチャされた複数の超音波画像の方向情報を提供するためのトレーニングされた方向付けニューラルネットワークであって、前記方向情報が、前記身体部分の標準ビュー(canonical view)に対して前記画像を方向付けるためのものである、方向付けニューラルネットワークと、前記方向情報に従って前記画像を方向付けし、断層再構成を使用して方向付けされた画像から前記身体部分のボリューム表示(volume representation)を生成し、前記ボリューム表示から標準ビューの標準画像を生成するためのボリューム再構成器(volume reconstructer)とを含む。
【0021】
さらに、本発明の好ましい実施形態によれば、前記ナビゲータが、前記プローブからの画像に応答して前記トレーニングされた方向付けニューラルネットワークから方向を受信して、十分な画像が受信されたときを判定するための十分性チェッカと、前記十分性チェッカに応答して前記トレーニングされた方向付けニューラルネットワークのために更なる画像を要求するための結果コンバータとを含む。
【0022】
さらに、本発明の好ましい実施形態によれば、前記ナビゲータが、前記身体部分の前記ボリューム表示から診断を行う診断器を含む。
【0023】
本発明の好ましい実施形態によれば、モバイルデバイス上に実装される、超音波プローブを有する移動式超音波ユニットのためのナビゲータが提供される。このナビゲータは、前記プローブから身体部分の非標準画像を受信し、前記非標準画像を表示可能なマップ上の非標準マップポイント(non-canonical map point)にマッピングし、前記非標準画像に関連付けられた複数の標準画像を前記表示可能なマップ上の標準マップポイント(canonical map points)にマッピングするためのトレーニングされたマッピングニューラルネットワーク(mapping neural network)と、前記標準マップポイントおよび非標準マップポイントでマークされたマップを表示するための結果コンバータとを含む。
【0024】
さらに、本発明の好ましい実施形態によれば、前記トレーニングされたマッピングニューラルネットワークが、損失関数を含み、この損失関数は、前記プローブの動きの変化が前記表示可能なマップ上に小さな動きを生成し、前記画像間の距離がマップ上の位置間の距離に類似し、かつ、ある標準画像から別の標準画像への最適なパスが直線的な等速軌道であるようにする。
【0025】
さらに、本発明の好ましい実施形態によれば、前記ナビゲータが、ユーザが前記プローブを前記標準マップポイントのうちの1つに移動させたときに、前記プローブによって生成された最終画像から診断を行う診断器も含む。
【0026】
本発明の好ましい実施形態によれば、超音波プローブを有する移動式超音波ユニットのためのダウンロード可能なナビゲータであって、モバイルデバイス上に実装されるナビゲータが提供される。このナビゲータは、時間の経過とともに前記プローブから画像を受信し、画像のセットを生成するセットクリエータと、十分なセットが生成されたときを判定する十分性チェッカと、身体部分の周期中に前記身体部分の変化を示す要約周期的標準画像のセットを生成する周期的標準ビューニューラルネットワークとを含む。
【0027】
さらに、本発明の好ましい実施形態によれば、前記ナビゲータが、前記周期的標準ビューニューラルネットワークによって生成された最終画像から診断を行う診断器も含む。
【0028】
本発明の好ましい実施形態によれば、超音波プローブを有する移動式超音波ユニットのための方法であって、ポータブルコンピューティングデバイスに実装される方法が提供され、この方法が、トレーニングされた方向付けニューラルネットワークを使用して、前記移動式超音波ユニットから身体部分の非標準画像を受信して、前記非標準画像に関連付けられた変換を生成するステップであって、前記変換が、標準画像に関連付けられた位置および回転から前記非標準画像に関連付けられた位置および回転に変換する、ステップと、前記変換を前記プローブのユーザのための方向指示に変え、前記プローブの位置および回転を変更するために、前記ユーザに前記方向指示を提供および表示するステップとを含む。
【0029】
さらに、本発明の好ましい実施形態によれば、前記方法が、前記標準画像と、前記標準画像の周囲でキャプチャされた非標準画像と、前記標準画像から前記非標準画像に関連付けられた空間内の位置および回転への変換とを用いて、前記方向付けニューラルネットワークをトレーニングするステップを含む。
【0030】
さらに、本発明の好ましい実施形態によれば、トレーニングすることが、トレーニングプローブに取り付けられたIMU(慣性測定ユニット)からトレーニングセッション中にIMUデータを受信することを含み、前記IMUデータが、前記非標準画像および前記標準画像に関連付けられた位置および回転を提供し、それらの位置および回転を、前記標準画像に関連付けられた位置および回転から前記非標準画像に関連付けられた位置および回転への変換に変える。
【0031】
さらに、本発明の好ましい実施形態によれば、前記トレーニングされたマッピングニューラルネットワークが、損失関数を含み、この損失関数は、前記プローブの動きの変化が前記表示可能なマップ上に小さな動きを生成し、前記画像間の距離がマップ上の位置間の距離に類似し、かつ、ある標準画像から別の標準画像への最適なパスが直線的な等速軌道であるようにする。
【0032】
さらに、本発明の好ましい実施形態によれば、前記損失関数が、前記計算された変換を複数の異なる標準方向のうちの1つに制約する確率をさらに含む。
【0033】
さらに、本発明の好ましい実施形態によれば、前記標準画像が、複数の標準画像のうちの1つである。
【0034】
さらに、本発明の好ましい実施形態によれば、前記方法が、前記標準画像を観察するときに、前記プローブによって生成された最終画像から診断を行うステップを含む。
【0035】
さらに、本発明の好ましい実施形態によれば、前記ポータブルコンピューティングデバイスが、スマートフォン、タブレット、ラップトップ、パーソナルコンピュータおよびスマートアプライアンスのうちの1つである。
【0036】
さらに、本発明の好ましい実施形態によれば、前記方法が、前記プローブからの画像に応答して前記トレーニングされた方向付けニューラルネットワークから複数の変換を受信し、画像のセットおよびそれらに関連する変換を生成するステップと、十分なセットが生成されたときを判定するステップと、トレーニングされた周期的標準ビューニューラルネットワークを使用して、身体部分の周期中に身体部分の変化を示す要約周期的標準画像のセットを生成するステップとをさらに含む。
【0037】
さらに、本発明の好ましい実施形態によれば、前記方法が、身体の周期の各時点で、画像のセットと、それらに関連する変換と、それらに関連する要約周期的標準画像とを用いて、トレーニングされていない周期的標準ビューニューラルネットワークをトレーニングするステップをさらに含む。
【0038】
さらに、本発明の好ましい実施形態によれば、前記身体部分の周期が、心周期である。
【0039】
さらに、本発明の好ましい実施形態によれば、各セットが単一の要素を含む。
【0040】
さらに、本発明の好ましい実施形態によれば、超音波プローブを有するポータブルコンピューティングデバイス上に実装される移動式超音波ユニットのための方法が提供され、この方法が、トレーニングされた方向付けニューラルネットワークを使用して、身体部分の周囲でキャプチャされた複数の超音波画像の方向情報を提供するステップであって、前記方向情報が、前記身体部分の標準ビューに対して前記画像を方向付けるためのものである、ステップと、前記方向情報に従って前記画像を方向付けし、断層再構成を使用して方向付けされた画像から前記身体部分のボリューム表示を生成し、前記ボリューム表示から標準ビューの標準画像を生成するステップとを含む。
【0041】
さらに、本発明の好ましい実施形態によれば、前記方法が、前記プローブからの画像に応答して前記トレーニングされた方向付けニューラルネットワークから方向を受信して、十分な画像が受信されたときを判定するステップと、受信した方向に応答して前記トレーニングされた方向付けニューラルネットワークのために更なる画像を要求するステップとを含む。
【0042】
さらに、本発明の好ましい実施形態によれば、前記方法が、前記身体部分の前記ボリューム表示から診断を行うステップをさらに含む。
【0043】
さらに、本発明の好ましい実施形態によれば、モバイルデバイス上に実装される、超音波プローブを有する移動式超音波ユニットのための方法が提供される。この方法は、トレーニングされたマッピングニューラルネットワークを使用して、前記プローブから身体部分の非標準画像を受信し、前記非標準画像を表示可能なマップ上の非標準マップポイントにマッピングし、前記非標準画像に関連付けられた複数の標準画像を前記表示可能なマップ上の標準マップポイントにマッピングするステップと、前記標準マップポイントおよび非標準マップポイントでマークされたマップを表示するステップとを含む。
【0044】
さらに、本発明の好ましい実施形態によれば、前記トレーニングされたマッピングニューラルネットワークが、損失関数を含み、この損失関数は、前記プローブの動きの変化が前記表示可能なマップ上に小さな動きを生成し、前記画像間の距離が直線的な等速軌道に類似するようにする。
【0045】
さらに、本発明の好ましい実施形態によれば、前記方法が、ユーザが前記プローブを前記標準マップポイントのうちの1つに移動させたときに、前記プローブによって生成された最終画像から診断を行うステップをさらに含む。
【0046】
さらに、本発明の好ましい実施形態によれば、モバイルデバイス上に実装される、超音波プローブを有する移動式超音波ユニットのための方法が提供される。この方法は、時間の経過とともに前記プローブから画像を受信し、画像のセットを生成するステップと、十分なセットが生成されたときを判定するステップと、周期的標準ビューニューラルネットワークにより、身体部分の周期中に前記身体部分の変化を示す要約周期的標準画像のセットを生成するステップとを含む。
【0047】
さらに、本発明の好ましい実施形態によれば、前記方法が、前記周期的標準ビューニューラルネットワークによって生成された最終画像から診断を行うステップを含む。
【図面の簡単な説明】
【0048】
本発明とみなされる主題は、明細書の結論部分で特に指摘され、明確に主張されている。しかしながら、本発明は、組織および操作方法の両方に関して、さらに対象物、画像および利点に関して、添付の図面とともに読むことにより、以下の詳細な説明を参照することで最もよく理解されよう。
図1図1は、身体部分の画像をキャプチャするために超音波トランスデューサがどのように配置されるのかを示す概略図である。
図2図2は、本発明に従って構築されて動作可能である超音波ナビゲータの概略図である。
図3図3Aおよび図3Bは、本発明に従って構築されて動作可能な図2のナビゲータが、身体部分の適切な画像をキャプチャするために、非超音波検査者がプローブおよびトランスデューサを方向付けるのをどのように支援するのかを示す概略図である。
図4図4は、本発明に従って構築されて動作可能な、ある臓器の非標準画像およびそれに関連する標準画像についてのトレーニングプローブの向きの変換の概略図である。
図5図5は、本発明に従って構築されて動作可能な、方向付けニューラルネットワークのためのトレーニングプロセスの概略図である。
図6図6は、本発明に従って構築されて動作可能な、図2のナビゲータの要素の概略図である。
図7図7は、本発明に従って構築されて動作可能な、図2のナビゲータに対する代替的な実施形態の要素の概略図である。
図8図8A図8Bおよび図8Cは、本発明に従って構築されて動作可能な、図2のナビゲータに対する代替的な実施形態の要素および機能の概略図である。
図9図9Aおよび図9Bは、本発明に従って構築されて動作可能な、トレーニング時および動作中の図2のナビゲータに対する代替的な実施形態の要素の概略図である。
図10図10Aおよび図10Bは、本発明に従って構築されて動作可能な、トレーニング時および動作中の図9Aおよび図9Bのナビゲータに対する代替的な実施形態の要素の概略図である。 例示の単純化および明確化のために、図面に示された要素は、必ずしも一定の縮尺で描かれていないことを理解されたい。例えば、いくつかの要素の寸法は、明確化のために、他の要素と比較して誇張されている場合がある。さらに、適切と考えられる場合には、対応する要素または類似する要素を示すために、符号が図面間で繰り返される場合がある。
【発明を実施するための形態】
【0049】
以下の詳細な説明では、本発明の完全な理解を提供するために、多くの具体的な詳細が記載されている。しかしながら、本発明は、これらの具体的な詳細なしに実施され得ることが当業者によって理解されよう。他の実施例では、本発明を不明瞭にしないように、周知の方法、手順および構成要素は詳細には記載されていない。
【0050】
出願人は、病院などの従来の場所から離れた場所で移動式超音波装置を使用できることは、訓練を受けていない超音波検査者または非超音波検査者がそれらの装置を利用する可能性があることを意味することを理解している。しかしながら、訓練を受けていない医師、救急隊員あるいは患者自身でさえも、それらの超音波検査を正しく行うための訓練や知識を持っていない。異なる臓器や身体部分には異なる訓練が必要であることが理解されよう。
【0051】
2018年6月7日に公開された「Guided Navigation of an Ultrasound Probe」という名称の米国特許出願公開第2018/0153505号、並びに、2016年5月26日に公開された「Ultrasound Acquisition Feedback Guidance to a Target View」という名称の米国特許出願公開第2016/0143627号に記載されているような先行技術システムは、非超音波検査者が最適な画像をキャプチャする上で最適な方向にトランスデューサを誘導するのを支援するために、特定の身体部分の供給された画像と好ましい標準画像との間の偏差を判定する方法を教示している。
【0052】
出願人は、これらの先行技術のシステムが、回転計算に関して完全な解決策を提供しないことを理解している。また、出願人は、これらの先行技術のシステムは、非超音波検査者のプローブの位置を判定するのを助けるための追加のハードウェア(例えば、磁力計、ジャイロスコープ、加速度計などの慣性測定ユニット)を必要とするため、特に有用ではないことに気付いている。出願人は、追加のハードウェアを必要とせずに、関連する移動式超音波装置の処理ソフトウェアと統合またはオーバーレイとして使用するために、ダウンロード等を介して、容易にアクセス可能なシステムの方が遙かに有用であることに気付いている。その結果、本発明は、超音波ユニットによって生成されたデジタル画像のみを用いて動作する。
【0053】
図2を参照すると、本発明の第1の実施形態に係る超音波ナビゲータ100が示されており、これは、AppleのAppstoreやGoogleのGoogle Playなどのモバイルアプリケーションストア10から、スマートフォン、タブレット、ラップトップ、パーソナルコンピュータ、スマートアプライアンスなどの任意のポータブルコンピューティングデバイスにダウンロードすることができる。
【0054】
ナビゲータ100は、(ダウンロードの一部として)トレーニングされた方向付けニューラルネットワーク15を含むことができることが理解されよう。方向付けニューラルネットワーク15は、以下に本明細書でより詳細に記載される。上述したように、ナビゲータ100は、関連する移動式超音波装置の処理ソフトウェアと統合またはオーバーレイとして使用されるものであってもよい。
【0055】
したがって、ユーザ5は、患者9に(移動式超音波ユニット8に関連する)トランスデューサまたはプローブ7を使用して、関連する身体部分の画像をナビゲータ100に供給することができ、それに応じて、ナビゲータ100は、プローブ7をどの方向に向けるのかに関しての方向指示を供給することができる。非超音波検査者またはユーザ5が、適切な画像を受信するために、プローブ7を正しい方向に向けるために複数回試みて、プロセスが反復的に行われ得ることが理解されよう。本発明の好ましい実施形態によれば、ナビゲータ100が画像のみを受信する場合でも、「方向」指示は、位置(2次元または3次元空間内の位置)と回転情報(3D空間内の回転)の両方を含むことができる。
【0056】
図3Aおよび図3Bを参照すると、ナビゲータ100が、特定の身体部分の良好な画像を捕捉するために、非超音波検査者5がプローブ7を方向付けるのをどのように支援するかが示されている。図3Aは、7Aとラベル付けされたプローブ7が間違った位置にあることを示し、すなわち、20Aとラベル付けされた結果の画像は、標準ではないことを示している。図3Aは、プローブ7Aの回転を変更するようにユーザ5に指示する矢印21のセットをさらに含む。矢印21Aは、「ピッチアップ」のような回転を示している。図3Bは、新たにピッチされたUS方向のプローブ7Bと、結果として得られる画像20Bを示しており、それはまだ標準画像を提供していないが、より良好である。矢印21Bは、新しい「ヨー」回転が有用である可能性があることを示している。
【0057】
上述したように、ナビゲータ100は、方向付けニューラルネットワーク15を受信し、この方向付けニューラルネットワークは、関心のある特定の身体部分または臓器について熟練した超音波検査者によって撮影された専門家データでトレーニングされるようにしてもよい。受信したトレーニングデータは、特定の身体部分の標準画像、および関連する非標準画像を含むとともに、各々について、空間における超音波検査者のプローブの向き(すなわち、位置および回転)を含むことができる。この情報は、IMU(磁力計、ジャイロスコープ、加速度計などを含む慣性測定ユニット)が関連付けられたプローブを使用して生成され得ることを理解されたい。IMUは、画像がキャプチャされたときにプローブの向きを測定することができる。
【0058】
図4を参照すると、標準画像をキャプチャするために訓練された超音波検査者によって使用されるトレーニングプローブ4cの向きと、ある臓器の非標準画像をキャプチャするときのその向きとの間の変換が示されている。i番目の非標準画像を見るときのトレーニングプローブ4iの向きは、空間における「基準フレーム」Fとして定義することができ、ここで、基準フレームFは、IMUが測定することができる、軸の周りの3つの回転および軸に沿った3つの平行移動を有する3軸システム(Q)に対応する6自由度(6DoF)を有することができる。
【0059】
基準フレームFは、原点Oでの基準フレームを参照することができ、本発明では、原点が臓器であってもよく、空間におけるその基準フレームは、Fとして定義することができる。基準フレームFの各々について、原点Oからの変換Rがあってもよく、ここで、変換Rは、以下のように、Fとラベル付けされた、標準画像を見るための所望の向きへの変換であってもよい。
=F -1
=F -1 (1)
ここで、F -1は、Fの逆変換である。よって、標準ポーズからi番目の非標準ポーズへの変換Tは、R -1
=R -1=F -1(F -1)=F -1 (2)
【0060】
図5には、トレーナ30を用いた方向付けニューラルネットワーク15のためのトレーニングプロセスが示されている。患者3にトレーニングプローブ4を使用する熟練した超音波検査者2は、特定の身体部分について標準画像および関連する非標準画像の両方を提供することができる。トレーニングプローブ4は、画像が捕捉されたときにプローブの向きFを測定することができるIMU6(磁力計、ジャイロスコープ、加速度計などを含むことができる慣性測定ユニット)に関連付けられ得ることが理解されよう。
【0061】
トレーニングコンバータ22は、各画像についての方向データFを受信することができ、図4に関して上述したように、関連する標準位置から変換T=R -1を求めることができる。具体的には、トレーニングコンバータ22は、トレーニングプローブ4から画像Xを取得し、それらを必要に応じて処理することができる。データベース20は、非標準画像Xを、それらの方向データFおよびそれらの変換データTとともに格納することができる。また、データベース20は、標準画像Xと、それらの関連する方向データFとを格納することができる。身体部分について複数の標準画像が存在し得ることが理解されよう。例えば、心臓は、四腔の標準画像、二腔の標準画像などを有しており、よって、トレーニングコンバータ22は、関連する各標準画像に対する変換Tを生成することができる。関連する標準画像は、手動で提供されるようにしても、あるいは任意の適切なアルゴリズムによって自動的に求められるようしてもよいことが理解されよう。
【0062】
トレーナ30への入力トレーニングデータは、画像Xとその関連するグラウンドトゥルース変換Tの組合せであってもよいことが理解されよう。各非標準画像について、トレーナ30は、各観察標準画像から各観察非標準画像に変換するために、プローブ4の位置変換を学習することができる。入力データは、多くの異なる患者3からのデータを含むことができ、その結果、トレーナ30は、非標準画像と標準画像との間の変換情報に影響を与える、患者3の性別、年齢、体重などおよび他の要因に起因する可能性のある画像Xの変化を学習することができことが理解されよう。
【0063】
トレーナ30は、畳み込みニューラルネットワークトレーナのような任意の適切なニューラルネットワークトレーナであってもよく、それは、方向付けニューラルネットワーク15によって生成された計算された変換S(X)と、関連する標準画像からの画像Xに対するグラウンドトゥルース変換Tとの間の距離などの損失関数によって求められるエネルギー「損失」を最小化するようにネットワークを更新することによって、ネットワークをトレーニングできることがさらに理解されよう。変換S(X)は、トレーニングされていないニューラルネットワークとして始まり、トレーニングされたニューラルネットワークとして終わることが理解されよう。
【0064】
距離関数は、任意の適切な距離関数であってよい。関連する標準画像が複数ある場合、方向付けニューラルネットワーク15は、各非標準画像に対するグラウンドトゥルース変換Tを用いてトレーニングされるものであってもよい。損失関数「Loss」は、次のように計算することができる。
Loss=loss(S(X),T) (3)
【0065】
方向付けニューラルネットワーク15は、トレーニングされると、各入力画像Xに応答して、ユーザプローブ7のための変換Tを生成することができる。その後、この変換を、反転またはコンバートして、以下でより詳細に説明するように、非標準画像の方向から標準画像の方向へとユーザ5を導くことができる。
【0066】
図6には、ナビゲータ100の構成要素が示されている。ナビゲータ100は、トレーニングされた方向付けニューラルネットワーク15と、結果コンバータ40と、診断器50とを含むことができる。
【0067】
上述したように、ユーザ5は、所望の身体部分に関連してユーザプローブ7をランダムに配置することができる。トレーニングされた方向付けニューラルネットワーク15は、特定の身体部分の関連する標準画像から現在の非標準画像への変換Tを提供することができる。結果コンバータ40は、生成された変換を反転させて、非標準画像を観察する現在の位置および回転から、関連する標準画像を観察する位置および回転へのプローブ7のための方向指示を提供することができる。結果コンバータ40は、様々な方法で、それらの方向指示をユーザ5に提供および表示することができる。このプロセスは、ユーザ5がプローブ7を正しく(誤差の範囲内で)位置決めするまで反復され得ることが理解されよう。
【0068】
結果コンバータ40は、選択された標準画像について、トレーニングされた方向付けニューラルネットワーク15によって生成された方向データS(X)を、ユーザ5に説明可能な方向にコンバートすることができる。任意の適切なディスプレイを利用することができる。例示的なディスプレイが、図3Aおよび図3Bを参照して本明細書に示されている。結果コンバータ40は、任意の適切なインターフェースを使用することができ、(例えば)色付きの回転マーキングを表示できることが理解されよう。さらに、結果コンバータ40は、身体部分の複数の標準画像が存在する場合に、どの標準画像が現在関心あるものであるのかをユーザ5が示すことを可能にする要素を含むことができる。
【0069】
診断器50は、ユーザ5によって生成された最終的な標準画像を受信して、その中の異常を検出することができる。診断器50は、任意の適切な診断器であってもよい。例えば、診断器50は、2018年7月26日に公開された国際公開第2018/136805号の診断方法を実行することができる。この国際公開は、本発明の共通の譲受人に譲渡されており、引用により本明細書に援用されるものとする。
【0070】
出願人は、単一の身体部分に対する複数の標準画像が存在するという事実と、1つの標準画像から別の標準画像への標準的な既知の運動が存在するという事実を、トレーニングされた方向付けニューラルネットワーク15の出力における誤差を減少させるために利用できることを認識している。
【0071】
この改善された実施形態では、方向付けニューラルネットワーク15が、複数の標準画像に対してトレーニングされるものであってもよい。このため、各画像Xについて、複数の計算された変換が存在し得る。例えば、標準画像cとc’のペアの場合、同一の画像Xについて計算された変換S(X)とSc’(X)のペアが存在し、それらが、関連するグラウンドトゥルース変換Tc,iおよびTc’,iを有することができる。
【0072】
さらに、次のように定義される既知の動き変換Tがある。
=Rc’ -1 (4)
ここで、Rは標準画像cであり、RC’は標準画像c’である。これらの既知の動きは、異なる対象間でほぼ一定であり、よって、ある標準画像cから別の標準画像c’への変換Tは、計算された変換S(X)およびSc’(X)を標準方向の一つに制約するために利用することができる。これを行うために、確率測度Pは、以下のように、方向付けニューラルネットワーク15をトレーニングするために使用される損失に加えるために、最尤損失項logP(S(X)Sc’(X-1)を定義するために使用することができる。
Loss=loss(S(X),Tc,i)+loss(Sc’(X),Tc’,i)-δlogP(S(X)Sc’(X-1) (5)
【0073】
確率測度Pは、異なる対象間の標準ポーズcとc’の間のグラウンドトゥルース変換Tを測定することによって実験的に求めることができる。さらに、身体部分ごとに複数の確率測度が存在し、身体部分の標準画像のペアごとに1つずつ存在し、各確率測度Pが、損失関数の別個の追加項を定義することができる。
【0074】
代替的な実施形態では、100’とラベル付けされたナビゲータが、図7に示すように、十分性チェッカ60およびボリューム再構成器70を含むことができる。
【0075】
ボリューム再構成器70は、トレーニングされた方向付けニューラルネットワーク15の出力を利用することができ、プローブ7によって生成された画像Xから、関心のある身体部分の3Dまたは4D関数、および/または3Dボリュームまたは3D時空間ボリュームを生成することができる。この実施形態では、画像Xは、関心のある身体部分の断面と見なすことができる。
【0076】
十分性チェッカ60は、3D/4Dボリューム再構成を実行するために、トレーニングされた方向付けニューラルネットワーク15を介して十分な断面が受信されたことをチェックし、それに応じて(結果コンバータ40を介して)ユーザ5を誘導することができる。例えば、十分性チェッカ60は、予め設定された最小数の画像が取得されたときを判定することができる。
【0077】
十分性チェッカ60からの指示に基づいて、ボリューム再構成器70は、3D/4Dボリュームを生成し、その後、再構成器70は、生成されたボリュームから関連する標準ビューを引き出して、それらを診断器50に提供することができる。本実施形態における標準ビューは、生成されたボリュームから生成され、ボリュームを生成するために使用された画像の中にある場合とない場合があることが理解されよう。
【0078】
ボリューム再構成器70は、逆ラドン変換または他の手段に基づくものなどの断層再構成を利用して、画像から3D/4D関数および/またはボリュームを再構成することができる。ボリューム断層再構成を成功させるためには、3D空間または4D時空間における断面の位置を知ることが極めて重要であることが理解されよう。出願人は、トレーニングされた方向付けニューラルネットワーク15が、撮影された各画像についてプローブ7に変換S(X)を提案することができ、また、固定された2D像面から、画像Xを生成したときにプローブ4が位置していた空間内の3D方向Qに画像Xのピクセルを回転させるために変換S(X)を使用できることを理解している。
【0079】
ボリューム再構成器70は、各画像Xについてトレーニングされた方向付けニューラルネットワーク15から変換S(X)を受信し、この変換を適用して、画像を(プローブからの出力として)像面からプローブの変換によって規定される平面に移動させ、身体部分の回転断面CSを生成することができる。その後、ボリューム再構成器70は、断層再構成を使用して、画像の断面CS(X)から関心のある身体部分のボリュームを構築することができる。
【0080】
変換S(X)を適用するために、先ず、画像Xは、2D像面内の2D位置(x,y)と強度Iを有するピクセルのセットを含むことが理解されよう。ボリューム再構成器70は、空間内の3Dピクセル位置(x,y,0)に変換S(X)を適用して、画像Xの3D方向Qの近似を生成し、その後、以下のように、演算子Hを適用して、方向付けられた画像Xをセンタリングまたはスケーリングすることができる。
【0081】
Q=HS(X[x,y,0] (6)
【0082】
ボリューム再構成器70は、生成された標準画像を診断器50に提供し、その後、診断器は、前述したように、その標準画像から診断をもたらすようにしてもよい。
【0083】
図8A図8Bおよび図8Cに図示されているさらに別の実施形態では、100’’とラベル付けされているナビゲータが、画像マッピングニューラルネットワーク90を含むことができる。マッピングニューラルネットワーク90は、各画像Xを2D平面92にマッピングすることができる(図8B)。図8Bは、3つの例示的な画像X、X、Xが平面92上の3つの異なる位置A、B、Dにマッピングされているところを示している。
【0084】
42とラベル付けされた結果コンバータは、ユーザ5に2D平面92を表示することができ、彼の現在の位置を1つの色(例えば、グレイのドット(図8Cでは影付きのドットとして示されている)としてマーキングし、この身体部分の標準画像の位置を他の色のドット(図8Cでは番号付きの円1~5として示されている)としてマーキングすることができる。また、図8Cには、取得した画像Xとそのマップ92が示されている。マップポイントM(X)は、マップ92上の非標準画像Xを表すことができ、他の番号が付けられた円は、所望のまたは要求された標準ビューcを表す標準マップポイントであってもよい。ユーザ5は、プローブ7の試行錯誤動作を使用して、マップポイントM(X)を所望の円に向かって近付けることができ、マッパー90は、プローブ7からの各新しい画像iについて2D平面92を再生成することができる。
【0085】
出願人は、プローブ7の動きの小さな変化が2D平面92上に小さな動きを生成し、画像X間の距離がマップ上の位置間の距離と同様でなければならないことに気付いている。さらに、出願人は、ある標準画像から別の画像への最適なパスは、直線的で一定速度の軌跡であるべきであることを認識している。
【0086】
この実施形態では、マッピングニューラルネットワーク90が、各画像Xおよびその関連する標準ビューの画像Xを含むことができる入力データを使用してトレーニングされ得ることが理解されよう。
【0087】
マッピングニューラルネットワーク90は、トレーニング中にニューラルネットワーク90によって現在生成されている計算されたマップポイントM(X)と、各標準ビューCについての関連するマップポイントM(X)との間の距離を最小化する損失関数を組み込むことができる。
Loss=loss(M(X),M(Xcj)) (7)
【0088】
異なる標準ビューへの最適なパスを組み込むために、画像Xがj番目の望ましい標準画像cへのパス上でどれだけ近いかを規定する確率ベクトルpijを追加することができる。その後、損失関数を次のように更新することができる。
Loss=loss(M(X),ΣpijM(Xcj)) (8)
【0089】
距離を保存するために、損失関数を次のように更新することができる。
【0090】
平面92は、必要に応じて、2D平面または3Dボリュームの何れかであってもよいことが理解されよう。上述したマッピング操作は、同様に3Dボリュームへのマッピングのために機能する。
【0091】
出願人は、適切な種類のトレーニングがあれば、ニューラルネットワークをトレーニングして、変換情報を生成するだけでなく、標準画像を生成することができることを認識している。これは、非超音波検査者からの入力がノイズが多いと予想される場合(彼らの手が十分に安定していないため)、および/または標準ビューで、身体部分が機能していることを確認したい場合に、特に有用である可能性がある。例えば、超音波検査者は、心機能分析のために、収縮期から拡張期、そして収縮期に戻るという完全な心周期に関する情報を定期的に提供する。
【0092】
図9Aおよび図9Bに示すさらに別の実施形態では、ナビゲータ100が、周期的標準ビューニューラルネットワーク110を含み、これが、トレーニングされた方向付けニューラルネットワーク15の出力からトレーニングされたニューラルネットワークであってもよい。標準ビューサイクラー110は、繰り返し画像を集約して、ノイズを低減するとともに、(例えば)心周期などの臓器周期のノイズの少ない要約を提供することができる。
【0093】
図9Aに示すように、周期的標準ビューニューラルネットワーク110をトレーニングするために必要な要素は、トレーニングされた方向付けニューラルネットワーク15と、ネットワーク110への入力を生成するためのセットクリエータ112と、周期的標準ビュートレーナ115とを含むことができる。
【0094】
この実施形態では、熟練した超音波検査者2が、時間をかけて撮影された複数の超音波画像mと、1つの標準ビューポーズcで、時間をかけて撮影された複数の画像nとを提供することができる。セットクリエータ112は、トレーニングされた方向付けニューラルネットワーク15から画像Xを、その関連する変換情報S(X)とともに受信し、それらを標準ビューで撮影されたそれらの関連する画像Xc,nと組み合わせることができる。熟練した超音波検査者2は、そのような関連付けを提供することができる。
【0095】
セットクリエータ112は、次に、トリプレット{[Y,Z],[W]}を生成することができ、ここで、[Y,Z]は、周期的標準ビュートレーナ115への入力であり、Wは、関連する出力である。各Yは、Y={X,X,.....X}であるg枚の画像のセットから構成することができ、Zは、Z={S(X),S(X).....S(X)}となるような画像Yの変換情報S(X)から構成することができる。典型的には、gは、10~100枚の画像であってもよい。
【0096】
各ペア[Y,Z]は、0~nの時刻で標準ビューcで撮影された関連する標準画像XのセットWを有することができる。時刻nは心周期内の時間を示すことができる。上述したように、熟練した超音波検査者2は、心周期情報を示すことができ、セットWに含まれるであろう関連する標準画像Xを提供することができる。
【0097】
このシナリオでは、周期的標準ビュートレーナ115が、入力として、一般フレームYと、方向付けニューラルネットワーク15によって生成されたそれらの近似変換Zと、それらの関連する心周期タイミングnとを受信し、所望のタイミングnで標準ビューの要約画像Wnのセットを生成するようにトレーニングされるようにしてもよい。最適化は次のようになる。
Loss=loss(CC,W) (10)
ここで、CCは、トレーニング中の周期的標準ビューニューラルネットワーク110の出力である。
【0098】
周期的標準ビュートレーナ115は、完全畳み込みネットワーク、エンコーダ/デコーダタイプのネットワークまたは敵対的生成ネットワークなどの任意の適切なニューラルネットワークを使用して、ナビゲータ100のためにトレーニングされた周期的標準ビューニューラルネットワーク110を生成することができる。
【0099】
図9Bに示すように、ナビゲータ100’’’は、トレーニングされた方向付けニューラルネットワーク15、操作のためのセットクリエータ112’、十分性チェッカ60’、結果コンバータ40’、トレーニングされた周期的標準ビューニューラルネットワーク110および診断器50を含むことができる。
【0100】
操作中、非超音波検査者5は、所望の身体部分の周期(例えば、心周期)をカバーするのに少なくとも十分な長さの期間にわたって、関心のある身体部分の近くでプローブ7を操作することができる。プローブ7からの画像は、トレーニングされた方向付けニューラルネットワーク15に提供されて、それらに関連する変換S(X)が生成されるとともに、セットクリエータ112’に提供されて、適切なセットYおよびZが生成される。十分性チェッカ60’は、セットYおよびZが十分に大きいことを確認することができ、結果コンバータ40’に、プローブ7を所望の方向に向けるか、または現在の向きで観察し続けるように、ユーザ5に対して指示させるようにしてもよい。この実施形態では、非超音波検査者5は、正確に標準ビューでプローブ7を保持する必要がなく、よって、結果コンバータ40’が提供する指示は、より粗くなってもよいことが理解されよう。周期的標準ビューニューラルネットワーク110は、セットクリエータ112’の出力から、要約周期的標準ビューCCを生成することができる。
【0101】
本実施形態は、非周期的な身体部分にも有用であり、特にユーザ5がプローブ7を不安定に保持する可能性がある場合に有用であることが理解されよう。この実施形態では、各セットが、その中に1または2の画像のみを有するようにしてもよい。
【0102】
出願人はさらに、トレーニングされた方向付けニューラルネットワーク15によって生成される変換情報なしでも、ニューラルネットワークをトレーニングできることにも気付いている。これは、図9Aおよび図9Bと同様のシステムを示す図10Aおよび図10Bに示されているが、トレーニングされた方向付けニューラルネットワーク15を含まない。その結果、トレーニング(図10A)のために、セットクリエータ113は、画像XからYを作成し、時刻nで標準画像XからWを作成することができる。周期的標準ビュートレーナ115は、式(10)を使用して周期的標準ビューニューラルネットワーク110を生成することができる。
【0103】
実行時(図10B)に、セットクリエータ113’は、画像XからYを作成し、周期的標準ビューニューラルネットワーク110は、要約ビューCCを生成することができる。
【0104】
本発明は、トレーニングなしで、超音波プローブ以外の追加のハードウェアを使用せずに、非超音波検査者が移動式超音波装置を操作するためのナビゲータを提供できることが理解されよう。このため、本発明のナビゲータは、その唯一の入力として超音波画像を受信する。これにより、救急車、戦場、緊急治療施設、介護施設などの多くの非従来型のシナリオで、非超音波検査者が超音波スキャンを実行することを可能になることがさらに理解されよう。
【0105】
さらに、本発明は、病院または診療所の環境で使用される従来の装置の一部など、より多くの従来のシナリオで実施することもでき、それは、カート上でも実施することができる。
【0106】
特に明記しない限り、上述した議論から明らかなように、本明細書全体を通して、「処理」、「コンピューティング」、「計算」、「決定」などの用語を使用する議論は、任意のタイプの汎用コンピュータの動作および/またはプロセスを指し、そのようなコンピュータには、クライアント/サーバシステム、モバイルコンピューティングデバイス、スマートアプライアンスまたは類似の電子コンピューティングデバイスであって、コンピューティングシステムのレジスタおよび/またはメモリ内の物理的な量、例えば電子的な量として表されるデータを、コンピューティングシステムのメモリ、レジスタまたは他の情報ストレージ、送信または表示デバイス内の物理的な量として表される他のデータに操作および/または変換するコンピューティングシステムが含まれることを理解されたい。
【0107】
本発明の実施形態は、本明細書に記載の操作を実行するための装置を含むことができる。この装置は、所望の目的のために特別に構成されていてもよく、またはコンピュータに記憶されたコンピュータプログラムによって選択的に起動または再構成される、汎用コンピュータまたはクライアント/サーバ構成を含むことができる。ソフトウェアによって実行されたときに得られる装置は、汎用コンピュータを本明細書で記載されるような本発明の要素に変えることができる。実行可能な命令は、所望のコンピュータプラットフォームで動作する本発明のデバイスを規定することができる。そのようなコンピュータプログラムは、コンピュータアクセス可能な記憶媒体に格納することができ、そのような記憶媒体は、非一時的な媒体であってもよく、例えば、光学ディスク、磁気光学ディスク、リードオンリーメモリ(ROM)、揮発性メモリおよび不揮発性メモリ、ランダムアクセスメモリ(RAM)、電気的にプログラム可能なリードオンリーメモリ(EPROM)、電気的に消去可能でプログラム可能なリードオンリーメモリ(EEPROM)、磁気カードまたは光学カード、フラッシュメモリ、ディスクオンキー、または電子命令を格納するのに適しており、かつコンピュータシステムバスに結合し得る他の任意のタイプの媒体を含むが、これらに限定されるものではない。
【0108】
本明細書に提示されたプロセスおよび表示は、本質的に、任意の特定のコンピュータまたは他の装置に関連するものではない。様々な汎用システムが、本明細書の教示に従ってプログラムとともに使用されるものであってもよく、あるいは所望の方法を実行するために、より特別な装置を構築することが便利であると証明する場合もある。これらの様々なシステムの所望の構造は、以下の記述から明らかになるであろう。さらに、本発明の実施形態は、特定のプログラミング言語を参照して説明されていない。本明細書に記載されているような本発明の教示を実行するために、様々なプログラミング言語を使用できることが理解されよう。
【0109】
本発明の特定の特徴を本明細書に例示および記載してきたが、多くの修正、置換、変更および均等物が、当技術分野の当業者には思い浮かぶであろう。したがって、添付の特許請求の範囲は、本発明の真の趣旨の範囲内にあるすべてのそのような修正および変更を包含することを意図していることを理解されたい。
図1
図2
図3A
図3B
図4
図5
図6
図7
図8A
図8B
図8C
図9
図10