(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-02-28
(45)【発行日】2024-03-07
(54)【発明の名称】冷蔵庫
(51)【国際特許分類】
F25D 21/06 20060101AFI20240229BHJP
F25B 47/02 20060101ALI20240229BHJP
F25D 11/00 20060101ALI20240229BHJP
F25D 21/08 20060101ALI20240229BHJP
【FI】
F25D21/06 B
F25B47/02 530P
F25D11/00 101B
F25D21/06 K
F25D21/08 A
(21)【出願番号】P 2019236809
(22)【出願日】2019-12-26
【審査請求日】2022-11-25
(73)【特許権者】
【識別番号】307036856
【氏名又は名称】アクア株式会社
(74)【代理人】
【識別番号】100147913
【氏名又は名称】岡田 義敬
(74)【代理人】
【識別番号】100165423
【氏名又は名称】大竹 雅久
(74)【代理人】
【識別番号】100091605
【氏名又は名称】岡田 敬
(74)【代理人】
【識別番号】100197284
【氏名又は名称】下茂 力
(72)【発明者】
【氏名】舘野 恭也
(72)【発明者】
【氏名】小松 肇
(72)【発明者】
【氏名】和田 芳彦
【審査官】笹木 俊男
(56)【参考文献】
【文献】特許第5253223(JP,B2)
【文献】中国特許出願公開第104697251(CN,A)
【文献】特開2013-096661(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
F25D 21/00 ~ 21/02
F25D 21/06 ~ 21/12
F25B 47/02
(57)【特許請求の範囲】
【請求項1】
貯蔵室と、
前記貯蔵室に送風される空気が収納される冷却室と、
圧縮機、凝縮器、膨張手段および蒸発器を有し、前記蒸発器により前記冷却室に収納された前記空気を冷却する冷凍サイクルと、
前記蒸発器を加熱して除霜する除霜用加熱部と、
前記冷凍サイクルおよび前記除霜用加熱部の動作を制御する制御部と、を具備し、
前記制御部は、前記蒸発器の除霜を行う際に、
前記除霜用加熱部で前記蒸発器を加熱することにより、前記蒸発器の温度が第1温度以上となった後に、
前記圧縮機で圧縮され且つ前記凝縮器を経由しない冷媒を前記蒸発器に供給することを特徴とする冷蔵庫。
【請求項2】
前記制御部は、前記蒸発器の温度が上昇するに伴い、前記圧縮機の運転周波数を上げることを特徴とする請求項1に記載の冷蔵庫。
【請求項3】
前記制御部は、前記圧縮機で圧縮され且つ前記凝縮器を経由しない前記冷媒を前記蒸発器に供給するときに、前記除霜用加熱部をOFF状態とすることを特徴とする請求項1または請求項2に記載の冷蔵庫。
【請求項4】
前記制御部は、前記蒸発器の温度が、前記第1温度よりも高く設定された第2温度以上となれば、前記圧縮機を停止し、前記冷媒の前記蒸発器への供給を停止することを特徴とする請求項1から請求項3の何れかに記載の冷蔵庫。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、冷蔵庫に関し、特に、ホットガスデフロスト方式により除霜する冷蔵庫に関する。
【背景技術】
【0002】
一般的な冷蔵庫では、冷凍サイクルの蒸発器で冷却した空気を各貯蔵室に送風することで、各貯蔵室を所望の冷蔵温度帯域または冷凍温度帯域に冷却している。冷凍サイクルを用いた冷却を続けると、蒸発器の表面に着霜が生じる。蒸発器の表面に厚い着霜が生じると、蒸発器と空気との間の伝熱および送風が妨げられる。よって、冷蔵庫の運転に於いては、蒸発器を除霜する除霜運転を定期的に実行する。
【0003】
一般的な除霜運転では、蒸発器の下方に配置した除霜ヒータに通電することで、蒸発器の表面に成長した霜を溶融除去する。
【0004】
一方、冷凍サイクルの圧縮機で圧縮した高温冷媒を蒸発器に供給することで除霜運転を行うホットガスデフロスト方式の冷蔵庫も登場している。ホットガスデフロスト方式の冷蔵庫によれば、通電による発熱が不要なため、冷蔵庫の構成を簡略化でき、更に、除霜に要するエネルギを低減できる。ホットガスデフロスト方式の冷蔵庫は、例えば以下の特許文献1ないし特許文献4に記載されている。
【先行技術文献】
【特許文献】
【0005】
【文献】特許第5369157号公報
【文献】特許第4837068号公報
【文献】特許第5253223号公報
【文献】特許第6545252号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
しかしながら、上記した一般的なホットガスデフロストによる除霜では、高温冷媒を蒸発器に導入するため、蒸発器で冷却された冷媒が液化してしまい、この液化した冷媒が圧縮機に戻る液戻りが発生し、圧縮機の圧縮効率が低下してしまう恐れがある。
【0007】
本発明は、上記の事情に鑑みてなされたものであり、その目的とするところは、ホットガスデフロスト方式の除霜方式に於いて液戻りを防止する冷蔵庫を提供することにある。
【課題を解決するための手段】
【0008】
本発明の冷蔵庫は、貯蔵室と、前記貯蔵室に送風される空気が収納される冷却室と、圧縮機、凝縮器、膨張手段および蒸発器を有し、前記蒸発器により前記冷却室に収納された前記空気を冷却する冷凍サイクルと、前記蒸発器を加熱して除霜する除霜用加熱部と、前記冷凍サイクルおよび前記除霜用加熱部の動作を制御する制御部と、を具備し、前記制御部は、前記蒸発器の除霜を行う際に、前記除霜用加熱部で前記蒸発器を加熱することにより、前記蒸発器の温度が第1温度以上となった後に、前記圧縮機で圧縮され且つ前記凝縮器を経由しない冷媒を前記蒸発器に供給することを特徴とする。
【発明の効果】
【0012】
本発明の冷蔵庫は、貯蔵室と、前記貯蔵室に送風される空気が収納される冷却室と、圧縮機、凝縮器、膨張手段および蒸発器を有し、前記蒸発器により前記冷却室に収納された前記空気を冷却する冷凍サイクルと、前記蒸発器を加熱して除霜する除霜用加熱部と、前記冷凍サイクルおよび前記除霜用加熱部の動作を制御する制御部と、を具備し、前記制御部は、前記蒸発器の除霜を行う際に、前記除霜用加熱部で前記蒸発器を加熱することにより、前記蒸発器の温度が第1温度以上となった後に、前記圧縮機で圧縮され且つ前記凝縮器を経由しない冷媒を前記蒸発器に供給することを特徴とする。これにより、本発明の冷蔵庫によれば、圧縮機で圧縮された高温の冷媒を蒸発器に供給する際に、除霜用加熱部にて充分に蒸発器を昇温させるため、蒸発器で冷媒が液化してしまうことを防止することができる。
【図面の簡単な説明】
【0016】
【
図1】本発明の実施形態に係る冷蔵庫の外観を示す斜視図である。
【
図2】本発明の実施形態に係る冷蔵庫の内部構成を示す側方断面図である。
【
図3】本発明の実施形態に係る冷蔵庫の冷凍サイクルを示す模式図であり、(A)は冷却運転時を示し、(B)は除霜運転時を示している。
【
図4】本発明の実施形態に係る冷蔵庫の接続構成を示すブロック図である。
【
図5】本発明の実施形態に係る冷蔵庫の除霜方法を示すフローチャートである。
【
図6】本発明の実施形態に係る冷蔵庫の除霜方法を示すタイミングチャートである。
【発明を実施するための形態】
【0017】
以下、本発明の実施形態に係る冷蔵庫10を図面に基づき詳細に説明する。以下の説明では、同一の部材には原則的に同一の符号を付し、繰り返しの説明は省略する。更に、以下の説明では、上下前後左右の各方向を適宜用いるが、左右とは冷蔵庫10を前方から見た場合の左右を示している。また、本実施形態では、冷蔵庫10として冷凍室および冷蔵室を有するものを例示するが、冷蔵庫10としては、冷凍室のみを有するもの、または、冷蔵室のみを有するものも採用できる。
【0018】
図1は、本発明の実施形態に係る冷蔵庫10を、前方右側から見た斜視図である。冷蔵庫10は、断熱箱体11と、断熱箱体11の内部に形成された貯蔵室とを有している。貯蔵室として、上方側から、冷蔵室12および冷凍室13を有している。冷蔵室12の前方開口は、上段部分が断熱扉18で閉鎖され、下段部分が断熱扉19で閉鎖されている。冷凍室13の前方開口は、上段部分が断熱扉20で閉鎖され、下段部分が断熱扉21で閉鎖されている。断熱扉18は回転式の扉であり、断熱扉19、断熱扉20および断熱扉21は引出式の扉である。
【0019】
図2は、冷蔵庫10を全体的に示す側方断面図である。断熱箱体11は、所定形状に曲折加工された鋼板からなる外箱111と、外箱111と離間した内側に配置された合成樹脂板から成る内箱112と、外箱111と内箱112との間に充填された断熱材113とから構成されている。
【0020】
冷凍室13の奥側には、冷却室115が形成されており、冷凍室13と冷却室115とは区画板29で区画されている。冷却室115の内部には、冷却器である蒸発器164が配設されている。また、冷蔵庫10の下端側後方には機械室14が区画形成され、機械室14には圧縮機161が配置されている。蒸発器164および圧縮機161は、冷媒圧縮式の冷凍サイクル16を形成している。具体的には、冷凍サイクル16は、圧縮機161、後述する凝縮器162、後述する膨張手段163および蒸発器164を備えている。冷凍サイクル16を運転することで、蒸発器164により冷却室115の内部の冷気を冷却し、この冷気を各貯蔵室に送風し、各貯蔵室の庫内温度を所定の冷却温度帯域とする。冷凍サイクル16を構成する各構成機器は、銅管などの金属管から成る後述する冷媒配管23により相互に接続されている。冷媒配管23の構成は、
図3等を参照して説明する。
【0021】
冷却室115の内部に於いて、蒸発器164の上方側には送風機27が配置されている。送風機27は、軸流送風機または遠心送風機であり、蒸発器164が冷却した冷却室115の内部の冷気を、冷蔵室12および冷凍室13に向けて送風する。
【0022】
冷却室115の内部であって、蒸発器164の下方には、除霜用加熱部117が配置される。除霜用加熱部117は、通電することで発熱する加熱ヒータである。本実施形態では、後述するように、ホットガスデフロストと除霜用加熱部117とを組み合わせて用いることで、効果的に蒸発器164の除霜処理を行う。また、ここでは図示しないが、送風機27の近傍には、除霜時に冷却室115を閉鎖する遮蔽装置が配設されている。
【0023】
冷却室115から上方に向かって送風路118が形成されている。送風路118には、冷気を冷蔵室12に吹き出すための開口が形成されている。冷蔵室12を冷却した冷気は、ここでは図示しない帰還風路を経由して冷却室115に帰還し、これにより冷蔵室12は所定の冷蔵温度帯域に冷却される。
【0024】
制御部17で送風された冷気の一部は、区画板29の上部に形成された開口を介して冷凍室13に送風され、冷凍室13を冷却した冷気は、区画板29の下部に形成された開口から冷却室115に帰還する。これにより、冷凍室13は所定の冷凍温度帯域に冷却される。
【0025】
冷凍サイクル16による冷蔵室12および冷凍室13の冷却を継続すると、蒸発器164に着霜が生じて蒸発器164の伝熱および気流を阻害するので、定期的に蒸発器164の除霜運転を行う。除霜運転では、冷凍サイクル16による冷蔵室12および冷凍室13の冷却を停止し、送風機27による送風を停止し、冷凍サイクル16によるホットガスデフロストおよび除霜用加熱部117による加熱で、蒸発器164を除霜する。除霜運転が終了した後は、上記した冷蔵室12および冷凍室13の冷却動作を再開する。
【0026】
図3を参照して、冷凍サイクル16の構成を説明する。
図3(A)は冷却運転時に於ける冷凍サイクル16を示す模式図であり、
図3(B)は、除霜運転時に於ける冷凍サイクル16を示す模式図である。
【0027】
図3(A)を参照して、冷凍サイクル16の構成を説明する。冷凍サイクル16は、圧縮機161と、凝縮器162と、膨張手段163と、蒸発器164と、を主要に具備している。膨張手段163としては、キャピラリーチューブまたは膨張弁を採用できる。冷凍サイクル16を構成する各機器は、冷媒配管23で接続されている。
【0028】
冷媒配管23には、切替部22が介装されている。切替部22は、所謂三方弁であり、冷媒が流入する冷媒取入口221、冷媒が選択的に流出する第1冷媒吐出口222および第2冷媒吐出口223を備えている。
【0029】
冷媒配管23は、第1冷媒配管231、第2冷媒配管232、第3冷媒配管233、第4冷媒配管234、第5冷媒配管235および第6冷媒配管236を具備する。第1冷媒配管231は、圧縮機161と切替部22の冷媒取入口221とを接続する。第2冷媒配管232は、切替部22の第1冷媒吐出口222と凝縮器162とを接続する。第3冷媒配管233は、凝縮器162と膨張手段163とを接続する。第4冷媒配管234は、膨張手段163と蒸発器164とを接続する。第5冷媒配管235は、切替部22の第2冷媒吐出口223と第4冷媒配管234の途中部分とをバイパス接続している。第6冷媒配管236は、蒸発器164と圧縮機161とを接続している。ここで、第5冷媒配管235は、圧縮機161で圧縮された高温冷媒を、凝縮器162および膨張手段163を経由せずに、蒸発器164に供給するための迂回配管である。
【0030】
第6冷媒配管236、第5冷媒配管235、第3冷媒配管233、膨張手段163および第4冷媒配管234は、互いに蝋付け等されることで熱的に結合されている。これにより、除霜運転時に、第6冷媒配管236を流通する冷媒を、第5冷媒配管235を流通する高温冷媒で昇温でき、液戻りを防止できる。
【0031】
冷却運転時に於いて、冷媒が流れる順番は、圧縮機161、第1冷媒配管231、切替部22の冷媒取入口221および第1冷媒吐出口222、第2冷媒配管232、凝縮器162、第3冷媒配管233、膨張手段163、第4冷媒配管234、蒸発器164、第6冷媒配管236、圧縮機161である。
【0032】
図3(B)を参照して、ホットガスデフロスト方式の除霜運転時に於いて、冷媒は、凝縮器162および膨張手段163を経由することなく、高温蒸気状態のまま蒸発器164に導入される。これは、切替部22の第1冷媒吐出口222を閉鎖すると共に、第2冷媒吐出口223を解放することで実現する。冷媒が流れる順番は、圧縮機161、第1冷媒配管231、切替部22の冷媒取入口221および第2冷媒吐出口223、第5冷媒配管235、第4冷媒配管234、蒸発器164、第6冷媒配管236、圧縮機161である。
【0033】
このように冷媒を流すことで、凝縮器162および膨張手段163を経ていない高温冷媒を蒸発器164に流すことができ、これにより蒸発器164の表面で成長した霜を溶融できる。また、第6冷媒配管236と第5冷媒配管235が熱的に結合されていることから、蒸発器164を冷却して圧縮機161に戻る冷媒を、第5冷媒配管235を通過する高温冷媒で昇温して気化させることができ、液戻りを防止できる。
【0034】
図4は、冷蔵庫10の接続構成を示すブロック図である。
【0035】
制御部17は、CPU、RAM、ROM等を含む演算制御素子である。
【0036】
制御部17の入力端子には、タイマ26、庫内温度センサ24および蒸発器温度センサ25が接続されている。タイマ26は、冷蔵庫10を構成する各種機器、例えば、圧縮機161、切替部22および除霜用加熱部117等の稼働時間や停止時間を計測する。庫内温度センサ24は、冷蔵室12や冷凍室13の庫内温度を計測する。蒸発器温度センサ25は、蒸発器164または冷却室115の温度を計測する。
【0037】
制御部17の出力端子には、圧縮機161、切替部22および除霜用加熱部117が接続されている。圧縮機161は冷媒を圧縮し、切替部22は冷媒が流れる方向を切り替え、除霜用加熱部117は蒸発器164を加熱する通電式の加熱ヒータである。
【0038】
制御部17は、タイマ26、庫内温度センサ24および蒸発器温度センサ25から入力された入力情報に基づいて所定の演算処理を実行し、当該演算処理に基づいて、圧縮機161、切替部22および除霜用加熱部117の運転動作や切り替え動作を制御する。
【0039】
図5および
図6を参照して、上記した構成の冷蔵庫10に於ける除霜運転を説明する。
図5は除霜運転を示すフローチャートであり、
図6は除霜運転を示すタイミングチャートである。
図6では、蒸発器温度センサ25の温度、第1冷媒吐出口222の開閉、第2冷媒吐出口223の開閉、通電で発熱する除霜用加熱部117のオンオフ、圧縮機161の動作回転周波数を示している。
【0040】
ステップS10では、制御部17は、除霜運転を開始する。即ち、
図2を参照して、送風機27を停止し、冷凍サイクル16による冷却運転を停止し、冷却室115をダンパなどで閉鎖する。
【0041】
ステップS11では、制御部17は、タイマ26で計測した除霜運転時間が、所定時間、例えば100分が経過したか否かを判断する。所定時間が経過したら、即ちステップS11がYESであれば、制御部17は、ステップS22に移行し、除霜運転を終了する。一方、所定時間が経過していなければ、即ちステップS11がNOであれば、制御部17は、ステップS12に移行し、除霜運転を続行する。
【0042】
ステップS12では、制御部17は、除霜用加熱部117に通電して発熱させ、切替部22の第1冷媒吐出口222を閉じ、第2冷媒吐出口223も閉じる。このとき、圧縮機161は停止しているので、蒸発器164には冷媒は供給されない。このようにすることで、
図2を参照して、除霜用加熱部117により冷却室115および蒸発器164が温められ、蒸発器164の着霜が徐々に溶融し、更に蒸発器164および冷却室115も昇温される。ステップS12は、
図6のタイミングチャートにおいてT1が該当している。
【0043】
ステップS13では、制御部17は、蒸発器温度センサ25で計測した蒸発器164の温度が、0℃以上であるか否かを判断する。蒸発器温度センサ25の温度が0℃以上であれば、即ちステップS13がYESであれば、制御部17は、ステップS14に移行する。一方、蒸発器温度センサ25の温度が0℃未満であれば、即ちステップS13がNOであれば、制御部17は、ステップS14に移行せず除霜用加熱部117による加熱を続行する。ステップS13は、
図6のタイミングチャートにおいてT1ないしT2が該当している。
【0044】
ステップS14では、制御部17は、除霜用加熱部117の通電を終了し、切替部22の第1冷媒吐出口222を閉じ、第2冷媒吐出口223を開く。ステップS14は、
図6のタイミングチャートにおいてT2が該当している。
【0045】
ステップS15では、制御部17は、圧縮機161の運転を開始し、圧縮機161が運転する周波数をセットする。ここでは、制御部17は、
図6のタイミングチャートに示すように「1」がセットされる。
【0046】
ステップS16では、制御部17は、蒸発器温度センサ25で計測した蒸発器164の温度が、2℃以上であるか否かを判断する。蒸発器温度センサ25の温度が2℃以上であれば、即ちステップS16がYESであれば、制御部17は、ステップS17に移行する。一方、蒸発器温度センサ25の温度が2℃未満であれば、即ちステップS16がNOであれば、制御部17は、ステップS17に移行しない。ステップS16は、
図6のタイミングチャートにおいてT2ないしT3が該当している。
【0047】
ステップS17では、制御部17は、圧縮機161の運転周波数を設定する。即ち、制御部17は、上記したステップS15では「1」であった圧縮機161の運転周波数を「2」とする。即ち、圧縮機161の回転周波数を2倍にし、蒸発器164に供給される高温冷媒の流量を増加させ、あるいは、圧縮機161の回転周波数を増加させて、蒸発器164に供給される高温冷媒の流量を2倍とし、ホットガスデフロスト方式の除霜をより積極的に行う。蒸発器164の温度は2℃程度に上昇しているので、蒸発器164に供給される冷媒の流量を増大させても、液戻りは抑制されている。ステップS16は、
図6のタイミングチャートにおいてT3が該当している。
【0048】
ステップS18では、制御部17は、蒸発器温度センサ25で計測した蒸発器164の温度が、4℃以上であるか否かを判断する。蒸発器温度センサ25の温度が4℃以上であれば、即ちステップS18がYESであれば、制御部17は、ステップS19に移行する。一方、蒸発器温度センサ25の温度が4℃未満であれば、即ちステップS18がNOであれば、制御部17は、ステップS19に移行しない。ステップS19は、
図6のタイミングチャートにおいてT3ないしT4が該当している。
【0049】
ステップS19では、制御部17は、蒸発器温度センサ25で計測した蒸発器164の温度が、2℃上昇する度に、圧縮機161の運転周波数を上昇させる。即ち、蒸発器温度センサ25で計測した蒸発器164の温度が4℃以上になれば、
図6に示すT4からT5に示すように、圧縮機161の運転周波数を「3」とする。また、蒸発器温度センサ25で計測した蒸発器164の温度が6℃以上になれば、
図6に示すT5からT6に示すように、圧縮機161の運転周波数を「4」とする。このようにすることで、蒸発器164に供給される高温冷媒の流量を増大させ、更に積極的にホットガスデフロスト方式の除霜運転を行う。
【0050】
ステップS20では、制御部17は、蒸発器温度センサ25で計測した蒸発器164の温度が、8℃以上であるか否かを判断する。蒸発器温度センサ25の温度が8℃以上であれば、即ちステップS20がYESであれば、制御部17は、充分に除霜されていると判断し、ステップS21に移行する。一方、蒸発器温度センサ25の温度が8℃未満であれば、即ちステップS20がNOであれば、制御部17は、除霜は充分ではないと判断し、ステップS19に戻る。ステップS20は、
図6のタイミングチャートにおいてT5ないしT6が該当している。
【0051】
ステップS21では、制御部17は、圧縮機161の運転を終了し、切替部22の第1冷媒吐出口222を閉じ、第2冷媒吐出口223を閉じ、ステップS22に移行して除霜運転を終了する。ステップS21は、
図6のタイミングチャートにおいてT6が該当している。
【0052】
上記により蒸発器164の除霜が終了したら、冷凍サイクル16を冷却運転することで冷蔵室12および冷凍室13を冷却する冷却運転を再開する。
【0053】
本発明は、上記実施形態に限定されるものではなく、その他、本発明の要旨を逸脱しない範囲で、種々の変更実施が可能である。また、上記した各形態は相互に組み合わせることが可能である。
【符号の説明】
【0054】
10 冷蔵庫
11 断熱箱体
111 外箱
112 内箱
113 断熱材
115 冷却室
117 除霜用加熱部
118 送風路
12 冷蔵室
13 冷凍室
14 機械室
16 冷凍サイクル
161 圧縮機
162 凝縮器
163 膨張手段
164 蒸発器
17 制御部
18 断熱扉
19 断熱扉
20 断熱扉
21 断熱扉
22 切替部
221 冷媒取入口
222 第1冷媒吐出口
223 第2冷媒吐出口
23 冷媒配管
231 第1冷媒配管
232 第2冷媒配管
233 第3冷媒配管
234 第4冷媒配管
235 第5冷媒配管
236 第6冷媒配管
24 庫内温度センサ
25 蒸発器温度センサ
26 タイマ
27 送風機
29 区画板