(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-02-28
(45)【発行日】2024-03-07
(54)【発明の名称】カルボキシメチル化セルロースナノファイバーを含む粉末
(51)【国際特許分類】
C08J 3/12 20060101AFI20240229BHJP
C08B 11/12 20060101ALN20240229BHJP
【FI】
C08J3/12 A CEP
C08B11/12
(21)【出願番号】P 2020522209
(86)(22)【出願日】2019-05-28
(86)【国際出願番号】 JP2019021083
(87)【国際公開番号】W WO2019230716
(87)【国際公開日】2019-12-05
【審査請求日】2022-04-21
(31)【優先権主張番号】P 2018102619
(32)【優先日】2018-05-29
(33)【優先権主張国・地域又は機関】JP
【前置審査】
(73)【特許権者】
【識別番号】000183484
【氏名又は名称】日本製紙株式会社
(74)【代理人】
【識別番号】100118902
【氏名又は名称】山本 修
(74)【代理人】
【識別番号】100126985
【氏名又は名称】中村 充利
(74)【代理人】
【識別番号】100141265
【氏名又は名称】小笠原 有紀
(74)【代理人】
【識別番号】100129311
【氏名又は名称】新井 規之
(72)【発明者】
【氏名】多田 裕亮
(72)【発明者】
【氏名】井上 一彦
(72)【発明者】
【氏名】中谷 丈史
【審査官】芦原 ゆりか
(56)【参考文献】
【文献】国際公開第2015/107995(WO,A1)
【文献】国際公開第2014/088072(WO,A1)
【文献】特開2017-057391(JP,A)
【文献】国際公開第2005/073286(WO,A1)
【文献】特開平10-251446(JP,A)
【文献】特開2016-166258(JP,A)
【文献】特開2015-134873(JP,A)
【文献】特開2013-064134(JP,A)
【文献】国際公開第2018/143149(WO,A1)
【文献】特開平10-251301(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
C08J 3/00-3/28
C08B
(57)【特許請求の範囲】
【請求項1】
カルボキシメチル置換度が0.50以下であり、セルロースI型の結晶化度が60%以上であるカルボキシメチル化セルロースナノファイバーを含み、
安息角が35.0゜~53.0゜であり、メディアン径が
50.0μm~
120.0μmである粉末。
【請求項2】
カルボキシメチル化セルロースナノファイバーが、固形分1%(w/v)の水分散体とした際の波長660nmの光の透過率が70%以上である、請求項1に記載の粉末。
【請求項3】
カルボキシメチル化セルロースと、カルボキシメチル化セルロースナノファイバーの絶乾質量に対して5質量%~300質量%の水溶性高分子とからなる、請求項1
または2に記載の粉末。
【請求項4】
カルボキシメチル化セルロースナノファイバーが、水を主とする溶媒下でセルロースをマーセル化してマーセル化セルロースを製造し、次いで、マーセル化セルロースを水と有機溶媒との混合溶媒下でカルボキシメチル化してカルボキシメチル化セルロースを製造し、次いで、カルボキシメチル化セルロースを解繊してカルボキシメチル化セルロースナノファイバーとすることにより製造されたものである、請求項1~
3のいずれか1項に記載の粉末。
【請求項5】
前記水を主とする溶媒が、水を50質量%より多く含む溶媒である、請求項
4に記載の粉末。
【請求項6】
カルボキシメチル化セルロースナノファイバーの平均繊維径が3nm~500nmである、請求項1~
5のいずれか1項に記載の粉末。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、カルボキシメチル化セルロースナノファイバーを含む粉末に関する。詳細には、特定のカルボキシメチル置換度及びセルロースI型の結晶化度を有するカルボキシメチル化セルロースを含み、特定の粒度となるように調整された粉末に関する。
【背景技術】
【0002】
カルボキシメチル化セルロースは、セルロースのグルコース残基中の水酸基の一部に、カルボキシメチル基をエーテル結合させたものである。カルボキシメチル化したセルロースは、化粧品、医薬品、食品、各種工業製品等において、増粘剤、粘結剤、バインダー、吸水材、保水材、乳化安定剤などの各種添加剤として使用されている。カルボキシメチル化したセルロースは、天然セルロース由来であることから緩やかな生分解性を有するとともに焼却廃棄が可能である環境にやさしい素材であり、用途は今後拡大すると予測される。
【0003】
カルボキシメチル化セルロースの製造方法としては、一般に、セルロースをアルカリで処理(マーセル化)した後、エーテル化剤(カルボキシメチル化剤ともいう。)で処理(カルボキシメチル化。エーテル化とも呼ぶ。)する方法が知られており、マーセル化とカルボキシメチル化の両方を水を溶媒として行う方法と、マーセル化とカルボキシメチル化の両方を有機溶媒を主とする溶媒下で行う方法(特許文献1)が知られており、前者は「水媒法」、後者は「溶媒法」と呼ばれる。
【0004】
カルボキシメチル化セルロースにおいて、カルボキシメチル基の量が増えると(すなわち、カルボキシメチル置換度が増加すると)、カルボキシメチル化セルロースは水に溶解するようになる。一方、カルボキシメチル置換度を適度な範囲に調整することにより、水中でもカルボキシメチル化セルロースの繊維状の形状を維持させることができるようになる。繊維状の形状を有するカルボキシメチル化したセルロースは、機械的に解繊することにより、ナノスケールの繊維径を有するナノファイバーへと変換することができる(特許文献2)。
【先行技術文献】
【特許文献】
【0005】
【文献】特開2017-149901号公報
【文献】国際公開第2014/088072号
【発明の概要】
【発明が解決しようとする課題】
【0006】
カルボキシメチル化セルロースは、その増粘性、吸水性、保水性等の性質から、飲食品、化粧品、水系塗料など、様々な分野において添加剤として使用されている。また、カルボキシメチル化セルロースをナノファイバー化したカルボキシメチル化セルロースナノファイバーについても、様々な分野の添加剤として使用されることが期待されている。
【0007】
本発明は、カルボキシメチル化セルロースのナノファイバーを含み、添加剤として使用するのに適した粉末を提供することを目的とする。
【課題を解決するための手段】
【0008】
本発明者らは、上記目的に対して鋭意検討を行った結果、カルボキシメチル化セルロースナノファイバーの分散体を乾燥し、粉砕し、特定の粒度となるように分級して得た粉末は、作業性もよく、水に投入した際にダマ(塊)を形成しにくく、様々な分野の添加剤として好適に使用できることを見出した。また、カルボキシメチル化セルロースナノファイバーの製造に際して、マーセル化(セルロースのアルカリ処理)を水を主とする溶媒下で行い、その後、カルボキシメチル化(エーテル化ともいう。)を水と有機溶媒との混合溶媒下で行うことにより得たカルボキシメチル化セルロースは、従来の水媒法(マーセル化とカルボキシメチル化の両方を水を溶媒として行う方法)や溶媒法(マーセル化とカルボキシメチル化の両方を有機溶媒を主とする溶媒下で行う方法)で得たカルボキシメチル化セルロースに比べて、解繊した際に、非常に透明度の高いセルロースナノファイバー分散体を形成することができ、また、カルボキシメチル化剤の有効利用率も高いことを見出した。
【0009】
本発明としては、以下に限定されないが、次のものが挙げられる。
(1)カルボキシメチル置換度が0.50以下であり、セルロースI型の結晶化度が60%以上であるカルボキシメチル化セルロースナノファイバーを含み、メディアン径が10.0μm~150.0μmである粉末。
(2)カルボキシメチル化セルロースナノファイバーが、固形分1%(w/v)の水分散体とした際の波長660nmの光の透過率が70%以上である、(1)に記載の粉末。
(3)安息角が、30.0°~60.0°の範囲である、(1)または(2)に記載の粉末。
(4)カルボキシメチル化セルロースと、カルボキシメチル化セルロースナノファイバーの絶乾質量に対して5質量%~300質量%の水溶性高分子とからなる、(1)~(3)のいずれか1つに記載の粉末。
(5)カルボキシメチル化セルロースナノファイバーが、水を主とする溶媒下でセルロースをマーセル化してマーセル化セルロースを製造し、次いで、マーセル化セルロースを水と有機溶媒との混合溶媒下でカルボキシメチル化してカルボキシメチル化セルロースを製し、次いで、カルボキシメチル化セルロースを解繊してカルボキシメチル化セルロースナノファイバーとすることにより製造されたものである、(1)~(4)のいずれか1つに記載の粉末。
(6)前記水を主とする溶媒が、水を50質量%より多く含む溶媒である、(5)に記載の粉末。
(7)カルボキシメチル化セルロースナノファイバーの平均繊維径が3nm~500nmである、(1)~(6)のいずれか1つに記載の粉末。
【発明の効果】
【0010】
本発明のカルボキシメチル化セルロースナノファイバーを含む粉末は、適度な粒度を有することにより作業性がよく、水中でダマ(塊)を形成しにくく、また、分散安定性に優れ、保水性と保形性付与に優れ、水と接触した際にも比較的べたべたしにくくさらっとしていることから、食品、医薬品、化粧品、飼料、製紙、塗料等の様々な分野における保水性付与剤、保形性付与剤、粘度調整剤、乳化安定剤、分散安定剤等の各種添加剤として好適に使用することができる。
【発明を実施するための形態】
【0011】
<カルボキシメチル化セルロースのナノファイバー>
本発明の粉末は、カルボキシメチル置換度が0.50以下であり、セルロースI型の結晶化度が60%以上であるカルボキシメチル化セルロースナノファイバーを含み、メディアン径が10.0μm~150.0μmである。
【0012】
カルボキシメチル化セルロースナノファイバーを構成するカルボキシメチル化セルロースとは、セルロースのグルコース残基中の水酸基の一部がカルボキシメチル基とエーテル結合した構造を有するものである。カルボキシメチル化セルロースのナノファイバーとは、上記の構造を有するカルボキシメチル化セルロースをナノスケールの繊維径を有するナノファイバーへと変換したものをいう。カルボキシメチル化セルロースは、例えばカルボキシメチル化セルロースのナトリウム塩などの金属塩といった塩の形態をとる場合もあり、カルボキシメチル化セルロースのナノファイバーも塩の形態をとっていてもよい。
【0013】
本発明に用いられるカルボキシメチル化セルロースのナノファイバーは、水に分散した際にも繊維状の形状の少なくとも一部が維持されるものである。すなわち、カルボキシメチル化セルロースナノファイバーの水分散体を電子顕微鏡等で観察すると、繊維状の物質を観察することができるものである。また、カルボキシメチル化セルロースナノファイバーをX線回折で測定した際にセルロースI型結晶のピークを観測することができるものである。
【0014】
本発明に用いられるカルボキシメチル化セルロースナノファイバーは、本発明の効果を阻害しない範囲で、カルボキシメチル基由来のカルボキシル基(-COOH)を、適宜変性したものであってもよい。そのような変性としては、例えばアルキル基やアリール基、アラルキル基などを有するアミン系化合物やリン系化合物などをカルボキシル基に結合させて、疎水化することが挙げられる。
【0015】
また本発明に用いられるカルボキシメチル化セルロースナノファイバーは、本発明の効果を阻害しない範囲で、金属担持させたものであってもよい。金属担持とは、金属化合物を含む水溶液を接触させることで、カルボキシル基(-COOH)由来のカルボキシレート基(―COO―)に、金属化合物を配位結合または水素結合させることをいう。これにより、金属化合物由来の金属イオンがイオン結合している金属化合物を含有するカルボキシメチル化セルロースナノファイバーを得ることができる。そのような金属化合物としては、例えばAg、Au、Pt、Pd、Mn、Fe、Ti、Al、Zn及びCuの群から選ばれる1種以上の金属元素のイオンを含む金属塩などを挙げることができる。
【0016】
<カルボキシメチル置換度>
本発明に用いられるカルボキシメチル化セルロースのナノファイバーは、セルロースの無水グルコース単位当たりのカルボキシメチル置換度が、0.50以下である。カルボキシメチル置換度が0.50を超えると水へ溶解し、繊維形状を維持できなくなると考えられる。操業性を考慮すると当該置換度は0.02~0.50であることが好ましく、0.05~0.50であることがさらに好ましく、0.10~0.40であることがさらに好ましく、0.20~0.40であることがさらに好ましい。セルロースにカルボキシメチル基を導入することで、セルロース同士が電気的に反発するため、ナノファイバーへと解繊することができるようになるが、無水グルコース単位当たりのカルボキシメチル置換度が0.02より小さいと、解繊が不十分となり、透明性の高いセルロースナノファイバーが得られない場合がある。なお、従来の水媒法では、カルボキシメチル置換度が0.20~0.40の範囲では、セルロースI型の結晶化度が60%以上であるカルボキシメチル化セルロースのナノファイバーを得ることは困難であったが、本発明者らは、例えば後述する方法により、カルボキシメチル置換度が0.20~0.40の範囲であり、セルロースI型の結晶化度が60%以上であるカルボキシメチル化セルロースのナノファイバーを製造できることを見出した。カルボキシメチル置換度は、反応させるカルボキシメチル化剤の添加量、マーセル化剤の量、水と有機溶媒の組成比率をコントロールすること等によって調整することができる。
【0017】
本発明において無水グルコース単位とは、セルロースを構成する個々の無水グルコース(グルコース残基)を意味する。また、カルボキシメチル置換度(エーテル化度ともいう。)とは、セルロースを構成するグルコース残基中の水酸基のうちカルボキシメチルエーテル基に置換されているものの割合(1つのグルコース残基当たりのカルボキシメチルエーテル基の数)を示す。なお、カルボキシメチル置換度はDSと略すことがある。
【0018】
カルボキシメチル置換度の測定方法は以下の通りである:
試料約2.0gを精秤して、300mL共栓付き三角フラスコに入れる。硝酸メタノール(メタノール1000mLに特級濃硝酸100mLを加えた液)100mLを加え、3時間振盪して、カルボキシメチル化セルロースナノファイバーの塩(CMC)をH-CMC(水素型カルボキシメチル化セルロースナノファイバー)に変換する。その絶乾H-CMCを1.5~2.0g精秤し、300mL共栓付き三角フラスコに入れる。80%メタノール15mLでH-CMCを湿潤し、0.1N-NaOHを100mL加え、室温で3時間振盪する。指示薬として、フェノールフタレインを用いて、0.1N-H2SO4で過剰のNaOHを逆滴定し、次式によってカルボキシメチル置換度(DS値)を算出する。
A=[(100×F'-0.1N-H2SO4(mL)×F)×0.1]/(H-CMCの絶乾質量(g))
カルボキシメチル置換度=0.162×A/(1-0.058×A)
F':0.1N-H2SO4のファクター
F:0.1N-NaOHのファクター。
【0019】
カルボキシメチル化セルロースのナノファイバーにおけるカルボキシメチル置換度は、ナノファイバーとする前のカルボキシメチル化セルロースにおけるカルボキシメチル置換度と、通常、同じである。
【0020】
<セルロースI型の結晶化度>
本発明に用いられるカルボキシメチル化セルロースナノファイバーにおけるセルロースの結晶化度は、結晶I型が60%以上であり、好ましくは65%以上である。セルロースI型の結晶化度が60%以上と高いと、水等の溶媒中で溶解せずに結晶構造を維持するセルロースの割合が高いため、チキソ性が高くなり(チキソトロピー)、増粘剤等の粘度調整用途に適するようになる。また、例えば、これに限定されないが、ゲル状の物質(例えば、食品や化粧品など)に添加した際に、優れた保形性を付与できるという利点が得られる。セルロースの結晶性は、マーセル化剤の濃度と処理時の温度、並びにカルボキシメチル化の度合によって制御できる。マーセル化及びカルボキシメチル化においては高濃度のアルカリが使用されるために、セルロースのI型結晶がII型に変換されやすいが、アルカリ(マーセル化剤)の使用量を調整するなどして変性の度合いを調整することによって、所望の結晶性を維持させることができる。セルロースI型の結晶化度の上限は特に限定されない。現実的には90%程度が上限となると考えられる。
【0021】
カルボキシメチル化セルロースナノファイバーのセルロースI型の結晶化度の測定方法は、以下の通りである:
試料をガラスセルに乗せ、X線回折測定装置(LabX XRD-6000、島津製作所製)を用いて測定する。結晶化度の算出はSegal等の手法を用いて行い、X線回折図の2θ=10°~30°の回折強度をベースラインとして、2θ=22.6°の002面の回折強度と2θ=18.5°のアモルファス部分の回折強度から次式により算出する。
Xc=(I002c―Ia)/I002c×100
Xc=セルロースI型の結晶化度(%)
I002c:2θ=22.6°、002面の回折強度
Ia:2θ=18.5°、アモルファス部分の回折強度。
【0022】
カルボキシメチル化セルロースのナノファイバーにおけるI型結晶の割合は、ナノファイバーとする前のカルボキシメチル化セルロースにおけるものと、通常、同じである。
【0023】
<メディアン径>
本発明のカルボキシメチル化セルロースナノファイバーを含む粉末は、10.0μm~150.0μmの範囲のメディアン径を有する。メディアン径の範囲は、好ましくは、30.0μm~130.0μmであり、さらに好ましくは、50.0μm~120.0μmである。メディアン径が10.0μmより小さいと、全体的に粉末が細かくなりすぎ、扱う際に舞い上がりやすいなど、作業性が悪くなる。一方、メディアン径が150.0μmより大きいと、水などの媒体に均一に溶解または分散させにくくなり、ダマ(塊)が残るなどの問題が生じやすくなる。本発明において、メディアン径は、メタノールを分散媒として分散させ、レーザー回折・散乱式粒度分布計で測定される体積累計50%の粒子径(D50)の値をいう。このようなメディアン径を有するカルボキシメチル化セルロースナノファイバー粉末は、例えば後述する方法でカルボキシメチル化セルロースナノファイバーを粉砕、分級することにより得ることができる。
【0024】
<水分散体における透明度>
本発明に用いられるカルボキシメチル化セルロースのナノファイバーは、水を分散媒として分散体としたときに(水分散体)、高い透明度を呈することが好ましい。透明度の高いナノファイバーは、透明性が要求されるような用途の添加剤としても使用することができる。本明細書において、透明度は、カルボキシメチル化セルロースナノファイバーを固分1%(w/v)の水分散体とした際の、波長660nmの光の透過率をいうものとする。カルボキシメチル化セルロースナノファイバーの透明度の測定方法は、以下の通りである:
セルロースナノファイバー分散体(固形分1%(w/v)、分散媒:水)を調製し、UV-VIS分光光度計UV-1800(島津製作所製)を用い、光路長10mmの角型セルを用いて、660nm光の透過率を測定する。
【0025】
本発明に用いられるカルボキシメチル化セルロースナノファイバーの透明度は、70%以上であることが好ましい。より好ましくは70%~100%であり、さらに好ましくは80%~100%であり、さらに好ましくは90%~100%である。このようなセルロースナノファイバーは、透明性が要求されるような用途に最適に使用することができる。上述のセルロースI型の結晶化度とカルボキシメチル置換度を有し、このような透明度を有するカルボキシメチル化セルロースナノファイバーは、例えば、後述する方法により製造することができる。
【0026】
<安息角>
本発明のカルボキシメチル化セルロースナノファイバーを含む粉末の安息角は、好ましくは30.0°以上であり、より好ましくは35.0°以上であり、さらに好ましくは37.0°以上であり、さらに好ましくは40.0°以上である。また、安息角は、好ましくは60.0°以下であり、より好ましくは56.0°以下であり、さらに好ましくは53.0°以下である。安息角が60.0°以下であると、粉体流動性が良好であり作業性が良好となる。また安息角が30.0°以上であると、粉舞いが発生しにくく、作業性が良好となる。
【0027】
なお本発明の粉末の安息角は、パウダーテスター(PT-N型、ホソカワミクロン株式会社製)を用いて、粉体を漏斗の孔から一定面積の水平板の上に一定形状となるまで落下堆積させ、円錐状の顆粒体を形成させた際の、Angle Repose(仰角)の値とする。
【0028】
<崩壊角>
本発明のカルボキシメチル化セルロースナノファイバーを含む粉末の崩壊角は、好ましくは14.0°以上であり、より好ましくは16.0°以上である。また、崩壊角は、好ましくは40.0°以下であり、より好ましくは35.0°以下である。崩壊角が40.0°以下であると、粉体流動性が良好であり作業性が良好となる。また崩壊角が20.0°以上であると、粉舞いが発生しにくく、作業性が良好となる。
【0029】
なお、粉末の崩壊角は、以下の方法で測定することができる:
パウダーテスター(PT-N型、ホソカワミクロン株式会社製)を用いて、粉体を漏斗の孔から一定面積の水平板の上に一定形状となるまで落下堆積させ、円錐状の顆粒体を形成させる。次いで、水平板と同じ台座上にある一定の重さの分銅を落下させることにより、該粉体に一定の衝撃を与え、一部粉体が自然流動し水平板から脱落した後、残った円錐状の顆粒体について、底面外周の点から円錐の頂点までの仰角を、崩壊角とする。
【0030】
<差角>
安息角と崩壊角との差を差角という。差角は、振動フィーダー等の搬送装置からの振動等による粉体の崩れ易さを表す指標となるものであり、差角が大きいほど崩れ易いことを示す。差角は、好ましくは10.0°~30.0°であり、より好ましくは10.0°~28.0°であり、さらに好ましくは12.0°~27.0°である。
【0031】
<繊維径、アスペクト比>
本発明に用いられるカルボキシメチル化セルロースのナノファイバーは、ナノスケールの繊維径を有するものである。平均繊維径は、好ましくは3nm~500nm、さらに好ましくは3nm~150nm、さらに好ましくは3nm~20nm、さらに好ましくは5nm~19nm、さらに好ましくは5nm~15nmである。
【0032】
カルボキシメチル化セルロースナノファイバーのアスペクト比は、特に限定されないが、350以下であることが好ましく、300以下であることがさらに好ましく、200以下であることがさらに好ましく、120以下であることがさらに好ましく、100以下であることがさらに好ましく、80以下であることがさらに好ましい。アスペクト比が350以下であると、繊維が過度に長すぎず、繊維同士の絡まり合いが少なくなり、セルロースナノファイバーの塊(ダマ)の発生を低減することができ、添加剤として使用するのに適する。また、流動性が高いので、高濃度でも使用しやすくなり、高固形分が要求される用途においても使いやすくなるという利点が得られる。アスペクト比の下限は、特に限定されないが、好ましくは25以上であり、さらに好ましくは30以上である。アスペクト比が25以上であると、その繊維状の形状から、チキソ性の向上といった効果が得られる。カルボキシメチル化セルロースナノファイバーのアスペクト比は、カルボキシメチル化時の溶媒と水の混合比、薬品添加量、及びカルボキシメチル化の度合によって制御でき、また、例えば、後述する製法により製造することができる。
【0033】
カルボキシメチル化セルロースのナノファイバーの平均繊維径および平均繊維長は、径が20nm以下の場合は原子間力顕微鏡(AFM)、20nm以上の場合は電界放出型走査電子顕微鏡(FE-SEM)を用いて、ランダムに選んだ200本の繊維について解析し、平均を算出することにより、測定することができる。また、アスペクト比は下記の式により算出することができる:
アスペクト比=平均繊維長/平均繊維径。
【0034】
<水分散体における粘度とチキソ性>
本発明に用いられるカルボキシメチル化セルロースのナノファイバーは、水を分散媒として分散体(水分散体)としたときに高いチキソ性を奏するものが好ましい。チキソ性(チキソトロピー)とは、剪断応力を受けることにより粘度が次第に低下し、静止すると粘度が次第に上昇する性質をいい、本願明細書では、チキソ性の指標として、低い剪断速度で測定した粘度を高い剪断速度で測定した粘度で除した値を用いる。具体的には、粘度及びチキソ性は以下の方法で測定する:
セルロースナノファイバー分散体(固形分1%(w/v)、分散媒:水)を調製し、25℃で16時間放置した後、撹拌機を用いて3000rpmで1分間撹拌し、粘度測定用サンプルとする。得られた粘度測定用サンプルの一部について、B型粘度計(東機産業社製)を用いて、No.4ローター/回転数6rpmで3分後の粘度を測定する。また、粘度測定用サンプルの別の一部(粘度をまだ測定していないもの)を用いて、B型粘度計(東機産業社製)を用いて、No.4ローター/回転数60rpmで3分後の粘度を測定する。粘度の測定時にはJIS-Z-8803の方法に準じる。得られた6rpmにおける粘度を60rpmにおける粘度で除した値を、チキソ性の指標として用いる。
【0035】
本発明に用いられるカルボキシメチル化セルロースナノファイバーは、固形分1%(w/v)の水分散体とした際の25℃、6rpmにおける粘度を固形分1%(w/v)の水分散体とした際の25℃、60rpmにおける粘度で除した値(単に「6rpmの粘度を60rpmの粘度で除した値」とも呼ぶ)が、6.0以上であることが好ましい。この値が高いほど、剪断応力の差に応じて粘度が大きく変化することを示しており、チキソ性が高いことを示している。チキソ性の高いセルロースナノファイバーは、保形性付与剤や粘度調整剤として使用するのに適している。6rpmの粘度を60rpmの粘度で除した値の上限は限定されないが、実際は15.0程度が上限となると考えられる。
【0036】
カルボキシメチル化セルロースナノファイバーの6rpmにおける粘度(固形分1%(w/v)の水分散体、25℃)は、15000mPa・s以上であることが好ましく、20000mPa・s以上であることがさらに好ましい。低い剪断速度(6rpm)における粘度が高いほど、チキソ性が高くなる可能性がある。6rpmにおける粘度の上限は特に限定されないが、現実的には50000mPa・s程度となると考えられる。
【0037】
カルボキシメチル化セルロースナノファイバーの60rpmにおける粘度(固形分1%(w/v)の水分散体、25℃)は、1500~8400mPa・s程度であることが好ましく、2000~7000mPa・s程度であることがさらに好ましく、2500~7000mPa・s程度であることがさらに好ましく、3000~7000mPa・s程度であることがさらに好ましい。
【0038】
このような粘度及びチキソ性を有するカルボキシメチル化セルロースナノファイバーは、例えば、後述する方法により製造することができる。
【0039】
<カルボキシメチル化セルロースナノファイバーの製造方法>
カルボキシメチル化セルロースは、一般に、セルロースをアルカリで処理(マーセル化)した後、得られたマーセル化セルロース(アルカリセルロースともいう。)を、カルボキシメチル化剤(エーテル化剤ともいう。)と反応させることにより製造することができる。例えば、カルボキシメチル置換度が0.50以下であり、セルロースI型の結晶化度が60%以上であり、高い透明度を呈するナノファイバーを形成することができるカルボキシメチル化セルロースは、マーセル化(セルロースのアルカリ処理)を水を主とする溶媒下で行い、その後、カルボキシメチル化(エーテル化ともいう。)を水と有機溶媒との混合溶媒下で行うことにより、製造することができる。このようにして得たカルボキシメチル化セルロースは、従来の水媒法(マーセル化とカルボキシメチル化の両方を水を溶媒として行う方法)や溶媒法(マーセル化とカルボキシメチル化の両方を有機溶媒を主とする溶媒下で行う方法)で得たカルボキシメチル化セルロースに比べて、カルボキシメチル化剤の高い有効利用率を有しながら、解繊した際に、透明度の高いセルロースナノファイバー分散体へと変換することができる。次いで、セルロースナノファイバー分散体を乾燥(分散媒の除去)、粉砕、分級することにより、本発明の特定の粒度範囲を有するカルボキシメチル化セルロースナノファイバーを含む粉末を製造することができる。
【0040】
このようにして得たカルボキシメチル化セルロースナノファイバーを含む粉末は、分散安定性にすぐれ、保水性と保形性付与に優れ、水に接触した際にも比較的べたべたしにくくさらっとしており、水中でダマを形成しにくく、添加剤として使用するのに適している。また、上記の方法は、カルボキシメチル化剤の有効利用率が高いという利点がある。
【0041】
<セルロース>
本発明においてセルロースとは、D-グルコピラノース(単に「グルコース残基」、「無水グルコース」ともいう。)がβ-1,4結合で連なった構造の多糖を意味する。セルロースは、一般に起源、製法等から、天然セルロース、再生セルロース、微細セルロース、非結晶領域を除いた微結晶セルロース等に分類される。本発明では、これらのセルロースのいずれも、マーセル化セルロースの原料として用いることができるが、カルボキシメチル化セルロースにおいて60%以上のセルロースI型の結晶化度を維持するためには、セルロースI型の結晶化度が高いセルロースを原料として用いることが好ましい。原料となるセルロースのセルロースI型の結晶化度は、好ましくは、70%以上であり、さらに好ましくは80%以上である。セルロースI型の結晶化度の測定方法は、上述した通りである。
【0042】
天然セルロースとしては、晒パルプまたは未晒パルプ(晒木材パルプまたは未晒木材パルプ);リンター、精製リンター;酢酸菌等の微生物によって生産されるセルロース等が例示される。晒パルプ又は未晒パルプの原料は特に限定されず、例えば、木材、木綿、わら、竹、麻、ジュート、ケナフ等が挙げられる。また、晒パルプ又は未晒パルプの製造方法も特に限定されず、機械的方法、化学的方法、あるいはその中間で二つを組み合せた方法でもよい。製造方法により分類される晒パルプ又は未晒パルプとしては例えば、メカニカルパルプ(サーモメカニカルパルプ(TMP)、砕木パルプ)、ケミカルパルプ(針葉樹未漂白サルファイトパルプ(NUSP)、針葉樹漂白サルファイトパルプ(NBSP)等の亜硫酸パルプ、針葉樹未漂白クラフトパルプ(NUKP)、針葉樹漂白クラフトパルプ(NBKP)、広葉樹未漂白クラフトパルプ(LUKP)、広葉樹漂白クラフトパルプ(LBKP)等のクラフトパルプ)等が挙げられる。さらに、製紙用パルプの他に溶解パルプを用いてもよい。溶解パルプとは、化学的に精製されたパルプであり、主として薬品に溶解して使用され、人造繊維、セロハンなどの主原料となる。
【0043】
再生セルロースとしては、セルロースを銅アンモニア溶液、セルロースザンテート溶液、モルフォリン誘導体など何らかの溶媒に溶解し、改めて紡糸されたものが例示される。微細セルロースとしては、上記天然セルロースや再生セルロースをはじめとする、セルロース系素材を、解重合処理(例えば、酸加水分解、アルカリ加水分解、酵素分解、爆砕処理、振動ボールミル処理等)して得られるものや、前記セルロース系素材を、機械的に処理して得られるものが例示される。
【0044】
<マーセル化>
原料として前述のセルロースを用い、マーセル化剤(アルカリ)を添加することによりマーセル化セルロースを得る。このマーセル化反応における溶媒に水を主として用い、次のカルボキシメチル化の際に有機溶媒と水との混合溶媒を使用することにより、上述の高い透明度を呈するカルボキシメチル化セルロースを経済的に得ることができるが、本発明に用いるカルボキシメチル化セルロースナノファイバーは、これ以外の方法で製造されたものであってもよい。以下は、マーセル化の際に水を主とする溶媒を用いた例について述べる。
【0045】
溶媒に水を主として用いる(水を主とする溶媒)とは、水を50質量%より高い割合で含む溶媒をいう。水を主とする溶媒中の水は、好ましくは55質量%以上あり、より好ましくは60質量%以上であり、より好ましくは70質量%以上であり、より好ましくは80質量%以上であり、さらに好ましくは90質量%以上であり、さらに好ましくは95質量%以上である。特に好ましくは水を主とする溶媒は、水が100質量%(すなわち、水)である。マーセル化時の水の割合が多いほど、カルボキシメチル基がセルロースにより均一に導入されるという利点が得られる。水を主とする溶媒中の水以外の(水と混合して用いられる)溶媒としては、後段のカルボキシメチル化の際の溶媒として用いられる有機溶媒が挙げられる。例えば、メタノール、エタノール、N-プロピルアルコール、イソプロピルアルコール、N-ブタノール、イソブタノール、第3級ブタノール等のアルコールや、アセトン、ジエチルケトン、メチルエチルケトンなどのケトン、ならびに、ジオキサン、ジエチルエーテル、ベンゼン、ジクロロメタンなどを挙げることができ、これらの単独または2種以上の混合物を水に50質量%未満の量で添加してマーセル化の際の溶媒として用いることができる。水を主とする溶媒中の有機溶媒は、好ましくは45質量%以下であり、さらに好ましくは40質量%以下であり、さらに好ましくは30質量%以下であり、さらに好ましくは20質量%以下であり、さらに好ましくは10質量%以下であり、さらに好ましくは5質量%以下であり、より好ましくは0質量%である。
【0046】
マーセル化剤としては、例えば、水酸化リチウム、水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物が挙げられ、これらのうちいずれか1種または2種以上を組み合わせて用いることができる。マーセル化剤は、これに限定されないが、これらのアルカリ金属水酸化物を、例えば、1~60質量%、好ましくは2~45質量%、より好ましくは3~25質量%の水溶液として反応器に添加することができる。
【0047】
マーセル化剤の使用量は、カルボキシメチル化セルロースにおけるカルボキシメチル置換度0.50以下及びセルロースI型の結晶化度50%以上を両立できる量であればよく特に限定されないが、一実施形態において、セルロース100g(絶乾)に対して0.1モル以上2.5モル以下であることが好ましく、0.3モル以上2.0モル以下であることがより好ましく、0.4モル以上1.5モル以下であることがさらに好ましい。
【0048】
マーセル化の際の水を主とする溶媒の量は、原料の撹拌混合が可能な量であることが好ましい。具体的には、これに限定されないが、セルロース原料に対し、1.5~20質量倍が好ましく、2~10質量倍であることがより好ましい。このような量とすることにより、反応を均質に生じさせることができるようになる。
【0049】
マーセル化処理は、原料(セルロース)と、水を主とする溶媒とを混合し、反応器の温度を0~70℃、好ましくは10~60℃、より好ましくは10~40℃に調整して、マーセル化剤の水溶液を添加し、15分~8時間、好ましくは30分~7時間、より好ましくは30分~3時間撹拌することにより行う。これによりマーセル化セルロースを得る。
【0050】
マーセル化の際のpHは、9以上が好ましく、これによりマーセル化反応を進めることができる。該pHは、より好ましくは11以上であり、更に好ましくは12以上であり、13以上でもよい。pHの上限は特に限定されない。
【0051】
マーセル化は、温度制御しつつ上記各成分を混合撹拌することができる反応機を用いて行うことができ、従来からマーセル化反応に用いられている各種の反応機を用いることができる。例えば、2本の軸が撹拌し、上記各成分を混合するようなバッチ型攪拌装置は、均一混合性と生産性の両観点から好ましい。
【0052】
<カルボキシメチル化>
マーセル化セルロースに対し、カルボキシメチル化剤(エーテル化剤ともいう。)を添加することにより、カルボキシメチル化セルロースを得る。マーセル化の際は水を主とする溶媒として用い、カルボキシメチル化の際には水と有機溶媒との混合溶媒を用いることにより、上述の高い透明度を呈するカルボキシメチル化セルロースを経済的に得ることができるが、本発明に用いるカルボキシメチル化セルロースナノファイバーは、これ以外の方法で製造されたものであってもよい。以下は、カルボキシメチル化の際に水と有機溶媒との混合溶媒を用いた例について述べる。
【0053】
カルボキシメチル化剤としては、モノクロロ酢酸、モノクロロ酢酸ナトリウム、モノクロロ酢酸メチル、モノクロロ酢酸エチル、モノクロロ酢酸イソプロピルなどが挙げられる。これらのうち、原料の入手しやすさという点でモノクロロ酢酸、またはモノクロロ酢酸ナトリウムが好ましい。
【0054】
カルボキシメチル化剤の使用量は、カルボキシメチル化セルロースにおけるカルボキシメチル置換度0.50以下及びセルロースI型の結晶化度50%以上を両立できる量であればよく特に限定されないが、一実施形態において、セルロースの無水グルコース単位当たり、0.5~1.5モルの範囲で添加することが好ましい。上記範囲の下限はより好ましくは0.6モル以上、さらに好ましくは0.7モル以上であり、上限はより好ましくは1.3モル以下、さらに好ましくは1.1モル以下である。カルボキシメチル化剤は、これに限定されないが、例えば、5~80質量%、より好ましくは30~60質量%の水溶液として反応器に添加することができるし、溶解せず、粉末状態で添加することもできる。
【0055】
マーセル化剤とカルボキシメチル化剤のモル比(マーセル化剤/カルボキシメチル化剤)は、カルボキシメチル化剤としてモノクロロ酢酸又はモノクロロ酢酸ナトリウムを使用する場合では、0.90~2.45が一般的に採用される。その理由は、0.90未満であるとカルボキシメチル化反応が不十分となる可能性があり、未反応のモノクロロ酢酸又はモノクロロ酢酸ナトリウムが残って無駄が生じる可能性があること、及び2.45を超えると過剰のマーセル化剤とモノクロロ酢酸又はモノクロロ酢酸ナトリウムによる副反応が進行してグリコール酸アルカリ金属塩が生成する恐れがあるため、不経済となる可能性があることにある。
【0056】
カルボキシメチル化において、カルボキシメチル化剤の有効利用率は、15%以上であることが好ましい。より好ましくは20%以上であり、さらに好ましくは25%以上であり、特に好ましくは30%以上である。カルボキシメチル化剤の有効利用率とは、カルボキシメチル化剤におけるカルボキシメチル基のうち、セルロースに導入されたカルボキシメチル基の割合を指す。マーセル化の際に水を主とする溶媒を用い、カルボキシメチル化の際に水と有機溶媒との混合溶媒を用いることにより、高いカルボキシメチル化剤の有効利用率で(すなわち、カルボキシメチル化剤の使用量を大きく増やすことなく、経済的に)、本発明のカルボキシメチル化セルロースを得ることができる。カルボキシメチル化剤の有効利用率の上限は特に限定されないが、現実的には80%程度が上限となる。なお、カルボキシメチル化剤の有効利用率は、AMと略すことがある。
【0057】
カルボキシメチル化剤の有効利用率の算出方法は以下の通りである:
AM = (DS ×セルロースのモル数)/ カルボキシメチル化剤のモル数
DS: カルボキシメチル置換度(測定方法は後述する)
セルロースのモル数:パルプ質量(100℃で60分間乾燥した際の乾燥質量)/162
(162はセルロースのグルコース単位当たりの分子量)。
【0058】
カルボキシメチル化反応におけるセルロース原料の濃度は、特に限定されないが、カルボキシメチル化剤の有効利用率を高める観点から、1~40%(w/v)であることが好ましい。
【0059】
カルボキシメチル化剤を添加するのと同時に、あるいはカルボキシメチル化剤の添加の前または直後に、反応器に有機溶媒または有機溶媒の水溶液を適宜添加し、又は減圧などによりマーセル化処理時の水以外の有機溶媒等を適宜削減して、水と有機溶媒との混合溶媒を形成し、この水と有機溶媒との混合溶媒下で、カルボキシメチル化反応を進行させる。有機溶媒の添加または削減のタイミングは、マーセル化反応の終了後からカルボキシメチル化剤を添加した直後までの間であればよく、特に限定されないが、例えば、カルボキシメチル化剤を添加する前後30分以内が好ましい。
【0060】
有機溶媒としては、メタノール、エタノール、N-プロピルアルコール、イソプロピルアルコール、N-ブタノール、イソブタノール、第3級ブタノール等のアルコールや、アセトン、ジエチルケトン、メチルエチルケトンなどのケトン、ならびに、ジオキサン、ジエチルエーテル、ベンゼン、ジクロロメタンなどを挙げることができ、これらの単独または2種以上の混合物を水に添加してカルボキシメチル化の際の溶媒として用いることができる。これらのうち、水との相溶性が優れることから、炭素数1~4の一価アルコールが好ましく、炭素数1~3の一価アルコールがさらに好ましい。
【0061】
カルボキシメチル化の際の混合溶媒中の有機溶媒の割合は、水と有機溶媒との総和に対して有機溶媒が20質量%以上であることが好ましく、30質量%以上であることがより好ましく、40質量%以上であることがさらに好ましく、45質量%以上であることがさらに好ましく、50質量%以上であることが特に好ましい。有機溶媒の割合が高いほど、均一なカルボキシメチル基の置換が起こりやすいなど、均質で品質の安定したカルボキシメチル化セルロースが得られるという利点が得られる。有機溶媒の割合の上限は限定されず、例えば、99質量%以下であってよい。添加する有機溶媒のコストを考慮すると、好ましくは90質量%以下であり、更に好ましくは85質量%以下であり、更に好ましくは80質量%以下であり、更に好ましくは70質量%以下である。
【0062】
カルボキシメチル化の際の反応媒(セルロースを含まない、水と有機溶媒等との混合溶媒)は、マーセル化の際の反応媒よりも、水の割合が少ない(言い換えれば、有機溶媒の割合が多い)ことが好ましい。本範囲を満たすことで、得られるカルボキシメチル化セルロースの結晶化度を維持しやすくなり、本発明のカルボキシメチル化セルロースを、より効率的に得ることができるようになる。また、カルボキシメチル化の際の反応媒が、マーセル化の際の反応媒よりも水の割合が少ない(有機溶媒の割合が多い)場合、マーセル化反応からカルボキシメチル化反応に移行する際に、マーセル化反応終了後の反応系に所望の量の有機溶媒を添加するという簡便な手段でカルボキシメチル化反応用の混合溶媒を形成させることができるという利点も得られる。
【0063】
水と有機溶媒との混合溶媒を形成し、マーセル化セルロースにカルボキシメチル化剤を投入した後、温度を好ましくは10~40℃の範囲で一定に保ったまま15分~4時間、好ましくは15分~1時間程度撹拌する。マーセル化セルロースを含む液とカルボキシメチル化剤との混合は、反応混合物が高温になることを防止するために、複数回に分けて、または、滴下により行うことが好ましい。カルボキシメチル化剤を投入して一定時間撹拌した後、必要であれば昇温して、反応温度を30~90℃、好ましくは40~90℃、さらに好ましくは60~80℃として、30分~10時間、好ましくは1時間~4時間、エーテル化(カルボキシメチル化)反応を行い、カルボキシメチル化セルロースを得る。カルボキシメチル化反応時に昇温することにより、エーテル化反応を短時間で効率的に行えるという利点が得られる。
【0064】
カルボキシメチル化の際には、マーセル化の際に用いた反応器をそのまま用いてもよく、あるいは、温度制御しつつ上記各成分を混合撹拌することが可能な別の反応器を用いてもよい。
【0065】
反応終了後、残存するアルカリ金属塩を鉱酸または有機酸で中和してもよい。また、必要に応じて、副生する無機塩、有機酸塩等を含水メタノールで洗浄して除去し、乾燥、粉砕、分級してカルボキシメチル化セルロース又はその塩としてもよい。副生物除去のために洗浄する際は、予め酸型にして洗浄し、洗浄後に塩型に戻しても良い。乾式粉砕で用いる装置としてはハンマーミル、ピンミル等の衝撃式ミル、ボールミル、タワーミル等の媒体ミル、ジェットミル等が例示される。湿式粉砕で用いる装置としてはホモジナイザー、マスコロイダー、パールミル等の装置が例示される。
【0066】
上記の方法により、透明度が高いセルロースナノファイバー分散体を形成することができるカルボキシメチル化セルロースを得ることができる理由は明らかではないが、上記の方法によれば比較的高いセルロースI型の結晶化度を維持することができ、したがって、カルボキシメチル置換度を比較的高くしてもカルボキシメチル化セルロースの繊維状の形状を維持させることができることを本発明者らは確認している。繊維状の形状を維持しながらカルボキシメチル置換度を高くできる(すなわち、カルボキシメチル基を多く導入する)ことは、後のカルボキシメチル化セルロースの解繊時の解繊性の向上につながると考えられ、これが透明度が高いナノファイバー分散体が得られることの理由の1つであると推測される。しかし、これに限定されない。
【0067】
<ナノファイバーへの解繊>
カルボキシメチル化セルロースを解繊することにより、ナノスケールの繊維径を有するセルロースナノファイバーへと変換することができる。
【0068】
解繊の際には、カルボキシメチル化セルロースの分散体を準備する。分散媒は、取扱いの容易性から、水が好ましい。解繊時の分散体におけるカルボキシメチル化セルロースの濃度は、解繊、分散の効率を考慮すると、0.01~10%(w/v)であることが好ましい。
【0069】
カルボキシメチル化セルロースを解繊する際に用いる装置は特に限定されないが、高速回転式、コロイドミル式、高圧式、ロールミル式、超音波式などの装置を用いることができる。解繊の際にはカルボキシメチル化セルロースの分散体に強力な剪断力を印加することが好ましい。特に、効率よく解繊するには、前記分散体に50MPa以上の圧力を印加し、かつ強力な剪断力を印加できる湿式の高圧または超高圧ホモジナイザーを用いることが好ましい。前記圧力は、より好ましくは100MPa以上であり、さらに好ましくは140MPa以上である。また、高圧ホモジナイザーでの解繊及び分散処理に先立って、必要に応じて、高速せん断ミキサーなどの公知の混合、撹拌、乳化、分散装置を用いて、前記分散体に予備処理をほどこしてもよい。
【0070】
高圧ホモジナイザーとは、ポンプにより流体に加圧(高圧)し、流路に設けた非常に繊細な間隙より噴出させることにより、粒子間の衝突、圧力差による剪断力等の総合エネルギーによって乳化、分散、解細、粉砕、及び超微細化を行う装置である。
【0071】
<粉末化>
カルボキシメチル化セルロースナノファイバーの分散体を、乾燥(分散媒の除去)、粉砕、分級してカルボキシメチル化セルロースナノファイバーを含む粉末とする。
【0072】
本発明のカルボキシメチル化セルロースナノファイバーを含む粉末は、必要に応じて、他の成分を含んでいてもよい。例えば、粉末を製造する際、乾燥前に、カルボキシメチル化セルロースナノファイバーの分散体に水溶性高分子を共存させると、再分散性が向上するので、好ましい。水溶性高分子により再分散性が向上する理由は、明らかではないが、水溶性高分子がカルボキシメチル化セルロースナノファイバー表面の電荷密度の低い部分をカバーし、水素結合の形成を抑制して乾燥時のナノファイバー同士の凝集を防止するためであると推測される。本発明の粉末としては、カルボキシメチル化セルロースナノファイバーと、水溶性高分子とからなる粉末が特に好ましい。
【0073】
<水溶性高分子>
粉末に添加してよい水溶性高分子としては、例えば、セルロース誘導体(カルボキシメチルセルロース、メチルセルロース、ヒドロキシプロピルセルロース、エチルセルロース)、キサンタンガム、キシログルカン、デキストリン、デキストラン、カラギーナン、ローカストビーンガム、アルギン酸、アルギン酸塩、プルラン、澱粉、かたくり粉、クズ粉、加工澱粉(カチオン化澱粉、燐酸化澱粉、燐酸架橋澱粉、燐酸モノエステル化燐酸架橋澱粉、ヒドロキシプロピル澱粉、ヒドロキシプロピル化燐酸架橋澱粉、アセチル化アジピン酸架橋澱粉、アセチル化燐酸架橋澱粉、アセチル化酸化澱粉、オクテニルコハク酸澱粉ナトリウム、酢酸澱粉、酸化澱粉)、コーンスターチ、アラビアガム、ローカストビーンガム、ジェランガム、ポリデキストロース、ペクチン、キチン、水溶性キチン、キトサン、カゼイン、アルブミン、大豆蛋白溶解物、ペプトン、ポリビニルアルコール、ポリアクリルアミド、ポリアクリル酸ソーダ、ポリビニルピロリドン、ポリ酢酸ビニル、ポリアミノ酸、ポリ乳酸、ポリリンゴ酸、ポリグリセリン、ラテックス、ロジン系サイズ剤、石油樹脂系サイズ剤、尿素樹脂、メラミン樹脂、エポキシ樹脂、ポリアミド樹脂、ポリアミド・ポリアミン樹脂、ポリエチレンイミン、ポリアミン、植物ガム、ポリエチレンオキサイド、親水性架橋ポリマー、ポリアクリル酸塩、でんぷんポリアクリル酸共重合体、タマリンドガム、グァーガム及びコロイダルシリカ並びにそれら1つ以上の混合物が挙げられる。この中でも、セルロース誘導体は、カルボキシメチル化セルロースナノファイバーとの親和性の点から好ましく、カルボキシメチルセルロース及びその塩は特に好ましい。カルボキシメチルセルロース及びその塩のような水溶性高分子は、カルボキシメチル化セルロースナノファイバー同士の間に入りこみ、ナノファイバー間の距離を広げることで、再分散性を向上させると考えられる。
【0074】
水溶性高分子として、カルボキシメチルセルロース又はその塩を用いる場合には、無水グルコース単位当たりのカルボキシメチル基置換度が0.55~1.60のカルボキシメチルセルロースを用いることが好ましく、0.55~1.10のものがより好ましく、0.65~1.10のものがさらに好ましい。また、分子が長い(粘度が高い)ものの方が、ナノファイバー間の距離を広げる効果が高いので好ましい。また、カルボキシメチルセルロースの1質量%水溶液における25℃、60rpmでのB型粘度は、3mPa・s~14000mPa・sが好ましく、7mPa・s~14000mPa・sがより好ましく、1000mPa・s~8000mPa・sがさらに好ましい。なお、ここでいう水溶性高分子としての「カルボキシメチルセルロース又はその塩」とは、水に完全に溶解するものであることから、上述の水中で繊維形状を確認することができるカルボキシメチル化セルロースナノファイバーとは区別される。
【0075】
水溶性高分子の配合量は、カルボキシメチル化セルロースナノファイバー(絶乾固形分)に対して、5質量%~300質量%であることが好ましく、20質量%~300%質量がさらに好ましく、25質量%~250質量%がさらに好ましく、25質量%~200質量%がさらに好ましく、25質量%~60質量%がさらに好ましい。水溶性高分子を5質量%以上配合すると再分散性の向上効果が得られるようになる。一方、水溶性高分子の配合量が300質量%を超えるとカルボキシメチル化セルロースナノファイバーの特徴であるチキソトロピー性などの粘度特性や分散安定性の低下などの問題が生じることがある。水溶性高分子の配合量が、25質量%以上であると、特に優れた再分散性を得ることができるので好ましい。また、チキソトロピー性を考慮すると200質量%以下であることが好ましく、60質量%以下が特に好ましい。
【0076】
<乾燥>
カルボキシメチル化セルロースナノファイバーの分散体、または、場合により水溶性高分子を混合したカルボキシメチル化セルロースナノファイバーの分散体を乾燥(分散媒の除去)させることで、カルボキシメチル化セルロースナノファイバーを含む乾燥固形物を得る。この際、分散体のpHを9~11に調整した後に、乾燥させると、再分散性がさらに良好となるので好ましい。
【0077】
乾燥方法としては、公知のものを用いることができ、特に限定されない。例えば、スプレイドライ、圧搾、風乾、熱風乾燥、及び真空乾燥を挙げることができる。乾燥装置は、特に限定されないが、連続式のトンネル乾燥装置、バンド乾燥装置、縦型乾燥装置、垂直ターボ乾燥装置、多重段円板乾燥装置、通気乾燥装置、回転乾燥装置、気流乾燥装置、スプレードライヤ乾燥装置、噴霧乾燥装置、円筒乾燥装置、ドラム乾燥装置、ベルト乾燥装置、スクリューコンベア乾燥装置、加熱管付回転乾燥装置、振動輸送乾燥装置、回分式の箱型乾燥装置、通気乾燥装置、真空箱型乾燥装置、及び撹拌乾燥装置等を単独で又は2つ以上組み合わせて用いることができる。
【0078】
これらの中でも、薄膜を形成させて乾燥を行う装置を用いることが、均一に被乾燥物に熱エネルギーを直接供給でき、乾燥処理をより効率的に、短時間で行うことができるためエネルギー効率の点から好ましい。また、薄膜を形成させて乾燥を行う装置は、薄膜を掻き取る等の簡便な手段で直ちに乾燥物を回収できる点からも好ましい。さらに、薄膜を形成させてから乾燥させた場合には、再分散性がさらに向上することも見出された。薄膜を形成させて乾燥を行う装置としては、例えば、ドラムやベルトにブレードやダイ等により薄膜を形成させて乾燥させるドラム乾燥装置やベルト乾燥装置が挙げられる。薄膜を形成させて乾燥させる際の薄膜の膜厚としては、50μm~1000μmが好ましく、100μm~300μmがさらに好ましい。50μm以上であると、乾燥後の掻き取りが容易であり、また、1000μm以下であると再分散性のさらなる向上効果がみられる。
乾燥後の残留水分量は、乾燥物全体に対して2質量%~15質量%が好ましい。
【0079】
<粉砕>
粉砕方法は特に限定されず、公知の方法を用いることができ、粉体の状態で処理する乾式粉砕法と、液体に分散あるいは溶解させた状態で処理する湿式粉砕法を例示することができる。湿式粉砕を行う場合には、上記の乾燥の前に行ってもよい。
【0080】
乾式粉砕法で用いる装置としては、これらに限定されないが、カッティング式ミル、衝撃式ミル、気流式ミル、媒体ミルを例示することができる。これらは単独あるいは併用して、さらには同機種で数段処理することができる。これらの中で、気流式ミルは好ましい。カッティング式ミルとしては、メッシュミル((株)ホーライ製)、アトムズ((株)山本百馬製作所製)、ナイフミル(パルマン社製)、グラニュレータ(ヘルボルト製)、ロータリーカッターミル((株)奈良機械製作所製)、等が例示される。衝撃式ミルとしては、パルペライザ(ホソカワミクロン(株)製)、ファインイパクトミル(ホソカワミクロン(株)製)、スーパーミクロンミル(ホソカワミクロン(株)製)、サンプルミル((株)セイシン製)、バンタムミル((株)セイシン製)、アトマイザー((株)セイシン製)、トルネードミル(日機装(株))、ターボミル(ターボ工業(株))、ベベルインパクター(相川鉄工(株))等が例示される。気流式ミルとしては、CGS型ジェットミル(三井鉱山(株)製)、ジェットミル(三庄インダストリー(株)製)、エバラジェットマイクロナイザ((株)荏原製作所製)、セレンミラー(増幸産業(株)製)、超音速ジェットミル(日本ニューマチック工業(株)製)等が例示される。媒体ミルとしては、振動ボールミル等が例示される。湿式粉砕法で用いる装置としては、マスコロイダー(増幸産業(株)製)、高圧ホモジナイザー(三丸機械工業(株)製)、媒体ミルが例示される。媒体ミルとしては、ビーズミル(アイメックス(株)製)等を例示することができる。
【0081】
<分級>
カルボキシメチル化セルロースナノファイバーの粉砕後に、分級を行い、特定の粒度となるように調整する。分級の方法は特に限定されないが、例えば、所定の目開きを有するメッシュ(篩)を通過させることにより行うことができる。メッシュとしては、好ましくは20~400メッシュ、さらに好ましくは40~300メッシュ、さらに好ましくは60~200メッシュを用いることができ、これらを多段式で使用してもよい。最終的に得られる粉末のメディアン径を、10.0μm~150.0μm、好ましくは、30.0μm~130.0μm、さらに好ましくは50.0μm~120.0μmとする。
【0082】
<添加剤>
本発明のカルボキシメチル化セルロースナノファイバーを含む粉末は、分散安定性に優れ、保水性と保形性付与に優れ、水中でダマ(塊)を形成しにくいことから、食品、医薬品、化粧品、飼料、製紙、塗料等の様々な分野において保水性付与剤、保形性付与剤、粘度調整剤、乳化安定剤、分散安定剤等の各種添加剤として好適に使用することができる。
【0083】
また、他材料との混合性に優れ、水や親水性の有機溶媒中に分散させることによりチキソトロピー性を発現し、条件によってはゲル状となるため、ゲル化剤としても有効である。また、抄紙法やキャスト法で製膜することにより、高強度で耐熱性にすぐれ、低い熱膨張性を有する材料となる。また、こうして得られた膜は親水性付与を目的としたコーティング層としても有用である。さらに、樹脂などの他材料と複合化する際、他材料中での分散性に優れるため、好適な場合には透明性に優れた複合体を提供することができる。また、補強フィラーとしても機能し、複合体中で繊維が高度にネットワークを形成するような場合には、使用した樹脂単体に比べて高い強度を示すようになり、熱膨張率を低下させることもできる。この他にも、両親媒的性質を有するため、乳化剤や分散安定剤として機能する。また、カルボキシメチル基は金属イオンと対イオンを形成するため、金属イオンの捕集剤等としても有効である。
【0084】
カルボキシメチル化セルロースナノファイバーが用いられる分野は限定されず、一般的に添加剤が用いられる様々な分野、例えば、化粧品、食品、飲料、医薬、製紙、各種化学用品、塗料、インキ、スプレー、飼料、農薬、釉薬、土木、建築、電子材料、難燃剤、家庭雑貨、接着剤、洗浄剤、芳香剤、潤滑用組成物などで、増粘剤、ゲル化剤、糊剤、食品添加剤、賦形剤、塗料用添加剤、接着剤用添加剤、製紙用添加剤、研磨剤、ゴム・プラスチック用配合材料、保水性付与剤、保形性付与剤、粘度調整剤、乳化安定剤、気泡安定剤、分散安定剤、泥水調整剤、ろ過助剤、溢泥防止剤などとして使用することができる。
【0085】
例えば、本発明のカルボキシメチル化セルロースナノファイバーを含む粉末は、マンガン乾電池、アルカリマンガン電池、酸化銀電池、リチウム電池、鉛蓄電池、ニッケル-カドミウム蓄電池、ニッケル-水素蓄電池、ニッケル-亜鉛蓄電池、酸化銀-亜鉛蓄電池、リチウムイオン電池、リチウムポリマー電池、各種のゲル電解質電池、全固体電池、亜鉛-空気蓄電池、鉄-空気蓄電池、アルミニウム-空気蓄電池、燃料電池、太陽電池、ナトリウム硫黄電池、ポリアセン電池、電解コンデンサ、電気二重層キャパシタ(電気二重層コンデンサともいう)などの各種電池の部材への添加剤として用いることができ、部材としては、正極または負極などの各電極の電極集電体、活物質、絶縁膜(セパレータ)、電解質膜などが挙げられる。また、各電極の集電体と活物質の結着剤、活物質同士の結着剤、活物質の分散剤、固体電解質の分散剤などとしても有効である。
【0086】
本発明のカルボキシメチル化セルロースナノファイバーを含む粉末を化粧品用添加剤として用いる場合、これらに限定されないが、例えば、化粧品用の保水性付与剤、保形性付与剤、粘度調整剤、乳化安定剤、触感改良剤、気泡安定剤、分散安定剤として用いることができる。化粧品としては、例えば、化粧水、美容液、乳液、モイスチャークリーム、オールインワンジェル、香水、洗顔フォーム、フォーム剤、クレンジング、パック、サンスクリーン、マッサージ用製品、美白化粧料、アンチエイジング製品、美容マスクなどのスキンケア用品;ファンデーション、口紅、アイブロウ、マスカラ、アイライナー、アイシャドー、マニキュア、ネイルケア、おしろい、リップクリーム、リップグロス、リップライナー、チーク、BBクリーム、コンシーラーなどのメイクアップ製品;シャンプー、ヘアカラー、トリートメント、ヘアスプレー、液状整髪料、ヘアクリーム、ヘアワックス、ヘアジェル、セットローション、頭皮ケア化粧料、まつ毛ケア化粧料、眉毛ケア化粧料、パーマ剤、染毛剤液、染毛剤クリーム、育毛剤などのヘアケア製品;ボディクリーム、ハンドクリーム、ボディシャンプー、石鹸、シェービングクリーム、シェービングローションなどのボディケア製品などが挙げられる。また、オイル、リキッド、ワックス、スティック、パウダー、シート状製品に限定されず、液化石油ガス等の噴射剤と共に用いてエアゾールタイプのものとしてもよい。
【0087】
例えば、ファンデーション、アイブロウ、マスカラなどの粉末状のメイクアップ製品に本発明の粉末を添加剤として配合することにより、顔料の分散性を向上させダマを防止する、保形性またはチキソ性を付与して塗りやすさ、定着性、つや感を向上させる、などの効果が得られる。
【0088】
また、例えば、BBクリーム、モイスチャークリーム、ヘアクリーム、液状整髪料、ヘアジェル、ヘアワックスなどのクリーム状、液状、またはジェル状の化粧品に本発明の粉末を添加剤として配合することにより、顔料などの粉末原料の分散性の向上、液体原料の乳化性の向上、チキソ性付与による塗りやすさ、保形性やチキソ性付与による髪のスタイリング性の向上及び持続、また、しなやかさやつや感の向上などの効果が得られる。
【0089】
また、例えば、シャンプー、石鹸、ボディシャンプー、洗顔料、フォーム剤などの泡状にして用いる化粧品に本発明の粉末を添加剤として配合することにより、保形性付与による泡の安定性の向上、泡を洗い流した後の皮膚のすべり感やうるおい感の向上及び持続、などの効果が得られる。
【0090】
また、例えば、化粧水、美容液などの肌への保湿性付与が期待される化粧品に本発明の粉末を添加剤として配合することにより、カルボキシメチル化セルロースナノファイバーによる保水性付与により高い保湿効果を得ることができる。
【0091】
また、例えば、ミストタイプの化粧水などに本発明の粉末を添加剤として使用すると、チキソ性付与により噴射しやすいという効果を得ることができる。
【0092】
また、例えば、美容用パックに本発明の粉末を添加剤として使用すると、チキソ性、保形性付与により、肌に塗った後に垂れにくく使いやすいという効果を得ることができる。
【0093】
本発明の粉末を食品用添加剤として用いる場合は、これらに限定されないが、食品用の保水性付与剤、保形性付与剤、粘度調整剤、乳化安定剤、食感改良剤、気泡安定剤、分散安定剤が挙げられる。使用できる食品としては、これらに限定されないが、飲料(ココア、繊維・果肉入りジュース、しるこ、甘酒、乳酸菌飲料、フルーツ牛乳、清涼飲料、炭酸飲料、アルコール飲料など)、スープ類(コーンスープ、ラーメンスープ、味噌汁、コンソメなど)、たれ類、ドレッシング、ケチャップ、マヨネーズ、ジャム、ヨーグルト、ホイップクリーム、乾物類(乾燥加工食品、インスタントラーメン、パスタ麺など)、グルテンフリーパスタ、アイスクリーム、モナカ、シャーベット、ポリジュース、菓子類(グミ、ソフトキャンディ、ゼリー、クッキーなど)、嚥下食品(とろみ剤、服薬補助ゼリーなどのゲル状食品)、オブラート、寒天、ところてん、プルラン、水あめ、メレンゲ、パン(メロンパン、クリームパンなど)、グルテンフリーパン、フィリング、ホットケーキ、練り物、冷凍食品、肉加工食品、魚加工食品、米加工品(餅、煎餅、あられ)、可食性フィルムなどが挙げられる。
【0094】
本発明の粉末を医薬品または医薬部外品用添加剤として用いる場合は、これらに限定されないが、医薬品用の保水性付与剤、保形性付与剤、粘度調整剤、乳化安定剤、分散安定剤が挙げられる。医薬品または医薬部外品としては、これらに限定されないが、錠剤、軟膏、絆創膏、パップ剤、ハンドクリーム、練歯磨、薬用化粧品、毛髪用剤、薬用歯磨き剤、浴用剤、殺虫剤、殺鼠剤、腋臭防止剤、ソフトコンタクトレンズ用消毒剤、口中清涼剤、育毛剤、除毛剤、染毛剤、脱色・脱染剤、パーマネントウェーブ用剤などが挙げられる。
【0095】
本発明の粉末を飼料用添加剤として用いる場合は、これらに限定されないが、飼料用の保水性付与剤、保形性付与剤、粘度調整剤、乳化安定剤、分散安定剤が挙げられる。飼料としては、例えば、家畜や養殖魚用のモイストペレット、エクスパンジョンペレット、牛用代用乳などが挙げられる。
【0096】
本発明の粉末を製紙用添加剤として用いる場合は、これらに限定されないが、製紙用の保水性付与剤、保形性付与剤、粘度調整剤、乳化安定剤、分散安定剤が挙げられる。例えば、表面サイズ剤、歩留まり向上剤、紙力増強剤、コーティング剤、バリア性付与剤、嵩高紙用添加剤などとして用いることができる。
【0097】
本発明の粉末を塗料用添加剤として用いる場合は、これらに限定されないが、塗料用の保水性付与剤、保形性付与剤、粘度調整剤、乳化安定剤、分散安定剤が挙げられる。塗料としては、クリア系塗料、艶消し塗料、建築用塗料、漆塗料、工芸品塗料、自動車内装塗料などが挙げられる。
【0098】
その他、洗剤、柔軟剤、ラップ、フィルム、ウェットティッシュ、入浴剤などの日用品における分散安定剤、補強材等;食用油や各種溶剤の濾過(水分除去);繊維壁、壁材、屋根材、コンクリート、モルタル、セラミック、窯業、砂壁、石膏ボードなどの建材の補強材;気泡シールド、連壁止水剤などの土木;発泡スチロール、生分解性樹脂、ゴム、セラミック、塩ビなどの樹脂充填剤、コンパウンド、または補強材;微粒子カーボンブラック、硫酸バリウム(X線造影剤)、酸化チタンや酸化亜鉛の分散などの分散剤;塩化カルシウム等の潮解性剤の吸湿時の保形性改善などの吸湿剤助剤;繊維(生地、糸)の改質剤;液体の担体;潤滑油剤;窯業;猫砂;乾燥剤用吸水材;緑化工法;バインダー;ペット用品;衛生用品;壁紙;培地などに用いることもできる。
【0099】
また、本発明の粉末を添加剤として各種用途に使用する際に、効果を阻害しない範囲で、pH調節剤、防腐剤、防錆剤等、界面活性剤、結合剤、接着剤、発泡剤、賦形剤、カップリング剤、粘着剤、分散剤、接着剤、滑剤、離型剤、粘度調整剤、乳化安定剤、潤滑剤、研磨剤、着色剤などを混合して使用してもよい。
【実施例】
【0100】
以下、本発明を実施例及び比較例をあげてより具体的に説明するが、本発明はこれらに限定されるものではない。なお、特に断らない限り、部および%は質量部および質量%を示す。
【0101】
(実施例1)
回転数を150rpmに調節した二軸ニーダーに、水130部と、水酸化ナトリウム20部を水10部とIPA90部に溶解したものとを加え、広葉樹パルプ(日本製紙(株)製、LBKP)を100℃60分間乾燥した際の乾燥質量で100部仕込んだ。35℃で80分間撹拌、混合しマーセル化セルロースを調製した。更に撹拌しつつイソプロパノール(IPA)230部と、モノクロロ酢酸ナトリウム60部を添加し、30分間撹拌した後、70℃に昇温して90分間カルボキシメチル化反応をさせた。反応終了後、pH7になるまで酢酸で中和、含水メタノールで洗浄、脱液、乾燥、粉砕して、カルボキシメチル化セルロースのナトリウム塩を得た。
【0102】
得られたカルボキシメチル化セルロースのナトリウム塩を水に分散し、固形分1%(w/v)水分散体とした。これを、140MPaの高圧ホモジナイザーで3回処理し、カルボキシメチル化セルロースのナノファイバーの分散体を得た。得られたセルロースナノファイバーのカルボキシメチル置換度は、0.29であり、セルロースI型の結晶化度は66%であった。なお、カルボキシメチル置換度とセルロースI型の結晶化度は、上述の方法で測定した。
【0103】
得られたカルボキシメチル化セルロースナノファイバーを水で固形分0.7質量%の分散体とし、カルボキシメチルセルロース(商品名:F350HC-4、粘度(1%、25℃、60rpm)約3000mPa・s、カルボキシメチル置換度約0.9)を、カルボキシメチル化セルロースナノファイバーに対して40質量%(すなわち、カルボキシメチル化セルロースナノファイバーの固形分を100質量部としたときにカルボキシメチルセルロースの固形分が40質量部となるように)添加し、TKホモミキサー(12,000rpm)で60分間攪拌した。この分散体のpHは7~8程度であった。この分散体に、水酸化ナトリウム水溶液0.5質量%を加え、pHを9に調整した後、ドラム乾燥機D0405(カツラギ工業社製)のドラム表面に塗布し、140℃で1分間乾燥した。得られた乾燥物を掻き取り、次いで、衝撃式ミルを用いて1時間あたり10kgの速さで乾燥物を粉砕し、水分量5質量%の乾燥粉砕物を得た。得られた粉砕物を、30メッシュを用いて分級し、カルボキシメチル化セルロースナノファイバーを含む粉末を得た。得られた粉末のメディアン径を上述の方法で測定したところ、92.5μmで、安息角、崩壊角、及び差角を上述の方法で測定したところ、それぞれ、44.6°、29.3°、及び15.3°であった。得られた粉末は作業性が良好であった。
【0104】
(実施例2)
衝撃式ミルによる粉砕を、1時間あたり15kgの速さで乾燥物を粉砕した以外は実施例1と同様にして、カルボキシメチル化セルロースナノファイバーを含む粉末を得た。カルボキシメチル化セルロースナノファイバーにおけるカルボキシメチル置換度は、0.29であり、セルロースI型の結晶化度は66%であった。また、得られた粉末のメディアン径を上述の方法で測定したところ、81.5μmで、安息角、崩壊角、及び差角を上述の方法で測定したところ、それぞれ、42.1°、28.7°、及び13.4°であった。得られた粉末は作業性が良好であった。
【0105】
(実施例3)
衝撃式ミルによる粉砕を、1時間あたり20kgの速さで乾燥物を粉砕した以外は実施例1と同様にして、カルボキシメチル化セルロースナノファイバーを含む粉末を得た。カルボキシメチル化セルロースナノファイバーにおけるカルボキシメチル置換度は、0.29であり、セルロースI型の結晶化度は66%であった。また、得られた粉末のメディアン径を上述の方法で測定したところ、60.8μmで、安息角、崩壊角、及び差角を上述の方法で測定したところ、それぞれ、41.5°、27.9°、及び13.6°であった。得られた粉末は作業性が良好であった。
【0106】
(実施例4)
マーセル化反応時に用いる、水酸化ナトリウム20部を水10部とIPA90部に溶解したものに代えて、水酸化ナトリウム20部を水100部に溶解したものを用い、また、IPAの添加量を変えることによりカルボキシメチル化反応時の反応液中のIPAの濃度を70%とした以外は実施例1と同様にして、カルボキシメチル化セルロースナノファイバーを含む粉末を得た。カルボキシメチル化セルロースナノファイバーにおけるカルボキシメチル置換度は、0.28であり、セルロースI型の結晶化度は67%であった。得られた粉末は作業性が良好であった。
【0107】
(実施例5)
マーセル化反応時に用いる、水酸化ナトリウム20部を水10部とIPA90部に溶解したものに代えて、水酸化ナトリウム20部を水100部に溶解したものを用い、また、IPAの添加量を変えることによりカルボキシメチル化反応時の反応液中のIPAの濃度を70%とし、さらに、水溶性高分子としてカルボキシメチルセルロースに代えてデキストリンをカルボキシメチル化セルロースナノファイバーに対して233質量%添加した以外は実施例1と同様にして、カルボキシメチル化セルロースナノファイバーを含む粉末を得た。カルボキシメチル化セルロースナノファイバーにおけるカルボキシメチル置換度は、0.28であり、セルロースI型の結晶化度は67%であった。また、得られた粉末のメディアン径を上述の方法で測定したところ、76.4μmで、安息角、崩壊角、及び差角を上述の方法で測定したところ、それぞれ、35.0°、18.8°、及び16.2°であった。得られた粉末は作業性が良好であった。