IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社クレハの特許一覧

特許7445772樹脂組成物およびこれを含むコーティング組成物、積層用電極、積層用セパレータ、ならびに非水電解質二次電池およびその製造方法
<>
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-02-28
(45)【発行日】2024-03-07
(54)【発明の名称】樹脂組成物およびこれを含むコーティング組成物、積層用電極、積層用セパレータ、ならびに非水電解質二次電池およびその製造方法
(51)【国際特許分類】
   C08F 214/22 20060101AFI20240229BHJP
   C08L 27/16 20060101ALI20240229BHJP
   C08K 3/013 20180101ALI20240229BHJP
   C09D 127/16 20060101ALI20240229BHJP
   H01M 50/426 20210101ALI20240229BHJP
   H01M 4/13 20100101ALI20240229BHJP
【FI】
C08F214/22
C08L27/16
C08K3/013
C09D127/16
H01M50/426
H01M4/13
【請求項の数】 8
(21)【出願番号】P 2022545523
(86)(22)【出願日】2021-07-14
(86)【国際出願番号】 JP2021026412
(87)【国際公開番号】W WO2022044593
(87)【国際公開日】2022-03-03
【審査請求日】2022-12-06
(31)【優先権主張番号】P 2020144555
(32)【優先日】2020-08-28
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】000001100
【氏名又は名称】株式会社クレハ
(74)【代理人】
【識別番号】110002952
【氏名又は名称】弁理士法人鷲田国際特許事務所
(72)【発明者】
【氏名】鈴木 夢乃
(72)【発明者】
【氏名】渡辺 圭介
(72)【発明者】
【氏名】上遠野 正孝
【審査官】佐藤 のぞみ
(56)【参考文献】
【文献】国際公開第2014/002937(WO,A1)
【文献】特開2018-172596(JP,A)
【文献】特開2017-117788(JP,A)
【文献】特表2014-520378(JP,A)
【文献】国際公開第2019/107521(WO,A1)
【文献】国際公開第2019/054310(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
C08F 214/00-214/28
C08L 27/00-27/24
C08K 3/00-13/08
C09D
H01M 4/00-4/62
H01M 50/40-50/497
B32B 27/00-27/42
B32B 15/00-15/20
CAplus/REGISTRY(STN)
(57)【特許請求の範囲】
【請求項1】
フッ化ビニリデン由来の構成単位を73.7質量%以上96.9質量%以下、
下記一般式(1)で表される化合物由来の構成単位を0.1質量%以上1.3質量%以下、および
カルボキシ基を含まず、かつ前記フッ化ビニリデンと共重合可能な化合物由来の、他の構成単位を3質量%以上25質量%以下、
有する(ただし、フッ化ビニリデン共重合体を構成する構成単位の総量を100質量%とする)フッ化ビニリデン共重合体を含み、
前記フッ化ビニリデン共重合体4gを1LのN,N-ジメチルホルムアミドに溶解させた溶液の30℃における固有粘度が1.0dL/g以上2.5dL/g以下である、
樹脂組成物。
【化1】
(一般式(1)における、R、R、Rは、それぞれ独立に、水素原子、塩素原子、または炭素数1~5のアルキル基を表し、X’は、主鎖の原子数が1~19である分子量472以下の原子団を表す)
【請求項2】
前記他の構成単位が、クロロトリフルオロエチレンまたはヘキサフルオロプロピレン由来の構成単位である、
請求項1に記載の樹脂組成物。
【請求項3】
請求項1または2に記載の樹脂組成物と、
溶媒と、
を含む、コーティング組成物。
【請求項4】
レーザー回折散乱法で測定されるメディアン径が10μm以下である無機フィラーを、固形分中に30質量%以上99質量%以下含む、
請求項3に記載のコーティング組成物。
【請求項5】
電極と、
前記電極の少なくとも一方の面に配置された、請求項1または2に記載の樹脂組成物を含む樹脂含有層と、
を有する、積層用電極。
【請求項6】
セパレータと、
前記セパレータの少なくとも一方の面に配置された、請求項1または2に記載の樹脂組成物を含む樹脂含有層と、
を有する、積層用セパレータ。
【請求項7】
正極と、セパレータと、負極と、を含み、
前記正極と前記セパレータとの間、および/または前記負極と前記セパレータとの間に、請求項1または2に記載の樹脂組成物を含む樹脂含有層をさらに有する、
非水電解質二次電池。
【請求項8】
正極、セパレータ、および負極からなる群から選ばれる少なくとも1つの部材の、少なくとも一方の面に、請求項3または4に記載のコーティング組成物を塗布し、固化させて樹脂含有層を形成する工程と、
前記樹脂含有層が、前記正極および前記セパレータの間、および/または前記負極および前記セパレータの間に位置するように、前記正極、前記セパレータ、および前記負極を積層して積層体を形成する工程と、
前記積層体を熱プレスする工程と、
を有する、非水電解質二次電池の製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、樹脂組成物およびこれを含むコーティング組成物、積層用電極、積層用セパレータ、ならびに非水電解質二次電池およびその製造方法に関する。
【背景技術】
【0002】
近年、様々な用途に非水電解質二次電池(以下、単に「二次電池」とも称する)が使用されており、その高容量化が求められている。従来、電極(本明細書では、正極および負極を特に区別する必要がない場合に、これらをまとめて「電極」と称する)やセパレータを捲回した捲回型の二次電池が多く開発されてきた。しかしながら近年、二次電池を高容量化するにあたり、電極やセパレータを積層した積層型の二次電池が注目されている。また、このような二次電池を様々な用途に使用するため、安全性が一層重視されている。
【0003】
ここで、積層型の二次電池は、捲回型の二次電池と比較して、電極およびセパレータがずれやすい。例えば、二次電池の作製時に、電極やセパレータの積層体を搬送したり、外装体内に充填したりする際に、電極やセパレータの所望の位置からずれたり、シワが生じたりしやすい。また、捲回型の場合においても捲回後時間が経つと捲回した電極/セパレータ積層体が緩み、搬送時や外装体に挿入する際にずれが生じる可能性がある。さらに、パウチ型の外装体を使用する二次電池では、二次電池の使用時に外部から力が加わると、電極やセパレータの位置がずれたりする。二次電池において、このような位置ずれやシワが生じると、歩留まりの原因になるだけでなく、電池性能や安全性において所望の性能が得られ難くなる。
【0004】
そこで、セパレータの一方の面、もしくは両方の面に多孔質接着層を形成し、電池およびセパレータを接着する方法が提案されている(特許文献1)。当該多孔質接着層は、フッ化ビニリデン由来の構成単位、ヘキサフルオロプロピレン由来の構成単位、およびカルボキシ基含有モノマー由来の構成単位と、を有するフッ化ビニリデン共重合体を含む。
【0005】
セパレータと、電極との密着性を高めるため、セパレータ上に、フッ化ビニリデン由来の構成単位と、特定のカルボキシ基含有モノマー由来の構成単位とを含むフッ化ビニリデン共重合体を含む組成物を塗布し、層を形成することも提案されている(特許文献2)。
【先行技術文献】
【特許文献】
【0006】
【文献】特開2017-117788号公報
【文献】国際公開第2014/002937号
【発明の概要】
【発明が解決しようとする課題】
【0007】
ここで、上記特許文献1や特許文献2のような接着層をセパレータの表面に形成した場合、電解液注液前に当該接着層と電極とを接着する場合(以下、「ドライ接着」とも称する)と、電解液注液後に当該接着層と電極とを接着する場合(以下「ウェット接着」とも称する)がある。そして、電解液注液前の接着(ドライ接着)時には、樹脂含有層中の樹脂が軟化し、電極層にくい込むことでセパレータおよび電極を接着する。一方で、ウェット接着時には、電解液によって膨潤した樹脂が加熱プレス時に溶融して、電極層に浸入し冷却によりゲル化する。これにより、樹脂がセパレータや電極と密着し、セパレータおよび電極を接着する。つまり、ドライ接着およびウェット接着では、接着のメカニズムが相違し、ウェット接着性が良好な樹脂とドライ接着性が良好な樹脂は一般的に異なる。そして、上述の特許文献1および2では、ウェット接着性が良好な樹脂組成物が提案されており、ドライ接着性が良好な樹脂組成物については、検討されていない。そして、上記特許文献1や特許文献2に記載の接着層は、ドライ接着性が低いという課題があった。
【0008】
また、従来の技術では、正極および負極の両方に対するドライ接着性を単一のポリフッ化ビニリデン共重合体のみで高めることは難しかった。上述のように、ドライ接着時には、接着層中の樹脂が軟化し、当該樹脂がセパレータや電極と密着することで、セパレータおよび電極を接着する。しかしながら、正極および負極それぞれの電極表面の物理構造の違いや、各電極に使用しているバインダー種が異なることに起因した化学的相互作用性の違いから、単一の樹脂では正極および負極の両方に対する高いドライ接着性を得ること難しかった。
【0009】
本発明は、上記課題を鑑みてなされたものである。正極および負極の両方のドライ接着性に優れる樹脂組成物の提供を目的とする。
【課題を解決するための手段】
【0010】
本発明は、以下の樹脂組成物(コーティング剤)を提供する。
フッ化ビニリデン由来の構成単位を73.7質量%以上96.9質量%以下、カルボキシ基を含む構成単位を0.1質量%以上1.3質量%以下、およびカルボキシ基を含まず、かつ前記フッ化ビニリデンと共重合可能な化合物由来の、他の構成単位を3質量%以上25質量%以下、有する(ただし、前記フッ化ビニリデンを構成する構成単位の総量を100質量%とする)フッ化ビニリデン共重合体を含み、前記フッ化ビニリデン共重合体4gを1LのN,N-ジメチルホルムアミドに溶解させた溶液の30℃における固有粘度が0.5dL/g以上3dL/g以下である、樹脂組成物。
【0011】
本発明は、以下のコーティング組成物(コーティング液)も提供する。
上記樹脂組成物と、溶媒と、を含む、コーティング組成物。
【0012】
本発明は、以下の積層用電極も提供する。
電極と、前記電極の少なくとも一方の面に配置された、上記樹脂組成物を含む樹脂含有層と、を有する、積層用電極。
【0013】
本発明は、以下の積層用セパレータも提供する。
セパレータと、前記セパレータの少なくとも一方の面に配置された、上記樹脂組成物を含む樹脂含有層と、を有する、積層用セパレータ。
【0014】
本発明は、以下の非水電解質二次電池も提供する。
正極と、セパレータと、負極と、を含み、前記正極と前記セパレータとの間、および/または前記負極と前記セパレータとの間に、上記樹脂組成物を含む樹脂含有層をさらに有する、非水電解質二次電池。
【0015】
本発明は、以下の非水電解質二次電池の製造方法も提供する。
正極、セパレータ、および負極からなる群から選ばれる少なくとも1つの部材の、少なくとも一方の面に、上記コーティング組成物を塗布し、固化させて樹脂含有層を形成する工程と、前記樹脂含有層が、前記正極および前記セパレータの間、および/または前記負極および前記セパレータの間に位置するように、前記正極、前記セパレータ、および前記負極を積層して積層体を形成する工程と、前記積層体を熱プレスする工程と、を有する、非水電解質二次電池の製造方法。
【発明の効果】
【0016】
本発明の樹脂組成物は、正極および負極の両方のドライ接着性に優れる。
【発明を実施するための形態】
【0017】
1.樹脂組成物(コーティング剤)
本発明の樹脂組成物(コーティング剤)は、非水電解質二次電池の電極とセパレータとを固定するための樹脂含有層の形成等に主に用いられる樹脂組成物である。ただし、樹脂組成物(コーティング剤)の用途は、当該樹脂含有層に限定されない。本明細書において、「樹脂組成物」および「コーティング剤」との用語は、同様の意味で使用する。
【0018】
上述のように、公知のフッ化ビニリデン共重合体を含む樹脂組成物では、正極に対するドライ接着性と負極に対するドライ接着性を同時に高めることが難しく、特に負極に対する接着性を高めることが難しかった。
【0019】
このような課題に対し、本発明者らが鋭意検討した結果、フッ化ビニリデン由来の構成単位、カルボキシ基を含む構成単位、およびこれら以外の他の構成単位を所定の比率で含み、かつ固有粘度が0.5dL/g以上3dL/g以下であるフッ化ビニリデン共重合体を含む樹脂組成物(樹脂含有層)をセパレータと電極との間に配置することで、正極および負極いずれにおいてもドライ接着性が良好になることが見出された。
【0020】
その理由は以下のように考えられる。前述のように、ドライ接着の際には、樹脂含有層中のフッ化ビニリデン共重合体が十分に軟化し、電極やセパレータ等と十分に密着する必要がある。ただし、正極と負極では、その表面の物理構造および化学構造が異なっていることが多い。具体的には、正極と負極で活物質形状が異なり、当然、電極表面の平滑性が異なる。当該平滑性は物理的な密着性に大きく影響する。一方で、正極および負極では、使用しているバインダーが異なることが多い。例えば、正極バインダーはフッ化ビニリデンであり、負極バインダーはスチレン-ブタジエンゴム/カルボキシメチルセルロース系であることがあり、これらは化学的性質が大きく異なる。このように、物理構造および化学構造が異なる二種の表面双方に効果的な密着を発現するには、樹脂の力学特性を制御しつつ、官能基を導入し、化学修飾する必要がある。
【0021】
そこで、本発明の樹脂組成物が含むフッ化ビニリデン共重合体は、フッ化ビニリデン由来の構成単位やカルボキシ基を含む構成単位以外の、他の構成単位を一定量含む。そのため、フッ化ビニリデン共重合体が軟化したときに適度な柔軟性を有し、電極やセパレータに十分に密着する。またこのとき、フッ化ビニリデン共重合体中のカルボキシ基が、セパレータや電極表面のOH基等と化学相互作用する。このように、本発明の樹脂組成物が含むフッ化ビニリデン共重合体は、フッ化ビニリデン共重合体の軟化、およびカルボキシ基と電極やセパレータ等との化学相互作用という異なる密着機構を兼ね備える。そのため、軟化による物理的な密着では、密着力が不十分な電極表面に対して、カルボキシ基と電極やセパレータ等との化学相互作用で密着力を補う。一方、カルボキシ基と電極やセパレータ等との化学相互作用では不十分な電極表面に対して、軟化による物理的な密着で、密着力を補う。したがって、本発明の樹脂組成物は、正極および負極の両方に対するドライ接着性が優れる。
【0022】
さらに、フッ化ビニリデン共重合体の固有粘度は、例えばフッ化ビニリデン共重合体の分子量等を表す物性であり、当該固有粘度が過度に高いと、例えばドライ接着時にフッ化ビニリデン共重合体が電極やセパレータ表面に密着し難くなる。また、当該固有粘度が過度に低いと、フッ化ビニリデン共重合体を含む樹脂組成物やコーティング組成物の安定性が低下し、樹脂含有層を形成し難くなる。これに対し、本発明では、上記フッ化ビニリデン共重合体は、固有粘度が一定の範囲にあることから、当該フッ化ビニリデン共重合体を含む樹脂組成物やコーティング組成物の安定性が良好であり、かつドライ接着性が良好になる。
【0023】
なお、本発明の樹脂組成物は、本発明の目的および効果を損なわない範囲において、フッ化ビニリデン共重合体以外の成分を含んでいてもよい。フッ化ビニリデン共重合体以外の成分としては、分散剤、消泡剤、濡れ剤等が挙げられる。ただし、樹脂組成物中のフッ化ビニリデン共重合体の量は、90質量%以上が好ましく、95質量%以上がより好ましい。以下、フッ化ビニリデン共重合体について説明する。
【0024】
(フッ化ビニリデン共重合体)
本発明の樹脂組成物は、以下のフッ化ビニリデン共重合体を含んでいればよく、樹脂組成物は、当該フッ化ビニリデン共重合体を一種以上含んでいてもよく、二種以上含んでいてもよい。
【0025】
フッ化ビニリデン共重合体が含むフッ化ビニリデン由来の構成単位の量は、フッ化ビニリデン共重合体の構成単位の総量を100質量%としたとき、73.7質量%以上96.9質量%以下であり、78質量%以上95質量%以下が好ましく、83質量%以上93質量%以下がより好ましい。上述のように、フッ化ビニリデン由来の構成単位の量が73.7質量%以上であると、フッ化ビニリデン共重合体が適度な結晶性を有し、樹脂含有層の強度が適度に維持されやすい。一方、フッ化ビニリデン由来の構成単位量が96.9質量%以下であると、相対的に、カルボキシ基を含む構成単位の量や、他の構成単位の量が十分になり、カルボキシ基の相互作用によってドライ接着性が高まりやすく、加熱によって樹脂含有層が軟化しやすく、ドライ接着性が高まりやすい。上記フッ化ビニリデン由来の構成単位量は、フッ化ビニリデン共重合体を19F-NMRで分析することにより特定できる。
【0026】
フッ化ビニリデン共重合体が含むカルボキシ基を含む構成単位の量は、フッ化ビニリデン共重合体の構成単位の総量を100質量%としたとき、0.1質量%以上1.3質量%以下であり、0.2質量%以上1.0質量%以下が好ましく、0.3質量%以上1.0質量%以下がより好ましい。カルボキシ基を含む構成単位の割合が0.1質量%以上であると、カルボキシ基が電極やセパレータ中の官能基と相互作用したり、カルボキシ基どうしが相互作用したりしやすくなり、樹脂組成物を含む樹脂含有層のドライ接着性が高まる。一方、カルボキシ基を含む構成単位の量が1.3質量%以下であると、当該樹脂組成物やコーティング組成物等の安定性が高まりやすい。フッ化ビニリデン共重合体中のカルボキシ基を含む構成単位の量は、例えば特開2015-172101号公報に開示されている公知の方法により特定できる。
【0027】
ここで、上記カルボキシ基を含む構成単位は、カルボキシ基を含む化合物から得られる構成単位である。カルボキシ基を含む化合物の種類は特に制限されず、例えば、カルボキシ基と不飽和二重結合とを含む化合物等が好ましい。このような化合物の例には、不飽和二塩基酸、不飽和二塩基酸モノエステル、または後述の一般式(1)で表される化合物が含まれる。フッ化ビニリデン共重合体は、これら由来の構成単位を1種のみ含んでいてもよく、2種以上含んでいてもよい。
【0028】
上記不飽和二塩基酸の例には、不飽和二重結合と、2つのカルボキシ基または酸無水物基とを含む化合物等が含まれる。当該不飽和二塩基酸の炭素数は、5~8が好ましい。その具体例には、フマル酸、(無水)マレイン酸、シトラコン酸およびフタル酸等が含まれる。なお、本明細書における「カルボキシ基」には、酸無水物も含む。
【0029】
不飽和二塩基酸モノエステルの例には、不飽和二重結合と、1つのカルボン酸と、1つのカルボン酸エステルとを有する化合物等が含まれる。不飽和二塩基酸モノエステルの炭素数は、5~8が好ましい。不飽和二塩基酸物エステルの具体例には、フマル酸モノメチル、フマル酸モノエチル、マレイン酸モノメチル、マレイン酸モノエチル、シトラコン酸モノメチル、シトラコン酸モノエチル、フタル酸モノメチル及びフタル酸モノエチル等が含まれる。
【0030】
一般式(1)を以下に示す。
【化1】
上記一般式(1)における、R、R、Rは、それぞれ独立に、水素原子、塩素原子、または炭素数1~5のアルキル基を表す。これらの中でも、重合性の観点から、R、R、Rは、立体障害の小さな基が好ましく、水素原子または炭素数1~3のアルキル基が好ましく、水素原子またはメチル基がより好ましい。なお、R、R、Rは、全て同一であってもよく、異なっていてもよい。
【0031】
また、X’は、主鎖の原子数が1~19である分子量472以下の原子団を表す。X’の具体例には、各種アルキレン基、エーテル基、エステル結合、芳香環や、これらの組み合わせが含まれる。X’の主鎖の原子数は1以上14以下がより好ましく1以上9以下がさらに好ましい。なお、本明細書において、上記X’の主鎖とは、一般式(1)におけるカルボニル基とカルボキシ基とをつなぐ骨格の原子数を意味する。X’が環状構造を含む場合等には、主鎖の原子数が複数存在する場合がある。この場合、最小値をX’の主鎖の原子数として取り扱う。
【0032】
上記一般式(1)で表される化合物の具体例には、(メタ)アクリロイロキシプロピルコハク酸、(メタ)アクリロイロキシエチルコハク酸、2-カルボキシエチルアクリレート、2-カルボキシエチルメタクリレート、アクリロイロキシエチルフタル酸、メタクリロイロキシエチルフタル酸、N-カルボキシエチル(メタ)アクリルアミド、カルボキシエチルチオ(メタ)アクリレート、及びカルボキシメチルアクリレート等が挙げられる。本明細書において、(メタ)アクリロイロキシは、メタクリロイロキシ、アクリロイロキシ、またはこれらの両方を表す。さらに、(メタ)アクリレートは、メタクリレート、アクリレート、またはこれらの両方を表し、(メタ)アクリルは、メタクリル、アクリル、またはこれらの両方を表す。
【0033】
上記カルボキシ基を含む化合物は、上記の中でも一般式(1)で表される化合物が好ましく、特に(メタ)アクリロイロキシプロピルコハク酸、がより好ましい。
【0034】
一方、フッ化ビニリデン共重合体が含む、カルボキシ基を含まず、かつ前記フッ化ビニリデンと共重合可能な化合物由来の、他の構成単位の量は、フッ化ビニリデン共重合体の構成単位の総量を100質量%としたとき、3質量%以上25質量%以下であり、3質量%以上23質量%以下が好ましく、5質量%以上20質量%以下がより好ましい。他の構成単位の割合が3質量%以上であると、フッ化ビニリデン共重合体の柔軟性が高まり、樹脂組成物を含む樹脂含有層のドライ接着性が高まる。一方、他の構成単位の量が過剰になると、コーティング組成物等としたときに溶媒に溶解し難くなるが、他の構成単位の量が25質量%以下であると、フッ化ビニリデン共重合体が溶媒に溶解しやすくなる。また、他の構成単位の割合が25質量%以下であると、相対的に、フッ化ビニリデン由来の構成単位の量が多くなり、樹脂含有層の強度が高まる。フッ化ビニリデン共重合体中の他の構成単位の量は、19F-NMRにより特定できる。
【0035】
他の構成単位は、カルボキシ基を含まず、かつフッ化ビニリデンと重合可能な基(例えば、不飽和二重結合)等を含む化合物(以下、「他の化合物」とも称する)由来の構成単位である。他の化合物の例には、フッ化ビニリデン以外の含フッ素単量体、エチレンおよびプロピレン等の炭化水素系単量体等が含まれる。
【0036】
含フッ素単量体の例には、フッ化ビニル、トリフルオロエチレン、テトラフルオロエチレン、クロロトリフルオロエチレン、ヘキサフルオロプロピレン、ヘキサフルオロエチレン、フルオロアルキルビニルエーテル、およびパーフルオロメチルビニルエーテルに代表されるパーフルオロアルキルビニルエーテル等が含まれる。これらの中でも、ドライ接着性やウェット接着性が良好になりやすいとの観点で、クロロトリフルオロエチレンまたはヘキサフルオロプロピレン由来の構成単位が好ましい。
【0037】
ここで、上記フッ化ビニリデン共重合体の固有粘度は、0.5dL/g以上3dL/g以下であればよいが、0.8dL/g以上2.5dL/g以下がより好ましく、1.0dL/g以上2.0dL/g以下がより好ましい。固有粘度が0.5dL/g以上であると、当該樹脂組成物を含む後述のコーティング組成物等の安定性が高まる。一方、固有粘度が3dL/g以下であると、樹脂組成物層が加熱によって軟化しやすくなりドライ接着性が高まりやすい。
【0038】
当該固有粘度は、フッ化ビニリデン共重合体4gを1LのN,N-ジメチルホルムアミドに溶解させた溶液の粘度ηと、30℃の恒温槽内でウベローデ粘度計を用いて測定されるN,N-ジメチルホルムアミドの粘度ηとから求められる値である。固有粘度ηは、次式によって求められる。
固有粘度η=(1/C)・ln(η/η
上記式中、Cは、樹脂組成物の単位当たりの濃度であり、ここでは0.4g/dlである。
【0039】
また、上記フッ化ビニリデン共重合体の融点は、100℃以上165℃以下が好ましく、120℃以上160℃以下がより好ましい。フッ化ビニリデン共重合体の融点が、100℃以上であると、得られる樹脂含有層の耐熱性が良好になりやすい。一方、フッ化ビニリデン共重合体の融点が165℃以下であると、加熱によってポリマーが軟化しやすくドライ接着を比較的低温で行うことができる。当該フッ化ビニリデン共重合体の融点は示差走査熱量計(DSC)による熱量測定によって特定できる。具体的には、フッ化ビニリデン共重合体を、30℃から230℃まで、10℃/分で昇温(1回目の昇温)し、230℃から30℃まで10℃/分で降温(1回目の冷却)し、さらに30℃から230℃まで、10℃/分で昇温(2回目の昇温)して、DSCにより融解ピークを特定する。そして、2回目の昇温で観察される最大融解ピーク温度を、フッ化ビニリデン共重合体の融点として特定する。
【0040】
上記フッ化ビニリデン共重合体の重量平均分子量は、5万~120万が好ましく、10万~100万がより好ましく、15万~100万がさらに好ましい。上記重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)によって測定される、ポリスチレン換算値である。フッ化ビニリデン共重合体の重量平均分子量が上記範囲であると、樹脂組成物が上述の溶融粘度を満たしやすくなる。
【0041】
上記カルボキシ基を有するフッ化ビニリデン共重合体は、フッ化ビニリデンと、カルボキシ基を含む化合物と、他の化合物と、を公知の方法で共重合させて得られる。これらを共重合する方法の例には、懸濁重合、乳化重合、溶液重合等が含まれる。ここで、上記溶融粘度を上記範囲に調整するため、開始剤や連鎖移動剤の量、重合温度等の調整によって行う。
【0042】
2.コーティング組成物(コーティング液)
本発明のコーティング組成物(コーティング液)は、主に非電解質二次電池のセパレータと電極とを接着するための樹脂含有層を形成するための組成物であり、上述の樹脂組成物を含む。コーティング組成物(コーティング液)は、例えば、上述の樹脂組成物を溶媒に分散または溶解させた組成物とすることができ、無機フィラー等をさらに含んでいてもよい。また、本発明の目的および効果を損なわない範囲において、各種添加剤を含んでいてもよい。ただし、コーティング組成物(コーティング液)の用途は、樹脂含有層の形成に限定されない。本明細書において、「コーティング組成物」および「コーティング液」との用語は、同様の意味で使用する。
【0043】
当該コーティング組成物中の上記樹脂組成物の量は、コーティング組成物の塗布方法や所望の樹脂含有層の厚み等に応じて適宜選択される。通常、コーティング組成物は、その固形分中に、樹脂組成物を3質量%以上50質量%以下含むことが好ましく、5質量%以上40質量%以下含むことがより好ましく、10質量%以上30質量%以下含むことがさらに好ましい。コーティング組成物の固形分中に、樹脂組成物(主にフッ化ビニリデン共重合体)を上記範囲含むと、電極およびセパレータを強固に接着可能となる。
【0044】
コーティング組成物が含む溶媒は、上記樹脂組成物を均一に溶解または分散させることが可能であれば、その種類は特に制限されない。溶媒の例には、N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、ヘキサメチルホスフォアミド、ジオキサン、テトラヒドロフラン、テトラメチルウレア、トリエチルホスフェイト、トリメチルホスフェイト、アセトン、2-ブタノン、シクロヘキサノンなどが挙げられる。コーティング組成物は、溶媒を1種のみ含んでいてもよく、2種以上含んでいてもよい。
【0045】
溶媒の量は、コーティング組成物の塗布方法や所望の樹脂含有層の厚み等に応じて適宜選択される。
【0046】
無機フィラーは、絶縁性を有し、かつドライ接着やウェット接着時の熱に対する耐性を有していれば特に制限されない。上述のように、コーティング組成物、ひいては樹脂含有層がフィラーを含むと、樹脂組成物層の機械的強度が維持されやすくなる。
【0047】
無機フィラーの例には、SrTiO、SnO、CeO、MgO、NiO、CaO、ZnO、ZrO、Y、Al、TiO、SiC、粘土鉱物、マイカ、炭酸カルシウム等が含まれる。コーティング組成物は、フィラーを1種のみ含んでいてもよく、2種以上含んでいてもよい。無機フィラーは、二次電池の安全性、塗液安定性の観点からAl、MgO、ZnOが好ましく、絶縁性、電気化学的安定性の観点からAlがさらに好ましい。
【0048】
無機フィラーは、市販品を用いてもよい。例えば高純度アルミナ粒子として市販されている、AKP-3000、AKP-50、AKP-20(ともに住友化学社製)等を用いてもよい。
【0049】
無機フィラーのレーザー回折散乱法で測定されるメディアン径は10μm以下が好ましく、0.05μm以上5μm以下がより好ましく、0.10μm以上2μm以下がさらに好ましい。無機フィラーのメディアン径が10μm以下であると、樹脂含有層の厚みが過度に厚くならず、二次電池を薄型化しやすい。
【0050】
当該コーティング組成物中の無機フィラーの量は、コーティング組成物の塗布方法や所望の樹脂含有層の厚み等に応じて適宜選択されるが、コーティング組成物の固形分中に、30質量%以上99質量%以下含まれるのが好ましく、50質量%以上95質量%以下がより好ましく、70質量%以上90質量%以下がさらに好ましい。コーティング組成物の固形分中に、無機フィラーを30質量%以上含むと、ウェット接着時に、無機フィラー表面のOH基と上述のフッ化ビニリデン共重合体のカルボキシ基とが相互作用しやすくなり、樹脂含有層の形状が維持されやすくなる。また、積層体の機械的強度が増し、安全性が向上する。
【0051】
なお、上記樹脂組成物と無機フィラーや溶媒との混合方法は特に制限されず、公知の方法で混合できる。
【0052】
3.非水電解質二次電池
本発明の二次電池は、正極、セパレータ、および負極を含む積層体と、非水電解液と、これらを覆う外装体と、を含む。また、上記積層体の正極とセパレータとの間、および/または負極とセパレータとの間には、上述の樹脂組成物を含む樹脂含有層が配置される。なお、正極とセパレータとの間、および負極とセパレータとの間のいずれか一方のみに樹脂含有層が配置されてもよいが、両方に樹脂含有層が配置されると、電極やセパレータにずれやシワ等が生じ難くなり、得られる二次電池の強度や性能が向上する。
【0053】
なお、二次電池は、コイン型電池、ボタン型電池、円筒型電池、角型電池、ラミネート型電池等のいずれの構造を有していてもよい。以下、二次電池の各構成について、説明する。
【0054】
・電極(正極および負極)
二次電池が有する電極は、公知の二次電池の電極と同様とすることができる。電極は、通常、集電体と、当該集電体の少なくとも一方の面に配置された、活物質を含む合剤層と、を含む。
【0055】
負極および正極用の集電体は、電気を取り出すことが可能であれば、その材質は、特に制限されない。集電体の例には、アルミニウム、銅、鉄、ステンレス鋼、鋼、ニッケル、チタン等の金属箔や金属網等が含まれる。また、他の媒体の表面に上記金属箔あるいは金属網等を施したものであってもよい。集電体の厚さは、通常、5μm以上100μm以下である。
【0056】
一方、合剤層は、電極活物質および結着剤を含み、必要に応じて導電助剤等を含む層である。合剤層を構成する成分の比率は、公知の二次電池の合剤層と同様とすることができる。合剤層の厚みは、二次電池の種類に応じて適宜調整されるが、通常20μm以上250μm以下である。
【0057】
正極合剤層が含む正極活物質の具体例には、LiCoO、LiNixCo1-x(0≦x≦1)等の一般式LiMY(Mは、Co、Ni、Fe、Mn、Cr、V等の遷移金属の少なくとも一種を表し、YはO、S等のカルコゲン元素を表す)で表わされる複合金属カルコゲン化合物;LiMn等のスピネル構造をとる複合金属酸化物;LiFePO等のオリビン型リチウム化合物等が含まれる。なお、正極活物質は市販品であってもよい。
【0058】
一方、負極合剤層が含む負極活物質の例には、炭素材料、金属・合金材料、金属酸化物等が含まれ、これらの中でも炭素材料が好ましい。炭素材料の例には、人造黒鉛、天然黒鉛、難黒鉛化炭素、易黒鉛化炭素等が含まれる。このような炭素材料を使用すると、二次電池のエネルギー密度が高くなりやすい。なお、上記人造黒鉛は、例えば、有機材料を炭素化し、さらに高温で熱処理を行い、粉砕・分級することにより得られる。前記難黒鉛化炭素としては、例えば、石油ピッチ由来の材料を1000℃以上1500℃以下で焼成することにより得られる。これらの負極活物質は市販品であってもよい。
【0059】
上記正極活物質の比表面積は、0.05m/g以上50m/g以下が好ましい。一方、負極活物質の比表面積は、0.3m/g以上10m/g以下が好ましい。上記電極活物質の比表面積は、窒素吸着法により求めることができる。
【0060】
また、合剤層が含む結着剤は、上記電極活物質や後述の導電助剤を結着可能なものであれば特に制限されない。その例には、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、フッ素ゴム等の含フッ素樹脂;スチレンブタジエンゴムとカルボキシメチルセルロースとの混合物;ポリプロピレン、ポリエチレン等の熱可塑性樹脂等が含まれる。
【0061】
上記含フッ素樹脂として、フッ化ビニリデン系共重合体を用いることもできる。フッ化ビニリデン系共重合体の例には、フッ化ビニリデン-マレイン酸モノメチルエステル共重合体や、フッ化ビニリデンと、上述のカルボキシ基を含む化合物とを共重合して得られるフッ化ビニリデン系共重合体等も含まれる。
【0062】
また、電極合剤層が含む導電助剤は、電極合剤層の導電性を向上させることが可能な物質であればよい。導電助剤の例には、カーボンブラック、黒鉛微粉末、炭素繊維等の炭素質物質や、ニッケル、アルミニウム等の金属微粉末あるいは、金属繊維が含まれる。
【0063】
上記電極の形成方法は特に制限されず、例えば集電体上に、電極活物質、結着剤、導電助剤、および非水系溶媒を含むスラリーを塗布し、乾燥(固化)させることによって形成できる。非水系溶媒の例には、N-メチル-2-ピロリドン等が含まれる。上記スラリーの塗布方法は特に制限されず、バーコーター、ダイコーター、コンマコーターで塗布する方法が含まれる。また、乾燥温度は、通常50℃以上150℃以下が好ましく、乾燥時間は、1分以上300分以下である。また、乾燥の際の雰囲気は特に制限されず、窒素等の不活性ガス下でも減圧下でもよい。また、乾燥後に必要に応じて熱処理をさらに行ってもよい。また、熱処理に代えて、あるいは、熱処理の後に、プレス処理をさらに行ってもよい。プレス処理を行う場合には、通常1MPa(G)以上200MPa(G)以下が好ましい。プレス処理を行うと電極密度が向上する。
【0064】
・セパレータ
二次電池が有するセパレータは正極と負極とを電気的に絶縁可能であり、かつ電解液を保持可能であれば特に制限されない。セパレータの例には、ポリエチレン、ポリプロピレン等のポリオレフィン系高分子;ポリエチレンテレフタレート等のポリエステル系高分子;芳香族ポリアミド系高分子、ポリエーテルイミド等のポリイミド系高分子;ポリエーテルスルホン;ポリスルホン;ポリエーテルケトン;ポリスチレン;ポリエチレンオキサイド;ポリカーボネート;ポリ塩化ビニル;ポリアクリロニトリル;ポリメチルメタクリレート;セラミックス等を含む単層または多層の多孔膜や、不織布等が含まれる。また、ガラスや紙等であってもよい。
【0065】
これらの中でもポリオレフィン系高分子(例えば、ポリエチレン、ポリプロピレン等)の多孔膜が好ましい。市販のポリオレフィン系高分子多孔膜の例には、ポリポア社製のセルガード(登録商標)(単層ポリプロピレンセパレータ、単層ポリエチレンセパレータ、およびポリプロピレン/ポリエチレン/ポリプロピレン3層セパレータ等)、旭化成社製ハイポア(登録商標)(単層ポリエチレン)、東レ社製SETELA(登録商標)(単層ポリエチレン)等が含まれる。なお、セパレータは、表面処理が施されていてもよく、無機粒子の層が予めコートされていてもよい。
【0066】
・樹脂含有層
樹脂含有層は、上述の樹脂組成物を含む組成物、すなわち上述のコーティング組成物を塗布し、固化させて得られる層である。当該樹脂含有層は、上記正極とセパレータとの間、および負極とセパレータとの間の少なくとも一方に配置されていればよいが、両方に配置されていると、積層体の強度や搬送性等が高まる。また、上述の樹脂組成物は、正極および負極のいずれに対しても、高い密着性を示す。したがって、正極とセパレータとの接着、および負極とセパレータとの接着の両方に使用できるという利点がある。
【0067】
樹脂含有層の厚みは、0.2μm以上25μm以下が好ましく、0.5μm以上20μm以下が好ましい。樹脂含有層の形成方法については、後で詳しく説明する。
【0068】
・非水電解液
非水電解液は、非水系溶媒に電解質を溶解させた溶液である。非水系溶媒の例には、電解質を構成するカチオン及びアニオンを輸送可能な非プロトン性の有機溶媒であって、かつ、実質的に二次電池の機能を損なわないものが含まれる。
【0069】
非水系溶媒の例には、リチウムイオン二次電池の非水電解液として通常用いられる有機溶媒が含まれ、具体例には、カーボネート類、ハロゲン化炭化水素、エーテル類、ケトン類、ニトリル類、ラクトン類、エステル類、オキソラン化合物等が含まれる。中でも、プロピレンカーボネート、エチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、1,2-ジメトキシエタン、1,2-ジエトキシエタン、プロピオン酸メチル、プロピオン酸エチル、スクシノニトリル、1,3-プロパンスルトン、炭酸フルオロエチレン、炭酸ビニレン等が好ましい。非水電解液は、非水系溶媒を1種のみ含んでいてもよく、2種以上含んでいてもよい。
【0070】
また、電解質は、上記非水系溶媒によって、カチオン及びアニオンを輸送可能であり、かつ、実質的に二次電池の機能を損なわないものであれば特に制限されない。非水電解質二次電池が、リチウムイオン二次電池である場合の電解質の例には、LiPF、LiAsF、LBF等のフルオロ錯アニオンのリチウム塩;LiClO、LiCl、LiBr等の無機リチウム塩;およびLiCHSO、LiCFSO等のスルホン酸リチウム塩、Li(CFOSON、Li(CFOSOC、Li(CFSON、Li(CFSOC等の有機リチウム塩が含まれる。非水電解液は、電解質を1種のみ含んでいてもよく、2種以上含んでいてもよい。
【0071】
・外装体
二次電池の外装体の形状は特に制限されず、二次電池の用途等に合わせて適宜選択される。外装体は、上述の電極、セパレータ、および樹脂含有層を含む積層体と、非水電解液とを保持可能であればよく、例えば円筒缶や、ラミネートパウチ等であってもよい。
【0072】
(二次電池の製造方法)
上記二次電池の製造方法について説明する。以下、電極とセパレータとの間、および負極とセパレータとの間にそれぞれ樹脂含有層を形成する場合を例に説明するが、上述のように、樹脂含有層は、いずれか一方のみに配置されていてもよい。
【0073】
本発明の二次電池の製造方法は、正極、セパレータ、および負極からなる群から選ばれる少なくとも1つの部材の、少なくとも一方の面に、上述の樹脂組成物を含有する樹脂含有層を形成する工程(樹脂含有層形成工程)と、樹脂含有層が、正極およびセパレータの間、ならびに負極およびセパレータの間に位置するように、正極、セパレータ、および負極を積層して積層体を形成する工程(積層工程)と、当該積層体を熱プレスする工程(熱プレス工程)と、を少なくとも含む。熱プレス工程の前、または熱プレス工程の後に、上記積層体を外装体に充填し、積層体に非水電解液を含浸させる工程(非水電解液含浸工程)を含んでいてもよい。
【0074】
・樹脂含有層形成工程
樹脂含有層形成工程では、正極、セパレータ、および負極からなる群から選ばれる少なくとも1つの部材の、少なくとも一方の面に、上述の樹脂組成物を含有する樹脂含有層を形成する。当該樹脂含有層の形成方法は、コーティング組成物を塗布し、固化させる方法であればよく、以下のいずれかの方法とすることができる。
【0075】
(1)電極(正極や負極)の一方の面にコーティング組成物を塗布し、固化させて、電極および樹脂含有層の積層体(本明細書において「積層用電極」とも称する)を形成する。
(2)セパレータの一方の面、もしくは両方の面にコーティング組成物を塗布し、固化させて、セパレータおよび樹脂含有層の積層体(本明細書において「積層用セパレータ」とも称する)を形成する。
(3)上述のコーティング組成物を、別途用意した基材上に塗布し、固化させた後、塗膜を基材から剥離し、当該塗膜をセパレータや電極に貼り付ける。なお、基材の例には、ポリエチレンテレフタレート(PET)製の基材等が含まれる。
【0076】
上記方法の中でも、(1)積層用電極を形成する方法、および(2)積層用セパレータを形成する方法が、基材の剥離工程や、積層工程の簡略化の点で好ましい。また特に(2)積層用セパレータを形成する方法によれば、電極に影響を及ぼすことなく樹脂含有層を形成可能であることから、特に好ましい。
【0077】
上記コーティング組成物の塗布方法は特に制限されない。例えば、バーコーター;ダイコーター;コンマコーター;ダイレクトグラビア方式、リバースグラビア方式、キスリバースグラビア方式、オフセットグラビア方式等のグラビアコーター;リバースロールコーター;マイクログラビアコーター;エアナイフコーター;ディップコーター等で塗布する方法であってもよい。
【0078】
また、上記コーティング組成物の固化方法は、非溶媒への浸漬または乾燥等が挙げられる。これらを組み合わせてもよい。非溶媒としては、水等の樹脂組成物を溶解しない溶媒を用いることができる。また、非溶媒以外にエタノールなどの貧溶媒を含んでもよい。乾燥させる場合の乾燥温度は、通常40℃以上190℃以下が好ましく、50℃以上180℃以下がより好ましい。乾燥時間は、1秒以上15時間以下で好ましい。また、乾燥の際の雰囲気は特に制限されず、窒素などの不活性ガス雰囲気下や減圧下で乾燥させてもよい。また、乾燥後に必要に応じて熱処理をさらに行ってもよい。
【0079】
・積層工程
積層工程では、正極、樹脂含有層、セパレータ、樹脂含有層、および負極の順に各部材を配置する。当該積層工程の積層方法は、上記樹脂含有層をいずれの方法で作製したかに応じて適宜選択される。例えば、樹脂含有層形成工程で、電極の一方の面に樹脂含有層が積層された積層用電極を準備した場合には、積層用電極の樹脂含有層とセパレータとが対向するように積層用電極とセパレータとを積層する。また、上記樹脂含有層形成工程でセパレータの両面に樹脂含有層が形成された積層用セパレータを準備した場合には、正極および負極の間に、積層用セパレータを挟み込む。
【0080】
なお、積層工程で形成する積層体は、正極、樹脂含有層、セパレータ、樹脂含有層、および負極で構成されるユニットを1つのみ含んでいてもよく、当該ユニットを複数含んでいてもよい。複数のユニットを積層する場合、各ユニット間には、樹脂含有層やセパレータをさらに配置してもよい。
【0081】
・熱プレス工程
熱プレス工程は、上述の積層工程で作製した積層体を熱プレスする工程である。本発明では、非水電解液を上記積層体に含浸させる前にドライ接着を行うと、樹脂含有層がセパレータや電極に強固に密着する。したがって、熱プレス工程では、少なくともドライ接着を行うことが好ましく、非水電解液を上記積層体に含浸させた後に行うウェット接着をさらに行ってもよい。なお、本発明の二次電池の製造方法では、ドライ接着により、正極および負極のいずれに対しても高い接着性を得ることができる。また、当該積層体は、ウェット接着を行うことで、さらに各層間の密着性が高まる。
【0082】
(1)ドライ接着
ドライ接着は、上述の積層体を非水電解質に含浸させる前に行う。ドライ接着時の温度は、電極、セパレータの耐熱性を考慮し、電極やセパレータのいずれかに顕著な変化(分解による化学構造変化や溶融・気化などの単なる状態変化を含む)がみられる温度のうち、最も低い温度を上限として適宜選択する。例えば、加熱温度は、40℃以上220℃以下が好ましく、50℃以上120℃がより好ましい。また、加熱時間は1秒以上15時間以下が好ましい。また、プレス時の圧力は、電極やセパレータのいずれかに顕著な構造変化(電極の密度変化、破断、セパレータの透気度の変化等)が見られる圧力のうち、最も低い圧力を上限として適宜選択される。例えば、プレス時の圧力は0.01MPa(G)以上30MPa(G)が好ましく、0.5MPa(G)以上20MPa(G)以下がより好ましい。
【0083】
(2)ウェット接着
ウェット接着は、上述の非水電解液を積層体に含浸させた後に行う。ウェット接着時の温度は、電極、セパレータおよび電解液の耐熱性を考慮し、電極やセパレータおよび非水電解液のいずれかに顕著な変化(分解による化学構造変化や溶融・気化などの単なる状態変化を含む)がみられる温度のうち、最も低い温度を上限として適宜選択する。例えば、熱プレス時の温度は、常温以上130℃以下が好ましく、40℃以上100℃以下がより好ましい。熱プレス時の圧力は、0.01MPa(G)以上10MPa(G)が好ましく、0.1MPa(G)以上8MPa(G)以下がより好ましい。さらに、熱プレスを行う前に、積層体や非水電解液を予熱してもよい。予熱時間は1秒以上1時間以下が好ましい。また、上記圧力でのプレス時間は1秒以上1時間以下がより好ましい。
【0084】
・非水電解液含浸工程
上述のように、ドライ接着した積層体、もしくはドライ接着していない積層体を上述の外装体に充填し、非水電解液を含浸させる工程をさらに含んでいてもよい。積層体の充填方法や非水電解液の含浸方法は、公知の二次電池の積層体の充填方法や非水電解液の含浸方法と同様である。
【実施例
【0085】
以下において、実施例を参照して本発明をより詳細に説明する。これらの実施例によって、本発明の範囲は限定して解釈されない。
【0086】
1.樹脂組成物の調製
以下の手順で、各樹脂組成物(フッ化ビニリデン共重合体)を調製した。
(1)実施例A1(フッ化ビニリデン共重合体1の調製)
容積2Lのオートクレーブに、イオン交換水286質量部、メチルセルロース0.1質量部、フッ化ビニリデン(VDF)82質量部、ヘキサフルオロプロピレン(HFP)18質量部、アクリロイロキシプロピルコハク酸(APS)0.5質量部、およびジイソプロピルパーオキシジカーボネート1.5質量部を入れ、28℃で重合した。得られた共重合体を、95℃で60分間熱処理した後、脱水、水洗し、さらに80℃で20時間乾燥して、VDF-HFP-APSを得た。この共重合体粒子には、HFPが15.3質量%、APSが0.3質量%含まれており、ηは1.7dL/gであった。この共重合体を共重合体1とした。
【0087】
(2)実施例A2(フッ化ビニリデン共重合体2の調製)
共重合体1と同様の方法で、VDF-HFP-APSを重合し、共重合体2を得た。共重合体2には、HFPが6.0質量%、APSが0.8質量%含まれており、ηは1.5dL/gであった。
【0088】
(3)実施例A3(フッ化ビニリデン共重合体3の調製)
共重合体1と同様の方法で、VDF-HFP-APSを重合し、共重合体3を得た。共重合体3には、HFPが9.1質量%、APSが0.9質量%含まれており、ηは1.5dL/gであった。
【0089】
(4)比較例A1(フッ化ビニリデン共重合体4の調製)
HFPを加えなかったこと以外は、共重合体1と同様の方法で、VDF-APSを重合し、共重合体4を得た。共重合体4には、APSが0.7質量%含まれており、ηは2.5dL/gであった。
【0090】
(5)比較例A2(フッ化ビニリデン共重合体5の調製)
共重合体1と同様の方法で、VDF-HFP-APSを重合し、共重合体5を得た。共重合体5には、HFPが7.8質量%、APSが0.3質量%含まれており、ηは3.3dL/gであった。
【0091】
(6)比較例A3(フッ化ビニリデン共重合体6の調製)
共重合体1と同様の方法で、VDF-HFP-APSを重合し、共重合体6を得た。共重合体6には、HFPが26.0質量%、APSが0.4質量%含まれており、ηは1.9dL/gであった。
【0092】
(7)比較例A4(フッ化ビニリデン共重合体7の調製)
APSを加えなかったこと以外は、共重合体1と同様の方法で、VDF-HFPを重合し、共重合体7を得た。共重合体7には、HFPが13.5質量%含まれており、ηは1.4dL/gであった。
【0093】
(8)比較例A5(フッ化ビニリデン共重合体8の調製)
共重合体1と同様の方法で、VDF-HFP-APSを重合し、共重合体8を得た。共重合体8には、HFPが5.6質量%、APSが1.5質量%含まれており、ηは1.5dL/gであった。
【0094】
2.樹脂組成物(フッ化ビニリデン共重合体)の分析
上記の実施例A1~A3、および比較例A1~A5で調製したフッ化ビニリデン共重合体について、以下の方法で構成単位量を特定し、さらに当該フッ化ビニリデン共重合体の固有粘度を以下の方法で測定した。結果を表1に示す。
【0095】
(1)フッ化ビニリデン共重合体の構成単位量の特定
フッ化ビニリデン共重合体を構成する構成単位の量を、H-NMRおよび19F-NMRで特定した。
【0096】
(2)固有粘度ηの測定
上記の実施例A1~A3、および比較例A1~A5で調製したフッ化ビニリデン共重合体4gを、N,N-ジメチルホルムアミド1Lに溶解させた樹脂組成物含有溶液を準備した。そして、当該樹脂組成物含有溶液の粘度ηを、30℃の恒温槽内でウベローデ粘度計を用いて測定した。同様に、30℃の恒温槽内でウベローデ粘度計を用いて、N,N-ジメチルホルムアミドの粘度ηを測定した。そして、以下の式に基づき、固有粘度ηを求めた。
固有粘度η=(1/C)・ln(η/η
上記式中、Cは、樹脂組成物の単位当たりの濃度であり、ここでは0.4g/dlである。
【0097】
【表1】
【0098】
3.コーティング組成物の調製および二次電池の作製
(1)実施例B1~B3および比較例B1~B5
・コーティング組成物の調製
上記樹脂組成物の濃度が5質量%になるように、樹脂組成物を室温でN-メチル-2-ピロリドン(NMP)に分散し、その後溶液温度を50℃に昇温して樹脂組成物を溶解させた(以下、ポリマー溶液を称す)。ポリマー溶液400質量部(樹脂組成物:20質量部)と、アルミナ粒子(AKP-20、住友化学社製、平均粒子径0.46μm)80質量部を混合し、NMPを加えて固形分15質量%のコーティング組成物を得た。
【0099】
4.樹脂含有層の評価
(1)正極の作製
LiNiCoMnO(MX6、ユミコア社製)94質量部、導電助剤(SuperP TIMCAL社製)3質量部、およびPVDF(ポリフッ化ビニリデン、(KF#7200、クレハ社製))3質量部に、NMPを加えてスラリーを作製し、Al箔(厚さ15μm)に塗布した。乾燥した後、プレスし、120℃で3時間熱処理を実施し、電極嵩密度が3.0g/cm、目付け量が103g/mである正極を得た。
【0100】
(2)負極の作製
BTR918(改質天然黒鉛、BTR社製)95質量部、導電助剤(SuperP TIMCAL社製)2質量部、SBR(スチレンブタジエンゴム)ラテックス(BM-400 日本ゼオン社製)2質量部、およびCMC(カルボキシメチルセルロース、セロゲン4H 第一工業製薬社製)1質量部に水を加えてスラリーを作製し、Cu箔(厚さ10μm)に塗布した。乾燥した後、プレスし、150℃で3時間熱処理を実施した後、プレスし、電極嵩密度が1.6g/cm、目付け量が60g/mである負極を得た。
【0101】
(3)積層用セパレータの準備
上記コーティング組成物をセパレータ(単層ポリエチレン、厚み20μm)の片面に、ウェット塗布量24μmのワイヤーバーを用いて逐次コートした。そして、凝固浴(水)に3分間浸漬した。その後、洗浄液(水)に1分間浸漬し、70℃で30分間、窒素下で乾燥させた。さらに70℃で2時間、真空中での熱処理を実施した。
【0102】
(4)樹脂含有層のウェット接着性
上記により得られた正極を2.5×5.0cmに切り出し、積層用セパレータを3.0×6.0cmに切り出し、正極の正極合剤層と積層用セパレータの樹脂含有層とが向かい合うように接合させた。この接合体を、アルミラミネートパウチに入れ、電解液(EC(エチレンカーボネート)/EMC(エチルメチルカーボネート)=3/7(体積比)、1.2MLiPF、およびVC(ビニレンカーボネート)の混合物(VCの濃度:1質量%))を160μL注液後、真空封止し、25℃で一晩静置した。アルミラミネートパウチの外側から、平板プレス機を用いて加熱プレスを行い、積層用セパレータと正極とを接着させ、剥離強度測定用サンプル(積層用セパレータ/正極)を得た。剥離強度測定用サンプルは、任意の温度で、余熱1分間の後、面圧約4MPa(G)で2分間熱プレスを行うことで作製した。作製した剥離強度測定用サンプルの正極集電体側を支持体に固定し、支持体を引張試験機(ORIENTEC社製「STA-1150 UNIVERSAL TESTING MACHINE」)に固定し、ヘッド速度200mm/分で、セパレータを引張り180°剥離試験を行い、樹脂含有層と正極との間の剥離強度を測定した。
【0103】
(5)樹脂含有層のドライ接着性
上記により得られた正極または負極を2.5×5.0cmに切り出した。一方、積層用セパレータを3.0×6.0cmに切り出した。そして、正極の正極合剤層または負極の負極合剤層と、積層用セパレータ樹脂含有層とが向かい合うように接合させた。
この接合体を、ロールプレス機を用いて加熱プレスを行い、積層用セパレータの樹脂含有層と正極または負極とを接着させ、剥離強度測定用サンプルを得た。剥離強度測定用サンプルは、70℃、2rpm、線圧約4N/mmで熱プレスを行うことで作製した。
作製した剥離強度測定用サンプルの正極または負極の集電体側を支持体に固定し、支持体を、引張試験機(ORIENTEC社製「STA-1150 UNIVERSAL TESTING MACHINE」)に固定し、ヘッド速度200mm/分で、セパレータを引張り180°剥離試験を行い、正極と樹脂含有層との剥離強度、および負極と樹脂含有層との剥離強度をそれぞれ測定した。
【0104】
【表2】
【0105】
上記表2に示されるように、フッ化ビニリデン共重合体を構成する構成単位の総量に対して、フッ化ビニリデン由来の構成単位の量が73.7質量%以上96.9質量%以下であり、カルボキシ基を有する構成単位の量が、0.1質量%以上1.5質量%以下であり、その他の構成単位の量が、3質量%以上30質量%以下であり、フッ化ビニリデン共重合体4gを1LのN,N-ジメチルホルムアミドに溶解させた溶液の30℃における固有粘度が0.5dL/g以上3dL/g以下である実施例A1~A3の樹脂組成物を用いて作製した積層用セパレータでは、正極および負極のドライ接着性の両方で良好な結果が得られた。また、このとき、ウェット接着性についても十分確保できていた(実施例B1~B3)。
【0106】
一方、積層用セパレータの樹脂含有層が、フッ化ビニリデン共重合体が、カルボキシ基を含む構成単位を含まない場合には、いずれの電極に対してもドライ接着性が低かった(比較例B4)。積層体を加熱し軟化して密着させたときに、樹脂含有層が電極またはセパレータ表面のOH基等と化学相互作用出来なかったために高い接着性を得し難かったと考えられる。一方、フッ化ビニリデン共重合体が、他の構成単位を含まない場合にも、ドライ接着性が低かった(比較例B1)。フッ化ビニリデン共重合体の柔軟性が低く、フッ化ビニリデン共重合体が電極やセパレータに密着し難かったと考えられる。また、フッ化ビニリデン共重合体の固有粘度が高すぎる場合にも、ドライ接着性が低かった(比較例B2)。固有粘度高いが樹脂組成物は、加熱プレスによって軟化しても樹脂組成物の運動性が低くフッ化ビニリデン共重合体が電極やセパレータに食い込み難いため、接着強度が高まり難かったと考えられる。さらに、その他の構成単位の量が多すぎる場合には、負極の接着性が低くなりやすかった(比較例B3)。一方、カルボキシ基を含む構成単位の量が多すぎる場合には、良好なウェット接着性および良好なドライ接着性の両立ができなかった(比較例B5)。
【0107】
本出願は、2020年8月28日出願の特願2020-144555号に基づく優先権を主張する。当該出願明細書に記載された内容は、すべて本願明細書に援用される。
【産業上の利用可能性】
【0108】
本発明の樹脂組成物は、正極および負極のドライ接着性の両方に優れる。したがって、二次電池用の電極の作製等において非常に有用である。