(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-02-29
(45)【発行日】2024-03-08
(54)【発明の名称】歯車加工装置および歯車加工方法
(51)【国際特許分類】
B23F 5/16 20060101AFI20240301BHJP
G05B 19/4093 20060101ALI20240301BHJP
B23Q 15/12 20060101ALN20240301BHJP
【FI】
B23F5/16
G05B19/4093 M
B23Q15/12 A
(21)【出願番号】P 2020019962
(22)【出願日】2020-02-07
【審査請求日】2023-01-19
(73)【特許権者】
【識別番号】504139662
【氏名又は名称】国立大学法人東海国立大学機構
(74)【代理人】
【識別番号】100105924
【氏名又は名称】森下 賢樹
(72)【発明者】
【氏名】早坂 健宏
(72)【発明者】
【氏名】社本 英二
【審査官】野口 絢子
(56)【参考文献】
【文献】特開2018-062056(JP,A)
【文献】特開2019-136788(JP,A)
【文献】特開2005-144580(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
B23Q15/00-15/28
G05B19/18-19/416
G05B19/42-19/46
B23F 1/00-23/12
(57)【特許請求の範囲】
【請求項1】
被削材を第1回転軸まわりに回転させる第1回転機構と、
歯切り工具を第2回転軸まわりに回転させる第2回転機構と、
被削材に対して歯切り工具を、第1回転軸に平行な方向に相対的に移動させる送り機構と、
前記第1回転機構による被削材の回転、前記第2回転機構による歯切り工具の回転、前記送り機構による歯切り工具の相対移動を制御する制御部とを備えて、スカイビング加工により被削材に歯車を創成する歯車加工装置であって、
前記制御部は、
被削材の回転を加速させる加速制御と、被削材の回転を減速させる減速制御とを交互に実行するものであり、
前記制御部は、被削材の回転の加速期間中、創成中の同じ歯面を歯切り工具が切削するときの今回の切削速度と1回前の切削速度との比である速度変動比を1より小さい第2値から1より大きい第1値に変化させた後、第1値に維持し、被削材の回転の減速期間中、速度変動比を第1値から第2値に変化させた後、第2値に維持する、
ことを特徴とする歯車加工装置。
【請求項2】
第1回転軸まわりの
被削材の回転を
加速させる加速制御と、第1回転軸まわりの被削材の回転を減速させる減速制御とを交互に実行する第1回転制御ステップと、
歯切り工具の第2回転軸まわりの回転を制御する
第2回転制御ステップと、
被削材に対する歯切り工具の、第1回転軸に平行な方向の相対的な移動を制御するステップと、を有して、スカイビング加工により被削材に歯車を創成する歯車加工方法であって、
第1回転制御ステップは、
被削材の回転の加速期間中、創成中の同じ歯面を歯切り工具が切削するときの今回の切削速度と1回前の切削速度との比である速度変動比を
1より小さい第2値から1より大きい第1値に変化させた後、第1値に維持し、被削材の回転の減速期間中、速度変動比を第1値から第2値に変化させた後、第2値に維持する、
ことを特徴とする歯車加工方法。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、スカイビング加工を利用して被削材に歯車を創成する技術に関する。
【背景技術】
【0002】
スカイビング加工は、被削材の回転軸に対して歯切り工具の回転軸を傾斜させた状態で歯切り工具の切れ刃を被削材の径方向に切り込ませ、被削材と歯切り工具を同期回転させつつ、歯切り工具を被削材の回転軸に平行な方向に送り移動させて、被削材に歯車を創成する加工法である。スカイビング加工は、被削材および歯切り工具の回転速度を高くすることで加工能率を向上しやすく、特に内歯歯車の高能率加工に有効であることが知られている。
【0003】
スカイビング加工は、歯切り工具の送り機構を利用するため工具側の剛性が比較的低くなり、びびり振動が問題となることがある。特許文献1は、びびり振動の発生を抑制するために、工作物の回転速度を変動させる工程と、歯切り工具の回転速度を工作物の回転速度の変動に同期させながら変動させる工程とを有するスカイビング加工方法を開示する。
【先行技術文献】
【特許文献】
【0004】
【発明の概要】
【発明が解決しようとする課題】
【0005】
特許文献1に示されるように工作物の回転速度を一定の周期で反復的に変動させると、回転速度の増減が切り替わる前後で、現在の速度と1回転前の速度の比率が1に近くなる。従来より再生びびり振動を抑制する目的で、主軸回転速度を三角波の変動パターンで周期的に変動させることがあるが、本開示者が三角波の変動パターンを解析した結果、回転速度が極大値となる前後で、再生びびり振動が発生する可能性のあることを突き止めた。本開示者は、主軸回転速度の周期的な変動パターンについて研究を重ね、効果的に再生びびり振動を抑制する変動パターンを特定するに至った。
【0006】
本開示はこうした状況に鑑みてなされており、その目的とするところは、再生びびり振動を効果的に抑制する歯車創成技術を提供することにある。
【課題を解決するための手段】
【0007】
上記課題を解決するために、本開示のある態様の歯車加工装置は、被削材を第1回転軸まわりに回転させる第1回転機構と、歯切り工具を第2回転軸まわりに回転させる第2回転機構と、被削材に対して歯切り工具を、第1回転軸に平行な方向に相対的に移動させる送り機構と、第1回転機構による被削材の回転、第2回転機構による歯切り工具の回転、送り機構による歯切り工具の相対移動を制御する制御部とを備えて、スカイビング加工により被削材に歯車を創成する。制御部は、創成中の同じ歯面を歯切り工具が切削するときの今回の切削速度と1回前の切削速度との比である速度変動比が1より大きい第1値以上となるように被削材の回転を加速させる加速制御と、速度変動比が1より小さい第2値以下となるように被削材の回転を減速させる減速制御とを交互に実行する。
【0008】
本開示の別の態様の歯車加工方法は、被削材の第1回転軸まわりの回転を制御するステップと、歯切り工具の第2回転軸まわりの回転を制御するステップと、被削材に対する歯切り工具の、第1回転軸に平行な方向の相対的な移動を制御するステップと、を有して、スカイビング加工により被削材に歯車を創成する。被削材の回転制御ステップは、創成中の同じ歯面を歯切り工具が切削するときの今回の切削速度と1回前の切削速度との比である速度変動比が1より大きい第1値以上となるように被削材の回転を加速させる加速制御と、速度変動比が1より小さい第2値以下となるように被削材の回転を減速させる減速制御とを交互に実行する。
【0009】
なお、以上の構成要素の任意の組合せ、本開示の表現を方法、装置、システムなどの間で変換したものもまた、本開示の態様として有効である。
【図面の簡単な説明】
【0010】
【
図1】実施形態の歯車加工装置の概略構成を示す図である。
【
図2】スカイビング加工における被削材の回転を説明するための図である。
【
図3】(a)-(c)は、旋削加工において三角波の変動パターンで主軸回転速度を制御したときのシミュレーション結果を示す図である。
【
図4】(a)-(c)は、スカイビング加工において三角波の変動パターンで被削材回転速度を制御したときのシミュレーション結果を示す図である。
【
図5】(a)-(c)は、スカイビング加工において実施形態の変動パターンで被削材回転速度を制御したときのシミュレーション結果を示す図である。
【
図6】(a)-(b)は、スカイビング加工において変形例の変動パターンで被削材回転速度を制御したときのシミュレーション結果を示す図である。
【発明を実施するための形態】
【0011】
図1は、実施形態の歯車加工装置1の概略構成を示す。歯車加工装置1は、スカイビング加工により被削材10に歯車を創成する加工装置であり、NC工作機械であってよい。実施形態の歯車加工装置1は、外周面に複数の加工歯(切れ刃)を備えた歯切り工具12を用いて、円筒形状の被削材10の内周面に内歯歯車を創成する。歯切り工具12における複数の加工歯の先端を円弧で結んだときの外径寸法は、被削材10の内径寸法よりも小さく設定され、これにより歯車加工装置1は、歯切り工具12を被削材10の内側に挿入して、被削材10の内周面に歯車を創成できる。なお歯車加工装置1は、スカイビング加工により被削材10の外周面に外歯歯車を創成してもよい。
【0012】
スカイビング加工では、被削材10の回転軸線である第1回転軸Ogを、歯切り工具12の回転軸線である第2回転軸Otに対して傾斜させる。第1回転軸Ogの軸線方向と第2回転軸Otの軸線方向のなす角度を、傾斜角Σ(rad)と呼ぶ。歯車加工装置1は、第1回転機構20、第2回転機構22、送り機構24および制御部30を備え、被削材10と歯切り工具12とを同期回転させながら、歯切り工具12を第1回転軸Ogに平行な方向に送ることで、被削材10の内周面に歯車を創成する。
【0013】
第1回転機構20は、被削材10を第1回転軸Ogまわりに回転させる機構であり、被削材10を固定する第1主軸と、第1主軸を第1回転軸Ogまわりに回転する第1主軸モータを有する。第2回転機構22は、歯切り工具12を第2回転軸Otまわりに回転させる機構であり、歯切り工具12を固定する第2主軸と、第2主軸を第2回転軸Otまわりに回転する第2主軸モータを有する。
【0014】
送り機構24は、被削材10に対して歯切り工具12を、第1回転軸Ogに平行な方向に相対的に移動させる機構であり、歯切り工具12を固定した第2主軸を、第1回転軸Ogに平行な方向に動かす変位機構と、変位機構を駆動する駆動モータを有する。なお変位機構は、被削材10を固定した第1主軸を、第1回転軸Ogに平行な方向に動かしてもよい。
【0015】
加工する内歯歯車の噛合歯は、第1回転軸Ogに対してねじれ角βg(rad)でねじれたねじれ歯であってよいが、ねじれ角βg=0(rad)の第1回転軸Ogに平行な平行歯であってもよい。同様に、歯切り工具12の外周面に設けられた加工歯は、第2回転軸Otに対してねじれ角βt(rad)でねじれたねじれ歯であってもよいが、ねじれ角βt=0(rad)の第2回転軸Otに平行な平行歯であってもよい。スカイビング加工において、傾斜角Σと各ねじれ角との関係は、以下の式で表現される。
Σ=|βg-βt|
【0016】
以下、スカイビング加工の速度パラメータ、具体的には被削材10の回転速度ωg(rad/s)、歯切り工具12の回転速度ωt(rad/s)、歯切り工具12の送り量ft(mm/rev)の関係について説明する。なお歯切り工具12の送り速度Ftは、(ft×ωt/2π)(mm/s)であり、歯切り工具12の送り量ft(mm/rev)は一定値をとってよい。ここで被削材10に創成する内歯歯車の歯数をng、歯切り工具12の加工歯の歯数をntとする。
【0017】
歯切り工具12の回転周期は、
【数1】
歯切り工具12が1回転する間に被削材10が回転する角度は、
【数2】
である。
【0018】
次に、歯切り工具12が1回転する間の被削材10と歯切り工具12の噛み合いを考える。歯切り工具12は、歯数ntだけ回転し、Z軸方向にft(mm)移動するので、被削材10が回転する角度は、
【数3】
と表現できる。ここでrg(mm)は、創成する内歯歯車のピッチ円半径である。
(1)と(2)は等しいため、
【数4】
と、(3)の関係が導出される。
【0019】
制御部30は、第1回転機構20による被削材10の回転、第2回転機構22による歯切り工具12の回転、送り機構24による歯切り工具12の相対移動を制御する。スカイビング加工を実施するために、制御部30は、(3)の関係を維持するように、被削材10の回転速度ωg、歯切り工具12の回転速度ωt、歯切り工具12の送り量ftを設定して、各モータへの供給電力を調整し、第1回転機構20、第2回転機構22、送り機構24の動きを制御する。
【0020】
図2は、スカイビング加工における被削材10と歯切り工具12の位置関係を模式的に示す。以下、被削材10に創成する1つの歯面を工具切れ刃(加工歯)が切削するときの、被削材10の回転角度について説明する。
【0021】
歯切り工具12は回転速度ωtで回転しながら、ft(mm/rev)の送り量で、被削材10の第1回転軸Ogに平行な方向に送られる。このため現在切削されている歯面は、被削材10の一回転前に比べて、(ft×ng)/(nt×tanΣ)(mm)だけ位置として先行する。なお角度としては、(ft×ng)/(rg×nt×tanΣ)(rad)だけ先行する。このことは、被削材10が(2π-(ft×ng)/(rg×nt×tanΣ))(rad)回転すると、被削材10の同じ位置の歯面が再び切削されることを意味する。つまり被削材10の1つの歯面は、被削材10が(2π-(ft×ng)/(rg×nt×tanΣ))(rad)回転する度に切削される。
【0022】
スカイビング加工では、同じ歯面を切削するときに、再生びびり振動が発生する可能性がある。そこで以下において、スカイビング加工における再生びびり振動の発生を抑制する被削材10の回転速度について説明する。
【0023】
従来より、再生びびり振動の発生を抑制するために、主軸回転速度を変動させる技術が利用されている。再生びびり振動の成長を抑制する主軸回転速度の変動パターンとしては、たとえば三角波や正弦波の変動パターンが知られている。本開示者は、現在の切削速度と1回転前の切削速度の比に着目して、三角波の変動パターンによるびびり振動抑制効果をシミュレーションにより検証した。
【0024】
図3は、三角波の変動パターンで主軸回転速度を変動させたときにびびり振動が発生する様子をシミュレーションした結果を示す。このシミュレーションでは、スカイビング加工ではなく、主軸に取り付けた被削材を切削工具の刃先で旋削加工する単純な加工モデルを利用している。以下、旋削加工において被削材の同じ回転位置における現在の切削速度と1回転前の切削速度との比を「速度変動比」と呼ぶ。
【0025】
図3(a)は、旋削加工における主軸回転速度の三角波の変動パターンを示す。この変動パターンの周期は2秒であり、極小値を1400rpm、極大値を2600rpmとする範囲内で一定加速度、一定減速度で速度を変化させる。極小値から極大値までの加速期間と、極大値から極小値までの減速期間とは等しく、それぞれ1秒である。
【0026】
図3(b)は、速度変動比の推移パターンを示す。上記したように、旋削加工における速度変動比は、以下の式で導出される。
速度変動比=(現在の切削速度/1回転前の切削速度)
図3(a)に示す変動パターンにおいて、主軸回転の加速期間中、速度変動比は1を超えた状態で、徐々に減少し、主軸回転の減速期間中、速度変動比は1を下回った状態で、徐々に減少する特性を示す。
【0027】
図3(c)は、びびり振動の加速度の変化を示す。このシミュレーション結果では、時間Taから時間Tbの直前まで、びびり振動の加速度が増加し、びびり振動が成長することが示される。時間Tbで、びびり振動の加速度は下がり始め、このことは時間Tbで、びびり振動の抑制効果が得られ始めたことを示す。本開示者は、
図3(b)に示す速度変動比の推移パターンと照合し、時間Taから時間Tbの間の期間Ia-bでびびり振動加速度が増加した要因が速度変動比の値と相関のあることを突き止めた。
【0028】
図3(b)において、時間Taにおける速度変動比はTha(>1)であり、時間Tbにおける速度変動比はThb(<1)である。時間Taでびびり振動の加速度が増加し始め、時間Tbでびびり振動の加速度が減少し始めたことから、Thb以上であって且つTha以下の速度変動比は、再生びびり振動の成長を抑制できていない。本開示者がThaとThbの関係を調べたところ、ThaとThbは概ね逆数の関係にあることが判明した。
【0029】
主軸回転速度の極大値付近と極小値付近とを比較すると、再生びびり振動は、主軸回転速度の極大値付近で発生しているが、主軸回転速度の極小値付近ではほとんど発生していない。これは、再生びびり振動の成長には、びびり振動の加速度が増加し始めてから、ある程度の時間が必要であるところ、主軸回転速度の極小値付近では、速度変動比がThb以上であって且つTha以下となる期間が短いために、再生びびり振動が発生しないことが考察される。
【0030】
一方で、主軸回転速度の極大値付近では、
図3(c)に示す振動加速度から、速度変動比がThb以上であって且つTha以下となる期間Ia-bが、再生びびり振動を成長させるのに十分な長さであったことが推測される。以上のシミュレーション結果により、
図3(a)に示す三角波の変動パターンで主軸回転速度を制御すると、極大値付近で速度変動比が1近傍となる期間Ia-bが長くなるために、再生びびり振動の発生を抑制できないことが明らかとなった。
【0031】
以下、旋削加工におけるシミュレーション結果をふまえ、スカイビング加工において再生びびり振動の発生を抑制する変動パターンについて説明する。旋削加工では、被削材の同じ回転位置を繰り返し切削するときに再生びびり振動が発生するが、スカイビング加工では、同じ歯筋を繰り返し切削するときに再生びびり振動が発生する。そこで実施形態のスカイビング加工においては、同じ歯面における今回の切削速度と、前回の切削速度の比を「速度変動比」と定義する。なお
図2に関して説明したように、創成される歯面は、被削材10が(2π-(ft×ng)/(rg×nt×tanΣ))(rad)回転するごとに歯切り工具12により切削される。そのため、スカイビング加工における「速度変動比」は、あるタイミングの被削材10の回転速度と、そのときの角度位置から(2π-(ft×ng)/(rg×nt×tanΣ))(rad)だけ前の角度位置にあったときの被削材10の回転速度の比となる。
【0032】
以下、スカイビング加工において速度変動比を改良した被削材回転速度の変動パターンを示す。なお
図4は、比較目的で、三角波の変動パターンによるシミュレーション結果を示し、
図5は、改良した変動パターンによるシミュレーション結果を示す。両者の変動パターンは、周期を1秒に揃えている。
【0033】
図4(a)は、被削材回転速度の三角波の変動パターンを示す。この変動パターンは、極小値から極大値までの加速期間と、極大値から極小値までの減速期間とを等しくしている。
【0034】
図4(b)は、速度変動比の推移パターンを示し、
図4(c)は、びびり振動の加速度の変化を示す。上記したようにスカイビング加工において「速度変動比」は、創成中の同じ歯面を歯切り工具12が切削するときの今回の切削速度と1回前(前回)の切削速度の比として定義される。被削材回転速度の極大値付近において、速度変動比がTh_h(>1)を下回ったタイミングで、びびり振動の加速度が増加し始め、速度変動比がTh_l(<1)を下回ったタイミングで、びびり振動が収束し始める。
図4(c)には、速度変動比がTh_h(>1)となるタイミングから、速度変動比がTh_l(<1)となるタイミングの間の期間Ih-lで、びびり振動が成長している様子が示される。
【0035】
図5(a)は、実施形態の被削材回転速度の変動パターンを示す。実施形態の被削材回転速度の変動パターンは、極小値から極大値までの加速期間の長さと、極大値から極小値までの減速期間の長さとが等しい波形パターンをもつ。この変動パターンは、加速期間および減速期間をそれぞれ0.5秒とし、加速期間と減速期間とを交互に繰り返す。
【0036】
図5(b)は、実施形態の変動パターンにおける速度変動比の推移パターンを示す。制御部30は、速度変動比が1より大きい第1値(V1)となるように被削材10の回転を加速させる加速制御と、速度変動比が1より小さい第2値(V2)となるように被削材10の回転を減速させる減速制御とを交互に実行する機能をもつ。
【0037】
制御部30は、被削材10の回転の加速期間中の少なくとも一部で、速度変動比をV1に維持し、被削材10の回転の減速期間中の少なくとも一部で、速度変動比をV2に維持する。実施形態の制御部30は、被削材10の回転の加速期間中、速度変動比をV2からV1に変化させた後、V1に維持し、被削材10の回転の減速期間中、速度変動比をV1からV2に変化させた後、V2に維持する。加速期間中、速度変動比をV2からV1に変化させる時間と、V1に維持する時間の比は、1/7以下であることが好ましい。同様に、減速期間中、速度変動比をV1からV2に変化させる時間と、V2に維持する時間の比は、1/7以下であることが好ましい。制御部30は、加速期間と減速期間の長さを等しくし且つ連続的なプロファイルとするために、V1とV2の乗算値が1となるようにV1、V2を設定してよい。たとえばV1を1.03と設定すると、V2を1/1.03と設定して、V2をV1の逆数としてよい。
【0038】
図5(b)において、びびり振動は、Th_l以上であって且つTh_h以下の速度変動比において生じうる。閾値であるTh_l、Th_hは、シミュレーションにより算出されてよく、また実験により導出されてもよい。なお
図3(a)~(c)に示すシミュレーション結果を参照すると、びびり振動の抑制効果が得られ始める時間Tbを導出することで、そのときの速度変動比Thb(Th_l)を一意に導出できる、また上記したように、Tha(Th_h)と、Thb(Th_l)とが概ね逆数の関係にあることから、Thb(Th_l)が求まれば、Tha(Th_h)も求まる。このように閾値であるTh_l、Th_hは、シミュレーション結果から導出できる。制御部30は、加速制御における第1値(V1)を閾値Th_hより高く設定し、減速制御における第2値(V2)を閾値Th_lよりも低く設定する。
【0039】
図5(a)に示す変動パターンにおいても、速度変動比がTh_l以上であって且つTh_h以下となる期間は、被削材10の回転速度の極大値および極小値の付近で発生する。しかしながら制御部30が、被削材10の回転の加速度を連続的に増加させて速度変動比を第1値(V1)とする加速制御と、被削材10の回転の減速度を連続的に減少させて速度変動比を第2値(V2)とする減速制御とを交互に切り替えて実行することで、速度変動比がTh_l以上であって且つTh_h以下となる期間は、非常に短くできる。三角波の変動パターンにおける期間Ih-l(
図4(b)参照)と比較すると、その違いは明らかである。
【0040】
なお制御部30は、加速制御と減速制御とを交互に切り替えて実行して、速度変動比がTh_l以上であって且つTh_h以下となる期間を、びびり振動が成長できない程度に短くできればよい。たとえば電源電圧の変動等によって、加速期間中に速度変動比が瞬間的にV1未満となったり、減速期間中に速度変動比が瞬間的にV2を超えたとしても、加速期間中に速度変動比V1を維持するように加速制御し、減速期間中に速度変動比V2を維持するように減速制御する歯車加工装置1は、本開示の技術的範囲に含まれる。
【0041】
図5(c)は、びびり振動の加速度の変化を示す。実施形態の変動パターンのシミュレーション結果によると、びびり振動の発生を効果的に抑制できることが示される。なお制御部30が
図5(a)に示す回転速度ωgで被削材10を回転させることを説明したが、スカイビング加工を実現するために、歯切り工具12の回転速度ωt、歯切り工具12の送り量ftは、回転速度ωgとともに(3)の関係を満たすように設定される必要がある。
【0042】
以上のように歯車加工装置1では、制御部30が、被削材10の回転の加速制御および減速制御を交互に切り替えて実行することで、再生びびり振動の発生を抑制する。これにより工具損耗の抑制や、仕上げ面が常に残る場合に仕上げ精度の優れた加工を実現できる。本開示者は、様々なシミュレーションを行うことで、比較的周期の長い変動パターン、たとえば1秒以上の周期をもつ変動パターンにおいて、特に再生びびり振動の発生の抑制効果が高いことを見いだした。
【0043】
以上、本開示を実施形態をもとに説明した。この実施形態は例示であり、それらの各構成要素や各処理プロセスの組合せにいろいろな変形例が可能なこと、またそうした変形例も本開示の範囲にあることは当業者に理解されるところである。実施形態では、加速期間と減速期間の長さを等しく設定したが、加速期間と減速期間の長さは異なっていてもよい。
【0044】
実施形態では、制御部30が、第1値(V1)の速度変動比で被削材10の回転を加速させる加速制御と、第2値(V2)の速度変動比で被削材10の回転を減速させる減速制御とを交互に実行した。変形例では、制御部30が、速度変動比が第1値(V1)以上となるように被削材10の回転を加速させる加速制御と、速度変動比が第2値(V2)以下となるように被削材10の回転を減速させる減速制御とを交互に実行してもよい。被削材10の回転速度の加速制御中は、歯面を切削する現在の速度が1回前の速度のV1倍以上となるため、再生びびり振動の発生を抑制でき、また減速制御中も、歯面を切削する現在の速度が1回前の速度のV2倍以下となるため、再生びびり振動の発生を抑制できる。速度変動比がTh_l以上であって且つTh_h以下となる期間を短くできるのであれば、速度変動比をV1以上とする加速制御と、速度変動比をV2以下とする減速制御との間に、他の制御が存在してもよい。
【0045】
図6(a)は、変形例の被削材10の回転速度の変動パターンを示す。変形例の被削材10の回転速度の変動パターンは、極小値から極大値までの加速期間の長さと、極大値から極小値までの減速期間の長さとが等しい波形パターンをもつ。この変動パターンは、加速期間および減速期間をそれぞれ1秒とし、加速期間と減速期間とを交互に繰り返す。実施形態と同様に、変形例においても制御部30は、被削材10の回転の加速期間の後半の平均加速度を、前半の平均加速度よりも大きくする加速制御を実行し、被削材10の回転の減速期間の前半の平均減速度を、後半の平均減速度よりも大きくする減速制御を実行する。ここで前半、後半は、期間をちょうど半分に区切ったときの前の期間、後ろの期間を意味する。
【0046】
図6(a)に示すように、制御部30は、加速期間中、時間Tcで、被削材10の回転の加速度を増加している。また制御部30は、減速期間中、時間Tdで、被削材10の回転の減速度を減少させている。したがって加速期間中、後半の平均加速度は前半の平均加速度よりも大きくなり、減速期間中、前半の平均減速度は後半の平均減速度よりも大きくなる。
【0047】
本開示者は、
図3(a)に示す三角波の変動パターンで被削材10の回転速度を制御すると、極大値付近で速度変動比が1近傍となる期間Ia-bが長くなるために、再生びびり振動の発生を抑制できないことを知見として得た。この知見から、被削材10の回転の加速期間の後半の平均加速度を、前半の平均加速度よりも大きくし、被削材10の回転の減速期間の前半の平均減速度を、後半の平均減速度よりも大きくすることで、極大値付近で速度変動比が1近傍となる期間を短くできることを見いだした。
【0048】
図6(b)は、変形例の被削材10の回転速度の変動パターンにおける速度変動比の推移パターンを示す。制御部30が、
図6(a)に示すように加速制御と減速制御とを交互に実行することで、被削材10の回転速度の極大値付近で速度変動比が1近傍となる期間を非常に短くできている。このように変形例では、制御部30が、被削材10の回転の加速期間中、被削材10の回転の加速度を1回以上、段階的に増加させ続ける加速制御と、被削材10の回転の減速期間中、被削材10の回転の減速度を1回以上、段階的に減少させ続ける減速制御とを交互に実行することで、びびり振動の発生を効果的に抑制する。ここで加速度を段階的に増加させることは、加速度一定の期間の後、より高い加速度に変更すること、つまりは加速度を間欠的に増加させることを意味する。また減速度を段階的に減少させることは、減速度一定の期間の後、より低い減速度に変更すること、つまりは減速度を間欠的に減少させることを意味する。
【0049】
本開示の態様の概要は、次の通りである。
本開示のある態様の歯車加工装置は、被削材を第1回転軸まわりに回転させる第1回転機構と、歯切り工具を第2回転軸まわりに回転させる第2回転機構と、被削材に対して歯切り工具を、第1回転軸に平行な方向に相対的に移動させる送り機構と、第1回転機構による被削材の回転、第2回転機構による歯切り工具の回転、送り機構による歯切り工具の相対移動を制御する制御部とを備えて、スカイビング加工により被削材に歯車を創成する。制御部は、創成中の同じ歯面を歯切り工具が切削するときの今回の切削速度と1回前の切削速度との比である速度変動比が1より大きい第1値以上となるように被削材の回転を加速させる加速制御と、速度変動比が1より小さい第2値以下となるように被削材の回転を減速させる減速制御とを交互に実行する。
【0050】
この態様によると、制御部が速度変動比にもとづいて被削材の回転を制御することで、スカイビング加工における再生びびり振動の発生を効果的に抑制できる。制御部は、被削材の回転の加速期間の後半の平均加速度を、前半の平均加速度よりも大きくする加速制御を実行し、被削材の回転の減速期間の前半の平均減速度を、後半の平均減速度よりも大きくする減速制御を実行してよい。
【0051】
制御部は、被削材の回転の加速期間中の少なくとも一部で、速度変動比を第1値に維持し、被削材の回転の減速期間中の少なくとも一部で、速度変動比を第2値に維持してよい。制御部は、被削材の回転の加速期間中、速度変動比を第2値から第1値に変化させた後、第1値に維持し、被削材の回転の減速期間中、速度変動比を第1値から第2値に変化させた後、第2値に維持してよい。
【0052】
制御部は、被削材の回転の加速度を連続的に増加させる加速制御と、被削材の回転の減速度を連続的に減少させる減速制御とを交互に実行してよい。また制御部は、被削材の回転の加速期間中、被削材の回転の加速度を1回以上、段階的に増加させる加速制御と、被削材の回転の減速期間中、被削材の回転の減速度を1回以上、段階的に減少させる減速制御とを交互に実行してよい。
【0053】
本開示の別の態様の歯車加工方法は、被削材の第1回転軸まわりの回転を制御するステップと、歯切り工具の第2回転軸まわりの回転を制御するステップと、被削材に対する歯切り工具の、第1回転軸に平行な方向の相対的な移動を制御するステップと、を有して、スカイビング加工により被削材に歯車を創成する。被削材の回転制御ステップは、創成中の同じ歯面を歯切り工具が切削するときの今回の切削速度と1回前の切削速度との比である速度変動比が1より大きい第1値以上となるように被削材の回転を加速させる加速制御と、速度変動比が1より小さい第2値以下となるように被削材の回転を減速させる減速制御とを交互に実行する。
【0054】
以上、本開示を実施形態をもとに説明した。この実施形態は例示であり、それらの各構成要素や各処理プロセスの組合せにいろいろな変形例が可能なこと、またそうした変形例も本開示の範囲にあることは当業者に理解されるところである。
【符号の説明】
【0055】
1・・・歯車加工装置、10・・・被削材、12・・・歯切り工具、20・・・第1回転機構、22・・・第2回転機構、24・・・送り機構、30・・・制御部、Og・・・第1回転軸、Ot・・・第2回転軸。