(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-02-29
(45)【発行日】2024-03-08
(54)【発明の名称】位置検出装置
(51)【国際特許分類】
G01D 5/244 20060101AFI20240301BHJP
G01D 5/347 20060101ALI20240301BHJP
【FI】
G01D5/244 A
G01D5/347 110B
(21)【出願番号】P 2020569620
(86)(22)【出願日】2020-01-27
(86)【国際出願番号】 JP2020002811
(87)【国際公開番号】W WO2020158677
(87)【国際公開日】2020-08-06
【審査請求日】2021-07-16
【審判番号】
【審判請求日】2022-12-20
(31)【優先権主張番号】P 2019015921
(32)【優先日】2019-01-31
(33)【優先権主張国・地域又は機関】JP
【早期審査対象出願】
(73)【特許権者】
【識別番号】000138071
【氏名又は名称】株式会社メトロール
(74)【代理人】
【識別番号】100205659
【氏名又は名称】齋藤 拓也
(74)【代理人】
【識別番号】100160794
【氏名又は名称】星野 寛明
(72)【発明者】
【氏名】吉岡 崇元
(72)【発明者】
【氏名】菅野 隆行
【合議体】
【審判長】岡田 吉美
【審判官】中塚 直樹
【審判官】田辺 正樹
(56)【参考文献】
【文献】特開2011-169696(JP,A)
【文献】特開2013-83597(JP,A)
【文献】特開昭64-88302(JP,A)
【文献】特開平8-313305(JP,A)
【文献】特開2009-31019(JP,A)
【文献】特開2016-3945(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G01D 5/00-5/38
G01B 7/00-7/34
(57)【特許請求の範囲】
【請求項1】
基準線に対応する位置を検出するための位置検出装置であって、
第1の方向に沿って延びる移動経路上を可動体とともに移動するように構成される磁石であって、前記第1の方向に垂直な第2の方向において異なる磁極を1対有する磁石と、
前記移動経路から前記第2の方向に等しい距離だけ離間するとともに、前記第2の方向に延びる前記基準線から等しい距離に配置された1対の磁気センサであって、同一のセンサ特性を有する1対の磁気センサと、
比較回路を含む検出部であって、
移動する前記磁石からの磁気を直接検出する前記1対の磁気センサの出力を比較する前記比較回路により、前記1対の磁気センサの出力が一致したときに1対の磁極を有する前記磁石が前記基準線上に位置したことを検出するように構成される検出部と
を備え、
前記1対の磁気センサの各々の出力は、1対の磁極を有する前記磁石が前記基準線上に位置したときに最大の変化率を呈する、位置検出装置。
【請求項2】
前記1対の磁気センサのそれぞれは、前記第2の方向に垂直なセンサ感知面を有する、請求項1に記載の位置検出装置。
【請求項3】
基準線に対応する位置を検出するための位置検出装置であって、
第1の方向に沿って延びる移動経路上を可動体とともに移動するように構成される光源と、
前記移動経路から前記第1の方向に垂直な第2の方向に等しい距離だけ離間するとともに、前記第2の方向に延びる前記基準線から等しい距離に配置された1対の光センサであって、同一のセンサ特性を有する1対の光センサと、
比較回路を含む検出部であって、
移動する前記光源からの光を直接検出する前記1対の光センサの出力を比較する前記比較回路により、前記1対の光センサの出力が一致したときに前記光源が前記基準線上に位置したことを検出するように構成される検出部と
を備え、
前記1対の光センサの各々の出力は、前記光源が前記基準線上に位置したときに最大の変化率を呈する、位置検出装置。
【請求項4】
前記1対の光センサのそれぞれは、前記第2の方向に垂直なセンサ感知面を有する、請求項3に記載の位置検出装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、位置検出装置に係り、特に可動体の位置を検出する位置検出装置に関するものである。
【背景技術】
【0002】
例えば、マシニングセンタのような工作機械においては、正確な加工を実現するために工具の初期位置を検出する必要がある。このような工具などの検出対象により移動させられる可動体の位置を検出する位置検出装置として、可動体の移動に応じて電気的接点を機械的にオン/オフするようにしたものが知られている(例えば、特許文献1参照)。
【0003】
しかしながら、このような従来の位置検出装置では、機械的にオン/オフすることを繰り返すことにより接点が劣化するため、寿命が短いという問題がある。また、異物の混入や酸化皮膜の形成により接点間の導通不良が生じたり、繰り返し接触することによる接点の摩耗や凹みなどにより検出精度が低下したりする問題もある。
【先行技術文献】
【特許文献】
【0004】
【発明の概要】
【発明が解決しようとする課題】
【0005】
本発明は、このような従来技術の問題点に鑑みてなされたもので、長寿命で、検出精度が高く、安定して位置検出を行うことができる位置検出装置を提供することを目的とする。
【課題を解決するための手段】
【0006】
本発明の一態様によれば、長寿命で、検出精度が高く、安定して位置検出を行うことができる位置検出装置が提供される。この位置検出装置は、第1の方向に沿って延びる移動経路上を可動体とともに移動するように構成される磁石を備える。この磁石は、上記第1の方向に垂直な第2の方向において異なる磁極を有する。また、上記位置検出装置は、上記移動経路から上記第2の方向に等しい距離だけ離間するとともに、上記第2の方向に延びる基準線から等しい距離に配置された1対の磁気センサを備える。上記1対の磁気センサは、同一のセンサ特性を有する。上記位置検出装置は、上記1対の磁気センサの出力が一致したときに上記磁石が上記基準線上に位置したことを検出するように構成される検出部を備える。
【0007】
本発明の他の態様によれば、長寿命で、検出精度が高く、安定して位置検出を行うことができる位置検出装置が提供される。この位置検出装置は、第1の方向に沿って延びる移動経路上を可動体とともに移動するように構成される光源を備える。また、上記位置検出装置は、上記移動経路から上記第1の方向に垂直な第2の方向に等しい距離だけ離間するとともに、上記第2の方向に延びる基準線から等しい距離に配置された1対の光センサを備える。上記1対の光センサは、同一のセンサ特性を有する、上記位置検出装置は、上記1対の光センサの出力が一致したときに上記光源が上記基準線上に位置したことを検出するように構成される検出部と備える。
【図面の簡単な説明】
【0008】
【
図1】
図1は、本発明の第1の実施形態における位置検出装置の構成を示す模式図である。
【
図2】
図2は、
図1における磁石の位置と磁気センサの出力との関係を示すグラフである。
【
図3】
図3は、
図1における磁気センサの出力の温度による変化を示すグラフである。
【
図4】
図4は、本発明の第2の実施形態における位置検出装置の構成を示す模式図である。
【発明を実施するための形態】
【0009】
以下、本発明に係る位置検出装置の実施形態について
図1から
図4を参照して詳細に説明する。なお、
図1から
図4において、同一又は相当する構成要素には、同一の符号を付して重複した説明を省略する。また、
図1から
図4においては、各構成要素の縮尺や寸法が誇張されて示されている場合や一部の構成要素が省略されている場合がある。
【0010】
図1は、本発明の第1の実施形態における位置検出装置1の構成を示す模式図である。
図1に示すように、本実施形態における位置検出装置1は、固定部10と、固定部10上に固定された1対の磁気センサ21,22と、信号線12を介して磁気センサ21,22に接続された検出部30と、例えばマシニングセンタの工具などの検出対象により移動させられる可動体2に取り付けられた磁石40とを含んでいる。可動体2は、矢印で示すようにX方向(第1の方向)に沿って移動可能となっており、この可動体2に取り付けられた磁石40は、X方向に沿って延びる移動経路M上を移動するように構成されている。位置検出装置1は、このようにX方向に移動可能な可動体2(ひいてはマシニングセンタの工具などの検出対象)が所定の位置にあるか否かを検出するものである。
【0011】
磁石40は、Z方向(第2の方向)において異なる磁極を有している。例えば、
図1に示すように磁石40の+Z方向側の磁極41がN極、-Z方向側の磁極42がS極であってもよいし、あるいはこの逆であってもよい。磁石40の形状としては、直方体状、立方体状、円筒状のものなどが考えられる。
【0012】
磁気センサ21,22は、周囲の磁場を検出するものであり、同一のセンサ特性(電気特性・磁気特性・温度特性)を有している。これらの磁気センサ21,22は、X方向に延びる固定部10上に並べられており、磁石40が移動する移動経路MからZ方向に等しい距離だけ離間した位置に配置されている。磁気センサ21,22は、それぞれZ方向に垂直なセンサ感知面21A,22Aを有している。また、磁気センサ21,22は、Z方向に延びる基準線Sから等しい距離に配置されている。換言すれば、2つの磁気センサ21,22を結ぶ線分の中点上に基準線Sが位置している。このような磁気センサ21,22としては、ホール素子、磁気変調型センサ、磁気抵抗素子、SQUID磁気センサなどを用いることができる。
【0013】
検出部30には、磁気センサ21,22からの出力が入力されており、検出部30は、これらの磁気センサ21,22からの出力を比較する比較回路を含んでいる。
図2は、磁石40の位置と磁気センサ21,22の出力との関係を示すグラフである。
図2において、磁気センサ21の出力は実線で、磁気センサ22の出力は点線で示されている。
図2の横軸は基準線Sから磁石40の中心までの距離を表しており、縦軸は磁気センサ21,22の出力を表している。なお、この例では、磁気センサ21のX方向の中心と磁気センサ22のX方向の中心との間の距離を約3mmとし、磁石40のX方向の幅を約4mmとしている。
【0014】
図2に示すように、磁石40のX方向の位置に応じて磁気センサ21,22のセンサ出力は凸状となる。ここで、磁気センサ21と磁気センサ22とは同一のセンサ特性を有しているため、磁石40が磁気センサ21と磁気センサ22とを結ぶ線分の中点に位置しているとき、すなわち移動距離=0mmのとき(磁石40が基準線S上に位置しているとき)、両者のセンサ出力が一致する。換言すれば、
図2に示すように、磁気センサ21の出力特性と磁気センサ22の出力特性とが交差する点Pは基準線S上に位置することとなる。したがって、磁気センサ21の出力と磁気センサ22の出力とが一致しているときには、磁石40が基準線S上に位置していると判断することができる。検出部30は、この原理を用いるものであり、磁気センサ21からの出力と磁気センサ22からの出力とを比較し、両者が一致したときに磁石40が基準線S上に位置していると判断する。
【0015】
このような構成により、機械的な接点を用いることなく、磁石40が基準線S上に位置したことを検出することができる。すなわち、本実施形態の位置検出装置1によれば、機械的な接点を用いることなく、可動体2の位置を検出することが可能となる。このように機械的な接点を用いないため、接点の劣化による寿命の短縮化や接点間の導通不良、接点の摩耗や凹みによる検出精度の低下といった問題が生じない。
【0016】
ここで、磁石40が基準線S上に位置しているときに磁気センサ21,22の出力の変化率が最大となるように磁気センサ21,22を配置すれば、磁石40が基準線Sの近傍にあるときに磁気センサ21,22の出力が変化しやすくなるため、磁気センサ21,22の出力が一致する点がより正確に特定される。したがって、磁石40の位置の検出精度が高くなる。
【0017】
また、磁気センサ21,22の出力特性は温度によって変化するが、磁気センサ21,22のセンサ特性が同一であるため、磁気センサ21,22の出力特性が温度によって変化しても、磁気センサ21の出力特性の変化と磁気センサ22の出力特性の変化とが互いに相殺される。このため、
図3に示すように、温度が低下した際の磁気センサ21の出力特性と温度が低下した際の磁気センサ22の出力特性とが交差する点P
Lは基準線S上に位置し、温度が上昇した際の磁気センサ21の出力特性と温度が上昇した際の磁気センサ22の出力特性とが交差する点P
Hも基準線S上に位置する。したがって、上述したように、磁気センサ21の出力と磁気センサ22の出力とが一致しているか否かを判断することで、温度が変化した場合においても、磁石40が基準線S上に位置していることを安定して検出することができる。なお、
図3においては、
図2に示す磁気センサ21,22の出力特性は細い点線で示されている。
【0018】
同様に、磁気センサ21,22の電気的特性や磁気特性が変化した場合においても、磁気センサ21の出力特性の変化と磁気センサ22の出力特性の変化とが互いに相殺されるため、磁石40の位置を安定して検出することができる。また、Z方向や紙面に垂直なY方向における外部磁場も磁気センサ21と磁気センサ22の両方に同様に作用し、磁気センサ21の出力特性の変化と磁気センサ22の出力特性の変化とが互いに相殺されるため、これらの外部磁場の影響を抑えて磁石40の位置を検出することができる。また、磁石40のZ方向やY方向の変位に対する磁気センサ21,22の出力特性の変化が相殺されるため、磁石40のZ方向やY方向の変位の影響を抑えて磁石40の位置を検出することができる。
【0019】
なお、磁気センサ21,22の出力をAD変換してデジタルフィルタによってノイズを低減してもよい。あるいは、磁気センサ21,22のアナログ出力をローパスフィルターにかけてノイズを除去してもよい。
【0020】
図4は、本発明の第2の実施形態における位置検出装置101の構成を示す模式図である。
図4に示すように、本実施形態における位置検出装置101は、第1の実施形態における磁気センサ21,22及び磁石40に代えて、光センサ121,122及び光源140を備えている。可動体2に取り付けられた光源140は、X方向(第1の方向)に沿って延びる移動経路M上を移動するように構成されている。位置検出装置101は、このようにX方向に移動可能な可動体2(ひいてはマシニングセンタの工具などの検出対象)が所定の位置にあるか否かを検出するものである。光源140としては蛍光灯、白熱灯、LEDなど様々な種類の光源を用いることができる。
【0021】
光センサ121,122は、周囲の光を検出するものであり、同一のセンサ特性(電気特性・光学特性・温度特性)を有している。これらの光センサ121,122は、X方向に延びる固定部10上に並べられており、光源140が移動する移動経路MからZ方向に等しい距離だけ離間した位置に配置されている。光センサ121,122は、それぞれZ方向に垂直なセンサ感知面121A,122Aを有している。また、光センサ121,122は、Z方向に延びる基準線Sから等しい距離に配置されている。換言すれば、2つの光センサ121,122を結ぶ線分の中点上に基準線Sが位置している。このような光センサ121,122としては、CdSセル、赤外線センサ、紫外線センサ、フォトダイオードなどを用いることができる。
【0022】
検出部30には、光センサ121,122からの出力が入力されており、検出部30は、これらの光センサ121,122からの出力を比較する比較回路を含んでいる。第1の実施形態と同様に、光センサ121と光センサ122とは同一のセンサ特性を有しているため、光源140が光センサ121と光センサ122とを結ぶ線分の中点に位置しているとき、すなわち移動距離=0mmのとき(光源140が基準線S上に位置しているとき)、両者のセンサ出力が一致する。したがって、光センサ121の出力と光センサ122の出力とが一致しているときには、光源140が基準線S上に位置していると判断することができる。検出部30は、この原理を用いるものであり、光センサ121からの出力と光センサ122からの出力とを比較し、両者が一致したときに光源140が基準線S上に位置していると判断する。
【0023】
このような構成により、機械的な接点を用いることなく、光源140が基準線S上に位置したことを検出することができる。すなわち、本実施形態の位置検出装置101によれば、機械的な接点を用いることなく、可動体2の位置を検出することが可能となる。このように機械的な接点を用いないため、接点の劣化による寿命の短縮化や接点間の導通不良、接点の摩耗や凹みによる検出精度の低下といった問題が生じない。
【0024】
ここで、光源140が基準線S上に位置しているときに光センサ121,122の出力の変化率が最大となるように光センサ121,122を配置すれば、光源140が基準線Sの近傍にあるときに光センサ121,122の出力が変化しやすくなるため、光センサ121,122の出力が一致する点がより正確に特定される。したがって、光源140の位置の検出精度が高くなる。
【0025】
また、光センサ121,122の出力特性は温度によって変化するが、光センサ121,122のセンサ特性が同一であるため、光センサ121,122の出力特性が温度によって変化しても、光センサ121の出力特性の変化と光センサ122の出力特性の変化とが互いに相殺される。したがって、第1の実施形態と同様に、光センサ121の出力と光センサ122の出力とが一致しているか否かを判断することで、温度が変化した場合においても、光源140が基準線S上に位置していることを安定して検出することができる。
【0026】
同様に、光センサ121,122の電気的特性や光学特性が変化した場合においても、光センサ121の出力特性の変化と光センサ122の出力特性の変化とが互いに相殺されるため、光源140の位置を安定して検出することができる。また、光源140のZ方向やY方向の変位に対する光センサ121,122の出力特性の変化が相殺されるため、光源140のZ方向やY方向の変位の影響を抑えて光源140の位置を検出することができる。
【0027】
なお、光センサ121,122の出力をAD変換してデジタルフィルタによってノイズを低減してもよい。あるいは、光センサ121,122のアナログ出力をローパスフィルターにかけてノイズを除去してもよい。
【0028】
これまで本発明の好ましい実施形態について説明したが、本発明は上述の実施形態に限定されず、その技術的思想の範囲内において種々異なる形態にて実施されてよいことは言うまでもない。
【0029】
以上述べたように、本発明の一態様によれば、長寿命で、検出精度が高く、安定して位置検出を行うことができる位置検出装置が提供される。この位置検出装置は、第1の方向に沿って延びる移動経路上を可動体とともに移動するように構成される磁石を備える。この磁石は、上記第1の方向に垂直な第2の方向において異なる磁極を有する。また、上記位置検出装置は、上記移動経路から上記第2の方向に等しい距離だけ離間するとともに、上記第2の方向に延びる基準線から等しい距離に配置された1対の磁気センサを備える。上記1対の磁気センサは、同一のセンサ特性を有する。上記位置検出装置は、上記1対の磁気センサの出力が一致したときに上記磁石が上記基準線上に位置したことを検出するように構成される検出部を備える。上記1対の磁気センサのそれぞれは、上記第2の方向に垂直なセンサ感知面を有することが好ましい。
【0030】
また、本発明の他の態様によれば、長寿命で、検出精度が高く、安定して位置検出を行うことができる位置検出装置が提供される。この位置検出装置は、第1の方向に沿って延びる移動経路上を可動体とともに移動するように構成される光源を備える。また、上記位置検出装置は、上記移動経路から上記第1の方向に垂直な第2の方向に等しい距離だけ離間するとともに、上記第2の方向に延びる基準線から等しい距離に配置された1対の光センサを備える。上記1対の光センサは、同一のセンサ特性を有する、上記位置検出装置は、上記1対の光センサの出力が一致したときに上記光源が上記基準線上に位置したことを検出するように構成される検出部と備える。上記1対の光センサのそれぞれは、上記第2の方向に垂直なセンサ感知面を有することが好ましい。
【0031】
これにより、機械的な接点を用いることなく、磁石が基準線上に位置したことを検出することができる。すなわち、本発明に係る位置検出装置によれば、機械的な接点を用いることなく、可動体の位置を検出することが可能となる。このように本発明に係る位置検出装置によれば、機械的な接点を用いないため、接点の劣化による寿命の短縮化や接点間の導通不良、接点の摩耗や凹みによる検出精度の低下といった問題が生じない。また、温度変化などによる磁気センサの出力特性の変化が1対の磁気センサ間で互いに相殺されるため、磁石の位置を安定して検出することができる。
【0032】
上記1対の磁気センサの出力は、上記磁石が上記基準線上に位置したときに最大の変化率を呈することが好ましい。このようにすることで、磁石が基準線の近傍にあるときに磁気センサの出力が変化しやすくなるため、磁気センサの出力が一致する点がより正確に特定され、磁石の位置の検出精度が高くなる。
【0033】
また、上記1対の光センサの出力は、上記光源が上記基準線上に位置したときに最大の変化率を呈することが好ましい。このようにすることで、光源が基準線の近傍にあるときに光センサの出力が変化しやすくなるため、光センサの出力が一致する点がより正確に特定され、光源の位置の検出精度が高くなる。
【0034】
本発明によれば、長寿命で、検出精度が高く、安定して位置検出を行うことができる位置検出装置が提供される。
【0035】
本出願は、2019年1月31日に提出された日本国特許出願特願2019-015921号に基づくものであり、当該出願の優先権を主張するものである。当該出願の開示は参照によりその全体が本明細書に組み込まれる。
【産業上の利用可能】
【0036】
本発明は、可動体の位置を検出する位置検出装置に好適に用いられる。
【符号の説明】
【0037】
1 位置検出装置
2 可動体
10 固定部
21,22 磁気センサ
30 検出部
40 磁石
41,42 磁極
101 位置検出装置
121,122 光センサ
140 光源
M 移動経路
S 基準線