IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ザ ユーエービー リサーチ ファンデーションの特許一覧

特許7446277網膜灌流及び視神経乳頭変形の共局在化検出
<>
  • 特許-網膜灌流及び視神経乳頭変形の共局在化検出 図1
  • 特許-網膜灌流及び視神経乳頭変形の共局在化検出 図2
  • 特許-網膜灌流及び視神経乳頭変形の共局在化検出 図3
  • 特許-網膜灌流及び視神経乳頭変形の共局在化検出 図4
  • 特許-網膜灌流及び視神経乳頭変形の共局在化検出 図5
  • 特許-網膜灌流及び視神経乳頭変形の共局在化検出 図6
  • 特許-網膜灌流及び視神経乳頭変形の共局在化検出 図7
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-02-29
(45)【発行日】2024-03-08
(54)【発明の名称】網膜灌流及び視神経乳頭変形の共局在化検出
(51)【国際特許分類】
   A61B 3/10 20060101AFI20240301BHJP
   A61B 3/12 20060101ALI20240301BHJP
   A61B 3/16 20060101ALI20240301BHJP
【FI】
A61B3/10 100
A61B3/12 300
A61B3/16
【請求項の数】 29
(21)【出願番号】P 2021500018
(86)(22)【出願日】2019-03-13
(65)【公表番号】
(43)【公表日】2021-07-29
(86)【国際出願番号】 US2019021984
(87)【国際公開番号】W WO2019178185
(87)【国際公開日】2019-09-19
【審査請求日】2022-01-07
(31)【優先権主張番号】62/642,067
(32)【優先日】2018-03-13
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】506387487
【氏名又は名称】ザ ユーエービー リサーチ ファンデーション
(74)【代理人】
【識別番号】100078282
【弁理士】
【氏名又は名称】山本 秀策
(74)【代理人】
【識別番号】100113413
【弁理士】
【氏名又は名称】森下 夏樹
(74)【代理人】
【識別番号】100181674
【弁理士】
【氏名又は名称】飯田 貴敏
(74)【代理人】
【識別番号】100181641
【弁理士】
【氏名又は名称】石川 大輔
(74)【代理人】
【識別番号】230113332
【弁護士】
【氏名又は名称】山本 健策
(72)【発明者】
【氏名】ファジオ, マッシモ アントニオ
(72)【発明者】
【氏名】ギルキン, クリストファー アンソニー
【審査官】牧尾 尚能
(56)【参考文献】
【文献】特開2017-077413(JP,A)
【文献】米国特許出願公開第2015/0157205(US,A1)
【文献】特表2013-508035(JP,A)
【文献】特開2017-042443(JP,A)
【文献】米国特許出願公開第2015/0230708(US,A1)
【文献】特開2017-042602(JP,A)
【文献】米国特許出願公開第2016/0162630(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
A61B 3/00- 3/18
(57)【特許請求の範囲】
【請求項1】
方法であって、
眼の網膜の画像化データを取り込むことであって、前記画像化データには第1の局所分布データ及び第2の局所分布データが含まれ、前記第2の局所分布データは前記第1の局所分布データの後の異なる時点に取り込まれ、前記画像化データは前記眼の画像化ボリュームに対応付けられる、前記取り込むことと、
前記画像化データを用いて脈管構造を特定することであって、脈管構造を特定することには、前記第1の局所分布データを前記第2の局所分布データと比較して、前記画像化データにおいて経時的に変化するボクセルを特定することが含まれる、前記特定することと、
前記特定された脈管構造を用いて前記網膜の脈管構造の接続性モデルを作成することであって、前記脈管構造の接続性モデルが、前記脈管構造の血管ツリーの3次元図形表現に対応する、ことと、
前記眼の前記画像化ボリュームの少なくとも一部についての変形データを計算することであって、前記変形データを計算することには、前記画像化データと前記眼の前記画像化ボリュームに対応付けられるさらなる画像化データとのうちの少なくとも一方を用いることが含まれる、前記計算することと、
前記変形データを用いて変形マップを作成することであって、前記変形マップが、変形強度情報の3次元マップに対応するデータ構造であり、前記変形マップが、異なる眼圧間の1つ以上ボクセルにおいて生じる歪みの量を説明する、前記変形データを用いて変形マップを作成することと、
前記接続性モデル及び前記変形マップを共局在化させ、眼圧が変化する間に種々の量の歪みを受ける前記接続性モデルの領域を特定する共局在化された接続性モデル及び変形マップを作成することと
を含む前記方法。
【請求項2】
前記眼の前記網膜のさらなる画像化データを取り込むことがさらに含まれ、前記さらなる画像化データを取り込むときの前記眼の眼圧は、前記画像化データを取り込むときのものとは異なり、変形データを計算することには、前記画像化データ及び前記さらなる画像化データを用いることが含まれる請求項1に記載の方法。
【請求項3】
前記画像化データを取り込むことと前記さらなる画像化データを取り込むこととは、単一セッションにおいて行われる請求項2に記載の方法。
【請求項4】
前記変形データを計算することには、前記第1の局所分布データと前記第2の局所分布データとを比較することが含まれる請求項1に記載の方法。
【請求項5】
前記特定された脈管構造及び前記画像化データを用いて網膜脈管構造の局所分布マップ
を作成することがさらに含まれ、前記接続性モデルを作成することには、網膜脈管構造の前記局所分布マップを用いることが含まれる請求項1に記載の方法。
【請求項6】
前記接続性モデルを作成することには、前記変形データを用いることが含まれる請求項1に記載の方法。
【請求項7】
前記変形データを計算することには、前記接続性モデルを用いることが含まれる請求項1に記載の方法。
【請求項8】
前記変形データを用いて前記接続性モデルを更新することがさらに含まれる請求項1に記載の方法。
【請求項9】
前記接続性モデルを用いて前記変形データを更新することがさらに含まれる請求項1に記載の方法。
【請求項10】
さらに、前記共局在化された接続性モデル及び変形マップを用いて歪み及び接続性モデルを作成することが含まれる請求項1に記載の方法。
【請求項11】
1つ以上のデータプロセッサが、前記共局在化された接続性モデル及び変形マップ又は歪み及び接続性モデルを用いて網膜血液灌流を予測する請求項に記載の方法。
【請求項12】
1つ以上のデータプロセッサが前記共局在化された接続性モデル及び変形マップ又は歪み及び接続性モデルを用いて診断を決定する請求項に記載の方法。
【請求項13】
履歴データが前記診断を決定するために前記共局在化された接続性モデル及び変形マップ又は歪み及び接続性モデルに適用されるものである請求項12に記載の方法。
【請求項14】
前記画像化データを取り込むことには、光コヒーレンストモグラフィシステムを用いて画像化データを取り込むことが含まれる請求項1に記載の方法。
【請求項15】
画像化データを取り込むことには、単一セッションにおいて前記第1の局所分布データ及び前記第2の局所分布データを取り込むことが含まれる請求項1に記載の方法。
【請求項16】
システムであって、
眼の網膜の画像化データを取り込むための光コヒーレンストモグラフィ機器と、
1つ以上のデータ処理装置と、
命令を含む非一時的コンピュータ可読記憶媒体であって、前記命令は、前記1つ以上のデータ処理装置上で実行されると、前記1つ以上のデータ処理装置に、
前記光コヒーレンストモグラフィ機器から前記画像化データを受け取ることであって、前記画像化データには第1の局所分布データ及び第2の局所分布データが含まれ、前記第2の局所分布データは前記第1の局所分布データの後の異なる時点に取り込まれ、前記画像化データは前記眼の画像化ボリュームに対応付けられる、前記受け取ることと、
前記画像化データを用いて脈管構造を特定することであって脈管構造を特定することには、前記第1の局所分布データを前記第2の局所分布データと比較して、前記画像化データにおいて経時的に変化するボクセルを特定することが含まれる、前記特定することと、
前記特定された脈管構造を用いて前記網膜の脈管構造の接続性モデルを作成することであって、前記脈管構造の接続性モデルが、前記脈管構造の血管ツリーの3次元図形表現
に対応する、ことと、
前記眼の前記画像化ボリュームの少なくとも一部についての変形データを計算することであって、前記変形データを計算することには、前記画像化データと前記眼の前記画像化ボリュームに対応付けられるさらなる画像化データとのうちの少なくとも一方を用いることが含まれる、前記計算することと、
前記変形データを用いて変形マップを作成することであって、前記変形マップが、変形強度情報の3次元マップに対応するデータ構造であり、前記変形マップが、異なる眼圧間の1つ以上ボクセルにおいて生じる歪みの量を説明する、前記変形データを用いて変形マップを作成することと、
前記接続性モデル及び前記変形マップを共局在化させ、眼圧が変化する間に種々の量の歪みを受ける前記接続性モデルの領域を特定する共局在化された接続性モデル及び変形マップを作成することと
を含む動作を行わせる、前記非一時的コンピュータ可読記憶媒体と、を含む前記システム。
【請求項17】
前記動作にはさらに、前記光コヒーレンストモグラフィ機器からさらなる画像化データを受け取ることが含まれ、前記さらなる画像化データに対応付けられる前記眼の眼圧は、前記画像化データに対応付けられる前記眼の眼圧とは異なり、変形データを計算することには、前記画像化データ及び前記さらなる画像化データを用いることが含まれる請求項16に記載のシステム。
【請求項18】
前記画像化データは単一セッションの間に取り込まれ、前記さらなる画像化データは前記単一セッションの間に取り込まれる請求項17に記載のシステム。
【請求項19】
変形データを計算することには、前記第1の局所分布データと前記第2の局所分布データとを比較することが含まれる請求項16に記載のシステム。
【請求項20】
前記動作にはさらに、前記特定された脈管構造及び前記画像化データを用いて網膜脈管構造の局所分布マップを作成することが含まれ、前記接続性モデルを作成することには、網膜脈管構造の前記局所分布マップを用いることが含まれる請求項16に記載のシステム。
【請求項21】
前記接続性モデルを作成することには、前記変形データを用いることが含まれる請求項16に記載のシステム。
【請求項22】
前記変形データを計算することには、前記接続性モデルを用いることが含まれる請求項16に記載のシステム。
【請求項23】
前記動作にはさらに、前記変形データを用いて前記接続性モデルを更新することが含まれる請求項16に記載のシステム。
【請求項24】
前記動作にはさらに、前記接続性モデルを用いて前記変形データを更新することが含まれる請求項16に記載のシステム。
【請求項25】
前記動作にはさらに、
前記共局在化された接続性モデル及び変形マップを用いて歪み及び接続性モデルを作成することが含まれる請求項16に記載のシステム。
【請求項26】
前記動作にはさらに、前記共局在化された接続性モデル及び変形マップ又は前記歪み及び接続性モデルを用いて網膜血液灌流を予測することが含まれる請求項25に記載のシステム。
【請求項27】
前記動作にはさらに、診断を決定することが含まれ、診断を決定することには、前記共局在化された接続性モデル及び変形マップ又は前記歪み及び接続性モデルを用いることが含まれる請求項25に記載のシステム。
【請求項28】
前記診断を決定することにはさらに、前記共局在化された接続性モデル及び変形マップに履歴データを適用することが含まれる請求項27に記載のシステム。
【請求項29】
前記画像化データは単一セッションの間に取り込まれた請求項16に記載のシステム。
【発明の詳細な説明】
【技術分野】
【0001】
関連出願の相互参照
本出願は、米国仮出願第62/642,067号(2018年3月13日に出願)、発明の名称「COLOCALIZED DETECTION OF RETINAL PERFUSION AND OPTIC NERVE HEAD DEFORMATIONS」の利益を主張する。なおこの文献の開示は、その全体において参照により本明細書に組み込まれている。
【0002】
本開示は全般的に、眼科用ツール及び技術に関し、より具体的には、網膜を測定及び分析するツール及び技術に関する。
【背景技術】
【0003】
眼科の分野では、緑内障などの眼症状を診断するために種々の技術を用いることができる。緑内障及び他の眼症状は多くの人を悩ましている。種々の症状の早期発見は、症状の負の効果を最小限にし、早期治療の機会を得るために重要であり得る。場合によっては、眼圧が、緑内障などの種々の眼症状に対する重要な指標及び/または治療的介入となり得る。
【発明の概要】
【課題を解決するための手段】
【0004】
用語「実施形態」及び同様の用語は、本開示及び後述する請求項の主題のすべてを大まかに指すことが意図されている。これらの用語が含まれる記述は、本明細書で説明する主題を限定することも、以下の請求項の意味または範囲を限定することもないと理解すべきである。本明細書で扱う本開示の実施形態は、以下の請求項によって規定され、この概要によってではない。この概要は、本開示の種々の態様の大まかな概略であり、後述の「発明を実施するための形態」セクションでさらに説明するコンセプトの一部を導入するものである。ここでの概要は、特許請求された主題の主要または本質的な特徴を特定することは意図されておらず、また特許請求された主題の範囲を決定するために別個に用いられることも意図されていない。主題は、本開示の明細書全体、一部または全部の図面、及び各請求項の適切な部分を参照することにより理解されなければならない。
【0005】
本開示の実施形態には、方法であって、眼の網膜の画像化データを取り込むことであって、画像化データには第1の局所分布データ及び第2の局所分布データが含まれ、第2の局所分布データは第1の局所分布データの後に取り込まれ、画像化データは眼の画像化ボリュームに対応付けられる、取り込むことと、画像化データを用いて脈管構造を特定することであって、脈管構造を特定することには、第1の局所分布データを第2の局所分布データと比較することが含まれる、特定することと、特定された脈管構造を用いて網膜の脈管構造の接続性モデルを作成することと、眼の画像化ボリュームの少なくとも一部についての変形データを計算することであって、変形データを計算することには、画像化データと眼の画像化ボリュームに対応付けられるさらなる画像化データとのうちの少なくとも一方を用いることが含まれる、計算することと、を含む方法が含まれる。
【0006】
ある場合には、本方法にはさらに、眼の網膜のさらなる画像化データを取り込むことが含まれ、さらなる画像化データを取り込むときの眼の眼圧は、画像化データを取り込むときのものとは異なり、変形データを計算することには、画像化データ及びさらなる画像化データを用いることが含まれる。ある場合には、画像化データを取り込むこととさらなる画像化データを取り込むこととは、単一セッションにおいて行われる。ある場合には、変形データを計算することには、第1の局所分布データと第2の局所分布データとを比較することが含まれる。ある場合には、本方法にはさらに、特定された脈管構造及び画像化データを用いて網膜脈管構造の局所分布マップを作成することが含まれ、接続性モデルを作成することには、網膜脈管構造の局所分布マップを用いることが含まれる。ある場合には、接続性モデルを作成することには、変形データを用いることが含まれる。ある場合には、変形データを計算することには、接続性モデルを用いることが含まれる。ある場合には、変形データを用いて接続性モデルを更新する。ある場合には、接続性モデルを用いて変形データを更新する。ある場合には、本方法にはさらに、変形データを用いて変形マップを作成することと、接続性モデル及び変形マップを共局在化することと、が含まれる。ある場合には、本方法にはさらに、共局在化された接続性モデル及び変形マップを用いて、歪み及び接続性モデルを作成することが含まれる。ある場合には、本方法にはさらに、共局在化された接続性モデル及び変形マップを用いて網膜血液灌流を予測することが含まれる。ある場合には、本方法にはさらに、診断を決定することが含まれ、診断を決定することには、共局在化された接続性モデル及び変形マップを用いることが含まれる。ある場合には、診断を決定することにはさらに、共局在化された接続性モデル及び変形マップに履歴データを適用することが含まれる。ある場合には、画像化データを取り込むには、光コヒーレンストモグラフィシステムを用いて画像化データを取り込むことが含まれる。ある場合には、画像化データを取り込むことには、単一セッションにおいて第1の局所分布データ及び第2の局所分布データを取り込むことが含まれる。
【0007】
本開示の実施形態には、システムであって、眼の網膜の画像化データを取り込むための光コヒーレンストモグラフィ機器と、1つ以上のデータ処理装置と、命令を含む非一時的コンピュータ可読記憶媒体であって、命令は、1つ以上のデータ処理装置上で実行されると、1つ以上のデータ処理装置に、光コヒーレンストモグラフィ機器から画像化データを受け取ることであって、画像化データには第1の局所分布データ及び第2の局所分布データが含まれ、第2の局所分布データは第1の局所分布データの後に取り込まれ、画像化データは眼の画像化ボリュームに対応付けられる、受け取ることと、画像化データを用いて脈管構造を特定することであって脈管構造を特定することには、第1の局所分布データを第2の局所分布データと比較することが含まれる、特定することと、特定された脈管構造を用いて網膜の脈管構造の接続性モデルを作成することと、眼の画像化ボリュームの少なくとも一部についての変形データを計算することであって、変形データを計算することには、画像化データと眼の画像化ボリュームに対応付けられるさらなる画像化データとのうちの少なくとも一方を用いることが含まれる、計算することと、を含む動作を行わせる、非一時的コンピュータ可読記憶媒体と、を含むシステムが含まれる。
【0008】
ある場合には、動作にはさらに、光コヒーレンストモグラフィ機器からさらなる画像化データを受け取ることが含まれ、さらなる画像化データに対応付けられる眼の眼圧は、画像化データに対応付けられる眼の眼圧とは異なり、変形データを計算することには、画像化データ及びさらなる画像化データを用いることが含まれる。ある場合には、画像化データは単一セッションの間に取り込まれ、さらなる画像化データは単一セッションの間に取り込まれる。ある場合には、変形データを計算することには、第1の局所分布データと第2の局所分布データとを比較することが含まれる。ある場合には、動作にはさらに、特定された脈管構造及び画像化データを用いて網膜脈管構造の局所分布マップを作成することが含まれ、接続性モデルを作成することには、網膜脈管構造の局所分布マップを用いることが含まれる。ある場合には、接続性モデルを作成することには、変形データを用いることが含まれる。ある場合には、変形データを計算することには、接続性モデルを用いることが含まれる。ある場合には、動作にはさらに、変形データを用いて接続性モデルを更新することが含まれる。ある場合には、動作にはさらに、接続性モデルを用いて変形データを更新することが含まれる。ある場合には、動作にはさらに、変形データを用いて変形マップを作成することと、接続性モデル及び変形マップを共局在化することと、が含まれる。ある場合には、動作にはさらに、共局在化された接続性モデル及び変形マップを用いて歪み及び接続性モデルを作成することが含まれる。ある場合には、動作にはさらに、共局在化された接続性モデル及び変形マップを用いて網膜血液灌流を予測することが含まれる。ある場合には、動作にはさらに、診断を決定することが含まれ、診断を決定することには、共局在化された接続性モデル及び変形マップを用いることが含まれる。ある場合には、診断を決定することにはさらに、共局在化された接続性モデル及び変形マップに履歴データを適用することが含まれる。ある場合には、画像化データは単一セッションの間に取り込まれる。
【0009】
本明細書は以下の添付図を参照する。添付図では、異なる図において同様の参照符号を用いた場合、同様または類似のコンポーネントを例示することが意図される。
【図面の簡単な説明】
【0010】
図1】本開示の特定の態様による網膜測定及び分析システムを示す概略図である。
図2】本開示の特定の態様による測定及びモデリングした眼の概略図である。
図3】本開示の特定の態様により眼の網膜の局所分布マップ及び局所分布マップから作成された接続性モデルを示す概略図の組である。
図4】本開示の特定の態様により眼の網膜の局所分布マップ及び局所分布マップから作成された変形マップを示す概略図の組である。
図5】本開示の特定の態様により眼に対する接続性モデル及び変形マップを作成するためのプロセスを示すフローチャートである。
図6】本開示の特定の態様による接続性モデル及び変形マップを用いるためのプロセスを示すフローチャートである。
図7】本開示の特定の態様による取得または作成されたデータを表す2次元画像の組である。
【発明を実施するための形態】
【0011】
本開示の特定の態様及び特徴は、網膜における眼圧変化及び血液灌流変化に起因する眼に対する形態変化間の関係を量子化するためのツール及び技術に関する。診断データを、共局在化された網膜灌流データ及び視神経乳頭(ONH)機械的変形データを処理することによって作成することができる。網膜灌流データをONH機械的変形データと共局在化することによって、眼圧(IOP)の変化に起因する血液網膜灌流の変化をモニタし、定量化し、及び予測することができる。光コヒーレンストモグラフィ血管造影法(OCT-A)を用いて、画像化ボリュームに対する網膜灌流データ及び機械的変形データの両方を作成することができる。脈管構造の3次元モデル(たとえば、接続性マップまたは接続性モデル)を、OCT-A画像化データから作成することができ、IOP誘起の機械的変形に起因する網膜の種々の領域における血液灌流の変化を予測するために用いることができる。IOP誘起の機械的変形に起因する網膜血液灌流の予測される応答をバイオマーカーとして用いて、網膜変性疾患の進行をモニタ及び予測することができる。
【0012】
IOPの増加は緑内障及び他の眼症状を示す可能性がある。IOPを下げることは、緑内障に対する唯一証明された治療的介入である。IOPはまた、網膜の血液灌流に関係している。網膜における血液灌流の量は主に、全身圧と眼圧との間の差に依存する。全身圧が変化せずに眼圧が増加することは、血液灌流の低下ならびに眼組織形態の変更に相関する。
【0013】
光コヒーレンストモグラフィでは、コヒーレント光を用いて3次元画像化データを干渉分光法によって取り込む(たとえば、試料及び参照ミラーから反射された分割されたコヒーレント光の間の干渉の分析)。光コヒーレンストモグラフィを用いて、画像化ボリュームの3次元画像化データを作成することができる。全般的に、光コヒーレンストモグラフィを用いて、網膜のBスキャンまたは網膜の断面スライス画像を取り込むことができる。複数のずらしたBスキャンを結合することによって、網膜の3次元局所分布マップを作成することができる。OCTを用いて作成される局所分布マップは、画像化された組織の形状及び構造についての情報を表示することに限定される。
【0014】
光コヒーレンストモグラフィ血管造影法(OCT-A)はOCTの機能を拡張させたOCTの形態である。OCT-Aは、画像化ボリュームの個々のボリューム(たとえば、ボクセル)の複数の任意的に順次的な測定値を取得して、従来のOCTで行っているように局所分布マップを形成するだけでなく、そのボクセルを脈管構造または非脈管構造として特徴付けられるかどうかの特定を試みることを伴う。異なる時間に取得した単一ボクセルの測定値(たとえば、強度)を比較することによって、決定することができる。ボクセルの測定値が経時変化する(たとえば、変化が閾値と同じかまたはそれ以上である)場合、変化は血液移動に起因している可能性があるため、ボクセルは脈管構造を表していると推論することができる。ボクセルの測定値の経時変化がほとんどないかまたはまったくない(たとえば、変化が閾値よりも小さい)場合、ボクセルは非脈管構造(たとえば、コラーゲン)を表していると推論することができる。なぜならば、このような構造の測定値は経時変化する可能性がないからである。OCT-Aデータは2値ボクセルの集合を表すことができる。各ボクセルの値は0または1であり、時間変化しないボクセル(たとえば、脈管構造でない)または時間変化するボクセル(たとえば、脈管構造)を、それぞれ表している。容積の各ボクセルが脈管構造であるか否かを示すこのデータは、血管造影マップと言うことができる。
【0015】
本明細書でより詳細に説明するように、本開示の特定の態様では、脈管構造に対応付けられるデータのみを分析するように、血管造影マップ(複数可)を利用して他の供給源からのデータをマスクする。たとえば、本明細書で開示するように、変形情報を収集することができ、分析(たとえば、機械的歪み分析)を行って、眼についての情報を求めることができる。ある場合には、血管造影マップを用いて変形情報をマスクして、脈管構造と特定された組織に対する所望の計算(たとえば、機械的歪み)のみを行うことができる。
【0016】
本開示の特定の態様では、OCT-Aの機能についてさらに詳しく述べる。OCT-Aによって作成された3次元局所分布マップは、本来的に騒々しく、どの領域が脈管構造でどの領域がそうでないかを特定する局所分布図を与えるだけである。本開示の特定の態様は、OCT-Aによって作成された3次元局所分布マップから接続性モデルを計算することを伴う。接続性モデルを計算することには、脈管構造を通る流体流をモデリングすることができる脈管構造の3次元モデルを作成することを含めることができる。
【0017】
ある場合には、接続性モデルを計算することには、3次元局所分布マップの骨格化を、たとえばOCT-Aデータを用いて行うことを含めることができる。ある場合には、骨格化の前に3次元局所分布マップのノイズ除去を行うことができる。骨格化には、3次元局所分布マップの領域(脈管構造を示す隣接したボクセルのグループを含む)を分析して、測定領域の脈管構造の3次元形状に対応付けられる「骨格」を作成することを含めることができる。任意の好適な技術を用いることができる。ある場合には、薄化技術を用いて、隣接したボクセルのグループの最も外側のボクセルを、同時に端点を保持しながら連続して腐食させて、接続されたセグメント(たとえば、線または曲線)を近似することができ、その結果、脈管構造と関連づけることができる。ある場合には、距離変換技術を用いて、脈管構造に関連づけられた骨格を作成することができる。ある場合には、ボロノイ骨格技術を用いて、脈管構造に関連づけられた骨格を作成することができる。
【0018】
ある場合には、接続性モデルを作成することには、3次元局所分布マップの骨格化を、脈管構造の血管ツリーを表す3次元グラフに変換することを含めることができる。骨格化を通して作成された骨格には、脈管構造の分岐を示す種々の節(たとえば、節点)を含めることができる。3次元グラフを、節点を用いて、任意的にこれらの点の間の接続部を設けて、作成することができる。ある場合には、3次元グラフに変換すると、脈管構造の血管ツリーの形態パラメータを特性評価する計算アルゴリズムを効率的に利用することができる。たとえば、グラフの節(脈管構造内の分岐点と相互に関連する)を特定したら、2つの節点の間の距離を計算することは容易になり得る。これには任意的に、中間の節点を通ることを含めることができる(たとえば、点Aと点Cの間の距離には、点AとBならびにBとCの間の距離を含めてもよい)。また3次元グラフを用いて、ある節点から別の節点への最短経路を容易に計算することができる。これは、血流予測を行うには有用であり得る。さらに、3次元グラフを用いて、節点にわたる接続部(たとえば、分岐)の数を容易に決定することができ、これを用いて、血流に対する可能な代替経路を推定することができる。これらの計算または決定のいずれも、本明細書で説明するように変形情報と組み合わせたときに、特に有用となる可能性がある。3次元グラフとして説明しているが、情報は任意の好適な方法(可視化が含まれていてもよいし、含まれていなくてもよい)で記憶及び処理することができる。
【0019】
ある場合には、骨格化以外の技術を用いて接続性モデルを作成することができる。
【0020】
ある場合には、OCT-Aシステムからのデータを収集及び使用して、IOPが時間とともに変化するときの網膜に対する変形強度情報(たとえば、変形データ)を推定することができる。変形データ(普通はOCT-Aシステムによって使用されない)を、2つの異なる眼圧間のボクセル及び/またはボクセルの集合において生じる変形の量を測定することによって取得することができる。たとえば、ある場合には、変形データを、脈管構造として特定された(たとえば、血管造影マップまたは接続性モデルに基づいて)規定領域におけるボクセルの集合の変形を測定することによって取得する。変形データを、3次元マップまたは変形マップ(たとえば、歪みマップ)の形態で記憶することができる。変形データを、IOPの特定の変化(たとえば、10mmHgの変化)に対する値として記憶することができる。変形データは機械的歪みに関するものとすることができる。
【0021】
ある場合には、接続性モデルを計算することには、変形マップを用いることを含めることができる。たとえば、変形マップを用いて、ボクセルが脈管構造または非脈管構造として正しく特定されているか否かを検証することができる。さらに、変形マップを用いて、特定された脈管構造間の流体接続を予測及び/または検証することに役立つことができる。
【0022】
ある場合には、OCT装置からの同じ未処理データを記憶及び/または使用して、接続性モデル(たとえば、3次元脈管構造モデル)及び変形マップ(たとえば、変形強度情報の3次元マップ)の両方を作成することができる。
【0023】
接続性モデル及び変形マップを作成したら、それらを共局在化して、IOPが変化する間に種々の量の歪みを受ける接続性モデルの領域を特定することができる。したがって、IOPの特定の変化に対しては、共局在化された接続性モデル及び変形マップを用いて、IOPの変化に対して網膜内の血液灌流がどのように変化するかを推定することができる。たとえば、IOPの増加(たとえば、10mmHg)があると、接続性モデルにわたって種々の血管の種々の量の変形が生じることになり得る(これは、共局在化された変形マップによって特定可能である)。そしてこれを接続性モデルで用いて、接続性モデルの現在変形している脈管構造を通る血流または血流の変化を予測することができ、その結果、網膜血液灌流及び/または網膜血液灌流の変化を予測することができる。全般的に、視神経乳頭またはその付近にある網膜の領域に対して測定値を取得することができ、モデルを作成することができ、予測を行うことができるが、その必要はない。
【0024】
従来のOCT-Aによって作成される局所分布マップとは異なり、接続性モデル及び変形マップを用いて、IOPの変化がどのように網膜内の血液灌流に影響するかを予測することができる。
【0025】
ある場合には、接続性モデルを作成することができて、変形情報を取得することができる(たとえば、変形マップを作成することができる)限り、必要に応じて、ドップラ干渉分光法または超音波技術などのOCT以外の測定技術を用いることができる。
【0026】
これらの例示的な実施例は、本明細書で説明する概略的な主題を読み手に知らせるために示しており、開示したコンセプトの範囲を限定することは意図していない。以下のセクションでは、図面を参照して種々のさらなる特徴及び実施例について説明する。図面では、同様の数字は同様の構成要素を示し、方向の記述は例示的な実施形態を説明するために用いているが、例示的な実施形態の場合と同様に、本開示を限定するために用いてはならない。本明細書において説明図に含まれる要素は、一定の比率で描かれてはいない場合がある。
【0027】
図1は、本開示の特定の態様による網膜測定及び分析システム100を示す概略図である。測定及び分析システム100には処理システム104を含めることができる。処理システム104は、光コヒーレンストモグラフィシステム102(たとえば、光コヒーレンストモグラフィ機器、及び任意的に、光コヒーレンストモグラフィ機器を動作させるためのさらなるハードウェア)に結合することができる。ある場合には、処理システム104及び光コヒーレンストモグラフィシステム102は、単一ハウジング内に配置することもできるし、または別個のハウジング内に配置することもできる(互いに近くにまたは遠隔に(たとえば、別の都市、国、または大陸に)配置することを含む)。
【0028】
光コヒーレンストモグラフィシステム102はコヒーレント光108を用いて、眼106から、またはより具体的には眼106の網膜から測定値を取り込むことができる。光コヒーレンストモグラフィシステム102は処理システム104に未処理または処理データを送ることができる。処理データには、未処理データとして、フィルタリングされたか、ノイズ除去されたか、増幅されたか、または他の方法で処理された未処理データを含めることができる。これには、局所分布マップの作成を含めることもできる。
【0029】
本明細書で開示したように、処理システム104は、光コヒーレンストモグラフィシステム102から取り込んだ測定値を用いて、眼106の画像化部分に対する接続性モデル及び変形マップを作成する。ある場合には、処理システム104は、IOPの特定の変化に基づいて、網膜血液灌流(たとえば、ONH血液灌流)の予測を生成することができる。
【0030】
図2は、本開示の特定の態様による測定及びモデリングした眼206の概略図である。眼206には網膜210を含めることができ、網膜210には網膜脈管構造212を含めることができる。脈管構造212には多くの血管を含めることができる。網膜210には、視神経216が眼206に結合する視神経乳頭214を含めることができる。光コヒーレンストモグラフィまたは他の画像化技術の間に、画像化ボリューム218が画像化及び処理される。本明細書で説明するように、画像化ボリューム218内の脈管構造212を取り込み、測定し、及びモデリングすることができる。ある場合には、画像化ボリューム218には視神経乳頭214を含めることができるが、その必要はない。画像化ボリューム218は、測定機器(たとえば、OCTシステム)にとって利用可能な任意の好適な形状またはサイズを呈することができる。
【0031】
図3は、本開示の特定の態様により眼306の網膜の局所分布マップ320及び局所分布マップ320から作成された接続性モデル326を示す概略図の組である。局所分布マップ320は、光コヒーレンストモグラフィ技術を用いて、たとえば、図1の光コヒーレンストモグラフィシステム102を用いて作成することができる。眼306は図2の眼206と同様とすることができる。
【0032】
局所分布マップ320を特定の画像化ボリューム318に対して作成することが、画像化ボリューム318の各ボクセル320、322の測定値を取得することによって可能である。図3に示したように、ボクセル320、322は、説明を目的としてサイズを誇張して示している。局所分布マップ320は、単純に局所分布的な性質とすることもできるし、または脈管構造情報を含むこともできる。本明細書で説明するように、各ボクセル320、322の複数の測定値を時間とともに取得することによって、各ボクセル320、322を脈管構造であるかまたはそうでないとして特徴付けることができる。図3に示したように、ボクセル320の測定値は時間に対して一定であると概略的に示しており(対角線が一定であることによって示している)、したがって脈管構造ではないと特徴付けることができる。しかし、ボクセル322の測定値は時間とともに変化すると概略的に示しており(対角線が変化することによって示している)、したがって脈管構造であると特徴付けることができる。
【0033】
本明細書でより詳細に説明するように、局所分布マップ320及び脈管構造情報の分析を用いて、眼306の画像化ボリューム318内の脈管構造の接続性モデル326を作成することができる。ある場合には、異なる眼圧で取得した複数の局所分布マップ320を比較及び使用して、接続性モデル326を作成及び/または改善することができる。
【0034】
局所分布マップ320を参照して説明したが、画像化ボリューム318の中間の図形表現(たとえば、視覚的な局所分布マップ)を作成することなく、接続性モデル326を手続き的に作成することができる。
【0035】
図4は、本開示の特定の態様により眼406の網膜の局所分布マップ420と局所分布マップ420から作成された変形マップ428とを示す概略図の組である。局所分布マップ420は、光コヒーレンストモグラフィ技術を用いて、たとえば、図1の光コヒーレンストモグラフィシステム102を用いて作成することができる。眼406は図2の眼206と同様とすることができる。
【0036】
局所分布マップ420を特定の画像化ボリューム418に対して作成することが、画像化ボリューム418の各ボクセル420、422の測定値を取得することによって可能である。図4に示したように、ボクセル420、422は、説明を目的として、サイズを誇張して示している。局所分布マップ420は単純に局所分布的な性質とすることもできるし、または脈管構造情報を含むこともできる。本明細書で説明するように、各ボクセル420、422の複数の測定値を時間とともに取得することによって、各ボクセル420、422を脈管構造であるかまたはそうでないとして特徴付けることができる。図4に示したように、ボクセル420の測定値は時間に対して一定であると概略的に示しており(対角線が一定であることによって示している)、したがって脈管構造ではないと特徴付けることができる。しかし、ボクセル422の測定値は時間とともに変化すると概略的に示しており(対角線が変化することによって示している)、したがって脈管構造であると特徴付けることができる。
【0037】
本明細書でより詳細に説明するように、局所分布マップ420及び脈管構造情報の分析は、少なくとも2つの異なる眼圧間で変化し、眼406の画像化ボリューム418内の脈管構造の変形マップ428を作成するために用いることができる。組織が変形していることを表すボクセルまたは領域(たとえば、隣接したボクセルの集合)を検出することによって、眼圧の変化に起因するこれらのボクセルまたは領域の変化を用いて変形測定値を取得することができる。特定の画像化ボリューム418に対して収集した変形測定値を、図式的にせよ数値的にせよ、変形マップ428として表すことができる。図4に変形マップ428を概略的に示し、歪みが大きい領域を太線で示し、歪みが小さい領域を細い線で示す。局所分布マップ420を参照して説明したが、画像化ボリューム418の中間の図形表現(たとえば、視覚的な局所分布マップ)を作成することなく、変形マップ428を手続き的に作成することができる。
【0038】
図5は、本開示の特定の態様により眼に対する接続性モデル及び変形マップを作成するためのプロセス500を示すフローチャートである。ブロック502において、眼の画像化データを取り込むことができる。画像化データの取り込みは、任意の好適な技術を用いて、たとえばOCTシステム(たとえば、図1のOCTシステム102)を用いて行うことができる。
【0039】
画像化データを取り込むこと(ブロック502)には、第1の局所分布データを取り込むこと(ブロック504)と、第2の局所分布データを取り込むこと(ブロック506)とを含めることができる。第1の局所分布データには、眼の画像化ボリュームに対する局所分布測定値(複数可)を含めることができる。第2の局所分布データには、眼の同じ画像化ボリュームに対する局所分布測定値(複数可)であるが、異なる時間に取得したものを含めることができる。ある場合には、第2の局所分布データは第1の局所分布データとは異なる眼圧で取得する。ある場合には、第1及び第2の局所分布データをそれぞれ取り込んだ時の眼圧を、ブロック502で取り込んだ画像化データと一緒に記憶することができる(たとえば、メタデータとして)。ある場合には、画像化データには局所分布データ及び/または任意の他の関連するメタデータを含めることができる。眼の画像化データを取り込むこと(ブロック502)には、局所分布データの多くの繰り返し(たとえば、単に第1及び第2の局所分布データ以上のもの)を多くの異なる時間に取り込むことを含めることができ、すべてに眼の画像化ボリュームを含めることができる。ある場合には、眼の画像化データを取り込むこと(ブロック502)に、画像化ボリュームの少なくとも第1及び第2の局所分布データを取り込むこと(ブロック504及び506)を含めたものを、単一のOCT-Aスキャンと考えることができる。
【0040】
第1の局所分布データを取り込むこと(ブロック504)と第2の局所分布データを取り込むこと(ブロック506)とはそれぞれ、単一ボクセルの情報を取り込むことを指すことができる。この場合、ブロック504及び506を各ボクセルに対して必要に応じて繰り返すことができる。このような場合、データを取り込むために用いられるOCTスキャナのコヒーレント光は、1つ以上のボクセルにおいて第1及び第2の局所分布データを取り込むことを、スキャンされて眼の異なる領域にフォーカスする前に行ってもよい。フォーカスした時点で、第1及び第2の局所分布データの取り込みを、その異なる領域に対して繰り返すことができる。しかし、ある場合には、第1の局所分布データを取り込むこと(ブロック504)と第2の局所分布データを取り込むこと(ブロック506)はそれぞれ、画像化ボリューム全体の局所分布データを取り込むことを指すことができる。このような場合、データを取り込むために用いられるOCTスキャナのコヒーレント光は、眼をスキャンして画像化ボリューム全体を取り込んでデータを第1の局所分布データとして記憶することを、後にプロセスを繰り返して第2の局所分布データを取り込んで記憶する前に行ってもよい。
【0041】
ある場合には、第1の局所分布データを取り込むこと(ブロック504)と第2の局所分布データを取り込むこと(ブロック506)は、単一セッションまたは単一スキャンにおいて行うことができる。単一セッションまたは単一スキャンのそれぞれにおいて、測定は、1ミリ秒、3ミリ秒、5ミリ秒、7ミリ秒、10ミリ秒、数10ミリ秒、100ミリ秒、数100ミリ秒、1秒、3秒、5秒、7秒、10秒、数10秒、数100秒、1分、2分、3分、4分、5分、6分、7分、8分、9分、または10分以下の時間内に行われるが、ある場合には、単一セッションまたはスキャンではもっと長い時間がかかってもよい。たとえば、第1及び第2の局所分布データを互いの10ミリ秒内で取り込むことができる。ある場合には、単一セッションには1つのスキャンまたは複数のスキャンを含めることができる。ある場合には、単一セッションにおいて、測定を、患者の眼が測定装置(たとえば、OCTシステム)によって測定される位置に置かれる時と患者の眼がその位置から取り外される時との間に行うことができる。たとえば、患者の頭部を台またはガイドの上に置いて、患者の眼がOCTシステムによって測定される所定の位置にくるようにしてもよい。この場合、単一セッションは患者の頭部が台またはガイドの上に置かれるときに始まってもよく、患者の頭部が次に台またはガイドから取り外されるときに終わってもよい。このような場合、単一セッションにおいて複数のOCTまたはOCT-Aスキャンを行ってもよい。ある場合には、第1及び第2の局所分布データを複数のセッションにわたって取り込んでもよい。本明細書で用いる場合、履歴データは、現在のセッションよりも前に収集及び/または作成されたデータを指すことができる(たとえば、以前のセッションからのデータ)。
【0042】
ブロック508において、画像化データを用いて脈管構造を特定する。本明細書で説明するように、局所分布データ(たとえば、強度測定値)を2つ以上の時間の間で比較することを用いて、特定のボクセルが脈管構造であるか否かを特定することができる。任意的なブロック510において、網膜脈管構造の局所分布マップを作成することができる。網膜脈管構造の局所分布マップを作成することには、画像化データに基づいて3次元局所分布マップを作成することを含めることができ、またブロック508で脈管構造として特定した領域(たとえば、ボクセルの集合)を表示することを含めることができる。ある場合には、比較的低い眼圧において取り込んだ画像化データ(たとえば、ブロック502において)を用いて脈管構造を特定すること(ブロック508)が好ましい可能性がある。なぜならば、より多くの脈管構造が局所分布データ内に表される可能性があり、より高い圧力に対応付けられる変形によって潜在的に隠されることがないからである。
【0043】
ブロック512において、網膜脈管構造の接続性モデルを作成することができる。接続性モデルを作成することには、画像化データ(たとえば、ブロック508で脈管構造として特定したボクセルまたは他の領域)を用いることを含むことができる。
ある場合には、接続性モデルを作成することには、ブロック510で作成した網膜脈管構造の局所分布マップを用いることを含めることができる。接続性モデルを作成して、3次元の接続された脈管構造を設けることができる。接続性モデルを作成すること(ブロック512)は、本明細書で説明するように、OCT-Aスキャンからのデータを用いて接続性モデルを作成することであり得る。
【0044】
ある場合には、ブロック502、ブロック508、及び任意的にブロック510をさらに繰り返すことによって、ブロック512において既存の接続性モデルを改善することができる。たとえば、特定の眼に対する既存の接続性モデルを、ブロック502をさらに繰り返して眼のさらなる画像化データを取り込むことによって改善してもよい。これには、ブロック502をさらに繰り返して第1または第2の局所分布データを第1の局所分布データとして再利用することが含まれていてもよいし、または、すべての新しい局所分布データを取り込むこと、そのさらなる画像化データを用いて脈管構造を特定すること(ブロック508)、任意的にそのさらなる画像化データに基づいて網膜脈管構造の局所分布マップを作成すること(ブロック510)、及び網膜脈管構造の既存の接続性モデルを更新すること(ブロック512)が含まれていてもよい。。
【0045】
ブロック514において、画像化データを用いて変形データを計算する。変形データには、画像化ボリュームの局所分布が眼圧などの変数に対してどのように変化するかについての情報及び/または表現を含めることができる。変形データを計算すること(ブロック514)には、第1及び第2の局所分布データ(たとえば、第1及び第2の局所分布測定値)及び第1及び第2の局所分布データに関係づけられる変数データ(たとえば、第1の局所分布測定値(複数可)に対する眼圧データ及び第2の局所分布測定値(複数可)に対する眼圧データ、または単に第1及び第2の局所分布測定値間の眼圧データの変化量)を含む画像化データを受け取ることを含めることができる。単一のOCT-Aスキャンの間に画像化データ及び変数データを収集することができる。しかし、ある場合には、変形データを計算すること(ブロック514)には、ブロック502で収集した画像化データ(たとえば、第1及び/または第2の局所分布データ)を、任意的なブロック518で収集したさらなる画像化データ(たとえば、さらなる局所分布データ)と比較することを含めることができる。これには、画像データ及びさらなる画像データに対する変数情報(たとえば、眼圧及びさらなる眼圧)をそれぞれ比較することを含めることができる。ブロック518及び514に対して用いる場合、用語「さらなる」は、たとえば、以前の画像化データまたは以後の画像化データといった、以前または以後を指すことができる。ある場合には、さらなる画像化データを取り込むこと(ブロック518)には、ブロック502で行うOCT-Aスキャンの後に行うOCTまたはOCT-Aスキャンの間にさらなる画像化データを取り込むことを含めることができる。ある場合には、さらなる画像化データを取り込むこと(ブロック518)には、眼の画像化ボリュームのさらなる画像化データを、ブロック502で取り込んだ画像化データよりも高い眼圧で取り込むことを含めることができる。しかし、ある場合には、さらなる画像化データを取り込んだ(ブロック518)ときの眼圧は、画像化データを取り込んだ(ブロック502)ときのものよりも低い。変形データを計算すること(ブロック514)は、ボクセルごとベースで、地域ベースで、または画像化ボリューム全体に対して行うことができる。
【0046】
ある場合には、変形データの計算(ブロック514)は、ブロック518で取り込んださらなる画像化データを用いて、ブロック502で取り込んだ画像化データを用いることなく行うことができる。たとえば、接続性モデルは第1のOCT-Aスキャンを用いて作成することができ、変形データの計算は、第2のOCTまたはOCT-Aスキャン及び任意的にさらなるOCTまたはOCT-Aスキャンを用いて行うことができる。このような場合には、ブロック502で取り込んだ画像化データに対応付けられる画像化ボリュームは、ブロック518で取り込んださらなる画像化データに対応付けられる画像化ボリュームに重複する可能性がある。本明細書で説明するように、重複領域を共局在化に対して用いることができる。
【0047】
ブロック516において、変形データを用いて変形マップを作成することができる。変形マップは、画像化ボリュームの局所分布の計算した歪みのモデル、データセット、及び/または3次元表現とすることができる。ある場合には、変形データの計算及び/または変形マップの作成を、ブロック508で脈管構造として特定した領域のみに限定することができる。変形マップとして説明しているが、ある場合には、変形マップには任意の好適な変形関連情報(たとえば、応力または力、歪み、または温度)を含めることができる。
【0048】
ある場合には、変形マップを用いて網膜脈管構造の接続性モデルを改善することができる。たとえば、変形マップが、脈管構造であるかまたはそうでないという特徴の変形の領域を示し、かつ接続性モデルが、その領域は変形マップが示しているものとは反対であると示す場合、接続性モデルをそれに応じて更新してもよい。ある場合には、ブロック512で接続性モデルを最初に作成することには、作成した変形マップならびに任意の脈管構造情報及び/または局所分布マップデータを用いることを含めることができる。同様に、ある場合には、接続性モデルを用いて変形マップを改善し及び/または最初に作成することができる。たとえば、変形データの計算(ブロック514)及び/または変形マップの作成(ブロック516)を、接続性モデルでの脈管構造である画像化ボリュームの領域のみに限定してもよい。
【0049】
図6は、本開示の特定の態様による接続性モデル及び変形マップを用いるためのプロセス600を示すフローチャートである。ブロック602において、眼に対する網膜脈管構造の接続性モデルにアクセスする。接続性モデルにアクセスすることには、記憶したモデルにアクセスすることまたはモデルを作成すること(たとえば、図5を参照して説明したもの)を含めることができる。ブロック604において、眼に対する変形マップにアクセスする。変形マップにアクセスすることには、たとえば、図5を参照して説明したような、記憶した変形マップにアクセスすることまたは変形マップを作成することを含めることができる。
【0050】
ブロック606において、接続性モデル及び変形マップを共局在化する。共局在化には、接続性モデル及び変形マップを位置合わせすることを含めることができる。共局在化には、変形マップから得た変形データを接続性モデルに適用することを含めることができる。共局在化の結果として、眼圧などの特定の変数の変化を、接続性モデルだけでなく、接続性モデルにおいてモデリングした血管に対する変形データに基づいて正確にモデリングすることができる。
【0051】
任意的なブロック608において、網膜脈管構造の歪み及び接続性モデルを、接続性モデル及び変形マップを用いて(たとえば、接続性モデル及び変形マップの共局在化(ブロック606)を介して)作成することができる。歪み及び接続性モデルは、3次元モデルであって、画像化ボリューム内の血管間の接続性をモデリングするだけでなく、モデリングした血管に対する構造特性(たとえば、歪み、応力/歪み関係、変形、または変形マップの他の特性)もモデリングする3次元モデルとすることができる。
【0052】
任意的なブロック610において、網膜血液灌流を予測することができる。網膜血液灌流を予測することには、ブロック606からの共局在化された接続性モデル及び変形マップを用いること、またはブロック608の作成した歪み及び接続性モデルを用いることを含めることができる。網膜血液灌流を予測することには、画像化ボリュームの特定の領域に対して血液灌流を予測すること、及び/または画像化ボリュームを超える領域に対して血液灌流を予測すること(画像化ボリュームを未画像化領域を予測するための指標またはガイドとして用いて)を含めることができる。網膜血液灌流を予測することには、モデル(複数可)に異なる症状を提供して(たとえば、眼圧の変化、全身圧の変化、心拍数の変化、または他の変化)、異なる症状に対して血管がどのように反応するかを予測すること、及び提供された症状が与えられた場合の網膜血液灌流の定量化を推定することを含めることができる。
【0053】
任意的なブロック612において、診断することができる。診断することには、ブロック606からの共局在化された接続性モデル及び変形マップを用いること、ブロック608の作成した歪み及び接続性モデルを用いること、及び/またはブロック610の予測した網膜血液灌流を用いることを含めることができる。診断することには、モデル(複数可)を用いて網膜脈管構造の将来の動作(たとえば、将来の血液灌流または他の動作)を予測することまたは履歴データを用いて現在の動作を検証することを含めることができる。たとえば、将来の動作を予測することに関して、現在の画像化データを用いて接続性モデル及び変形マップを作成することができる。これらを、図6に対して説明したように用いて、予想される将来の状況の下での網膜血液灌流の減少などの種々の症状を予測することができる。予測した症状(たとえば、網膜血液灌流の減少)に基づいて、診断してもよい。一実施例として、履歴データを用いて現在の動作を検証することに関して、(たとえば、以前の医師の診察からの)履歴データを用いて接続性モデル及び変形マップを作成することができる。現在の診察の間、特定の症状(たとえば、現在の全身圧、現在の眼圧、現在の心拍数、または他の症状)を決定し、モデル(複数可)に適用して、期待結果を実現することができる。期待結果を現在の測定値(たとえば、現在の血液灌流、現在の画像化データ、現在の画像化データを用いて作成したモデル(複数可)、及び/または現在の画像化データを用いて作成した変形マップ)と比較して、現在の結果が予期しないものかまたは診断可能な症状を示すものかを判定することができる。
【0054】
図7は、本開示の特定の態様による取得または作成されたデータを表す2次元画像の組である。図7に示した画像は2次元であるが、画像を作成するために用いるデータには3次元データが含まれていてもよい。3次元データのスライスを見るかまたは3次元データの表面を見ることによって、3次元データから2次元画像を作成することができる。画像702、704、706、708、710は、網膜の同じ領域(具体的には、視神経乳頭付近の領域)の異なる表現を示す。
【0055】
画像702は、眼圧10mmHgで取得した視神経乳頭の周りの網膜の脈管構造の局所分布マップである。画像の白色領域は脈管構造として特定され、黒色領域は非脈管構造として特定されている。画像706は、眼圧20mmHgで取得した視神経乳頭の周りの網膜の脈管構造の局所分布マップである。画像の白色領域は脈管構造として特定され、黒色領域は非脈管構造として特定されている。
【0056】
画像704及び708は、画像702及び706からのデータに基づいて作成した視神経乳頭の周りの網膜の変形マップである。画像704及び708の変形マップは、眼圧10mmHgでの変化に対する変形データを示す。比較的明るい領域(たとえば、視神経乳頭の中心付近からほぼ11時の方向に延びる領域、ならびに画像の左下の方向の領域など)は歪みが大きいことを表し、比較的暗い領域は歪みが小さいことを表す。
【0057】
画像710は、視神経乳頭の周りの網膜の脈管構造の接続性モデルの2次元表現である。画像702、704、及び706のうちの1つ以上に関係づけられたデータを用いて、接続性モデルを作成することができる。図6を参照して説明したように、画像708及び710の同じ領域を比較することによって、接続性モデル及び変形マップの共局在化を視覚化することができる。たとえば、画像708においてやはり歪みが大きいと示された接続性モデルの領域は、眼圧が高い状況ではより変形する場合があり、したがってその領域の周りの灌流は眼圧が増加すると減少する場合がある。接続性モデルによって、これらの血管の変形が他の接続された血管にどのように影響し得るかを容易に決定することができる。
【0058】
個々の実施形態を、フローチャート、フロー図、データフロー図、構造図、またはブロック図として示したプロセスとして説明してもよい。フローチャートでは動作を逐次プロセスとして説明する場合があるが、動作の多くは並列または同時に行うことができる。加えて、動作の順序は並べ替えてもよい。プロセスが終了するのは、その動作が完了したときであるが、図に含まれていないさらなるステップを有することができる。プロセスは、方法、機能、手順、サブルーチン、サブプログラムなどに対応し得る。プロセスが機能に対応するとき、その終了は、呼び出し機能またはメイン機能への機能の戻りに対応することができる。本明細書で説明した種々のプロセス(たとえば、図5及び6に関して説明したもの)を、非一時的な機械可読記憶媒体に、図1の処理システム104などのコンピューティング装置による動作に対する命令として記憶してもよい。さらに、任意のモデルまたは他のデータ(たとえば、図5及び6に関して作成したもの)を、非一時的な機械可読記憶媒体に記憶してもよい。
【0059】
用語「機械可読記憶媒体」または「コンピュータ可読記憶媒体」には、限定することなく、携帯型または非携帯型の記憶デバイス、光学記憶装置、及び他の種々の媒体であって、命令(複数可)及び/またはデータを記憶するか、含むか、または保持することができるものが含まれる。機械可読媒体には、非一時的媒体であって、データを記憶することができ、無線でまたは有線接続を介して伝搬する搬送波及び/または一時的な電子信号を含まない非一時的媒体が含まれていてもよい。非一時的媒体の実施例としては、これらに限定されないが、磁気ディスクまたはテープ、コンパクトディスク(CD)またはデジタル多用途ディスク(DVD)、フラッシュメモリ、メモリまたはメモリデバイスなどの光記録媒体を含んでもよい。コンピュータプログラム製品としては、コード及び/または機械実行可能命令であって、手順、機能、サブプログラム、プログラム、ルーチン、サブルーチン、モジュール、ソフトウェアパッケージ、クラス、または命令、データ構造、もしくはプログラム文の任意の組み合わせを表し得るコード及び/または機械実行可能命令を挙げてもよい。コードセグメントを別のコードセグメントまたはハードウェア回路に結合することを、情報、データ、引数、パラメータ、またはメモリ内容を送り及び/または受け取ることによって行ってもよい。情報、引数、パラメータ、データなどを、メモリ共有、メッセージパッシング、トークンパッシング、ネットワーク伝送などの任意の好適な手段を介して、送り、転送し、または伝送してもよい。
【0060】
前述の説明では、説明の目的上、方法を特定の順番で説明した。当然のことながら、代替的な実施形態では、方法は、説明したものとは異なる順番で行ってもよい。また当然のことながら、前述した方法は、ハードウェアコンポーネントによって行ってもよいし、機械実行可能命令の順序で具体化してもよい。機械実行可能命令は、命令を用いてプログラムされた汎用もしくは専用プロセッサまたは論理回路などの装置に方法を行わせるために使用し得る。これらの機械実行可能命令は、CD-ROMまたは他のタイプの光ディスク、フロッピィディスケット、ROM、RAM、EPROM、EEPROM、磁気または光カード、フラッシュメモリ、または電子命令を記憶することに適した他のタイプの機械可読媒体などの1つ以上の機械読取可能な媒体に記憶してもよい。代替的に、方法はハードウェア及びソフトウェアの組み合わせによって行ってもよい。
【0061】
コンポーネントは特定の動作を行うように構成されていると説明しているが、このような構成は、たとえば、電子回路または他のハードウェアを動作を行うようにデザインすることによってか、プログラム可能な電子回路(たとえば、マイクロプロセッサ、または他の好適な電子回路)を動作行うようにプログラミングすることによってか、またはそれらの任意の組み合わせによって実現することができる。
【0062】
さらに、実施形態を、ハードウェア、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語、またはそれらの任意の組み合わせによって実施してもよい。ソフトウェア、ファームウェア、ミドルウェア、またはマイクロコードで実施するとき、必要なタスクを行うプログラムコードまたはコードセグメント(たとえば、コンピュータプログラム製品)を機械可読媒体に記憶してもよい。必要なタスクをプロセッサ(複数可)が行ってもよい。
【0063】
図のいくつかで示したシステムを種々の構成で提供してもよい。いくつかの実施形態では、システムを分散型システムとして構成してもよい。分散型システムでは、システムの1つ以上のコンポーネントをクラウドコンピューティングシステム内の1つ以上のネットワークにわたって分散させる。
【0064】
例示した実施形態を含む実施形態の前述の説明は、単に説明及び記述を目的として示しており、網羅的であることも、開示した正確な形態に限定することも意図していない。それらの多くの変更、適応、及び使用方法が、当業者には明らかである。
【実施例
【0065】
以下で用いる場合、一連の実施例に対するどんな言及もそれらの各実施例に離接的に言及するものと理解しなければならない(たとえば、「実施例1~4」は「実施例1、2、3、または4」と理解しなければならない)。
【0066】
実施例1は、方法であって、眼の網膜の画像化データを取り込むことであって、画像化データには第1の局所分布データ及び第2の局所分布データが含まれ、第2の局所分布データは第1の局所分布データの後に取り込まれ、画像化データは眼の画像化ボリュームに対応付けられる、取り込むことと、画像化データを用いて脈管構造を特定することであって、脈管構造を特定することには、第1の局所分布データを第2の局所分布データと比較することが含まれる、特定することと、特定された脈管構造を用いて網膜の脈管構造の接続性モデルを作成することと、眼の画像化ボリュームの少なくとも一部についての変形データを計算することであって、変形データを計算することには、画像化データと眼の画像化ボリュームに対応付けられるさらなる画像化データとのうちの少なくとも一方を用いることが含まれる、計算することと、を含む方法である。
【0067】
実施例2は、眼の網膜のさらなる画像化データを取り込むことがさらに含まれ、さらなる画像化データを取り込むときの眼の眼圧は、画像化データを取り込むときのものとは異なり、変形データを計算することには、画像化データ及びさらなる画像化データを用いることが含まれる実施例(複数可)1の方法である。
【0068】
実施例3は、画像化データを取り込むこととさらなる画像化データを取り込むこととは、単一セッションにおいて行われる実施例(複数可)2の方法である。
【0069】
実施例4は、変形データを計算することには、第1の局所分布データと第2の局所分布データとを比較することが含まれる実施例(複数可)1~3の方法である、
【0070】
実施例5は、特定された脈管構造及び画像化データを用いて網膜脈管構造の局所分布マップを作成することがさらに含まれ、接続性モデルを作成することには、網膜脈管構造の局所分布マップを用いることが含まれる実施例(複数可)1~4の方法である。
【0071】
実施例6は、接続性モデルを作成することには、変形データを用いることが含まれる実施例(複数可)1~5の方法である。
【0072】
実施例7は、変形データを計算することには、接続性モデルを用いることが含まれる実施例(複数可)1~5の方法である。
【0073】
実施例8は、変形データを用いて接続性モデルを更新することがさらに含まれる実施例(複数可)1~5の方法である。
【0074】
実施例9は、接続性モデルを用いて変形データを更新することがさらに含まれる実施例(複数可)1~5の方法である。
【0075】
実施例10は、変形データを用いて変形マップを作成することと、接続性モデル及び変形マップを共局在化することと、がさらに含まれる実施例(複数可)1~9の方法である。
【0076】
実施例11は、共局在化された接続性モデル及び変形マップを用いて歪み及び接続性モデルを作成することがさらに含まれる実施例(複数可)10の方法である。
【0077】
実施例12は、共局在化された接続性モデル及び変形マップを用いて網膜血液灌流を予測することがさらに含まれる実施例(複数可)10または11の方法である。
【0078】
実施例13は、診断を決定することがさらに含まれ、診断を決定することには、共局在化された接続性モデル及び変形マップを用いることが含まれる実施例(複数可)10~12の方法である。
【0079】
実施例14は、診断を決定することにはさらに、共局在化された接続性モデル及び変形マップに履歴データを適用することが含まれる実施例(複数可)13の方法である。
【0080】
実施例15は、画像化データを取り込むことには、光コヒーレンストモグラフィシステムを用いて画像化データを取り込むことが含まれる実施例(複数可)1~14の方法である。
【0081】
実施例16は、画像化データを取り込むことには、単一セッションにおいて第1の局所分布データ及び第2の局所分布データを取り込むことが含まれる実施例(複数可)1~15の方法である。
【0082】
実施例17は、システムであって、眼の網膜の画像化データを取り込むための光コヒーレンストモグラフィ機器と、1つ以上のデータ処理装置と、命令を含む非一時的コンピュータ可読記憶媒体であって、命令は、1つ以上のデータ処理装置上で実行されると、1つ以上のデータ処理装置に、光コヒーレンストモグラフィ機器から画像化データを受け取ることであって、画像化データには第1の局所分布データ及び第2の局所分布データが含まれ、第2の局所分布データは第1の局所分布データの後に取り込まれ、画像化データは眼の画像化ボリュームに対応付けられる、受け取ることと、画像化データを用いて脈管構造を特定することであって脈管構造を特定することには、第1の局所分布データを第2の局所分布データと比較することが含まれる、特定することと、特定された脈管構造を用いて網膜の脈管構造の接続性モデルを作成することと、眼の画像化ボリュームの少なくとも一部についての変形データを計算することであって、変形データを計算することには、画像化データと眼の画像化ボリュームに対応付けられるさらなる画像化データとのうちの少なくとも一方を用いることが含まれる、計算することと、を含む動作を行わせる、非一時的コンピュータ可読記憶媒体と、を含むシステムである。
【0083】
実施例18は、動作にはさらに、光コヒーレンストモグラフィ機器からさらなる画像化データを受け取ることが含まれ、さらなる画像化データに対応付けられる眼の眼圧は、画像化データに対応付けられる眼の眼圧とは異なり、変形データを計算することには、画像化データ及びさらなる画像化データを用いることが含まれる実施例(複数可)17のシステムである。
【0084】
実施例19は、画像化データは単一セッションの間に取り込まれ、さらなる画像化データには単一セッションの間に取り込まれる実施例(複数可)18のシステムである。
【0085】
実施例20は、変形データを計算することには、第1の局所分布データと第2の局所分布データとを比較することが含まれる実施例(複数可)17~19のシステムである。
【0086】
実施例21は、動作にはさらに、特定された脈管構造及び画像化データを用いて網膜脈管構造の局所分布マップを作成することが含まれ、接続性モデルを作成することには、網膜脈管構造の局所分布マップを用いることが含まれる実施例(複数可)17~20のシステムである。
【0087】
実施例22は、接続性モデルを作成することには、変形データを用いることが含まれる実施例(複数可)17~21のシステムである。
【0088】
実施例23は、変形データを計算することには、接続性モデルを用いることが含まれる実施例(複数可)17~21のシステムである。
【0089】
実施例24は、動作にはさらに、変形データを用いて接続性モデルを更新することが含まれる実施例(複数可)17~21のシステムである。
【0090】
実施例25は、動作にはさらに、接続性モデルを用いて変形データを更新することが含まれる実施例(複数可)17~21のシステムである。
【0091】
実施例26は、動作にはさらに、変形データを用いて変形マップを作成することと、接続性モデル及び変形マップを共局在化することと、が含まれる実施例(複数可)17~25のシステムである。
【0092】
実施例27は、動作にはさらに、共局在化された接続性モデル及び変形マップを用いて歪み及び接続性モデルを作成することが含まれる実施例(複数可)26のシステムである。
【0093】
実施例28は、動作にはさらに、共局在化された接続性モデル及び変形マップを用いて網膜血液灌流を予測することが含まれる実施例(複数可)26または27のシステムである。
【0094】
実施例29は、動作にはさらに、診断を決定することが含まれ、診断を決定することには、共局在化された接続性モデル及び変形マップを用いることが含まれる実施例(複数可)26~28のシステムである。
【0095】
実施例30は、診断を決定することにはさらに、共局在化された接続性モデル及び変形マップに履歴データを適用することが含まれる実施例(複数可)29のシステムである。
【0096】
実施例31は、画像化データは単一セッションの間に取り込まれる実施例(複数可)17~30のシステムである。
本発明は、例えば以下の項目を提供する。
(項目1)
方法であって、
眼の網膜の画像化データを取り込むことであって、前記画像化データには第1の局所分布データ及び第2の局所分布データが含まれ、前記第2の局所分布データは前記第1の局所分布データの後に取り込まれ、前記画像化データは前記眼の画像化ボリュームに対応付けられる、前記取り込むことと、
前記画像化データを用いて脈管構造を特定することであって、脈管構造を特定することには、前記第1の局所分布データを前記第2の局所分布データと比較することが含まれる、前記特定することと、
前記特定された脈管構造を用いて前記網膜の脈管構造の接続性モデルを作成することと、
前記眼の前記画像化ボリュームの少なくとも一部についての変形データを計算することであって、変形データを計算することには、前記画像化データと前記眼の前記画像化ボリュームに対応付けられるさらなる画像化データとのうちの少なくとも一方を用いることが含まれる、前記計算することと、を含む前記方法。
(項目2)
前記眼の前記網膜のさらなる画像化データを取り込むことがさらに含まれ、前記さらなる画像化データを取り込むときの前記眼の眼圧は、前記画像化データを取り込むときのものとは異なり、変形データを計算することには、前記画像化データ及び前記さらなる画像化データを用いることが含まれる項目1に記載の方法。
(項目3)
前記画像化データを取り込むことと前記さらなる画像化データを取り込むこととは、単一セッションにおいて行われる項目2に記載の方法。
(項目4)
変形データを計算することには、前記第1の局所分布データと前記第2の局所分布データとを比較することが含まれる項目1に記載の方法。
(項目5)
前記特定された脈管構造及び前記画像化データを用いて網膜脈管構造の局所分布マップを作成することがさらに含まれ、前記接続性モデルを作成することには、網膜脈管構造の前記局所分布マップを用いることが含まれる項目1に記載の方法。
(項目6)
前記接続性モデルを作成することには、前記変形データを用いることが含まれる項目1に記載の方法。
(項目7)
前記変形データを計算することには、前記接続性モデルを用いることが含まれる項目1に記載の方法。
(項目8)
前記変形データを用いて前記接続性モデルを更新することがさらに含まれる項目1に記載の方法。
(項目9)
前記接続性モデルを用いて前記変形データを更新することがさらに含まれる項目1に記載の方法。
(項目10)
さらに、前記変形データを用いて変形マップを作成することと、
前記接続性モデル及び前記変形マップを共局在化することと、が含まれる項目1に記載の方法。
(項目11)
さらに、前記共局在化された接続性モデル及び前記変形マップを用いて、歪み及び接続性モデルを作成することが含まれる項目10に記載の方法。
(項目12)
さらに、前記共局在化された接続性モデル及び前記変形マップを用いて網膜血液灌流を予測することが含まれる項目10に記載の方法。
(項目13)
診断を決定することがさらに含まれ、診断を決定することには、前記共局在化された接続性モデル及び変形マップを用いることが含まれる項目10に記載の方法。
(項目14)
前記診断を決定することにはさらに、前記共局在化された接続性モデル及び変形マップに履歴データを適用することが含まれる項目13に記載の方法。
(項目15)
前記画像化データを取り込むことには、光コヒーレンストモグラフィシステムを用いて画像化データを取り込むことが含まれる項目1に記載の方法。
(項目16)
画像化データを取り込むことには、単一セッションにおいて前記第1の局所分布データ及び前記第2の局所分布データを取り込むことが含まれる項目1に記載の方法。
(項目17)
システムであって、
眼の網膜の画像化データを取り込むための光コヒーレンストモグラフィ機器と、
1つ以上のデータ処理装置と、
命令を含む非一時的コンピュータ可読記憶媒体であって、前記命令は、前記1つ以上のデータ処理装置上で実行されると、前記1つ以上のデータ処理装置に、
前記光コヒーレンストモグラフィ機器から前記画像化データを受け取ることであって、前記画像化データには第1の局所分布データ及び第2の局所分布データが含まれ、前記第2の局所分布データは前記第1の局所分布データの後に取り込まれ、前記画像化データは前記眼の画像化ボリュームに対応付けられる、前記受け取ることと、
前記画像化データを用いて脈管構造を特定することであって脈管構造を特定することには、前記第1の局所分布データを前記第2の局所分布データと比較することが含まれる、前記特定することと、
前記特定された脈管構造を用いて前記網膜の脈管構造の接続性モデルを作成することと、前記眼の前記画像化ボリュームの少なくとも一部についての変形データを計算することであって、変形データを計算することには、前記画像化データと前記眼の前記画像化ボリュームに対応付けられるさらなる画像化データとのうちの少なくとも一方を用いることが含まれる、前記計算することと、を含む動作を行わせる、前記非一時的コンピュータ可読記憶媒体と、を含む前記システム。
(項目18)
前記動作にはさらに、前記光コヒーレンストモグラフィ機器からさらなる画像化データを受け取ることが含まれ、前記さらなる画像化データに対応付けられる前記眼の眼圧は、前記画像化データに対応付けられる前記眼の眼圧とは異なり、変形データを計算することには、前記画像化データ及び前記さらなる画像化データを用いることが含まれる項目17に記載のシステム。
(項目19)
前記画像化データは単一セッションの間に取り込まれ、前記さらなる画像化データは前記単一セッションの間に取り込まれる項目18に記載のシステム。
(項目20)
変形データを計算することには、前記第1の局所分布データと前記第2の局所分布データとを比較することが含まれる項目17に記載のシステム。
(項目21)
前記動作にはさらに、前記特定された脈管構造及び前記画像化データを用いて網膜脈管構造の局所分布マップを作成することが含まれ、前記接続性モデルを作成することには、網膜脈管構造の前記局所分布マップを用いることが含まれる項目17に記載のシステム。
(項目22)
前記接続性モデルを作成することには、前記変形データを用いることが含まれる項目17に記載のシステム。
(項目23)
前記変形データを計算することには、前記接続性モデルを用いることが含まれる項目17に記載のシステム。
(項目24)
前記動作にはさらに、前記変形データを用いて前記接続性モデルを更新することが含まれる項目17に記載のシステム。
(項目25)
前記動作にはさらに、前記接続性モデルを用いて前記変形データを更新することが含まれる項目17に記載のシステム。
(項目26)
前記動作にはさらに、
前記変形データを用いて変形マップを作成することと、
前記接続性モデル及び前記変形マップを共局在化することと、が含まれる項目17に記載のシステム。
(項目27)
前記動作にはさらに、前記共局在化された接続性モデル及び前記変形マップを用いて歪み及び接続性モデルを作成することが含まれる項目26に記載のシステム。
(項目28)
前記動作にはさらに、前記共局在化された接続性モデル及び前記変形マップを用いて網膜血液灌流を予測することが含まれる項目26に記載のシステム。
(項目29)
前記動作にはさらに、診断を決定することが含まれ、診断を決定することには、前記共局在化された接続性モデル及び変形マップを用いることが含まれる項目26に記載のシステム。
(項目30)
前記診断を決定することにはさらに、前記共局在化された接続性モデル及び変形マップに履歴データを適用することが含まれる項目29に記載のシステム。
(項目31)
前記画像化データは単一セッションの間に取り込まれる項目17に記載のシステム。
図1
図2
図3
図4
図5
図6
図7