IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 日本エア・リキード株式会社の特許一覧

特許7446569製品ガスの供給量調整装置およびそれを備える空気分離装置
<>
  • 特許-製品ガスの供給量調整装置およびそれを備える空気分離装置 図1
  • 特許-製品ガスの供給量調整装置およびそれを備える空気分離装置 図2
  • 特許-製品ガスの供給量調整装置およびそれを備える空気分離装置 図3
  • 特許-製品ガスの供給量調整装置およびそれを備える空気分離装置 図4
  • 特許-製品ガスの供給量調整装置およびそれを備える空気分離装置 図5
  • 特許-製品ガスの供給量調整装置およびそれを備える空気分離装置 図6
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-03-01
(45)【発行日】2024-03-11
(54)【発明の名称】製品ガスの供給量調整装置およびそれを備える空気分離装置
(51)【国際特許分類】
   F25J 3/04 20060101AFI20240304BHJP
【FI】
F25J3/04 Z
【請求項の数】 6
(21)【出願番号】P 2020067079
(22)【出願日】2020-04-02
(65)【公開番号】P2021162271
(43)【公開日】2021-10-11
【審査請求日】2022-11-07
(73)【特許権者】
【識別番号】000109428
【氏名又は名称】日本エア・リキード合同会社
(74)【代理人】
【識別番号】110000729
【氏名又は名称】弁理士法人ユニアス国際特許事務所
(72)【発明者】
【氏名】金田 拓也
(72)【発明者】
【氏名】▲桑▼田 茂信
【審査官】塩谷 領大
(56)【参考文献】
【文献】特開平10-220961(JP,A)
【文献】特開2006-002958(JP,A)
【文献】特開2011-007450(JP,A)
【文献】特開昭60-020073(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
F25J 1/00- 5/00
(57)【特許請求の範囲】
【請求項1】
少なくとも1以上の供給先から取得されるプラント情報に基づいて、前記少なくとも1
以上の供給先で使用される総需要量(CPV_1)を算出する総需要量算出部と、
前記総需要量(CPV_1)と、予め設定される流量設定値(SV_1)とを比較し、
第一圧力算出値(MV_1)を設定する過不足情報設定部と、
予め設定されている供給先のガスホルダー基準圧力(SV_gh)および前記第一圧力算出値(MV_1)を加算して得られる第一演算値(CPV_2)と予め設定されているバックアップ基準圧力設定値(SV_bc)とを比較して所定範囲に設定された第二圧力算出値(MV_11)と、前記バックアップ基準圧力設定値(SV_bc)とを加算して得られるバックアップ開始圧力設定値(SV_sbc)と供給先のガスホルダーの圧力測定値であるガスホルダー圧力測定値(PV_gh)とを比較して、バックアップ係数設定値(MV_bc)を設定するバックアップ係数設定部と、
予め設定されている供給先のガスホルダー基準圧力(SV_gh)と前記第一圧力出力
値(MV_1)とを加算して得られる製造用圧力設定値(SV_a)と、ガスホルダー圧
力測定値(PV_gh)とを比較し、少なくとも1以上の空気分離装置による製品ガスの
製造量の増減を変更するように製造係数(MV_a)を設定する製造係数設定部と、
前記バックアップ係数設定値(MV_bc)に基づいて、バックアップ装置からの製品
ガスの供給の開始、供給量の増減、供給の停止を制御する第一制御指令部と、
前記製造係数設定値(MV_a)に基づいて、前記少なくとも1以上の空気分離装置に
よる製品ガスの製造量を維持あるいは増減するように空気分離装置に指令する第二制御指
令部と、を備える供給量調整装置。
【請求項2】
請求項1に記載の供給量調整装置を備える空気分離装置。
【請求項3】
以下のステップを含む、供給量調整方法。
(1)少なくとも1以上の供給先から取得されるプラント情報に基づいて、前記少なくと
も1以上の供給先で使用される総需要量(CPV_1)を算出する;
(2)前記総需要量(CPV_1)と、予め設定される流量設定値(SV_1)とを比較
し、第一圧力算出値(MV_1)を設定する;
(3)予め設定されている供給先のガスホルダー基準圧力(SV_gh)および前記第一圧力算出値(MV_1)を加算して得られる第一演算値(CPV_2)と予め設定されているバックアップ基準圧力設定値(SV_bc)とを比較して第二圧力算出値(MV_11)を所定範囲に設定する;
(4)前記第二圧力算出値(MV_11)と前記バックアップ基準圧力設定値(SV_bc)とを加算してバックアップ開始圧力設定値(SV_sbc)を設定する;
(5)前記バックアップ開始圧力設定値(SV_sbc)と供給先のガスホルダーの圧力測定値であるガスホルダー圧力測定値(PV_gh)とを比較しバックアップ装置からの製品ガスの供給量の増減を変更するバックアップ係数設定値(MV_bc)を設定する
(6)前記供給先のガスホルダー基準圧力(SV_gh)と前記第一圧力出力値(MV_1)とを加算して得られる製造用圧力設定値(SV_a)と、ガスホルダー圧力測定値(PV_gh)とを比較し、少なくとも1以上の空気分離装置による製品ガスの製造量の増減を変更するように製造係数(MV_a)を設定する。
【請求項4】
以下のステップをさらに含む、請求項3に記載の供給量調整方法。
)少なくとも1以上の空気分離装置および少なくとも1以上のバックアップ装置から
供給できる製品ガスの総供給演算量を取得するあるいは総供給演算量を演算する;
)前記バックアップ係数設定値(MV_bc)に基づいて、前記バックアップ装置の
出口弁あるいは前記バックアップ装置と前記供給先を繋ぐ配管に設けられる仕切弁あるい
は制御弁に指令し、前記バックアップ装置からの製品ガスの供給の開始、供給量の増減、
供給の停止を制御する;
)前記製造係数設定値(MV_a)に基づいて、前記少なくとも1以上の空気分離装
置による製品ガスの製造量を維持あるいは増減するように空気分離装置に指令する。
【請求項5】
少なくとも1つのプロセッサーと、前記プロセッサーで実行可能な命令を記憶するためのメモリと、を含み、
前記プロセッサーは、実行可能な命令を実行することにより、請求項3または4に記載
の供給量調整方法を実現する、情報処理装置。
【請求項6】
少なくとも1つのプロセッサーにより、請求項3または4に記載の供給量調整方法を実
現するプログラム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、製品ガスの供給量調整装置およびそれを備える空気分離装置に関する。
【背景技術】
【0002】
例えば、高濃度酸素ガスを必要する製鉄プラントに併設される空気分離装置は、プラント側の需要の変動に対応して、高濃度酸素ガス(液化酸素ガス)の製造量の調整が行われている。一般的には、空気分離装置の低圧精留塔の圧力を監視しフィードバック制御を行って製造量を調整する。また、プラント側の需要計画などの運転情報をもとに、オペレータが経験や勘に基づいて、製造量を予測し調整する。
しかしながら、プラント側がバッチ形態で使用する場合には、需要量が一定しておらず、また、昼夜連続使用のみならず、夜間のみ使用する場合もあるため、昼夜間の移行領域では空気分離装置による製造量の基準値(予め設定されている標準設定製造量)を大きく変更する必要がある。また、空気分離装置の製造能力が十分でない(例えば、大幅な製造量変動に即応できないなど)場合には、予め余剰に液化酸素ガスを製造しバッファータンクなどに貯留しておき、必要に応じてバッファータンクから液化酸素ガスを供給できるように構成されている。
また、需要変動が大きく下振れすると、空気分離装置で製造した酸素ガスを大気放出することが行われる。これは前記したように、オペレータの経験や勘に頼って製造量を予測していることに原因がある。
【0003】
特許文献1は、高純度酸素と低純度酸素を、工業プラントの用途に応じて供給することができる設備を開示している。高純度酸素源としての貯蔵タンクについても開示している。しかしながら、上述したようにプラント側の需要の変動に対応した製造量の調整については言及していない。
【先行技術文献】
【特許文献】
【0004】
【文献】特表2007-516405号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
そこで、本発明は、ガスバッファーを要するパイピング供給型のオンサイトプラントにおける製品ガス(例えば、酸素ガス、窒素ガス、アルゴンガスなど)の供給量調整を、オペレータの経験や勘に頼ることなく、需要変動を予測して製造量を制御可能とする供給量調整装置を提供することを目的とする。また、本発明は、その供給量調整装置を備える空気分離装置を提供することを目的とする。
【課題を解決するための手段】
【0006】
本発明の供給量調整装置(500)は、
少なくとも1以上の供給先から取得されるプラント情報(運転しているか否かの情報である運転情報、前記少なくとも1以上の供給先へ送られる製品ガスの供給量(例えば、送られる製品ガスの流量の瞬時値(PV_f))および/または前記少なくとも1以上の供給先の固定値(例えば、供給先固有の使用予想値))に基づいて、前記少なくとも1以上の供給先で使用される総需要量(CPV_1)(例えば、顧客使用量、単位時間当たり流量)を算出する総需要量算出部(502)と、
前記総需要量(CPV_1)と、予め設定される流量設定値(SV_1)(例えば、計画量平均値)とを比較し、第一圧力算出値(MV_1)を設定する過不足情報設定部(503)と、
予め設定されている供給先のガスホルダー基準圧力(SV_gh、例えば、平均目標圧力値)、前記第一圧力算出値(MV_1)、予め設定されているバックアップ基準圧力設定値(SV_bc)、供給先のガスホルダーの圧力測定値であるガスホルダー圧力測定値(PV_gh)に基づいて、バックアップ係数設定値(MV_bc)を設定するバックアッ係数設定部 (504)と、
予め設定されている供給先のガスホルダー基準圧力(SV_gh)と前記第一圧力出力値(MV_1)とを加算して得られる製造用圧力設定値(SV_a)と、ガスホルダー圧力測定値(PV_gh)とを比較し、なくとも1以上の空気分離装置による製品ガスの製造量の増減を変更するように製造係数(MV_a)を設定する製造係数設定部(505)と、
を備える。
【0007】
前記供給量調整装置(500)は、少なくとも1以上の空気分離装置および少なくとも1以上のバックアップ装置(例えば、液化酸素の貯留タンク、蒸発器など)から供給できる製品ガスの総供給演算量(例えば、総生産基準量、単位時間当たり流量、運転中の原料空気圧縮機の出力から演算して製品ガス発生能力を演算する)を取得する総生産基準量取得部(501)、あるいは総供給演算量を演算する総生産基準量演算部を備えていてもよい。
前記過不足情報設定部(503)は、前記流量設定値(SV_1)より前記総需要量(CPV_1)が大きい場合に、所定範囲の正の圧力値とし、その逆の場合に所定範囲の負の圧力値として第一圧力算出値(MV_1)を設定してもよい。
前記バックアッ係数設定部(504)は、予め設定されている供給先のガスホルダー基準圧力(例えば、平均目標圧力値)と前記第一圧力算出値(MV_1)とを加算して得られる第一演算値(CPV_2)と、前記バックアップ装置から供給される製品ガスのバックアップ基準圧力設定値(SV_bc)とを、比較して所定範囲の第二圧力算出値(MV_11)を設定してもよい。
前記バックアッ係数設定部(504)は、前記バックアップ基準圧力設定値(SV_bc)と前記第二圧力算出値(MV_11)とを加算してバックアップ開始圧力設定値(SV_sbc)を算出してもよい。
前記バックアッ係数設定部(504)は、前記バックアップ開始圧力設定値(SV_sbc)と、供給先のガスホルダーの圧力測定値であるガスホルダー圧力測定値(PV_gh)とを比較し、バックアップ係数設定値(MV_bc)を設定してもよい。
前記製造係数設定部(505)は、前記ガスホルダー圧力測定値(PV_gh)が前記製造用圧力設定値(SV_a)より小さい場合に前記少なくとも1以上の空気分離装置による製品ガスの製造量を維持または増加し、その逆の場合に製造量を減少するように製造係数設定値(MV_a)を設定してもよい。
【0008】
前記供給量調整装置(500)は、
前記バックアップ係数設定値(MV_bc)に基づいて、前記バックアップ装置の出口弁あるいは前記バックアップ装置と前記供給先を繋ぐ配管に設けられる仕切弁あるいは制御弁に指令し、前記バックアップ装置からの製品ガスの供給の開始、供給量の増減、供給の停止を制御する、第一制御指令部(506)と、
前記製造係数設定値(MV_a)に基づいて、前記少なくとも1以上の空気分離装置による製品ガスの製造量を維持あるいは増減するように空気分離装置に指令する、第二制御指令部(507)と、
を備えていてもよい。
【0009】
他の発明の空気分離装置は、上記供給量調整装置(500)を備える。
前記空気分離装置(100)は、
原料空気を圧縮する第一圧縮機(C1)と、
前記第一圧縮機(C1)より下流の原料空気の流量を(主熱交換機(1)の上流または下流で)測定する流量測定部(F1)と、
前記第一圧縮機(C1)より下流の原料空気を導入し(温源と)熱交換する主熱交換器(1)と、
前記主熱交換器(1)から導出される原料空気が供給されて、当該原料空気から製品ガス(高純度酸素ガス)を分離精製する精製部と、
前記精製部で製造される高純度液化酸素を貯留するバックアップ装置と、
を備える。
【0010】
前記精製部は、
前記主熱交換器(1)を通過した原料空気が導入される高圧塔(2)と、
前記高圧塔(2)の塔頂部(23)から導出される高圧塔精留物を凝縮する凝縮部(3)と、
前記高圧塔(2)の塔底部(21)から導出される酸素富化液が導入される低圧塔(4)と、を備え、
前記凝縮部(3)の下部の液相部(31)から高純度液化酸素が(加圧装置で加圧された後で)前記バックアップ装置へ送られてもよい。
【0011】
前記空気分離装置は、
前記凝縮部(3)の下部の液相部(31)から導出される製品液化ガス(高純度液化酸素ガス)を前記主熱交換器(1)を通過させてガス化及び熱交換させた後で、プラント400へ供給する製品ガス供給ライン(L31)と、
前記バックアップ装置から導出される高純度液化酸素を(熱交換部(E102)で)蒸発させ、高圧高純度酸素ガスとして、プラント(400)へ供給するバックアップ供給ライン(L102)と、を備えていてもよい。
製品ガス供給ライン(L31)に、流量測定部、圧力測定部、仕切弁、制御弁などが設けられていてもよい。
また、バックアップ装置が、バックアップタンク(101)、バックアップ供給ライン(L102)、熱交換部(E102)(あるいは蒸発部)、制御弁(V102)、流量測定部(F102)、仕切弁、圧力測定部などを備えていてもよい。
【0012】
前記空気分離装置または前記供給量調整装置(500)は、
製品ガス(高純度酸素ガス)の製造量の増減に応じて、原料空気の供給量(導入量)を制御する(圧縮機C1の吐出量を制御する)制御部(200)と、を備えていてもよい。
【0013】
前記精製部は、
粗アルゴン塔、高純度精製アルゴン塔、熱交換器などをさらに有していてもよい。
【0014】
(方法、ソフトウエアプログラム、記憶媒体の発明)
本発明の供給量調整方法は、以下のステップを含む。
(1)少なくとも1以上の供給先から取得されるプラント情報(運転しているか否かの情報である運転情報、前記少なくとも1以上の供給先へ送られる製品ガスの供給量(例えば、送られる製品ガスの流量の瞬時値(PV_f))および/または前記少なくとも1以上の供給先の固定値(例えば、供給先固有の使用予想値))に基づいて、前記少なくとも1以上の供給先で使用される総需要量(CPV_1)(例えば、顧客使用量、単位時間当たり流量)を算出する;
(2)前記総需要量(CPV_1)と、予め設定される流量設定値(SV_1)(例えば、計画量平均値)とを比較し、第一圧力算出値(MV_1)を設定する;
(3)予め設定されている供給先のガスホルダー基準圧力(SV_gh、例えば、平均目標圧力値)、前記第一圧力算出値(MV_1)、予め設定されているバックアップ基準圧力設定値(SV_bc)、供給先のガスホルダーの圧力測定値であるガスホルダー圧力測定値(PV_gh)に基づいて、バックアップ係数設定値(MV_bc)を設定する;
(4)予め設定されている供給先のガスホルダー基準圧力(SV_gh)と前記第一圧力出力値(MV_1)とを加算して得られる製造用圧力設定値(SV_a)と、ガスホルダー圧力測定値(PV_gh)とを比較し、なくとも1以上の空気分離装置による製品ガスの製造量の増減を変更するように製造係数(MV_a)を設定する。
前記供給量調整方法は、以下のステップをさらに含んでもよい。
(5)少なくとも1以上の空気分離装置および少なくとも1以上のバックアップ装置(例えば、液化酸素の貯留タンク、蒸発器など)から供給できる製品ガスの総供給演算量(例えば、総生産基準量、単位時間当たり流量、運転中の原料空気圧縮機の出力から演算して製品ガス発生能力を演算する)を取得すあるいは総供給演算量を演算する。
前記供給量調整方法は、以下のステップをされに含んでもよい。
(6)前記バックアップ係数設定値(MV_bc)に基づいて、前記バックアップ装置の出口弁あるいは前記バックアップ装置と前記供給先を繋ぐ配管に設けられる仕切弁あるいは制御弁に指令し、前記バックアップ装置からの製品ガスの供給の開始、供給量の増減、供給の停止を制御する;
(7)前記製造係数設定値(MV_a)に基づいて、前記少なくとも1以上の空気分離装置による製品ガスの製造量を維持あるいは増減するように空気分離装置に指令する。
【0015】
また、他の発明の情報処理装置は、
少なくとも1つのプロセッサーと、
前記プロセッサーで実行可能な命令を記憶するためのメモリと、を含み、
前記プロセッサーは、実行可能な命令を実行することにより上記供給量調整方法を実現する、情報処理装置である。
また、他の発明の供給量調整プログラムは、少なくとも1つのプロセッサーにより、上記供給量調整方法を実現するプログラムである。
また、他の発明のコンピュータ命令が記憶されているコンピュータ読み取り可能な記録媒体であって、前記コンピュータ命令がプロセッサーにより実行されることで、上記供給量調整方法のステップを実現するコンピュータ読み取り可能な記録媒体である。
【0016】
(作用効果)
(1)オペレータの経験や勘に頼ることなく、精度よく需要を予測できるようになるため、酸素ガスの余剰製造による放出ロスを削減できる。
(2)不足時にバックアップ装置から液化酸素を供給して蒸発させて得られるバックアップガスの削減もできる。
(3)空気分離装置から自動的に酸素ガス発生量、及びバックアップ装置から液化酸素の蒸発供給を増減させることができ、再現性が向上することで信頼性が向上する。
(4)需要量(使用量)変動に対する供給量(製造量およびバックアップ供給量)の調整において、変動に即応できるように反応速度などを調整する事で、酸素ガス及び液化酸素ロスを低減できる(過去の最低値を維持する事ができる)。
【図面の簡単な説明】
【0017】
図1】実施形態1の空気分離装置および供給量調整装置を示す図である。
図2】実施形態1の供給量調整装置の制御要素の一例を示す図である。
図3】実施形態1の供給量調整装置の算出ステップの一例を示す図である。
図4】実施形態1の供給量調整装置の算出ステップ(バックアップ供給の開始)の一例を示す図である。
図5】実施形態1の供給量調整装置の算出ステップ(バックアップ供給の停止)の一例を示す図である。
図6】実施形態1の供給量調整装置の算出ステップ(空気分離装置の製造量減少)の一例を示す図である。
【発明を実施するための形態】
【0018】
以下に本発明のいくつかの実施形態について説明する。以下に説明する実施形態は、本発明の一例を説明するものである。本発明は以下の実施形態になんら限定されるものではなく、本発明の要旨を変更しない範囲において実施される各種の変形形態も含む。なお、以下で説明される構成の全てが本発明の必須の構成であるとは限らない。
【0019】
(実施形態1)
実施形態1の空気分離装置100について図1を用いて説明する。
原料空気(Feed Air)は、経路(配管)L10上の濾過手段301、触媒塔302を通過し、空気中の異物、固形物が除去される。経路L10に設けられた圧縮機C1で圧縮された圧縮原料空気は、第一冷凍機R1へ送られ、所定の温度に冷却される。冷却された圧縮原料空気は、予備精製部50へ送られる。予備精製部50は、例えば、二酸化炭素および/または水分を除去するための、第一吸着塔(不図示)と、第一吸着塔と並置される第二吸着塔(不図示)を備える。一方の吸着塔で吸着処理が実行され、他方の吸着塔で再生処理が実行され、吸着処理と再生処理が交互に実行される。第一吸着塔または第二吸着塔で予備精製処理された原料空気は、経路L10を通じて下流の主熱交換器1へ導入される。
予備精製部50から主熱交換機1まで間の経路L10に、原料空気の流量(導入量)を測定する流量測定部F1が設けられ、流量測定部F1の流量のデータに基づいて、圧縮機C1のインレットガイドベーン(V1)で処理流量が調整される。この測定データは、制御部200へ送られ、第二メモリ205に時系列データとして保存される。
【0020】
(精製部の構成)
空気分離装置100は、主熱交換器1と、主熱交換器1を通過した原料空気が配管L10を介して導入される高圧塔2と、高圧塔2の塔頂部23から導出される高圧塔精留物を凝縮する凝縮部(窒素凝縮器)3と、高圧塔2の塔底部21から導出される酸素富化液が導入される低圧塔4とを備える。
【0021】
高圧塔2は、主熱交換器1を通過した原料空気が導入される気相部と、酸素富化液が貯留される液相部とを有する塔底部21と、塔底部21の上方に設けられる精製部22と、精製部22の上方に設けられる塔頂部23とを有する。
塔頂部23は、塔頂部23の圧力を測定する圧力測定部P12が設けられている。高圧塔2の塔底部21に、酸素富化液の液面高さを測定する液面レベル測定部211が設けられている。この測定データは、制御部200へ送られ、第二メモリ205に時系列データとして保存される。
塔底部21から導出される酸素富化液は、熱交換器E5で熱交換された後で、低圧塔4の精留部42の中間段と同じまたは上下方向で近辺の精留段へ、配管L21を介して導入される。配管L21には制御弁V2が設けられており、液面レベル測定部211の測定データに応じて、制御弁V2が制御部200で制御され、酸素富化液の導入量が調整される。
高圧塔2の塔頂部23から経路(配管)L23で導出される高圧塔精留物(還流液)は、主熱交換器1に送られる。
高圧塔2の精留部22の上方段から導出されたガス(気液混合物)は、経路L22を介して低圧塔4の塔頂部43へ送られる。
【0022】
凝縮器3は、低圧塔4の塔底部41から導出された高酸素富化液(O)を貯留する液相部31と、液相部31を冷源として利用し、高圧塔2の塔頂部23から導出される高圧塔精留物を冷却する冷却部32と、液相部31の上方の気相部33とを有する。
冷却部32で冷却された高圧塔精留物は、高圧塔2の塔頂部23へ戻り精製部22へ送られる。冷却部32で熱交換に用いられた高酸素富化液(O)は、一部がガス状になり気相部33から低圧塔4の精留部42の下方へ配管L33を介して送られる。
一方、液相部31の高酸素富化液(O)は、配管L31に設けられたポンプP1で昇圧されて、主熱交換器1へ送られガス化及び熱交換させた後で、プラント400へ送られる。また、液相部31の高酸素富化液(O )は、配管L102を介して、製品タンクt1へ送られる。高酸素富化液(O)は、製品タンクt1から導出されポンプP2で昇圧されてバックアップタンク101へ送られ、バックアップ用の酸素として使用される。高酸素富化液(O)の酸素濃度は、酸素富化液の酸素濃度よりも大きい。
【0023】
低圧塔4は、高酸素富化液(O)を貯留する塔底部41と、塔底部41の上方に設けられる精製部42と、精製部42の上方に設けられる塔頂部43とを有する。
塔頂部43は、塔頂部43の圧力を測定する圧力測定部P14が設けられている。低圧塔4の塔底部41に、高酸素富化液(O)の液面高さを測定する液面レベル測定部212が設けられている。測定データは制御部200へ送られ、第二メモリ205に時系列データとして保存される。
塔頂部43から導出された廃ガス(低圧塔頂部精留物)は、経路L14を介して主熱交換器1へ送られ、その後、第一吸着塔または第二吸着塔の再生ガスとして使用される。また、塔頂部43から導出された(圧塔頂部精留物は、経路L44を介して、直接にまたは熱交換器E5で熱交換された後で、主熱交換器1へ送られる。塔底部41の気相部から導出されたガスは、経路L33へ合流し、主熱交換器1へ送られる。
【0024】
経路L14の予備精製部50から主熱交換機1との間に、廃ガスを放出するベント54が設けられている。
【0025】
製品ガス供給ラインL33は、凝縮部3の上部の気相部33、および/または低圧塔4の精留部42の下部または塔底部41の上部(それらの間)から導出される製品ガス(高純度酸素ガス)を、主熱交換器1を通過させて熱交換させた後で、プラント400へ供給する。
製品ガス供給ラインL33は、製品ガス(高純度酸素ガス)の流量を計測する製品ガス流量計測部F103と、製品ガス流量計測部F103で計測された流量に基づいて製品ガスの供給量を制御する制御弁V103とが設けられている。この測定データは、供給量調整装置500へ送られ、第一メモリ509に時系列データとして保存される。
バックアップ供給ラインL102は、バックアップタンク101から導出される高純度液化酸素を熱交換部E102で蒸発させ、高純度酸素ガスとして、プラント400へ供給する。
バックアップ供給ラインL102は、高純度酸素ガスの流量を計測するバックアップガス流量計測部F102と、バックアップガス流量計測部F102で計測された流量に基づいてバクアップガスの供給量を制御する制御弁V102とが設けられている。この測定データは、供給量調整装置500へ送られ、第一メモリ509に時系列データとして保存される。
プラント400は、製品ガス供給ラインL33とバックアップ供給ラインL102が合流してなる各需要先へ製品ガスを送るラインL401と、ラインL401に設けられるガスホルダー圧力を測定するガスホルダー圧力測定部P401と、を備えている。この測定データは、供給量調整装置500へ送られ、第一メモリ509に時系列データとして保存される。
プラント400は、需要先(使用先)となるA、B、C、Dが設けられている。
【0026】
(供給量調整装置の構成)
図2に供給量調整装置500の構成を示す。図3に供給量調整装置の算出ステップの一例を示す。
総生産基準量取得部501は、空気分離装置100およびバックアップタンク101から供給できる高純度酸素ガスの総供給演算量(CSV_ta)を取得する。本実施形態において、総供給演算量(CSV_ta)は、例えば、総生産基準量、単位時間当たり流量、運転中の原料空気圧縮機C1の出力(あるいは流量測定部F1の流量)から演算係数(α)を乗算して得られる(製品ガス発生能力ともいう)。空気分離装置100を運転する制御部が総供給演算量(CSV_ta)を演算し、その結果を供給量調整装置500が取得してもよく、供給量調整装置500が総供給演算量(CSV_ta)を演算してもよい。
【0027】
総需要量算出部502は、供給先であるプラント400から取得される運転しているか否かの情報である運転情報、プラント400へ送られる製品ガスの供給量に基づいて、プラント400で使用される総需要量(CPV_1)を算出する。総需要量(CPV_1)は、例えば、送られる製品ガスの流量の瞬時値(PV_f))および/または供給先のプラント400の固定値(例えば、供給先固有の使用予想値;SV_i)から算出される。総需要量(CPV_1)は、顧客使用量(単位時間当たり流量)ともいう。
図3において、総需要量(CPV_1)は、供給先A、B、Cの瞬時値(PV_f)と供給先Dの固定値(SV_i)を加算して得られる。
【0028】
過不足情報設定部503は、総需要量(CPV_1)と、予め設定される流量設定値(SV_1)(例えば、計画量平均値、過去実績平均値など)とを比較し、第一圧力算出値(MV_1)を設定する。第一圧力算出値(MV_1)は、例えば、流量設定値(SV_1)より総需要量(CPV_1)が大きい場合に、所定範囲の正の圧力値(例えば、0.100MPa~0.500MPa)とし、流量設定値(SV_1)より総需要量(CPV_1)が小さい場合に、場合に所定範囲の負の圧力値(例えば、-0.100MPa~-0.500MPa)が設定される。
第一圧力算出値(MV_1)は、総需要量(CPV_1)の変動傾きに比例して値が設定されてもよく、単位時間当たりの傾き変動速度に比例して値が大きく設定されてもよい。第一圧力算出値(MV_1)は、傾き変動速度が予め設定される閾値より大きい場合に、例えば、通常の設定よりも1.1~2.0倍に設定されてもよい。
【0029】
バックアップ係数設定部504は、予め設定されている供給先のガスホルダー基準圧力(平均目標圧力値、例えば、2.400MPa)と前記第一圧力算出値(MV_1)とを加算し、第一演算値(CPV_2、2.700MPa)を求める。次いで、バックアップ係数設定部504は、第一演算値(CPV_2、2.700MPa)とバックアップタンク101から供給される製品ガスのバックアップ基準圧力設定値(SV_bc、2.350MPa)とを比較し、所定範囲の第二圧力算出値(MV_11、例えば、-0.100MPa~-0.500MPa)を設定する。
第二圧力算出値(MV_11)は、例えば、第一演算値(CPV_2)がバックアップ基準圧力設定値(SV_bc)よりも高い場合に、第二圧力算出値(MV_11)を高い値に設定し、第一演算値(CPV_2)がバックアップ基準圧力設定値(SV_bc)よりも低い場合に低い値に設定される。
第二圧力算出値(MV_11)は、総需要量(CPV_1)の変動傾きに比例して値が設定されてもよく、さらに、単位時間当たりの傾き変動速度に比例して値が大きく設定されてもよい。第二圧力算出値(MV_11)は、傾き変動速度が予め設定される閾値より大きい場合に、例えば、通常の設定よりも1.1~2.0倍に設定されてもよい。
次いで、バックアップ係数設定部504は、バックアップ基準圧力設定値(SV_bc、2.350MPa)と第二圧力算出値(MV_11、-0.100MPa)とを加算してバックアップ開始圧力設定値(SV_sbc、2.250MPa)を算出する。ここで、バックアップ開始圧力設定値(SV_sbc)は、バックアップ基準圧力設定値(SV_bc)よりも低い値に設定されることで、バックアップガスの供給開始タイミングを早くできる。
次いで、バックアップ係数設定部504は、バックアップ開始圧力設定値(SV_sbc、2.250MPa)とガスホルダー圧力測定値(PV_gh、2.650MPa)とを比較し、バックアップ係数設定値(MV_bc、0%~100%)を設定する。
バックアップ係数設定値(MV_bc)は、例えば、バックアップ開始圧力設定値(SV_sbc、2.250MPa)がガスホルダー圧力測定値(PV_gh、2.650MPa)より小さい場合に、0%に設定され、バックアップ開始圧力設定値(SV_sbc)がガスホルダー圧力測定値(PV_gh)より大きい場合に、1~100%に設定されてもよい。ここで、「0%」は、バックアップ供給が停止することを意味し、「1%~100%」は、現時点で可能な供給最大率を100%として「1~100%」の割合に比例して供給することを意味する。
バックアップ係数設定値(MV_bc)は、高純度酸素ガスの製造量に対し使用量(需要)が所定倍数(例えば、1.5倍以上)で、かつガスホルダー圧力測定値(PV_gh)の降下速度が速い(例えば、平均降下速度の1.5倍以上の降下速度)場合に、それ以外の場合よりも高い値に設定されてもよい。
【0030】
製造係数設定部505は、予め設定されているプラント400のガスホルダー基準圧力(SV_gh、平均目標圧力値、例えば、2.400MPa)と第一圧力出力値(MV_1、0.300MPa)とを加算し、製造用圧力設定値(SV_a、2.700MPa)を算出する。製造用圧力設定値(SV_a、2.700MPa)は、第一演算値(CPV_2)と同じであるため、第一演算値(CPV_2)をそのまま使用してもよい。
製造係数設定部505は、製造用圧力設定値(SV_a)と、ガスホルダー圧力測定値(PV_gh、2.650MPa)とを比較し、空気分離装置100による製品ガスの製造量の増減を変更するように製造係数設定値(MV_a、0%~100%)を設定する。
製造係数設定値(MV_a)は、例えば、ガスホルダー圧力測定値(PV_gh、2.650MPa)が製造用圧力設定値(SV_a、2.700MPa)より小さい場合に、100%に設定され、ガスホルダー圧力測定値(PV_gh)が製造用圧力設定値(SV_a)より大きい場合に、0~99%に設定されてもよい。ここで、「100%」は、空気分離装置の現時点の製造量を維持することを意味し、「1%~99%」は、現時点の製造量を100%として「1~99%」に製造量を減らすことを意味する。
製造係数設定値(MV_a)は、高純度酸素ガスの製造量に対し使用量(需要)が所定倍数(例えば、1.5倍以上)で、かつガスホルダー圧力測定値(PV_gh)の降下速度が速い(例えば、平均降下速度の1.5倍以上の降下速度)場合に、それ以外の場合よりも高い値に設定されてもよい。
【0031】
第一制御指令部506は、バックアップ係数設定値(MV_bc)に基づいて、バックアップタンク101による高純度酸素ガスの供給の開始、供給量の増減、供給の停止を制御する。
第一制御指令部506は、バックアップタンク101の出口弁(不図示)、およびバックアップタンク101とプラント400を繋ぐバックアップ供給ラインL101に設けられる制御弁V102に指令する。第一制御指令部506は、熱交換部E102を駆動させる。第一制御指令部506は、バックアップガス流量計測部F102で測定されたデータに基づいて、制御弁V102に指令し流量を制御してもよい。
バックアップタンク101から高純度液化酸素が取り出され、熱交換部E102で蒸発し、高圧高純度酸素ガスとなり、製品ガス配管L33に合流してプラント400へ供給される。
図3の説明においては、バックアップ係数設定値(MV_bc)は「0%」であるため、第一制御指令部506は、バックアップの供給は停止した状態を維持する。
【0032】
第二制御指令部507は、製造係数設定値(MV_a)に基づいて、空気分離装置100による製品ガスの製造量を維持あるいは増減するように空気分離装置100に指令する。第二制御指令部507は、空気分離装置100の制御部200へ指令をしてもよい。
図3の説明においては、製造係数設定値(MV_a)は「100%」であるため、第二制御指令部507は、現在の製造量を維持するように指令する。
【0033】
次に、図3を出発点として、需要が増加した場合の一例を図4に示す。
図4において、ガスホルダー圧力測定部P401で測定されたガスホルダー圧力側手値(PV_gh)が、「2.650」から「2.200」Mpaに減少している。この変動により、ガスホルダー圧力側手値(PV_gh)がバックアップ開始圧力設定値(SV_sbc、2.250MPa)より低くなったので、バックアップガスを供給する必要があり、バックアップ係数設定値(MV_bc)が100%に設定される。バックアップ係数設定値(MV_bc)は「100%」になったので、第一制御指令部506は、バックアップの供給を開始するように各制御要素に指令をする。
一方、ガスホルダー圧力測定値(PV_gh、2.200MPa)が製造用圧力設定値(SV_a、2.700MPa)より小さく、製造係数設定値(MV_a)は「100%」のままであるため、第二制御指令部507は、現在の製造量を維持するように指令する。
【0034】
次に、図4を出発点として、需要が減少した場合の一例を図5(バックアップガス供給停止)に示す。
図5において、供給先Dが「運転中」から「停止」に変動したことにより、総需要量(CPV_1)が「3000」に減少している。そして、第一圧力算出値(MV_1)は、流量設定値(SV_1)より総需要量(CPV_1)が大幅に小さくなったことで「-0.100」に設定される。そして、第一演算値(CPV_2)が「2.300」となり、これにより第二圧力算出値(MV_11)が「-0.100」から「-0.400」に変更され、バックアップ開始圧力設定値(SV_sbc)が「2.250」から「1.950」に変更される。そして、ガスホルダー圧力側手値(PV_gh)がバックアップ開始圧力設定値(SV_sbc)より大きくなったので、バックアップガスの供給の必要性がなくなり、バックアップ係数設定値(MV_bc)が「0%」に設定される。第一制御指令部506は、バックアップの供給を停止するように各制御要素に指令をする。
一方、ガスホルダー圧力測定値(PV_gh、2.200MPa)が製造用圧力設定値(SV_a、2.300MPa)より小さく、製造係数設定値(MV_a)は「100%」のままであるため、第二制御指令部507は、現在の製造量を維持するように指令する。
【0035】
次に、図5を出発点として、需要がさらに減少した場合の一例を図6(製造量の減)に示す。
図6において、ガスホルダー圧力測定値(PV_gh)が「2.200」から「2.500」に増加した。ガスホルダー圧力側手値(PV_gh)がバックアップ開始圧力設定値(SV_sbc)より大きいままなので、バックアップ係数設定値(MV_bc)は「0%」のままである。
一方、ガスホルダー圧力測定値(PV_gh、2.500MPa)が製造用圧力設定値(SV_a、2.300MPa)より大きくなったので、製造係数設定値(MV_a)が「100%」から「50%」に変更される。第二制御指令部507は、現在の製造量(総供給演算量CSV_ta)に製造係数設定値(MV_a、50%)を乗算して目標総供給演算量(MV_ta)を算出し、目標総供給演算量(MV_ta)になるように、空気分離装置100に指令する。
【0036】
(制御部の構成)
制御部200の構成を示す。制御部200は、製品ガス(高純度酸素ガス)の製造量を増減させる場合に、原料空気の供給量(導入量)を制御する。制御部200は、第一、第二制御指令部506、507から指令を受けて、空気分離装置100を制御できる。
例えば、制御部200は、圧縮機C1の吐出弁の開度を制御して圧縮機C1からの吐出量を制御することで、製品ガスの製造量を制御できる。吐出量は、流量測定部F1でモニターできる。
制御部200は、圧力設定部201、液面設定部202、圧力調整部280、導出量制御部290を有する。
圧力設定部201は、高圧塔2へ供給される原料空気の導入量を測定する流量測定部F1の測定データに応じて、低圧塔4の塔頂部43の圧力設定値を決定する。圧力調整部280は、圧力測定部P14で測定される圧力データが、この圧力設定値になるように、低圧塔4の塔頂部43から導出される廃ガスを大気放出する放出量をベント54で制御することで、低圧塔4の塔頂部43の圧力を調整する。
液面設定部202は、流量測定部F1の測定データに応じて、高圧塔2の塔底部21に貯留される酸素富化液の液面設定値(上限から下限値範囲)を決定する。導出量制御部290は、制御弁V2の開度を制御することで、液面レベル測定部211の測定データがこの液面設定値になるように、高圧塔2の塔底部21から低圧塔4の精留部42へ送られる酸素富化液の導出量を調整する。
【0037】
(別実施形態)
本実施形態1の供給量調整装置では、高純度酸素ガスについて説明したが、これに制限されず、高純度窒素ガス、アルゴンガスでも同様に供給量を調整できる
【符号の説明】
【0038】
1 主熱交換器
2 高圧塔
21 塔底部
22 精留部
23 塔頂部
3 凝縮器
4 低圧塔
41 塔底部
42 精留部
44 塔頂部
100 空気分離装置
101 バックアップタンク
400 プラント
500 供給量調整装置
501 総生産基準量取得部
502 総需要量算出部
503 過不足情報設定部
504 バックアップ係数設定部
505 製造係数設定部
506 第一制御指令部
507 第二制御指令部
C1 圧縮機
P401 ガスホルダー圧力測定部
図1
図2
図3
図4
図5
図6