IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 学校法人帝京大学の特許一覧

(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-03-01
(45)【発行日】2024-03-11
(54)【発明の名称】細胞の挙動の解析方法、およびその利用
(51)【国際特許分類】
   C12Q 1/04 20060101AFI20240304BHJP
   C12N 5/02 20060101ALI20240304BHJP
   C12N 5/071 20100101ALI20240304BHJP
   C12M 1/34 20060101ALI20240304BHJP
【FI】
C12Q1/04
C12N5/02
C12N5/071
C12M1/34 B
C12M1/34 D
【請求項の数】 15
(21)【出願番号】P 2020525761
(86)(22)【出願日】2019-06-19
(86)【国際出願番号】 JP2019024225
(87)【国際公開番号】W WO2019244917
(87)【国際公開日】2019-12-26
【審査請求日】2022-06-16
(31)【優先権主張番号】P 2018116303
(32)【優先日】2018-06-19
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】399086263
【氏名又は名称】学校法人帝京大学
(74)【代理人】
【識別番号】110000109
【氏名又は名称】弁理士法人特許事務所サイクス
(72)【発明者】
【氏名】古徳 純一
(72)【発明者】
【氏名】弘瀬 拓矢
(72)【発明者】
【氏名】難波 大輔
(72)【発明者】
【氏名】西村 栄美
【審査官】田ノ上 拓自
(56)【参考文献】
【文献】特開2007-303886(JP,A)
【文献】樋口知之,粒子フィルタ,電子情報通信学会誌,2005年12月,Vol.88, No.12,p.989-994
【文献】Medical Image Analysis,2008年06月18日,Vol.12,p.546-566
【文献】Conf. Proc. IEEE Eng. Med.Biol. Soc.,2017年07月,p.1986-1989
【文献】Applied Optics,2016年01月20日,Vol.55, No.3,p.A86-A94
【文献】Journal of Microscopy,2014年,Vol.253, Issue 1,p.65-78
【文献】ICASSP (IEEE),2015年,p.942-946
【文献】J. Cell Biol.,2015年04月20日,Vol.209, No.2,p.305-315
(58)【調査した分野】(Int.Cl.,DB名)
C12Q 1/00-3/00
C12M 1/00-3/10
C12N 5/02
C12N 5/07
JSTPlus/JMEDPlus/JST7580(JDreamIII)
CAplus/MEDLINE/EMBASE/BIOSIS(STN)
(57)【特許請求の範囲】
【請求項1】
タイムラプス画像のフレーム毎に、複数の細胞の位置を検出するが、このときフレームから抽出された候補領域が細胞領域であるか否かを、細胞核の画像データを含む辞書を用いて判別する、検出ステップ;
各々の細胞を、予測位置から一定の距離内にある最近傍の細胞の位置を観測データとする状態空間モデルを用いて追跡する、追跡ステップ;および
追跡ステップから得られる追跡情報に基づき、各々の細胞の速度情報を算出する、算出ステップ
を含む、細胞の挙動解析方法。
【請求項2】
タイムラプス画像のフレーム毎に、複数の細胞の位置を検出するが、このときフレームから抽出された候補領域が細胞領域であるか否かを、細胞核の画像データを含む辞書を用いて判別する、検出ステップ;
各々の細胞の位置を、予測位置から一定の距離内にある最近傍の細胞の位置を観測データとする状態空間モデルを用いて追跡する、追跡ステップ;および
追跡ステップから得られる追跡情報に基づき、各々の細胞の速度情報を算出する、算出ステップ
を含む、細胞の評価方法。
【請求項3】
追跡ステップが、前方にあり、かつ予測位置から一定の距離内にある最近傍の細胞の位置を観測データとするものである、請求項1または2に記載の方法。
【請求項4】
判別が、深層学習を用いて行われる、請求項3に記載の方法。
【請求項5】
追跡ステップにおいて、予測位置から一定の距離内に細胞が見つからない場合には、欠測とみなす、請求項1~4のいずれか1項に記載の方法。
【請求項6】
細胞が、幹細胞である、請求項1~5のいずれか1項に記載の方法。
【請求項7】
タイムラプス画像が、2~15分間ごとに撮像されたものである、請求項6に記載の方法。
【請求項8】
細胞治療用の培養組織の品質評価のために使用される、請求項1~7のいずれか1項に記載の方法。
【請求項9】
培養組織の製造方法であって:
対象から得た細胞を培養し、移植用の培養組織を作製する細胞培養ステップ;および
培養組織に含まれる細胞の移動情報を指標として、作製される培養組織を評価する、評価ステップ
を含み、評価ステップが、
培養組織の全部または一部のタイムラプス画像のフレーム毎に、複数の細胞の位置を検出するが、このときフレームから抽出された候補領域が細胞領域であるか否かを、細胞核の画像データを含む辞書を用いて判別する、検出ステップ;
各々の細胞を、前時刻のフレームの細胞の位置を現時刻におけるフレームの細胞の予測位置とし、予測位置から一定の距離内にある最近傍の細胞の位置を観測データとするカルマンフィルタを用いて追跡する、追跡ステップ;および
追跡ステップから得られる追跡情報に基づき、各々の細胞の速度情報を算出する、算出ステップ
を含む、製造方法。
【請求項10】
培養組織が、培養表皮、培養角膜上皮、または培養軟骨である、請求項9に記載の製造方法。
【請求項11】
タイムラプス画像のフレーム毎に、複数の細胞の位置を検出するが、このときフレームから抽出された候補領域が細胞領域であるか否かを、細胞核の画像データを含む辞書を用いて判別する、検出手段;
各々の細胞の位置を、予測位置から一定の距離内にある最近傍の細胞を観測データとする状態空間モデルを用いて推定する、推定手段;
各時刻における各々の細胞の推定位置を記憶する、記憶手段;および
追跡ステップから得られる追跡情報に基づき、各々の細胞の速度情報を算出する、算出ステップ
を具備する、細胞挙動解析装置。
【請求項12】
タイムラプス画像のフレーム毎に、複数の細胞の位置を検出するが、このときフレームから抽出された候補領域が細胞領域であるか否かを、細胞核の画像データを含む辞書を用いて判別する、検出手段;および
各々の細胞の位置を、予測位置から一定の距離内にある最近傍の細胞を観測データとする状態空間モデルを用いて推定する、推定手段;
各時刻における各々の細胞の推定位置を記憶する、記憶手段;および
記憶手段に記憶される各時刻における推定位置に基づき、各々の細胞の速度情報を算出する、算出手段
を具備する、細胞評価装置。
【請求項13】
コンピュータに対し、
タイムラプス画像のフレーム毎に、複数の細胞の位置を検出するが、このときフレームから抽出された候補領域が細胞領域であるか否かを、細胞核の画像データを含む辞書を用いて判別する、検出ステップ;
各々の細胞を、予測位置から一定の距離内にある最近傍の細胞の位置を観測データとする状態空間モデルを用いて追跡する、追跡ステップ;および
追跡ステップから得られる追跡情報に基づき、各々の細胞の速度情報を算出する、算出ステップ
を実行させる、細胞の挙動解析のためのプログラム。
【請求項14】
コンピュータに対し、
タイムラプス画像のフレーム毎に、複数の細胞の位置を検出するが、このときフレームから抽出された候補領域が細胞領域であるか否かを、細胞核の画像データを含む辞書を用いて判別する、検出ステップ;
各々の細胞の位置を、予測位置から一定の距離内にある最近傍の細胞の位置を観測データとする状態空間モデルを用いて追跡する、追跡ステップ;および
追跡ステップから得られる位置情報に基づき、各々の細胞の移動速度および移動方向を算出する、算出ステップ
を実行させる、細胞の評価のためのプログラム。
【請求項15】
下を含む、システム:
採取した細胞を培養し、培養組織を製造するための手段
培養中の細胞組織または製造された培養組織について、品質評価を行うための手段であって、
細胞組織または培養組織の全部または一部のタイムラプス画像のフレーム毎に、複数の細胞の位置を検出するが、このときフレームから抽出された候補領域が細胞領域であるか否かを、細胞核の画像データを含む辞書を用いて判別し、
各々の細胞を、前時刻のフレームの細胞の位置を現時刻におけるフレームの細胞の予測位置とし、予測位置から一定の距離内にある最近傍の細胞の位置を観測データとするカルマンフィルタを用いて追跡し、
追跡ステップから得られる追跡情報に基づき、各々の細胞の速度情報を算出する、ための手段
品質評価の結果に基づき、培養組織を選択するための手段
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、細胞の挙動の解析方法に関する。より詳細には、複数の細胞を同時にトラッキングし、各々の細胞の移動速度を自動的に測定する方法に関する。本発明の方法は幹細胞の品質評価のために用いることができ、例えば、再生医療等の分野で有用である。
【背景技術】
【0002】
正常な皮膚から増殖能の高い表皮角化細胞を得て、培養によりシート状の培養表皮を調製し、患者の皮膚損傷部位に移植する培養表皮移植技術が開発されている。再生医療に用いられるヒト表皮角化細胞の培養系において、培養状態や増殖能の高い細胞の含有率の評価は重要である。また、移植することを目的に培養された表皮は、医療行為である臓器移植の場合とは異なり、製品としての品質管理が求められる。
【0003】
ヒト表皮角化細胞は培養中の条件変化によって、容易に増殖能力を失う。培養やシートの作製には、熟練した技術者に頼る部分が多く、産業化の大きな妨げの一つになっている。また移植した表皮シートが生着し、長期間機能するには、角化幹細胞が含まれていなければならず、その同定は容易ではない。
【0004】
一方、培養中の細胞の動態を、一定の時間間隔ごとに撮影した画像に基づいて追跡を行い、挙動を解析する方法やそのための自動化システムが検討されてきており、培養細胞特有の事情に考慮し、種々の検討がされている。
【0005】
例えば、特許文献1は、細胞密度が高い条件下において、細胞同士がくっ付き、細胞の境界線が曖昧になるため、自動追跡結果がエラーデータを含む可能性が高まるとの課題を解決するために、非侵襲画像で、細胞の高密度条件下においても、個々の細胞を高い精度で自動追跡可能な装置として、 タイムラプス画像のフレームごとに、前記タイムラプス画像内の個々の細胞の細胞候補領域を、多くの過検出は含まれるが未検出は殆ど含まれないように検出する細胞候補領域検出手段と、 時系列的に連続する2つの前記フレームについて、前フレームの細胞領域と検出対象フレームの前記細胞候補領域との対応付けの仮説を抽出する仮説抽出手段と、前記仮説抽出手段により抽出された前記仮説の尤度を算出する尤度算出手段と、前記尤度算出手段により算出された前記尤度に基づいて、最適な前記仮説を特定する仮説特定手段と、前記仮説特定手段により特定された前記仮説に含まれる前記細胞候補領域を前記細胞領域とする細胞領域特定手段と、前記細胞領域特定手段により特定された前記細胞領域の位置情報を含む細胞領域情報が時系列順に格納される追跡結果データを記憶する記憶手段と、を具備することを特徴とする細胞挙動解析装置を提案する。
【0006】
特許文献2は、種々のタイミングにおける細胞の状態を容易に把握することが可能な細胞管理システムとして、第1のタイミングにて、評価対象としての複数の細胞から構成される細胞群である対象細胞群が撮像されることによって画像化された対象画像のデータを対象画像データとして時系列に沿って複数取得するとともに、当該第1のタイミングと異なる第2のタイミングにて前記対象細胞群又は当該対象細胞群から派生した対象細胞群の画像データを時系列に沿って複数取得する取得手段と、前記タイミング毎に、各タイミングにおける複数の対象画像データについて所定の画像解析を実行することによって画像化された前記対象細胞群に属する複数の細胞をそれぞれ特定し、当該特定した各細胞を時系列に解析することによって当該各細胞の挙動を検出する検出手段と、前記タイミング毎に、前記検出された各対象細胞群の各細胞の挙動に基づいて、各タイミングの前記対象細胞群における細胞の挙動指標を示す細胞挙動指標を算出する算出手段と、前記算出された各タイミングの対象細胞群における細胞挙動指標を比較するための所定の演算を実行する比較手段と、前記所定の演算によって算出された算出結果、及び、当該算出結果に基づく所与の情報の少なくともいずれか一方を通知する通知手段と、を備えることを特徴とする、細胞管理システムを提案する。
【0007】
特許文献3は、培養液内の細胞塊の粒径分布又は粒子数などの細胞培養に関する目標項目を非侵襲かつ的確に推定すること、及び、その結果、品質管理又はその生産管理を安価にかつ的確に行うことが可能な培養液の培養状態解析システムとして、細胞塊を含む培養液である検体であって培養に関する目標項目が既知で、かつ、当該目標項目が異なる複数の検体のそれぞれについて、当該目標項目の値と、前記培養液を有する容器内の一部の領域である画像化された特定領域における前記細胞塊の特徴量と、を含む情報を、基底情報として、予め記録手段に登録する登録手段と、撮像装置から、推定対象の培養液を有する前記容器内が画像化された対象画像を対象画像データとして取得する取得手段と、前記取得された対象画像データの対象画像に対して所定の画像解析を実行し、当該対象画像に画像化されている複数の粒子から構成される粒子群から、合焦点の粒子を、前記推定対象の特定領域に存在する細胞塊を示す合焦点粒子として、抽出する抽出手段と、前記対象画像に対して所定の画像解析を実行し、前記抽出された合焦点粒子に対する前記特徴量を検出する検出手段と、前記登録されている各基底情報における前記細胞塊の特徴量と前記検出された細胞塊としての合焦点粒子の特徴量とに基づいて、所定の演算を実行し、前記推定対象に含まれる各基底情報の混合比を推定する推定手段と、前記推定された混合比と、前記予め登録されている各基底情報の目標項目の値と、に基づいて、所定の演算を実行し、前記推定対象における前記目標項目を算出する算出手段と、を備えることを特徴とする、培養液の培養状態解析システムを提案する。
【0008】
また非特許文献1は、タイムラプス位相差顕微鏡を使用して観察された何千もの細胞を同時に追跡および分析できる、完全自動化されたマルチターゲット追跡システムについて報告する。このシステムは高速幾何学的アクティブ輪郭追跡装置を利用するものであり、このシステムにより、さまざまな細胞集団について、86.9~92.5%の追跡精度を達成できたことが報告されている。非特許文献2は、細胞内の動的なプロセスの分析のために重要な、粒子追跡に関するものであり、多数の個々の粒子の追跡のための様々な自動計算法が紹介され、比較されている。
【0009】
また本発明者らは、幹細胞のコロニー内の細胞の動態が、そのコロニー内の細胞の幹細胞性と相関があることに基づき、対象から得た細胞を培養系において評価する方法であって、培養系における該細胞に由来するコロニー内の複数の細胞の移動速度を指標に、増殖性細胞から構成されるコロニーの形成能を評価する工程を含み、複数の細胞の移動速度が、複数の細胞の平均移動速度であり、複数の細胞の平均移動速度が、インターバル撮像された2枚のコロニー画像からコロニー内の各ピクセルにおける輝度差の絶対値を算出し、コロニー内の輝度差の絶対値の総量をコロニーの面積値で除したモーション・インデックスで代替される、方法を提案した(非特許文献3、特許文献4)。さらにコロニー内の細胞の移動速度算出の自動化を目的に、細胞の画像を撮影する撮影ステップと、撮影ステップにおいて撮影された細胞撮影画像から解析用画像を形成する領域判別ステップと、異なる時間に撮影された細胞撮影画像に基づいて形成された解析用画像を比較して、コロニーの移動速度を算出する移動速度算出ステップと、を備えており、前記領域判別ステップでは、細胞撮影画像を複数のブロックに分割して、各ブロックにおける輝度値の分散を算出し、各ブロックにおける輝度値の分散に基づいて、各ブロックの輝度値を二値化してコロニー領域を特定し、細胞撮影画像におけるコロニー領域に対応するブロック以外のブロックを背景とする解析用画像を形成し、前記移動速度算出ステップでは、異なる時間に撮影された細胞撮影画像の解析用画像に基づいて、コロニー領域内に位置する各ブロックに対応する細胞の移動速度および移動方向を算出することを特徴とする細胞の評価方法を提案している(特許文献5)。
【先行技術文献】
【特許文献】
【0010】
【文献】特開2014-85950号公報(特許第6090770号)
【文献】特開2017-23055号公報
【文献】特開2017-140006号公報
【文献】特開2014-83042号公報(特許第6218208号)
【文献】特開2018-19632号公報
【非特許文献】
【0011】
【文献】Med Image Anal. 2008; 12(5):546-66
【文献】Nature Methods. 2014; 11:281-289
【文献】J Cell Biol. 2015; 209(2):305-15
【発明の概要】
【発明が解決しようとする課題】
【0012】
上述のように、既に細胞の移動速度が幹細胞性と相関があることが見出されてはいたが、問題は、移動速度の測定が、実際には人間の手によらざるを得ず、現場への負担が非常に大きいことであった。特に既存の細胞の自動認識技術では、ヒト表皮角化細胞のように細胞が密集したコロニーを作る場合に、各々の細胞を高い精度で自動追跡し、各々の細胞の挙動を精度よく解析することは達成できていなかった。
【0013】
また、非特許文献1、2で報告されている方法は、細胞群が比較的疎な状態であるなどの個々の細胞の輪郭が明瞭な場合以外には、利用できないものであった。
【課題を解決するための手段】
【0014】
そこで、本発明者らは、ヒト表皮角化細胞一つ一つを追跡し、速度を自動的に測定できる数理モデルの構築と計算機への実装を種々検討した。そして細胞検出には実際の細胞から取得した正解画像の辞書を利用し、かつ追跡においては最近傍細胞を観測データとする状態空間モデルを利用すること等を試みた。そして、その方法により、自動的に複数の細胞の移動速度を算出でき、かつ自動的に移動速度の大きい、すなわち増殖活性の高い細胞を特定できることを確認し、本発明を完成した。
【0015】
本発明は、以下を提供する。
[1] タイムラプス画像のフレーム毎に、複数の細胞の位置を検出するが、このときフレームから抽出された候補領域が細胞領域であるか否かを、細胞核の画像データを含む辞書を用いて判別する、検出ステップ;および
各々の細胞を、予測位置から一定の距離内にある最近傍の細胞の位置を観測データとする状態空間モデルを用いて追跡する、追跡ステップ
を含む、細胞の挙動解析方法。
[2] タイムラプス画像のフレーム毎に、複数の細胞の位置を検出するが、このときフレームから抽出された候補領域が細胞領域であるか否かを、細胞核の画像データを含む辞書を用いて判別する、検出ステップ;
各々の細胞の位置を、予測位置から一定の距離内にある最近傍の細胞の位置を観測データとする状態空間モデルを用いて追跡する、追跡ステップ;および
追跡ステップから得られる追跡情報に基づき、各々の細胞の速度情報を算出する、算出ステップ
を含む、細胞の評価方法。
[3] 追跡ステップが、前方にあり、かつ予測位置から一定の距離内にある最近傍の細胞の位置を観測データとするものである、1または2に記載の方法。
[4] 判別が、深層学習を用いて行われる、3に記載の方法。
[5] 追跡ステップにおいて、予測位置から一定の距離内に細胞が見つからない場合には、欠測とみなす、1~4のいずれか1項に記載の方法。
[6] 細胞が、幹細胞である、1~5のいずれか1項に記載の方法。
[7] 前時刻と現時刻との間隔が、2~15分間である、6に記載の方法。
[8] 細胞治療用の培養組織の品質評価のために使用される、1~7のいずれか1項に記載の方法。
【0016】
[9] 培養組織の製造方法であって:
対象から得た細胞を培養し、移植用の培養組織を作製する細胞培養ステップ;および
培養組織に含まれる細胞の移動情報を指標として、作製される培養組織を評価する、評価ステップ
を含み、評価ステップが、
培養組織の全部または一部のタイムラプス画像のフレーム毎に、複数の細胞の位置を検出する、検出ステップ;
各々の細胞を、前時刻のフレームの細胞の位置を現時刻におけるフレームの細胞の予測位置とし、予測位置から一定の距離内にある最近傍の細胞の位置を観測データとするカルマンフィルタを用いて追跡する、追跡ステップ;および
追跡ステップから得られる追跡情報に基づき、各々の細胞の移動情報を算出する、算出ステップ
を含む、製造方法。
[10] 培養組織が、培養表皮、培養角膜上皮、または培養軟骨である、9に記載の製造方法。
【0017】
[11] タイムラプス画像のフレーム毎に、複数の細胞の位置を検出するが、このときフレームから抽出された候補領域が細胞領域であるか否かを、細胞核の画像データを含む辞書を用いて判別する、検出手段;および
各々の細胞の位置を、予測位置から一定の距離内にある最近傍の細胞を観測データとする状態空間モデルを用いて推定する、推定手段;および
各時刻における各々の細胞の推定位置を記憶する、記憶手段
を具備する、細胞挙動解析装置。
[12] タイムラプス画像のフレーム毎に、複数の細胞の位置を検出するが、このときフレームから抽出された候補領域が細胞領域であるか否かを、細胞核の画像データを含む辞書を用いて判別する、検出手段;および
各々の細胞の位置を、予測位置から一定の距離内にある最近傍の細胞を観測データとする状態空間モデルを用いて推定する、推定手段;
各時刻における各々の細胞の推定位置を記憶する、記憶手段;および
記憶手段に記憶される各時刻における推定位置に基づき、各々の細胞の移動情報を算出する、算出手段
を具備する、細胞評価装置。
【0018】
[13] コンピュータに対し、
タイムラプス画像のフレーム毎に、複数の細胞の位置を検出するが、このときフレームから抽出された候補領域が細胞領域であるか否かを、細胞核の画像データを含む辞書を用いて判別する、検出ステップ;および
各々の細胞を、予測位置から一定の距離内にある最近傍の細胞の位置を観測データとする状態空間モデルを用いて追跡する、追跡ステップ
を実行させる、細胞の挙動解析のためのプログラム。
[14] コンピュータに対し、
タイムラプス画像のフレーム毎に、複数の細胞の位置を検出するが、このときフレームから抽出された候補領域が細胞領域であるか否かを、細胞核の画像データを含む辞書を用いて判別する、検出ステップ;
各々の細胞の位置を、予測位置から一定の距離内にある最近傍の細胞の位置を観測データとする状態空間モデルを用いて追跡する、追跡ステップ;および
追跡ステップから得られる位置情報に基づき、各々の細胞の移動速度および移動方向を算出する、算出ステップ
を実行させる、細胞の評価のためのプログラム。
【0019】
[15] 以下の工程を含む、培養組織を対象に提供するシステム:
採取した細胞を培養し、培養組織を製造する工程;
培養中の細胞組織または製造された培養組織について、品質評価を行う工程;
品質評価の結果に基づき、培養組織を選択する工程;
選択された品質評価済みの培養組織を、対象に提供する工程。
【0020】
また本発明は、以下を提供する。
[1] タイムラプス画像のフレーム毎に、複数の細胞の位置を検出する、検出ステップ;および
各々の細胞を、予測位置から一定の距離内にある最近傍の細胞の位置を観測データとする状態空間モデルを用いて追跡する、追跡ステップ
を含む、細胞の挙動解析方法。
[2] タイムラプス画像のフレーム毎に、複数の細胞の位置を検出する、検出ステップ;
各々の細胞の位置を、予測位置から一定の距離内にある最近傍の細胞の位置を観測データとする状態空間モデルを用いて追跡する、追跡ステップ;および
追跡ステップから得られる追跡情報に基づき、各々の細胞の速度情報を算出する、算出ステップ
を含む、細胞の評価方法。
[3] 検出ステップが、フレームから抽出された候補領域が細胞領域であるか否かを辞書を用いて判別することを含む、1または2に記載の方法。
[4] 判別が、深層学習を用いて 行われる、3に記載の方法。
[5] 辞書が、細胞核の画像データを含む、3または4に記載の方法。
[6] 追跡ステップにおいて、予測位置から一定の距離内に細胞が見つからない場合には、欠測とみなす、1~5のいずれか1項に記載の方法。
[7] 細胞が、幹細胞である、1~6のいずれか1項に記載の方法。
[8] 前時刻と現時刻との間隔が、2~15分間である、7に記載の方法。
【0021】
[9] 培養組織の製造方法であって:
対象から得た細胞を培養し、移植用の培養組織を作製する細胞培養ステップ;および
培養組織に含まれる細胞の移動情報を指標として、作製される培養組織を評価する、評価ステップ
を含み、評価ステップが、
培養組織の全部または一部のタイムラプス画像のフレーム毎に、複数の細胞の位置を検出する、検出ステップ;
各々の細胞を、前時刻のフレームの細胞の位置を現時刻におけるフレームの細胞の予測位置とし、予測位置から一定の距離内にある最近傍の細胞の位置を観測データとする状態空間モデルを用いて追跡する、追跡ステップ;および
追跡ステップから得られる追跡情報に基づき、各々の細胞の移動情報を算出する、算出ステップ
を含む、製造方法。
[10] 培養組織が、培養表皮、培養角膜上皮、または培養軟骨である、9に記載の製造方法。
【0022】
[11] タイムラプス画像のフレーム毎に、複数の細胞の位置を検出する、検出手段;および
各々の細胞の位置を、予測位置から一定の距離内にある最近傍の細胞を観測データとする状態空間モデルを用いて推定する、推定手段;および
各時刻における各々の細胞の推定位置を記憶する、記憶手段
を具備する、細胞挙動解析装置。
[12] タイムラプス画像のフレーム毎に、複数の細胞の位置を検出する、検出手段;および
各々の細胞の位置を、予測位置から一定の距離内にある最近傍の細胞を観測データとする状態空間モデルを用いて推定する、推定手段;
各時刻における各々の細胞の推定位置を記憶する、記憶手段;および
記憶手段に記憶される各時刻における推定位置に基づき、各々の細胞の移動情報を算出する、算出手段
を具備する、細胞評価装置。
【0023】
[13] コンピュータに対し、
タイムラプス画像のフレーム毎に、複数の細胞の位置を検出する、検出ステップ;および
各々の細胞を、予測位置から一定の距離内にある最近傍の細胞の位置を観測データとする状態空間モデルを用いて追跡する、追跡ステップ
を実行させる、細胞の挙動解析のためのプログラム。
[14] コンピュータに対し、
タイムラプス画像のフレーム毎に、複数の細胞の位置を検出する、検出ステップ;
各々の細胞の位置を、予測位置から一定の距離内にある最近傍の細胞の位置を観測データとする状態空間モデルを用いて追跡する、追跡ステップ;および
追跡ステップから得られる位置情報に基づき、各々の細胞の移動速度および移動方向を算出する、算出ステップ
を実行させる、細胞の評価のためのプログラム。
【発明の効果】
【0024】
連続的に細胞をモニタリングして細胞ごとの速度ベクトルを得ることで、特に培養条件が低栄養や低温などに変化した場合も、人が現場に張り付くことなく即座にその変化を察知することができる。また不適切な培養により、増殖能力が著しく低下した表皮角化細胞を検出することも可能である。逆に角化幹細胞を同定することで、移植するにふさわしい角化細胞を検出することも可能となる。さらに、この方法は、他の細胞種にも応用可能であり、細胞を用いた再生医療の基盤技術に成りえるし、培養条件の最適化を行う品質管理と、培養中で表皮角化幹細胞を非侵襲的に同定することができるようになる。
【0025】
細胞の核の形状を示すデータ群を利用することにより、細胞の境界が明瞭でない細胞群についても、細胞毎の挙動を解析できる。
【図面の簡単な説明】
【0026】
図1】細胞辞書の例。細胞核を矩形で囲った辞書(左)と細胞核でないものを矩形で囲った辞書(右)。
図2】分裂期の細胞核の辞書画像
図3-1】3種類(DCN1,DCN2,DCN3)の深層畳み込みネットワークの概念図
図3-2】SSDのモデル概念図。SSDは畳み込み層を多層に積み重ねた、ネットワーク構造を持つ物体検出アルゴリズムである。
図3-3】2種類(CapsNet1, CapsNet2)のカプセルネットワークの概念図
図4-1】今回の細胞判別に用いた判別器の概念図
図4-2】カスケーディング細胞検出器の概念図。カスケーディング細胞検出器は図3-2と図3-3にそれぞれ示したSSDとCapsNetを多段階的に積み重ねた構造からなる。
図5-1】細胞の位置の検出の例。一段目の候補領域の抽出(左)と細胞領域の決定(右)。候補領域は矩形で示した領域である。右の図の矩形は2段階目で決定された領域である。
図5-2】SSDに入力する領域を示した図。画像を各領域256×256のサイズで16分割した例と、各領域341×341のサイズで9分割した例を表す。2種類のサイズで分割することにより、見落とす領域が無いように検出を行った。
図6】カスケーディング細胞検出器の検出フローチャート。矢印の上の数字は、ある顕微鏡画像に対して、その方向に進んだ候補領域の数である。
図7】細胞トラッキングの例。時刻tの細胞の予測位置(白点)と時刻tにおける細胞の位置(星)。円は、円内に入っている最近傍の星の位置が観測データとなるような円である。この例では、下の円では観測されているが、上の円は欠測となっている。
図8】細胞トラッキングの例。一つの細胞に注目して、連続する時間のトラッキング領域を重ねた画像。線が、領域の中心をつないだ細胞の軌跡となる。
図9】細胞トラッキングの例
図10】細胞の時空図の例。時間方向を縦軸にとって、細胞の軌跡を描いたもの。
図11】速度ヒストグラムの例
図12】細胞挙動解析の一実施態様の流れを示すフローチャート
図13】細胞治療のための新規システムの例。
図14】培養条件のモニタリングの例
図15】培養条件のモニタリングの例
図16】幹細胞性の評価の例
図17】ES細胞の検出結果の例
図18】ES細胞のトラッキングの例
図19】ES細胞の速度ヒストグラムの例
【発明を実施するための形態】
【0027】
本発明の細胞の挙動解析方法を、図1~12を参照しながら説明する。
【0028】
[検出ステップ]
このステップにおいては、一定時間おきに取得した、複数の細胞を含む一群の細胞(例えば一つのコロニー)のタイムラプス画像の各々のフレーム(各々の時間)に対して、細胞候補領域を抽出し、細胞領域であるか否かを判別することにより、複数の細胞位置を決定する。検出ステップの役割は、複数の細胞についての細胞追跡の初期位置の決定と、時間毎の状態空間モデルにおける観測データの生成である。典型的には、検出ステップでは、タイムラプス画像のすべての画像に対して、カスケード型の識別器を用いて判別を行って細胞を検出し、そして初期位置と各々の時刻での細胞位置を決定し、記憶する(図12、S2)。
【0029】
タイムラプス撮像の間隔は、対象とする細胞の種類に応じ、適宜定めることができるが、後述するように細胞の移動速度を指標に細胞の品質を評価しようとする場合は、通常の培養条件下(例えば、37℃、5~10%CO2下)の細胞に対して行うことが好ましく、また細胞の移動速度を考慮して間隔を定めることができる。細胞の移動速度は通常遅く、数μm/h~数十μm/hであるので、1分以上の間隔で撮像することが適しており、また本発明の方法で適切に追跡するためには、細胞が約1個分(例えば、哺乳類細胞であれば6~20μm)移動するのに必要な時間より短い時間ごと(例えば、2~15分ごと、好ましくは1~10分ごと、より具体的には、3~7分ごと)に撮像することが適している。
【0030】
タイムラプス画像は細胞画像処理が施されていてもよい。細胞画像処理とは、細胞の構造を際立たせるために行われる画像処理であり、例えば、ヒストグラム平滑化処理等である。
【0031】
<辞書作成>
細胞候補領域の抽出や細胞領域であるかの判別にはデータセット(辞書)を用いる。辞書は、実際の培養系から撮像された画像から、各々の細胞と認識される領域の全部または特徴のある一部から生成された画像データを集めたものである。ここで選択される領域は、複数の細胞の挙動の解析に際し、細胞同士が接着している等の理由から各々の細胞の外延が不明確となる場合を考慮し、解析の対象となる細胞が真核細胞である場合には、細胞の種類に拠らず大きさや形状における差異が少ない細胞核の部分から生成されることが好ましい。図1として、人の目で細胞核と認識される部分を各々矩形で囲った位相差顕微鏡画像(左)と、細胞核でないと認識される部分を各々矩形で囲ったもの位相差顕微鏡画像(右)を示す。
【0032】
辞書は、実際に撮像された画像(元画像)以外に、元画像を拡張処理した画像を含んでよい。拡張処理は、例えば上下反転、左右反転、ガンマ補正、解像度の変更、回転またはこれらを組み合わせにより行うことができる。辞書データの拡張は、後述する深層学習の各段階において行ってもよい。
【0033】
細胞核の辞書は、細胞周期の特別な段階にある細胞核の画像を含むように構成してもよい。幹細胞のような増殖能力の高い細胞を対象とする場合は、そのようにすることが好ましい。細胞周期は、間期とM期に分けられ、間期はさらにG1期、S期、G2期に分けられる。M期(Mitotic phase)は、分裂期と称されることもある。図2として、分裂期の細胞の核の辞書画像の例を示した。
【0034】
なお、本発明において細胞核の部分の画像から生成した辞書を用いる場合は、細胞とは、細胞核を意味する場合がある。細胞核の辞書を用いる場合、細胞の候補領域とは、細胞核の候補領域の意であり、細胞領域とは、細胞核の領域の意である。
【0035】
<細胞検出のための学習>
各々のタイムラプス画像において細胞の候補領域を抽出するため、物体検出のアルゴリズムとして深層学習のモデルを利用することができる。具体的には、最近提案されたSSD(本明細書の後方にリスト化された文献[2]参照)と呼ばれる深層学習のモデルが利用できる(1段目SSD)。この学習に際して、辞書のデータ拡張を行ってもよい。
【0036】
1段階目のSSDで抽出された候補領域には、実際には、細胞でない領域も多数含まれている可能性がある。そこで、これらの候補領域から、細胞領域を高精度で判別するために、VGG16(文献[3]参照)をベースにした2クラス分類の深層畳み込みネットワークを用いることができる。この学習に際して、辞書のデータ拡張を行ってもよい。図3には3種類(DCN1,DCN2,DCN3)の各畳み込みネットワークの概念図を示した。これらのモデルを多段階に組み合わせたカスケーディングネットワーク図4に示した。
【0037】
具体的な流れを図4にしたがって説明する。まず1枚のコロニーの画像(Cell colony image)を入力し、画像内から、SSDによって、複数の細胞の候補領域(Cell Candidates)をピックアップする。各々の候補領域の画像をDCN1で判別し、細胞と判定されたものは、細胞群(Cell #1)に振り分ける。DCN1で細胞と判定されなかった画像は、DCN2で判別が行われる。DCN2で細胞と判別されれば、細胞群(Cell boxes)に振り分けられる。DCN2でも細胞と判定されなかったものは、さらにDCN3で判別が行われる。細胞と判定されたものは細胞群に振り分けられる。DCN3でも細胞と判定されなかったものは、細胞ではないとみなされる(Cell region negative)。
【0038】
3種類(DCN1,DCN2,DCN3)の各畳み込みネットワークは、独立に学習させることができる。また、この学習に際しては、辞書画像のデータ拡張を行ってもよい。最適化アルゴリズムとして、Adam(文献[4])を用い、カスケーディングネットワークの構築は、chainer(文献[5])を用いることができる。
【0039】
[追跡ステップ]
このステップでは、検出ステップで検出された複数の細胞各々について、追跡を行う。追跡においては、状態空間モデルを利用することができる。具体的には、時刻t(時刻tのフレーム)の細胞位置(検出された細胞の核を囲った矩形の中心の位置)と速度ベクトルから、時刻t+1における予測位置を算出する(図12、S2)。このような予測位置の算出を、複数の細胞各々について行う。なお、本発明において予測位置というときは、状態空間モデルで予測される予測位置のことを指す。予測位置は、前時刻の細胞の位置に前時刻における速度を足して、一定の乱数を擾乱として加えたものである。
【0040】
より具体的には、細胞を一つずつ追跡するためのアルゴリズムとして、以下に示す観測方程式と状態方程式で記述される線形の状態空間モデルを用いることができる。
【0041】
【数1】
【0042】
ここで、xtは状態ベクトルで、(xt, yt)は時刻tにおける細胞の座標、(ut, vt)は時刻tにおけるその細胞の速度ベクトルを表す。Fは遷移行列、Hは観測行列である。ztはxtに対応する出力ベクトルである。vt,wtはガウス白色雑音ベクトルを表している。この線形の状態空間モデルを、カルマンフィルタを用いて更新する。
【0043】
観測データは、次のように生成することができる。予測位置を中心とするあらかじめ定めた半径の円内に、細胞が存在するか否かを判別する(図12、S2)。細胞が存在した場合、予測位置に最も近い細胞の座標を観測データとする。円内に細胞が存在しない場合には、欠測とする(図12、S8)。
【0044】
下記では□で囲んだ細胞が時刻t+1における観測データとなる。
【0045】
【数2】
【0046】
図7は、連続する2つの時刻での、観測細胞の決定と欠測の例を示したものである。下側の円は、ある時刻における予測位置の観測範囲に細胞の位置が捉えられた例である。
【0047】
この円内の細胞位置を観測データとして(図12、S4)、カルマンフィルタのフィルタ分布を更新する(図12、S5)。
【0048】
一方、図7の上側の円は、観測範囲に座標が見つからなかった例で、この場合、欠測と見なして(図12、S8)、フィルタリングを行わずに次の時間ステップへと進む。
【0049】
円の大きさは、対象とする細胞に応じ、またタイムラプス撮像の間隔に応じ、適宜設定しうるが、後述するように細胞の移動速度を指標に細胞の品質を評価しようとする場合は、タイムラプス撮像の間隔を約3~7分とした上で、円の大きさを細胞の大きさ(例えば、哺乳類細胞であれば6~20μm)の、0.5~1.5倍に設定することができる。
【0050】
あるいは、一般状態空間モデルを利用することで、細胞を一つずつトラッキングするために構築された方法として、以下が提案できる。
【0051】
【数3】
ここで、xtは速度ベクトルで、
【数4】
(xt, yt)は時刻tにおける細胞の座標(vx,t, vy,t)は時刻tにおけるその細胞の速度ベクトル、(ax,t, ay,t)は時刻tにおける細胞の加速度を表す。また、ztはxtに対応する出力ベクトルである。vt,wtはノイズ成分を表している。この一般状態空間モデルを、アンサンブルカルマンフィルタを用いて更新する。
【0052】
アンサンブルカルマンフィルタによるトラッキングの概念図を図8に示す。このトラッキングの際のデータ生成では、はじめに、予測座標から、半径20ピクセル内の距離にある最近傍の細胞の座標を観測値の候補座標とし、もし、半径20ピクセル以内にない場合は、欠測とする。次に、観測の候補座標における速度ベクトルの単位ベクトル
【数5】
と、予測値の速度ベクトルの単位ベクトル
【数6】
の内積
【数7】
を計算し、条件
【数8】
を満たす場合は、この候補値をトラッキングにおける観測値とする。
【0053】
【数9】
【0054】
四角で囲んだ細胞が時刻t+1における観測細胞となる。もし、半径20ピクセル内にひとつも認識された細胞が観測されない場合は、欠測と見なす。
【0055】
追跡ステップにおいては、予測位置から一定の距離内にある最近傍の細胞の位置を観測データとする。このとき、予測位置から一定の距離内にある細胞のうち、時刻tにおける細胞の前方にある、最近傍の細胞の位置を観測データとすることが好ましい。前方にある細胞とは、単位速度ベクトルと単位予測位置ベクトルとの内積が正になる細胞を指す。そのような細胞が複数ある場合には、内積がもっとも1に近いものを選択することができる。
【0056】
図8に、このような原理で、一つ一つの細胞を独立に追跡した例を示す。図9に複数の各々について追跡した例を示す。また図10に、各細胞の軌跡を、高さ方向を時間軸とした三次元の軌跡としてプロットした例を示す。
【0057】
[算出ステップ、評価ステップ]
このステップでは、追跡ステップから得られる追跡情報に基づき、各々の細胞の速度情報(速度ベクトル、移動速度、移動方向、等)を算出する。得られた速度ベクトルのノルムを毎時間ごとに足し合わせて時間で割ると、その細胞についての平均の移動速度が求められる。複数の細胞の各々について平均移動速度を計算し、ヒストグラムを作成することにより、その細胞群を評価することができる。図11に、ヒストグラムの例を示した。
【0058】
[装置、プログラム]
本発明はまた、上述の細胞の挙動解析方法を実施するための細胞挙動解析装置、および上述の細胞の評価方法を実施するための細胞評価装置を提供する。
【0059】
細胞挙動解析装置は、具体的には、タイムラプス画像のフレーム毎に、複数の細胞を検出する細胞検出手段;および各々の細胞の位置を、予測位置から一定の距離内にある最近傍の細胞を観測データとする状態空間モデルを用いて推定する、推定手段;および各々の細胞の各時刻の推定位置を記憶する、記憶手段を具備する。また細胞評価装置はさらに、記憶手段に記憶される各時刻における推定位置に基づき、各々の細胞の移動情報を算出する、算出手段を具備する。
【0060】
上述した細胞挙動解析装置および細胞評価装置の機能を、コンピュータで実現するようにしても良い。その場合、各機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することによって実現しても良い。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信回線のように、短時間の間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含んでも良い。また上記プログラムは、前述した機能の一部を実現するためのものであっても良く、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであっても良い。
【0061】
[細胞の挙動解析方法の利用]
<細胞>
本発明の方法は、種々の細胞に対して用いることができる。真核細胞に対して好ましく適用することができ、中でも幹細胞を含む細胞群に対して、特に好ましく適用することができる。本発明において幹細胞というときは、特に記載した場合を除き、自己複製能力を有し、複数の細胞系譜へ分化する能力を有する細胞をいう。本発明でいう幹細胞には、表皮角化幹細胞、皮膚幹細胞、網膜幹細胞、網膜上皮幹細胞、軟骨幹細胞、毛包幹細胞、筋幹細胞、骨前駆細胞、脂肪前駆細胞、造血幹細胞、神経幹細胞、肝幹細胞、膵幹細胞、外胚葉系幹細胞、中胚葉系幹細胞、内胚葉系幹細胞、間葉系幹細胞、ES細胞、iPS細胞のほか、扁平重層上皮細胞(腫瘍細胞も含む。)、誘導された表皮角化幹細胞が含まれる。
【0062】
<培養組織の品質評価>
本発明の方法は、対象から得た細胞を培養系において、細胞の移動速度を指標に、細胞の増殖能を評価するために用いることができる。本発明者らは、培養ヒト表皮角化細胞培養系において、増殖性の高い細胞が作るコロニー、特に角化幹細胞の作るコロニー内で、細胞の平均移動速度が最大であることを見出し、またヒト表皮角化細胞の増殖能は移動速度と相関することを見出している(非特許文献1、特許文献4)。これまで、非侵襲的に培養条件や培養細胞を自動化して評価する方法は存在しなかった。しかしながら、一群の細胞の挙動解析に基づき、細胞を評価する本発明によれば、非侵襲的な自動化された評価が達成される。また従来の幹細胞の増殖性を維持する培養条件の管理等は、技術者の経験知に依拠したものであった。再生医療分野において、移植することを目的に培養された細胞は、いわゆる製品として品質管理が求められる。通常、移植用培養組織を調製するための細胞は、由来する個人により差があるであろうし、完成した細胞製品にはさまざまなバラツキを生じる可能性がある。培養組織の品質管理は、極めて重要である。しかしながら本発明の方法により、簡便で客観的に、培養条件や細胞を評価できる。また、技術者の熟練度に依存せずに、再生医療用細胞製品の品質管理を行うことができる。
【0063】
本発明で培養する細胞の由来に関し、対象というときは、特に記載した場合を除き、ヒトを含む動物生体を意味する。対象には、健常な対象のほか、培養組織の移植により治療されることが望ましい対象(患者)が含まれる。対象は、熱傷、褥瘡(床ずれ)、潰瘍、外傷等による皮膚欠損を有する対象、またはスティーブンス・ジョンソン症候群、水疱性角膜症、円錐角膜、角膜混濁、角膜潰瘍、角膜ヘルペス、角膜変性症(ジストロフィー)、化学傷/熱傷等による角膜に損傷を有する対象であり得る。対象が損傷された組織のほか、健常組織を有していれば、培養される細胞は、幹細胞を含む対象自身に由来する健常組織(例えば、表皮または角膜輪部)から得ることができる。
【0064】
本発明は、表皮角化細胞(表皮角化幹細胞を含む)およびそれから調製された培養組織(培養皮膚シート)に適用するのに特に有用である。本発明者らは、培養ヒト表皮角化細胞培養系において、増殖性の高い細胞が作るコロニー、特に角化幹細胞の作るコロニー内で、細胞の平均移動速度が最大であることを見出し、またヒト表皮角化細胞の増殖能は移動速度と相関することを見出している(非特許文献1、特許文献4)。本発明は、表皮角化細胞のほか、特に角膜上皮細胞、扁平重層上皮細胞(腫瘍細胞も含む。)のために有用である。なお本発明に関して、細胞について「増殖能」または「増殖性」があるいうときは、特に記載した場合を除き、その細胞がコロニーを形成することができ、かつ形成されたコロニーが増殖能の失われた細胞または増殖能が失われつつある細胞からなるものではなく、専らさらに増殖することができる能力を有する細胞からなるものである場合をいう。
【0065】
品質評価においては、必要に応じ、ある領域内の複数の細胞(例えば、2~100個の細胞)の各々について移動速度を求め、ヒストグラムを作成してもよく、またその領域の細胞の平均移動速度を求めてもよい。なお、ここでいう領域は、典型的には一の細胞に由来して形成されたコロニーからなる領域を指す。移動速度と増殖能との相関は、コロニー形成上有効な濃度で播種され、他のコロニーからは離れて形成された一のコロニー内の細胞の平均移動速度とそのコロニーをトリプシン処理して播種した系におけるターミナル・コロニーの出現率(%)との間で十分に確認されている。
【0066】
本発明の方法によれば、位相差顕微鏡、デジタルカメラ、本発明を基礎とした簡単な画像解析プログラムを組み合わせた評価法を確立することができる。
【0067】
本発明により、速度ヒストグラムや細胞移動速度(平均移動速度であってもよい。)により、細胞の評価、培養条件の評価、培養組織(製品)の評価等を行うことができるが、判定基準は、適宜定めることができる。予備的な試験をすることにより、基準となる値(「閾値」ということもある。)を定めてもよく、また対象となる培養系について細胞移動速度を求める際に、同時に対照系についても同様の操作を行い、対照系について得られた値との比較により、判定してもよい。
【0068】
なお、移動速度は、画像の解像度や露光時間、画像が8ビットか16ビットか等により、異なる値として算出されるものであるが、所定の培養条件で細胞を維持しつつ画像撮影を同一条件で行えば、種々の場合に共通に適用可能な判定基準を得られることが期待できる。
【0069】
<品質評価ステップを含む、培養組織の製造、および細胞治療>
本発明の別の態様においては、品質評価ステップを含む、培養組織の製造方法を提供する。本発明で「培養組織」というときは、特に記載した場合を除き、動物の細胞を動物体外で培養し、再構築させた組織モデルをいう。培養組織の例は、培養表皮、培養角膜上皮、培養軟骨である。培養組織は、自家培養組織を含む。
【0070】
本発明の製造方法により得られる培養組織は、治療を目的に、対象へ移植するために用いることができる。また本発明の製造方法により得られる培養組織は、動物や単純な培養細胞の代替となり得、種々の研究・実験に適用することができる。例えば、培養組織は、薬理試験、毒性試験等への適用が可能である。
【0071】
本発明の製造方法は、少なくとも、工程(1):対象から得た細胞を培養して培養組織を作製するステップ、および工程(2):対象から得た細胞を培養系において、評価する工程を少なくとも含む。工程(1)は、典型的には、受傷組織および健常組織を有する対象、すなわち患者の健常皮膚から得た皮膚角化細胞を培養し、受傷部位に移植するための自家培養皮膚を作製する工程であり、以下ではこの場合を例に説明することがあるが、当業者であれば、その説明を適宜改変して、患者以外の対象から得た皮膚角化細胞について実施される場合や、皮膚角化細胞以外の細胞について実施される場合にあてはめることができる。
【0072】
工程(1)として、皮膚角化細胞を培養する際は、表皮細胞の培養のための公知の方法を適用することができる。当業者であれば、細胞の種類に応じて、培養環境(培地、温度、CO2濃度、培養期間を含む。)を適宜設計できる。好ましい場合は、3T3細胞のようなフィーダー細胞による層の上で、対象となる細胞を培養してもよい。
【0073】
本発明の製造方法は、工程(1)および(2)以外に、対象から組織を得る工程、組織から目的の細胞を分離および/または純化する工程、得た細胞を適切な培養環境に播種する工程を含みうる。製造された培養組織を培養系から取り出す工程を含みうる。得られたシート状の細胞は、患者へ移植される。対象から組織を得る工程は、医療行為であり得るが、それ以外の工程は、医師以外の者により実施することができる。
【0074】
本発明の工程(2)は、上記のいずれの工程の前、途中および後であっても、特に制限なく実施しうる。組織から分離された細胞が培養組織を作製するのに十分であるか否かを判断するとの観点からは、工程(2)は、細胞を分離および/または純化した工程の後に行うことが好ましい。また、移植用細胞組織の品質を評価するとの観点からは、工程(1)の途中または後、培養組織を培養系から取り出す工程の前(移植の前)に行うことが好ましいと考えられる。
【0075】
本発明の別の態様においては、品質評価ステップを含む、細胞治療方法を提供する(図13)。現在、細胞治療用に製造された培養組織はその再生能力について品質管理がほとんどされていない。しかし、本発明に基づけば、例えば製造された培養組織を位相差顕微鏡でリアルタイムでモニターし、自動細胞追跡によって分析する。スーパーコンピュータを使用することができれば、細胞追跡とデータ分析は、数秒~1分以内で終了できる。そして計算結果から、治療や移植に適した品質の良い培養組織を選択することができる。
【0076】
このようなシステムは、具体的には下記のようなものであり得る。
[1]以下の工程を含む、培養組織を対象に提供するシステム:
採取した細胞を培養し、培養組織を製造する工程;
培養中の細胞組織または製造された培養組織について、品質評価を行う工程;
品質評価の結果に基づき、培養組織を選択する工程;
選択された品質評価済みの培養組織を、対象に提供する工程。
[2]品質評価が、細胞の挙動解析を含む、1に記載のシステム。
【0077】
<培養環境の評価>
本発明の方法は、細胞の評価のみならず、細胞の培養条件の評価のためにも用いることができる。より具体的には、細胞系の培養条件を変化させた際に、細胞の挙動の変化の有無、変化の程度を解析し、その解析結果に基づき、対象とした培養条件が細胞にとって好ましいものであるか否か等を判定するために、用いることができる。培養条件は、温度、pH、時間、成分の有無または量、光、雰囲気を含む。
【0078】
例えば、ある候補成分が幹細胞の培養に重要かどうかを評価するに際しては、培養中の幹細胞の挙動を、候補成分が存在する場合と存在しない場合とで比較し、例えば候補成分を添加した場合には、そうでない場合に比較して細胞の移動速度が劣ることとなった場合には、その候補成分は、細胞の幹細胞性を損なうものかもしれないと評価することができる。
【0079】
本発明の方法は培養環境が評価できることから、幹細胞挙動に影響を与える薬剤等のスクリーニングのために利用することができる。また、がん細胞の浸潤や遊走性に影響を与える薬剤等のスクリーニングのために利用することができる。
【0080】
[小括]
これまで、非侵襲的であり、高精度に複数の細胞の各々について、挙動を解析する方法は存在しなかった。しかしながら、細胞の特徴に基づき、辞書データを用いた細胞検出のための学習と状態空間モデルによる追跡を行う本発明によれば、高精度に複数の細胞各々について、非侵襲的評価が達成される。また従来の幹細胞の増殖性を維持する培養条件の管理等は、技術者の経験知に依拠したものであった。再生医療分野において、移植することを目的に培養された細胞は、再生医療等製品として品質管理が求められる。通常、移植用培養組織を調製するための細胞は、由来する個人により差があるであろうし、完成した細胞製品にはさまざまなバラツキを生じる可能性があり、培養組織の品質管理は、極めて重要である。しかしながら本発明による挙動解析により、簡便で客観的に細胞を評価することができる。また、技術者の熟練度に依存しない客観的かつ再現性の高い、再生医療等製品の品質管理を行うことができる。
【実施例
【0081】
[実施例1-1]
1 表皮角化細胞の連続観察
1.1 表皮角化細胞の培養
新生児由来のヒト表皮角化細胞(KURABOより購入)を、マイトマイシンC処理をしたマウス3T3線維芽細胞をフィーダー細胞として、37℃、10%CO2条件下で培養した(方法の詳細は文献[1]参照)。
1.2 表皮角化細胞のタイムラプス撮影
培養した表皮角化細胞を、35mmのガラスボトムディッシュに継代培養を行い、オリンパスFV10iにて、37℃、10%CO2条件下で5分ごとに自動撮影を行うタイムラプス撮影を行った。
【0082】
2 表皮角化細胞トラッキングの準備
表皮角化細胞をトラッキングする方法は、大きく2段階に分かれており、1)画像中の細胞検出と2)状態空間モデルを用いたトラッキングの組み合わせで行われる。1)の細胞検出の役割は、トラッキングの初期位置の決定と、時間毎の状態空間モデルにおける観測データの生成である。この目的のために、多段階のカスケーディングネットワークを提案する。本研究では、予測位置からある半径の円内にある最近傍の認識細胞を観測データと見なすという独自の方法を用いた。
【0083】
2.1 画像前処理
位相差顕微鏡で出力される1024×1024のサイズの16ビットTIFF画像を、構造を際立たせるためにヒストグラム平滑化処理を行い、1024×1024のサイズの8ビットPNGファイルに変換した。この変換後の画像を用いて、以下に述べる、学習やトラッキングを行った。
【0084】
2.2 辞書作成
本研究では、細胞の検出や認識に機械学習の方法を用いるため、学習のためのデータ(辞書)が必要となる。ここでは、図1に示すような位相差顕微鏡の画像に対して、人の目で細胞の核に対して矩形領域を選択したものを辞書と呼ぶことにする。このような辞書を、画像にして、188枚、矩形領域にして18032個用意した。細胞でない領域も矩形で囲い、5628個用意した。
2.3 細胞検出のための学習
2.3.1 細胞の位置候補領域の抽出(1段階目)
細胞の位置検出を行うために、物体検出のアルゴリズムとして最近提案されたSSD[2]と呼ばれる深層学習のモデルを使用した。学習の前に、データ拡張として、上下左右反転(4倍)とガンマ補正(0.75,1.00,1.25.1.50)、解像度の変化(0.75,0.85,1,1.15,1.25倍)を行い、元画像188枚のデータを80(=4×4×5)倍の15040枚に拡張した。
【0085】
2.3.2 細胞の位置の決定(2段階目)
1段階目のSSDで抽出された候補領域には、実際には、細胞でない領域も多数含まれている。そこで、これらの候補領域から、細胞の領域を高精度で判別するために、VGG16[3]をベースにした2クラス分類の深層畳み込みネットワークを3種類用意し(図3参照)、これらのモデルを図4に示すように多段階に組み合わせたカスケーディングネットワークを構築して判定を行った。
【0086】
3種類(DCN1,DCN2,DCN3)の各畳み込みネットワークは、独立に学習させた。学習に際しては、辞書画像の矩形領域の画像に5度刻みで回転を加えたデータ拡張を行い、72倍増やした。また、細胞の画像として、図2に示すような分裂期(Mitotic)の画像も加えた。これら学習に使用した矩形領域の個数を下表にまとめた。また、学習時に、ランダムに1/2の確率でガンマ値が(0.75,1.00,1.25,1.50)のいずれかになるように補正を行うことによるデータ拡張を行った。最適化アルゴリズムにはAdam[4]を用い、カスケーディングネットワークの構築は、chainer[5]を用いて行った。
【0087】
【表1-1】
【0088】
これらの学習には、東京大学情報基盤センターのスーパーコンピュータ(Reedbush-L)を計算に用いた。
【0089】
2.4 トラッキングの方法
表皮角化細胞を一つずつトラッキングするためのアルゴリズムとして、以下に示す観測方程式と状態方程式で記述される線形の状態空間モデルを用いた。
【0090】
【数10】
【0091】
ここで、xtは状態ベクトルで、(xt,yt)は時刻tにおける細胞の座標、(ut,vt)は時刻tにおけるその細胞の速度ベクトルを表す。Fは遷移行列、Hは観測行列である。ztはxtに対応する出力ベクトルである。vt,wtはガウス白色雑音ベクトルを表している。この線形の状態空間モデルを、カルマンフィルタ[6]を用いて更新する。
【0092】
カルマンフィルタでのトラッキングの際の観測データの作り方は、次のようにする。予測座標(xt+1,yt+1)から、半径20ピクセル以内(実際の距離は約12μm)の距離にある最近傍の細胞の座標を観測値として、もし、半径20ピクセル内の距離にない場合には、欠測とする。
【0093】
【数11】
【0094】
□で囲んだ細胞が時刻t+1における観測細胞となる。もし、半径20ピクセル内に認識された細胞がひとつも観測されない場合には、欠測と見なす。
【0095】
3 トラッキング手順
3.1 入力データの準備
5分おき程度に取得した画像を複数枚用意し、ヒストグラム平滑化処理をした。
3.2 細胞検出
一段目の細胞検出器の候補領域を2段目の高精度細胞判別器に入力し、細胞領域の検出を行った様子を示したのが、図5-1である。
【0096】
カスケーディング細胞検出器による、実際の細胞検出の例を、図6にフローチャートで示した。
【0097】
3.3 トラッキング
予測座標から、半径20ピクセル以内の距離にある最近傍の細胞の座標を観測値として、もし、半径20ピクセル内の距離にない場合には、欠測とみなして、カルマンフィルタを用いたトラッキングを行った。図7は、連続する2つの時刻での、観測細胞の決定と欠測の例である。下側の円は、ある時刻における予測位置(白点)の観測範囲に細胞の位置(星)が捉えられた例である。この円内の星の座標を観測データとしてカルマンフィルタのフィルタ分布を更新する。一方上側の円は、観測範囲に座標が見つからなかった例で、この場合、欠測と見なして、フィルタリングを行わずに次の時間ステップへと進む。
【0098】
このような原理で、一つ一つの細胞を独立にトラッキングしたときの様子を図8に示す。
【0099】
次に示すのは、多数の細胞を追跡した例である。図9に示した例では、細胞の一つずつの軌跡を描いている。また、図10は、細胞の時空ダイアグラムともいうべきもので、高さ方向に時間軸を取った3次元の軌跡として、各細胞の軌跡をプロットしたものである。この例の場合は、細胞が塊として回転のような運動をしている様をみることができる。
【0100】
3.4 速度ヒストグラムの作成
得られた速度ベクトルのノルムを毎時間毎に足し合わせて、時間で割ると平均の速度が得られる。これを細胞毎に計算し、ヒストグラムを作成した(図11)。
【0101】
このヒストグラムの結果から、このコロニーの細胞群では、30-35μm/hほどの速度で移動している細胞が多いことが示された。この値は特許文献5で報告されている値に非常に近く、本方法がマニュアルによる細胞移動速度と同じ精度で、かつ大量の細胞群を自動測定できることを示している。特許文献5では、このコロニー内の細胞移動速度の平均値が、ヒト表皮角化細胞の増殖活性と正の相関性を示すことが報告されていることから、このようなヒストグラムとそこから計算される細胞移動速度の平均値より、非常に高い増殖活性を示すヒト表皮角化幹細胞コロニーが同定可能である。
【0102】
[実施例1-2]
下記の点以外は実施例1-1と同様にして、細胞のトラッキングを行った。
【0103】
2 表皮角化細胞トラッキングの準備
2.3 細胞検出のための学習
2.3.2 細胞の位置候補領域の抽出
細胞の位置検出を行うために、物体検出アルゴリズムとして提案されたSSD[2]と呼ばれる深層学習のモデルを使用した。図3-2にSSDのモデル概念図を示す。
【0104】
2.3.2 細胞の位置の決定
1段階目のSSDで抽出された候補領域は、細胞でない領域が多数含まれている。そこで、これらの候補領域から、細胞の領域を高精度で判別するために、CapsNetをベースにした2クラス分類のネットワークを2種類用意し(図3-3を参照)、これらのモデルを図4-2に示すように多段階に組み合わせたカスケーディングネットワークを構築し判定を行った。2種類のネットワーク(CpasNet1, CapsNet2)は、独立に学習させた。学習では、辞書の矩形領域の画像に対して、5度刻みで回転と、ガンマ補正(0.75, 0.85, 1.00, 1.15, 1.25)を行うことで、データ拡張を行い、360(72×5)倍に増やした。これらの学習に使用した矩形領域の個数は下表に示した。
【0105】
学習の最適化アルゴリズムにはAdam[4]を用い、カスケーディングネットワークモデルの構築は、chainer[5]を用いて行った。
【0106】
【表1-2】
【0107】
3 トラッキング手順
表皮角化細胞をトラッキングする方法は、大きく分けて2段階に別れており、1)画像中の細胞検出、2)状態空間モデルを用いたトラッキングの組み合わせで行われる。1)の細胞検出の役割は、トラッキングの初期位置の決定と、時間毎の状態空間モデルにおける観測データの生成である。この目的のために、多段階のカスケーディングネットワークを提案する。本方法では、前方にあり、かつ予測位置からある半径の円内にある最近傍の認識細胞を観測データと見なすという独自の方法を用いた。
【0108】
3.1 入力データ
表皮角化細胞のコロニー画像を準備し、ヒストグラム平滑化処理を行った。
【0109】
3.2 細胞の座標候補領域の抽出
候補領域の検出では、サイズ1024×1024の画像を、サイズ341×341で9分割、256×256で16分割し、合計25領域(図5-2を参照)を作成した。作成した領域は、サイズ300×300にリサイズされ、SSDへ入力し、候補領域を出力する。SSDで検出された領域には、その領域が細胞である尤もらしさを表す尤度として、確信度誤差Lconf∈[0,1]が算出される。本研究では、検出された領域のLconf
【0110】
【数12】
【0111】
を満たす領域を、細胞の候補領域として抽出した。
【0112】
3.3 細胞の座標決定
1段目のSSDで抽出された候補領域には、実際には、細胞でない領域も多数含まれている。そこで、これらの候補領域から、細胞の候補領域を高精度で判別するためにCapsNetをベースにした2クラス分類の深層畳み込みネットワークを2種類用意し、図4-2に示すように多段階に組み合わせたカスケーディングネットワークを構築して判別を行った。
【0113】
細胞と判別された候補領域の中には重複している領域が多数含まれている。そこで、細胞と判定された領域の中心座標から、半径20ピクセル内の距離に存在する中心座標は重複、半径20ピクセル内の距離にない中心座標は重複していないと判定し、重複している領域に関しては、判別器による細胞と判定された尤度が最も高い領域をその細胞の座標とした。重複している細胞の例として図7を参照できる。重複して検出された細胞の例.マーカーは検出された細胞の領域に対する中心の座標例である.白は,半径が20ピクセルの円を表す.下の白丸は細胞が重複して,検出された例である.この半径については細胞1個の矩形領域の大きさが30~40ピクセル程度であるため、20ピクセルに設定した。
【0114】
3.3 トラッキング方法
ここでは、一般状態空間モデルを利用することで、ヒト表皮角化細胞を一つずつトラッキングするための方法を構築する。
【0115】
【数13】
ここで、xtは速度ベクトルで、
【数14】
(xt, yt)は時刻tにおける細胞の座標(vx,t, vy,t)は時刻tにおけるその細胞の速度ベクトル、(ax,t, ay,t)は時刻tにおける細胞の加速度を表す。また、ztはxtに対応する出力ベクトルである。vt,wtはノイズ成分を表している。この一般状態空間モデルを、アンサンブルカルマンフィルタを用いて更新する。
【0116】
アンサンブルカルマンフィルタによるトラッキングの概念図を図8に示す。このトラッキングの際のデータ生成では、はじめに、予測座標から、半径20ピクセル内の距離にある最近傍の細胞の座標を観測値の候補座標とし、もし、半径20ピクセル以内にない場合は、欠測とする。次に、観測の候補座標における速度ベクトルの単位ベクトル
【数15】
と、予測値の速度ベクトルの単位ベクトル
【数16】
の内積
【数17】
を計算し、条件
【数18】
を満たす場合は、この候補値をトラッキングにおける観測値とする。
【0117】
【数19】
【0118】
四角で囲んだ細胞が時刻t+1における観測細胞となる。もし、半径20ピクセル内にひとつも認識された細胞が観測されない場合は、欠測と見なす。このトラッキングの流れをフローチャートに示したのが図12である。このような原理で一つ一つの細胞を独立にトラッキングを行った。
【0119】
実施例1-1と同様に、検出された細胞すべてを独立にトラッキングし、軌跡を示した画像、多数の細胞の一つずつの軌跡を描いた時空ダイアグラム、速度ヒストグラムを作成した。実施例1-1の結果(図8~11)よりも多少改善した、大枠は同じ結果が得られた。
【0120】
[実施例2:培養条件のモニタリング]
自動追跡システムを、表皮角化細胞(実施例1-1と同様に入手し、培養したもの。)の培養条件のモニタリングに適用した。
【0121】
実施例1-2と同様に、異なる培養条件下での表皮角化細胞の挙動を比較した。細胞運動を比較した。培養4日目に、培地交換を行った場合(Feeding)と、行わなかった場合(No feeding)とを比較した。5日目にコロニーを観察すると、培地交換を行った系では、細胞が大きく動く。対照的に、培地交換を行わなかった系では、それほど動かなかった。 図14の下方の図は、時間毎の核の位置を線で示した。
【0122】
本発明者らの培養システムでは、表皮角化細胞はコロニー中でらせん状の移動パターン(migration pattern)を示す。図15からも明らかであるように、2D画像(上)と3D画像(下)の軌跡線はねじれていた。しかし、Epidermal growth factor(EGF)(Up state #01-107)10 ng/mlを培地に加えると、移動パターンが変化した。 以前に報告[7]したように、EGFは表皮角化細胞の外側への移動を誘導する。このシステムによる自動追跡で移動パターンを見ることができた。興味深いことに移動の速度は変化しなかった。EGFは短期間で移動の方向のみを変化させた。
【0123】
自動追跡により、培養条件が細胞挙動に影響を与えることを明確に実証でき、分析することができた。このシステムは細胞の培養条件のモニタリングに適用できる。
【0124】
[実施例3:幹細胞性の評価]
自動追跡システムを、幹細胞コロニーを予測するために適用した。
2つの表皮角化細胞コロニーについてクローン化し、また実施例1-2と同様に、自動追跡により速度情報を得て、得られた速度情報からMotion Index (MI)を求めた。ここでいうMotion Index (MI)とは、コロニーの内側領域の細胞の平均速度をコロニーの外側領域の細胞の平均速度で割ったもの、すなわち、[コロニーの内側領域の細胞の平均速度]/[コロニーの外側領域の細胞の平均速度]である。
【0125】
内側領域と外側領域は以下のような方法で定義した。
(1)はじめに、コロニー全体の領域を指定したマスク画像を作成する(実際に人の手でコロニー全体を選択する。)
(2)次に、作成したマスク画像を0.65倍に縮小したマスク画像を作成し、最初に作成したマスク画像に重ねる。このとき、2つ画像の重心が一致するように重ねる。
(3)この重ねた画像の中心(縮小して作成したマスク画像の部分)をコロニーの内側領域とし、それ以外を外側領域と定義する。
【0126】
これら2つのコロニーはほぼ同じ形態をしているが、異なる増殖能を示す。一方のコロニーはMIが0.7であり、長期的な増殖の可能性はない。このようなクローンはparacloneパラクローンと称される。対照的に、他方のコロニーのMIは1.02であり、有意な増殖能力を維持することができる。このようなクローンはholocloneと称される。Paracloneは、一過的にのみ増殖可能な細胞であり、holocloneは、長期的な増殖能を保持している細胞、すなわち幹細胞である。35コロニーを分析し、MI地の低いコロニーが主にparacloneに由来すること、ホロクローンの比率がMIとともに増加したことを確認した(図16)。
【0127】
幹細胞であるか否かの予測が正確にできることが望ましい。自動追跡により、oloclone由来のコロニー、すなわち幹細胞コロニーであることの判別ができた。このシステムは、幹細胞の選択や、幹細胞性の評価に適用できる。
【0128】
[実施例4:ES細胞の評価]
自動追跡システムを、ES細胞に適用した。
【0129】
マウスES細胞の培養プロトコールを以下に示す。
(1)0.1% gelatin solution (Biological Industries 01-944-1B)で培養ディッシュをコートする。
(2)ゼラチンコートしたディッシュにマウス胎仔線維芽細胞(mouse embryonic fibroblasts; MEF)(西村研究室で樹立)を播種し、37℃、5%CO2で4時間培養する。
(3)その後、マウスES細胞(西村研究室で樹立)を播種し、37℃、5%CO2で培養する。マウスES細胞の培養液は以下の組成である。
mouse ES basal medium (Biological Industries 01-171-1)
0.5nM LIF human recombinant culture supernatant (Wako 129-05601)
0.1mM 2-Mercaptoethanol (SIGMA M3148)
【0130】
マウスES細胞について、実施例1-2と同様に、細胞の追跡を行った。ES細胞用の辞書を作成し、また撮影間隔は5分とした。結果を図17~19に示した。ES細胞は表皮角化細胞に比べ、運動能力が低いことが明らかとなった。
このシステムは、ES細胞等の幹細胞の評価に広く適用できる。
【0131】
[明細書中で引用した文献]
[1]Nanba, D., et al., Cell motion predicts human epidermal stemness. J Cell Biol, 2015: p. jcb. 201409024.
[2]Liu, W., et al. Ssd: Single shot multibox detector. in European conference on computer vision. 2016. Springer.
[3]Simonyan, K. and A. Zisserman, Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.
[4]Kingma, D.P. and J. Ba, Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014.
[5]Tokui, S., et al. Chainer: a next-generation open source framework for deep learning. in Proceedings of workshop on machine learning systems (LearningSys) in the twenty-ninth annual conference on neural information processing systems (NIPS). 2015.
[6]Kalman, R.E., A new approach to linear filtering and prediction problems. Journal of basic Engineering, 1960. 82(1): p. 35-45.
[7]Nanba et al, EMBO Mol Med 5: 640-653, 2013. Actin filament dynamics impacts keratinocyte stem cell maintenance.
図1
図2
図3-1】
図3-2】
図3-3】
図4-1】
図4-2】
図5-1】
図5-2】
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16
図17
図18
図19