IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ プレッシー・セミコンダクターズ・リミテッドの特許一覧

特許7447151パッシベーション層を含む発光ダイオード前駆体
<>
  • 特許-パッシベーション層を含む発光ダイオード前駆体 図1
  • 特許-パッシベーション層を含む発光ダイオード前駆体 図2
  • 特許-パッシベーション層を含む発光ダイオード前駆体 図3a
  • 特許-パッシベーション層を含む発光ダイオード前駆体 図3b
  • 特許-パッシベーション層を含む発光ダイオード前駆体 図4a
  • 特許-パッシベーション層を含む発光ダイオード前駆体 図4b
  • 特許-パッシベーション層を含む発光ダイオード前駆体 図5a
  • 特許-パッシベーション層を含む発光ダイオード前駆体 図5b
  • 特許-パッシベーション層を含む発光ダイオード前駆体 図5c
  • 特許-パッシベーション層を含む発光ダイオード前駆体 図6
  • 特許-パッシベーション層を含む発光ダイオード前駆体 図7
  • 特許-パッシベーション層を含む発光ダイオード前駆体 図8
  • 特許-パッシベーション層を含む発光ダイオード前駆体 図9
  • 特許-パッシベーション層を含む発光ダイオード前駆体 図10
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-03-01
(45)【発行日】2024-03-11
(54)【発明の名称】パッシベーション層を含む発光ダイオード前駆体
(51)【国際特許分類】
   H01L 33/32 20100101AFI20240304BHJP
   H01L 33/44 20100101ALI20240304BHJP
【FI】
H01L33/32
H01L33/44
【請求項の数】 18
(21)【出願番号】P 2021569552
(86)(22)【出願日】2020-05-19
(65)【公表番号】
(43)【公表日】2022-07-25
(86)【国際出願番号】 EP2020063930
(87)【国際公開番号】W WO2020239529
(87)【国際公開日】2020-12-03
【審査請求日】2022-01-20
(31)【優先権主張番号】1907381.6
(32)【優先日】2019-05-24
(33)【優先権主張国・地域又は機関】GB
(73)【特許権者】
【識別番号】520445406
【氏名又は名称】プレッシー・セミコンダクターズ・リミテッド
【氏名又は名称原語表記】PLESSEY SEMICONDUCTORS LIMITED
(74)【代理人】
【識別番号】110001195
【氏名又は名称】弁理士法人深見特許事務所
(72)【発明者】
【氏名】キム,ジュン-ヨン
(72)【発明者】
【氏名】アズィーズ,モフシン
(72)【発明者】
【氏名】シャノン,ジョン
(72)【発明者】
【氏名】ストリブリー,ケビン
(72)【発明者】
【氏名】ダニエルズ,イアン
【審査官】百瀬 正之
(56)【参考文献】
【文献】特表2018-505567(JP,A)
【文献】特開2013-110374(JP,A)
【文献】特開2014-022685(JP,A)
【文献】特表2008-505834(JP,A)
【文献】特開2008-147547(JP,A)
【文献】特開2007-188962(JP,A)
【文献】米国特許出願公開第2018/0062040(US,A1)
【文献】中国特許出願公開第106384763(CN,A)
【文献】米国特許出願公開第2018/0175248(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
H01L 33/00-33/64
H01S 5/00-5/50
(57)【特許請求の範囲】
【請求項1】
表面を有する基板と、
前記基板上に設けられた発光ダイオード(LED)構造であって、
p型半導体層、
n型半導体層、および
前記p型半導体層と前記n型半導体層との間の活性層
を含む複数のIII族チッ化物層を備えており、
前記複数のIII族チッ化物層の各々は、結晶性のIII族チッ化物を含み、
該LED構造は、前記III族チッ化物層の(0 0 0 1)結晶面に直交する平面内を延びる側壁を有しているLED構造と、
前記活性層のバンドギャップよりも大きいバンドギャップを有する結晶性のIII族チッ化物を含んでおり、前記LED構造の前記活性層を覆うように前記LED構造の前記側壁上に設けられたパッシベーション層と
を備え、
前記LED構造は、前記LED構造の前記側壁が、前記LED構造の各々のIII族チッ化物層の非極性結晶面に整列するように形作られており、
前記パッシベーション層の組成が、前記パッシベーション層のバンドギャップが前記LED構造の前記側壁から遠ざかる厚さ方向に大きくなるように、前記LED構造の前記側壁から遠ざかるように延びる厚さ方向に次第に変動しており、
前記パッシベーション層は、前記LED構造の前記側壁上に設けられた4nm以下の厚さを前記厚さ方向に有する第1のパッシベーション副層と、前記第1のパッシベーション副層上に設けられた第2のパッシベーション副層とを備えている、発光ダイオード前駆体。
【請求項2】
前記LED構造は、複数の側壁を備え、各々の側壁は、前記基板の前記表面に直角に延びており、
前記LED構造は、前記LED構造の各々の側壁が、前記LED構造の各々のIII族チッ化物層の非極性結晶面に整列するように形作られており、
前記パッシベーション層は、各々の側壁上に設けられている、請求項1に記載の発光ダイオード前駆体。
【請求項3】
前記パッシベーション層は、前記LED構造の前記III族チッ化物層の各々を覆うように前記LED構造の前記側壁上に設けられている、請求項1または2に記載の発光ダイオード前駆体。
【請求項4】
前記基板の前記表面に広がる電流拡散層
をさらに備え、
前記LED構造は、前記電流拡散層の表面上に設けられ、前記電流拡散層は、III族チッ化物半導体を含み、
前記パッシベーション層は、前記電流拡散層の前記表面の少なくとも一部分も覆う、請求項1~3のいずれか1項に記載の発光ダイオード前駆体。
【請求項5】
前記LED構造は、前記LED構造の各々の側壁が前記LED構造の前記結晶性のIII族チッ化物層のa面またはm面に整列するように形作られている、請求項1~4のいずれか1項に記載の発光ダイオード前駆体。
【請求項6】
前記パッシベーション層は、BAlInGa1-x-y-zNを含み、ここで0≦x≦1、0≦y≦1、0≦z≦1、かつx+y+z≦1である、請求項1~5のいずれか1項に記載の発光ダイオード前駆体。
【請求項7】
前記パッシベーション層は、前記LED構造の前記側壁に直交する厚さ方向に少なくとも1nm、3nm、または5nmの厚さを有し、かつ/または
前記パッシベーション層は、500nm、400nm、または300nm以下の厚さを有する、請求項1~6のいずれか1項に記載の発光ダイオード前駆体。
【請求項8】
前記パッシベーション層を覆って設けられた絶縁層をさらに備える、請求項1~7のいずれか1項に記載の発光ダイオード前駆体。
【請求項9】
基板と、
前記基板上に設けられた複数のLED構造であって、前記基板上に設けられた各々のLED構造が、
p型半導体層、
n型半導体層、および
前記p型半導体層と前記n型半導体層との間の活性層
を含む複数のIII族チッ化物層を備えており、
前記複数のIII族チッ化物層の各々は、結晶性のIII族チッ化物を含み、各々のLED構造は、前記III族チッ化物層の(0 0 0 1)結晶面に直交する平面内を延びる側壁を有している複数のLED構造と、
前記活性層のバンドギャップよりも大きいバンドギャップを有する結晶性のIII族チッ化物を含んでおり、前記LED構造の前記活性層を覆うように各々のLED構造の前記側壁上に設けられたパッシベーション層と
を備え、
各々のLED構造は、前記LED構造の前記側壁が、前記LED構造の各層の非極性結晶面に整列するように形作られており、
前記パッシベーション層の組成が、前記パッシベーション層のバンドギャップが前記LED構造の前記側壁から遠ざかる厚さ方向に大きくなるように、前記LED構造の前記側壁から遠ざかるように延びる厚さ方向に次第に変動しており、
前記パッシベーション層の各々は、前記LED構造の各々の前記側壁上に設けられた4nm以下の厚さを前記厚さ方向に有する第1のパッシベーション副層と、前記第1のパッシベーション副層の各々の上に設けられた第2のパッシベーション副層とを備えている、発光ダイオード前駆体のアレイ。
【請求項10】
LED前駆体を形成する方法であって、
(i)表面を有する基板を用意するステップと、
(ii)p型半導体層、
n型半導体層、および
前記p型半導体層と前記n型半導体層との間の活性層
を含む複数のIII族チッ化物層を備えるLED層であって、
該LED層の前記III族チッ化物層の各々は、結晶性のIII族チッ化物を含んでいるLED層を、前記基板の前記表面上に堆積させるステップと、
(iii)前記LED層の非極性面に整列させた少なくとも1つの側壁形成用エッジを有しているマスク層で、前記LED層を選択的にマスクするステップと、
(iv)前記LED層のマスクされていない部分を、前記III族チッ化物層の(0 0 0 1)結晶面に直交する方向にエッチングして、前記マスク層の前記側壁形成用エッジに隣接する前記LED層の前記非極性面に整列した側壁を有するLED構造を形成するステップと、
(v)前記活性層のバンドギャップよりも大きいバンドギャップを有する結晶性のIII族チッ化物を含んでいるパッシベーション層を、前記LED構造の前記活性層を覆うように前記LED構造の前記側壁上に堆積させるステップと
を含み、
前記パッシベーション層の組成が、前記パッシベーション層のバンドギャップが前記LED構造の前記側壁から遠ざかる厚さ方向に大きくなるように、前記LED構造の前記側壁から遠ざかるように延びる厚さ方向に次第に変動しており、
前記LED構造の前記側壁上に前記パッシベーション層を堆積させるステップは、前記LED構造の前記側壁上に4nm以下の厚さを前記厚さ方向に有する第1のパッシベーション副層を堆積するステップと、前記第1のパッシベーション副層上に第2のパッシベーション副層を堆積するステップとを含む、LED前駆体を形成する方法。
【請求項11】
前記マスク層は、複数の側壁形成用エッジを備え、各々の側壁形成用エッジは、前記LED構造が前記LED構造の各々のIII族チッ化物層の非極性結晶面にそれぞれ整列した複数の側壁を含むように、前記LED構造の非極性面に整列し、
前記パッシベーション層は、各々の側壁上に設けられる、請求項10に記載のLED前駆体を形成する方法。
【請求項12】
前記パッシベーション層は、前記LED構造の前記III族チッ化物層の各々を覆うように前記LED構造の前記側壁上に設けられる、請求項10または11に記載のLED前駆体を形成する方法。
【請求項13】
前記基板の前記表面に、III族チッ化物半導体を含む電流拡散層を堆積させるステップ
をさらに含み、
前記LED構造は、前記電流拡散層の表面上に堆積され、
前記パッシベーション層は、前記電流拡散層の前記表面の少なくとも一部分も覆う、請求項10~12のいずれか一項に記載のLED前駆体を形成する方法。
【請求項14】
前記マスクは、前記LED構造の各々の側壁が前記LED構造の前記結晶性のIII族チッ化物層のa面またはm面に整列するように形作られる、請求項11~13のいずれか一項に記載のLED前駆体を形成する方法。
【請求項15】
前記LED層のマスクされていない部分のエッチングするステップは、乾式エッチングプロセスと、その後の湿式エッチングプロセスとを含む、請求項10~14のいずれか一項に記載のLED前駆体を形成する方法。
【請求項16】
前記パッシベーション層は、BAlInGa1-x-y-zNを含み、ここで0≦x≦1、0≦y≦1、0≦z≦1、かつx+y+z≦1である、請求項10~15のいずれか一項に記載のLED前駆体を形成する方法。
【請求項17】
前記パッシベーション層を覆って設けられた絶縁層をさらに備える、請求項10~16のいずれか一項に記載のLED前駆体を形成する方法。
【請求項18】
LEDアレイ前駆体を形成する方法であって、
(i)表面を有する基板を用意するステップと、
(ii)p型半導体層、
n型半導体層、および
前記p型半導体層と前記n型半導体層との間の活性層
を含む複数のIII族チッ化物層を備えるLED層であって、
該LED層の前記III族チッ化物層の各々は、結晶性のIII族チッ化物を含んでいるLED層を、前記基板の前記表面上に堆積させるステップと、
(iii)複数のマスク層部分を含んでおり、各々のマスク層部分が前記LED層の非極性面に整列させた少なくとも1つの側壁形成用エッジを有しているマスク層で、前記LED層を選択的にマスクするステップと、
(iv)前記LED層のマスクされていない部分を、前記III族チッ化物層の(0 0 0 1)結晶面に直交する方向にエッチングして、それぞれの前記マスク層部分の前記側壁形成用エッジに隣接する前記LED層の前記非極性面に整列した側壁をそれぞれ有する複数のLED構造を形成するステップと、
(v)前記活性層のバンドギャップよりも大きいバンドギャップを有する結晶性のIII族チッ化物を含んでいるパッシベーション層を、前記LED構造の前記活性層を覆うように各々のLED構造の前記側壁上に堆積させるステップと
を含み、
前記パッシベーション層の組成が、前記パッシベーション層のバンドギャップが前記LED構造の前記側壁から遠ざかる厚さ方向に大きくなるように、前記LED構造の前記側壁から遠ざかるように延びる厚さ方向に次第に変動しており、
前記LED構造の各々の前記側壁上に前記パッシベーション層を堆積させるステップは、前記LED構造の各々の前記側壁上に4nm以下の厚さを前記厚さ方向に有する第1のパッシベーション副層を堆積するステップと、前記第1のパッシベーション副層の各々の上に第2のパッシベーション副層を堆積するステップとを含む、LEDアレイ前駆体を形成する方法。
【発明の詳細な説明】
【技術分野】
【0001】
本開示の分野
本開示は、III族チッ化物半導体に関する。とくには、本開示は、III族チッ化物半導体を含む発光ダイオード(LED)に関する。
【背景技術】
【0002】
背景
マイクロLEDアレイは、一般に、100×100μm2以下のサイズのLEDのアレイと定義される。マイクロLEDアレイは、スマートウォッチ、頭部装着型ディスプレイ、ヘッドアップディスプレイ、カムコーダー、ビューファインダ、マルチサイト励起源、およびピコプロジェクタなどのさまざまなデバイスにおける使用に好適であり得る自発光型マイクロディスプレイ/プロジェクタである。
【0003】
マイクロLEDアレイの1つの既知の形態は、III族チッ化物から形成された複数のLEDを含む。III族チッ化物LEDは、GaN、ならびに活性発光領域におけるGaNのInNおよびAlNとの合金を含む無機半導体LEDである。III族チッ化物LEDは、例えば発光層が有機化合物である有機発光ダイオード(OLED)などの従来からの大面積LEDと比べ、大幅に高い電流密度で駆動され、高い光出力密度を放射することができる。結果として、所与の方向に放射される光源の単位面積あたりの光の量として規定される輝度(明るさ)がより高いため、マイクロLEDは、高輝度を必要とする用途または高輝度が有利である用途に好適である。例えば、高輝度が有利である用途として、高輝度環境におけるディスプレイまたはプロジェクタを挙げることができる。さらに、III族チッ化物マイクロLEDは、他の従来からの大面積LEDと比較して、ワットあたりのルーメン(lm/W)で表される発光効率が比較的高いことが知られている。III族チッ化物マイクロLEDアレイの比較的高い発光効率は、他の光源と比較して電力の使用を削減し、マイクロLEDを携帯デバイスにきわめて適したものにする。
【0004】
LEDの重要な性能特性の1つは、内部量子効率(IQE)である。IQEは、LEDにおいて発生する放射再結合イベントのLEDにおいて発生する再結合イベントの総数(すなわち、非放射再結合イベントを含む)に対する比の尺度である。III族チッ化物LEDの場合、バルク結晶構造が、結晶格子中の欠陥によって遮断される可能性がある。そのような欠陥として、結晶格子中のダングリングボンドまたは空孔を挙げることができる。空孔およびダングリングボンドは、エネルギーバンドにトラップサイトをもたらし、IQEを低下させる非放射再結合イベントを引き起こす可能性がある。とくには、LED構造の表面が、LEDの表面の製造中に欠陥の形成を被りやすい。III族チッ化物LEDの表面の欠陥は、IQEを低下させる非放射性の表面再結合イベントにつながる可能性がある。
【0005】
マイクロLEDに関して、LEDのサイズが小さくなるにつれて体積に対する表面積の比が大きくなるがゆえに、LEDのサイズが小さくなると、バルク放射再結合イベントと比べて表面再結合の量が多くなる可能性があることを、理解できるであろう。
【0006】
米国特許出願公開第2016/0197232号が、非放射性の側壁再結合を低減させたLED構造を開示している。LED構造は、上部電流拡散層と、下部電流拡散層と、上部および下部電流拡散層の間の活性層とにまたがるp-n接合側壁を含む。
【0007】
米国特許出願公開第2018/0175248号が、Alを含むIII族チッ化物パッシベーション材料で不動態化されたマイクロLED構造を開示している。III族チッ化物パッシベーション材料が、非放射再結合を低減し、LED構造の漏れ電流を低減し、さらには/あるいは発光効率を改善できると開示されている。
【0008】
しかしながら、III族チッ化物LEDのIQEをさらに改善する必要性が、依然として存在する。
【発明の概要】
【発明が解決しようとする課題】
【0009】
本発明の目的は、先行技術のLEDに関する問題のうちの少なくとも1つに取り組む改善されたLED前駆体を提供し、あるいは少なくとも先行技術のLEDに対する商業的に有用な代替物を提供することである。
【課題を解決するための手段】
【0010】
発明の概要
本発明の発明者は、III族チッ化物LEDの表面再結合が、2つの重要な機構によって影響を受けると理解した。第一に、表面再結合は、結晶欠陥を介して発生する可能性がある。例えば、エッチングプロセスに起因する表面損傷が、LEDのエッチングされた表面に空孔またはダングリングボンドなどの結晶欠陥を導入する可能性がある。このような結晶欠陥は、LEDにおいて非放射再結合イベントを促進するトラップサイトを形成することで、IQEを低下させる可能性がある。第二に、III族チッ化物の周期的な結晶構造が表面において終了することで、エネルギーバンドギャップ内にさらなるトラップレベルが形成される。
【0011】
本発明の第1の態様によれば、発光ダイオード(LED)前駆体が提供される。LED前駆体は、基板と、LED構造と、パッシベーション層とを備える。LED構造は、基板上に設けられる。LED構造は、複数のIII族チッ化物層を備える。LED構造の複数のIII族チッ化物層は、p型半導体層、n型半導体層、およびp型半導体層とn型半導体層との間の活性層を含む。III族チッ化物層の各層は、結晶性のIII族チッ化物を含む。LED構造は、III族チッ化物層の(0 0 0 1)結晶面に直交する平面内を延びる側壁を有する。パッシベーション層は、LED構造の活性層がパッシベーション層によって覆われるように、LED構造の側壁に設けられる。パッシベーション層は、活性層のバンドギャップよりも大きいバンドギャップを有する結晶性のIII族チッ化物を含む。LED構造は、LED構造の側壁が、LED構造の各層の非極性結晶面に整列するように形作られる。
【0012】
本開示の第1の態様によれば、パッシベーション層が、LED構造の活性層を覆うように、側壁の少なくとも一部分を覆って設けられ、活性層の周期的な結晶構造がLED構造の側壁において終端することがないように保証する。むしろ、活性層の(周期的な)結晶構造は、パッシベーション層の結晶性のIII族チッ化物によって継続される。したがって、周期的な結晶構造の終端に関連するトラップレベルが、LED構造とパッシベーション層との間の界面に形成されることがない。結晶構造の終端に起因するエネルギーレベルは、LED構造との界面とは反対側のパッシベーション層の表面に形成される。したがって、結晶構造の終端に起因するエネルギーレベルが、パッシベーション層によってLED構造から離される。パッシベーション層のバンドギャップは、パッシベーション層がLED構造の側壁からパッシベーション層の表面への電荷キャリアの流れを低減または防止するように、活性層のバンドギャップよりも大きい。事実上、パッシベーション層は、LED構造の側壁表面に向かって移動しようとするキャリアについて障壁層として機能する。LED構造の活性層における電荷キャリアに関して利用可能なトラップサイトの数を減らすことによって、LED構造のIQEを向上させることができる。
【0013】
さらに、本発明の発明者は、III族チッ化物結晶材料から形成されたLED構造が、極性結晶構造を有すると理解した。構造の多数の平面に沿ってそのような極性結晶構造が終端することで、正味の非ゼロの電荷を有する表面が画定される。例えば、III族チッ化物(例えば、GaN)の(0 0 0 1)面は、極性面と見なされる。III族チッ化物(例えば、GaN)の(1 1 -2 2)(注:ここで、2の上にバーがついたものを-2で表す)面は、半極性面と見なされる。非ゼロの正味電荷を有するそのような平面(すなわち、極性面または半極性面)が、より大きいバンドギャップのIII族チッ化物(すなわち、パッシベーション層)との界面を形成するとき、二次元電子ガスが、高電子移動度トランジスタの機能と同様に、2つの層の間の界面に形成される。本発明のLED構造の場合、LED構造の側壁における二次元電子ガスの形成は、LED構造を横切る電荷キャリアの漏れ経路をもたらし得る。形成される二次元電子ガスは、LED構造のパッシベーション層を設けることから得られる利点を排除するのに充分に導電性であり得る。
【0014】
この現象を低減または排除するために、本発明のLED構造は、側壁をIII族チッ化物結晶構造の非極性面に整列させて形成される。LED構造の側壁をIII族チッ化物結晶構造の非極性面に整列させることにより、LED構造とパッシベーション層との間の界面に二次元電子ガスが形成されることがない。結果として、本発明のパッシベーション層は、パッシベーション層とLED構造との間の界面に電荷キャリアの漏れ経路が形成されないことを保証する。したがって、本発明の発明者は、非極性面の側壁を覆うパッシベーション層を備えたLED構造を提供することにより、LED構造の側壁とパッシベーション層との間の界面に存在するトラップサイトの数の大幅な減少がもたらされる一方で、望ましくない電荷漏れ経路の形成も防止されることを理解した。したがって、本発明の第1の態様によるLED前駆体から得られるLEDは、LED構造の活性層の側壁表面に存在するトラップサイトの数の減少からもたらされる向上した内部量子効率を有することができる。
【0015】
LED前駆体における「前駆体」という用語により、説明されるLED前駆体が、例えば発光を可能にするためのLEDのための電気的接触部や、関連の回路を、必ずしも含まないことに留意されたい。当然ながら、第1の態様のLED前駆体は、さらなる電気的接触部および関連の回路の追加を排除するものではない。したがって、本開示における前駆体という用語の使用は、最終製品(すなわち、LED)を含むように意図される。
【0016】
第1の態様によれば、LED構造はIII族チッ化物を含む。好ましくは、III族チッ化物は、AlInGaN、AlGaN、InGaN、AlN、およびGaNのうちの1つ以上を含む。本明細書において、或る種にその種の構成成分によって言及した場合、そのような言及は、それらの構成成分について利用可能なあらゆる化学量論を含む。したがって、例えば、AlGaNは、AlGa1-xN(xは1でも、0でもない)など、AlGaNのすべての合金を含む。好ましい化学量論は、個々の層の機能に応じて異なる。
【0017】
上述のように、いくつかの実施形態において、LED前駆体は、マイクロLED前駆体であってよい。すなわち、本開示によるマイクロLED前駆体は、10,000μm未満の表面積を有するLED前駆体であってよい。例えば、LED前駆体は、100μm×100μm未満の表面寸法を有し得る。
【0018】
いくつかの実施形態において、LED構造は、複数の側壁を含むことができ、各々の側壁は、基板の表面に直角に延びる。LED構造を、LED構造の各側壁がLED構造の各層の非極性結晶面に整列するように形作ることができ、パッシベーションを各側壁上に設けることができる。したがって、パッシベーション層を、活性層の結晶構造が終端するLED構造の各側壁上に設けることができる。LED構造に各側壁上のパッシベーション層を設けることにより、活性層の各側壁に存在するトラップサイトの数を、さらなる電荷漏れ経路を導入することなく減らすことができ、したがってLEDのIQEを向上させることができる。
【0019】
パッシベーション層は、いくつかの実施形態においては単結晶(モノ結晶)III族チッ化物または多結晶III族チッ化物を含むことができる結晶性のIII族チッ化物を含む。いくつかの実施形態において、パッシベーション層は、LED構造の複数の層の各々を覆うように、LED構造の側壁上に設けられる。したがって、パッシベーション層は、さらなる電荷漏れ経路を導入することなく、p型半導体層の側壁およびn型半導体層の側壁における結晶格子の終端に起因するトラップサイトの形成を防止または低減する。これにより、LED構造の内部量子効率がさらに向上する。
【0020】
いくつかの実施形態において、LED前駆体は、基板の表面にわたって広がる電流拡散層を含むことができる。LED構造を、電流拡散層の表面上に設けることができる。電流拡散層は、III族チッ化物半導体を含むことができる。パッシベーション層は、電流拡散層の表面の少なくとも一部分も覆うことができる。したがって、電流拡散層は、電流拡散層の表面が非ゼロの正味電荷(例えば、極性c面または半極性面)を有する結晶構造を有することができる。したがって、この場合には、二次元電子ガスを、電流拡散層とパッシベーション層(活性層よりも大きいバンドギャップを有する)との間の界面に意図的に形成することができる。この二次元電子ガスは、(HEMTと同様に)LED前駆体への電荷キャリアの輸送を改善することにより、LEDの全体的な効率の改善をもたらすことができる。
【0021】
いくつかの実施形態において、LED前駆体は六角形の形状を有することができる。LED前駆体は、LED構造の側壁が非極性面と整列するように六角形の形状を有することができる。いくつかの実施形態において、LED前駆体は、a面またはm面であってよい1つ以上の非極性面に整列した側壁を有することができる。いくつかの実施形態においては、LED構造の側壁を、a面およびm面の組み合わせに整列させることができる。
【0022】
いくつかの実施形態において、パッシベーション層はAlNを含むことができる。いくつかの代案の実施形態において、パッシベーション層は、二元、三元、四元、または五元の材料であってよい。いくつかの実施形態において、パッシベーション層は、チッ素と、B、Al、Ga、またはInのうちの1つ以上とを含むIII族チッ化物であてよい。例えば、パッシベーション層は、BAlInGa1-x-y-zNであってよく、ここで、0≦x≦1、0≦y≦1、0≦z≦1、およびx+y+z≦1である。したがって、パッシベーション層のバンドギャップを、電荷キャリアブロッキング層として適切な機能を提供するために、パッシベーション層材料の組成を変えることによって変えることができる。
【0023】
いくつかの実施形態において、パッシベーション層は、LED構造の側壁に垂直な厚さ方向に、少なくとも1nm、3nm、または5nmの厚さを有する。いくつかの実施形態においては、パッシベーション層を通る電荷キャリアのトンネリングを低減するために、パッシベーション層について最小の厚さを有することが望ましい。パッシベーション層を通る電荷キャリアのトンネリングは、LED構造とは反対側のパッシベーション層の表面のエネルギーレベルを介して非放射再結合イベントを発生させる可能性がある。パッシベーション層を通る電荷キャリアのトンネリングの発生を低減または防止すると、放射再結合に利用できる電荷キャリアの量が増加し、したがってIQEがさらに向上する。
【0024】
いくつかの実施形態において、パッシベーション層は、500nm、400nm、または300nm以下の厚さを有する。
【0025】
第1の態様のいくつかの実施形態において、パッシベーション層のバンドギャップは、LED構造の側壁から遠ざかる厚さ方向に増加する。いくつかの実施形態において、パッシベーション層は、複数のパッシベーション副層を備え、各々のパッシベーション副層のバンドギャップは、LED構造の側壁から遠ざかる厚さ方向に段階的な様相で大きくなる。いくつかの実施形態においては、パッシベーション層の組成が、パッシベーション層のバンドギャップがLED構造の側壁から遠ざかる厚さ方向に大きくなるように、LED構造の側壁から遠ざかるように延びる厚さ方向に次第に変動する。いくつかの実施形態のパッシベーション層は、LED構造とパッシベーション層との間の界面において結晶格子にいくらかのひずみを導入する可能性がある。変動する電子バンドギャップを有するパッシベーション層を設けることにより、バンドギャップの材料特性を、LED構造とパッシベーション層との間の界面におけるひずみを低減しつつ、パッシベーション層の表面状態への電荷キャリアの流れを防止するための適切に大きなポテンシャル障壁も提供するように設定することができる。
【0026】
本開示の第2の態様によれば、LEDアレイ前駆体が提供される。LEDアレイ前駆体は、基板と、基板上に設けられた複数のLED構造と、パッシベーション層とを含む。各々のLED構造は、p型半導体層、n型半導体層、およびp型半導体層とn型半導体層との間の活性層を含む複数のIII族チッ化物層を含む。複数のIII族チッ化物層の各々は、結晶性のIII族チッ化物を含み、各々のLED構造は、III族チッ化物層の(0 0 0 1)結晶面に直交する平面内を延びる側壁を有する。パッシベーション層は、LED構造の活性層がパッシベーション層によって覆われるように、各々のLED構造の側壁上に設けられる。パッシベーション層は、活性層のバンドギャップよりも大きいバンドギャップを有する結晶性のIII族チッ化物を含む。さらに、各々のLED構造は、LED構造の側壁が、LED構造の各層の非極性結晶面に整列するように形作られる。
【0027】
いくつかの実施形態において、LEDアレイ前駆体における複数のLED前駆体の各々は、本開示の第1の態様によるLED前駆体である。したがって、第2の態様のLEDアレイ前駆体は、第1の態様の随意による特徴のいずれかを取り入れることができる。
【0028】
いくつかの実施形態において、LEDアレイ前駆体は、複数のマイクロLED前駆体を含むことができる。すなわち、LEDアレイ前駆体における各々のマイクロLEDは、10,000μm未満の表面積を有することができる。
【0029】
パッシベーション層は、いくつかの実施形態においては単結晶(モノ結晶)III族チッ化物または多結晶III族チッ化物を含むことができる結晶性のIII族チッ化物を含む。
【0030】
LEDアレイ前駆体における「前駆体」という用語により、説明されるLEDアレイ前駆体が、例えば発光を可能にするための各々のLEDのための電気的接触部や、関連の回路を、必ずしも含まないことに留意されたい。当然ながら、第2の態様のアレイLED前駆体は、さらなる電気的接触部および関連の回路の追加を排除するものではない。したがって、本開示における前駆体という用語の使用は、最終製品(すなわち、LEDアレイ)を含むように意図される。
【0031】
本開示の第3の態様によれば、LED前駆体を形成する方法が提供される。この方法は、
(i)表面を有する基板を用意するステップと、
(ii)p型半導体層、
n型半導体層、および
p型半導体層とn型半導体層との間の活性層
を含む複数のIII族チッ化物層を備えるLED層であって、
LED層のIII族チッ化物層の各々は、結晶性のIII族チッ化物を含んでいるLED層を、基板の表面上に堆積させるステップと、
(iii)LED層の非極性面に整列させた少なくとも1つの側壁形成用エッジを有しているマスク層で、LED層を選択的にマスクするステップと、
(iv)LED層のマスクされていない部分を、III族チッ化物層の(0 0 0 1)結晶面に直交する方向にエッチングして、マスク層の側壁形成用エッジに隣接するLED層の非極性面に整列した側壁を有するLED構造を形成するステップと、
(v)活性層のバンドギャップよりも大きいバンドギャップを有する結晶性のIII族チッ化物を含んでいるパッシベーション層を、LED構造の活性層を覆うようにLED構造の側壁上に堆積させるステップと
を含む。
【0032】
したがって、第3の態様による方法は、第1の態様によるLED前駆体を提供することができる。
【0033】
パッシベーション層は、いくつかの実施形態においては単結晶(モノ結晶)III族チッ化物または多結晶III族チッ化物を含むことができる結晶性のIII族チッ化物を含む。
【0034】
いくつかの実施形態において、LED層のマスクされていない部分をエッチングするステップは、乾式エッチングプロセスと、その後の湿式エッチングプロセスとを含む。2段階のエッチングプロセスを使用してLED構造の側壁を形成することにより、LED構造の表面積のより大きな割合を、(0 0 0 1)結晶面の方向にエッチングすることができる。したがって、2段階のエッチングプロセスは、パッシベーション層とLED構造の側壁との間の界面に存在するトラップサイトの数を減らすことができる。
【0035】
本開示の第4の実施形態によれば、LEDアレイ前駆体を形成する方法が提供される。この方法は、
(i)表面を有する基板を用意するステップと、
(ii)p型半導体層、
n型半導体層、および
p型半導体層とn型半導体層との間の活性層
を含む複数のIII族チッ化物層を備えるLED層であって、
LED層のIII族チッ化物層の各々は、結晶性のIII族チッ化物を含んでいるLED層を、基板の表面上に堆積させるステップと、
(iii)複数のマスク層部分を含んでおり、各々のマスク層部分がLED層の非極性面に整列させた少なくとも1つの側壁形成用エッジを有しているマスク層で、LED層を選択的にマスクするステップと、
(iv)LED層のマスクされていない部分を、III族チッ化物層の(0 0 0 1)結晶面に直交する方向にエッチングして、それぞれのマスク層部分の側壁形成用エッジに隣接するLED層の非極性面に整列した側壁をそれぞれ有する複数のLED構造を形成するステップと、
(v)活性層のバンドギャップよりも大きいバンドギャップを有する結晶性のIII族チッ化物を含んでいるパッシベーション層を、各々のLED構造の活性層を覆うように各々のLED構造の側壁上に堆積させるステップと
を含む。
【0036】
パッシベーション層は、いくつかの実施形態においては単結晶(モノ結晶)III族チッ化物または多結晶III族チッ化物を含むことができる結晶性のIII族チッ化物を含む。
【0037】
したがって、第4の態様による方法は、第2の態様によるLED前駆体を提供することができる。いくつかの実施形態において、LEDアレイ前駆体を形成する方法は、本開示の第3の態様によるLED前駆体を形成する方法の特徴のいずれかを取り入れることができる。
【0038】
図面の簡単な説明
次に、本発明を、以下の非限定的な図に関連して説明する。本開示のさらなる利点は、詳細な説明を参照し、図と併せて検討することで明らかであり、図は、詳細をより明瞭に示すために比例尺ではなく、図において、同様の参照番号は、いくつかの図の全体を通して、同様の要素を指している。
【図面の簡単な説明】
【0039】
図1】本開示の実施形態によるLEDアレイ前駆体の図を示している。
図2】本開示の一実施形態によるLED構造の側面図を示している。
図3a】本開示の一実施形態によるLED構造の等角図を示している。
図3b図3aのLED構造の側壁における活性層の電子バンド構造の簡略図を示している。
図4a】本開示の一実施形態によるLED構造およびパッシベーション層の等角図を示している。
図4b図4aのLED構造の側壁における活性層の電子バンド構造の簡略図を示している。
図5a】本開示の実施形態によるパッシベーション層の電子バンド構造の簡略図を示している。
図5b】本開示の実施形態による別のパッシベーション層の電子バンド構造の簡略図を示している。
図5c】本開示の実施形態によるさらに別のパッシベーション層の電子バンド構造の簡略図を示している。
図6図1に示した一部分Bの詳細な断面図の詳細を示している。
図7】III族チッ化物の結晶構造を表す図を示している。
図8】Siウェーハ基板上に形成された3つの異なる形状のLED構造の平面図を示している。
図9図1の実施形態によるLED前駆体のアレイを製造する方法のフローチャートである。
図10】本開示の一実施形態によるLED層のパターン加工およびパッシベーション層の堆積のための方法のフローチャートである。
【発明を実施するための形態】
【0040】
詳細な説明
次に、本発明をさらに説明する。以下の節において、本発明のさまざまな態様が、より詳細に規定される。そのように定められる各々の態様を、そのようでないことが明確に示されない限り、任意の他の1つ以上の態様と組み合わせることが可能である。とくには、好ましい、または有利であるとして示される任意の特徴を、随意である、または有利であるとして示される任意の他の1つ以上の特徴と組み合わせることが可能である。
【0041】
本開示の実施形態は、LED構造の側壁において生じ得る非放射再結合イベントを低減するためのさまざまな構造的構成を有するLED前駆体、およびLED前駆体の形成方法を説明する。したがって、本開示の実施形態は、好ましくは、マイクロLEDアレイおよび/またはマイクロLEDアレイ前駆体に関する。マイクロLEDアレイは、一般に、100×100μm以下のサイズを有するLEDのアレイとして定義される。
【0042】
本開示の一実施形態によれば、LEDアレイ前駆体1が提供される。LEDアレイ前駆体1は、基板10と、電流拡散層20と、複数のLED構造30とを含む。LEDアレイ前駆体の図が、図1に示されている。
【0043】
基板10は、LED構造を設けることができる基板表面11を提供する。基板10は、基板上にIII族チッ化物を製造するための任意の適切な基板であってよい。例えば、基板10は、シリコン、サファイアまたはSi Cウェーハ、あるいは薄膜電子回路の製造に適した任意の他の基板であってよい。
【0044】
図1の実施形態においては、緩衝層14が基板上に設けられる。図1に示されるように、緩衝層14は、基板10の基板表面11にわたって広がる。緩衝層は、例えばAlN、AlGaN、またはGaNなどのIII族チッ化物を含むことができる。緩衝層は、基板表面11に垂直な方向に、少なくとも100nm、300nm、500nm、または1000nmの厚さを有することができる。
【0045】
電流拡散層20を、基板10上または緩衝層上に設けることができる。図1に示されるように、電流拡散層20は、緩衝層14のうちの基板10の基板表面11とは反対側の表面上で、緩衝層14にわたって広がる。LED構造30は、電流拡散層20の基板10とは反対側で、電流拡散層20の表面にわたって分布している。
【0046】
基板10は、サファイアまたはシリコンウェーハを含むことができる。図1において、基板10は単一のブロックとして示されているが、基板10が複数の層を含んでもよいことを、理解できるであろう。例えば、基板10は、シリコンウェーハに加えて、LED前駆体を駆動するための複数のアクティブマトリックス電子層を含むことができる。
【0047】
複数のLED構造30が、電流拡散層20上に設けられている。2次元アレイを形成するために、複数のLED構造30を電流拡散層20にわたって分布させることができる。図1の実施形態は、複数のLED構造30を含むLEDアレイ前駆体1であるが、他の実施形態において、単一のLED構造30が基板10上に設けられてよいことを、理解できるであろう。
【0048】
各々のLED構造30は、複数の層を含む。図1の実施形態において、各々のLED構造30は、n型半導体層32と、活性層34と、p型半導体層36とを含む。各々のLED構造30は、電流拡散層20の基板10とは反対側で、電流拡散層20の表面上に設けられる。複数の層32、34、36は、互いに積み重ねられて、LED構造30を形成する。このように、LED構造30は、電流拡散層20の表面および基板表面11に垂直な方向に延びる。LED構造30の層32、34、36の各々は、結晶性のIII族チッ化物から形成される。このように、LED構造30は、結晶構造を有する。図1に示されるように、LED構造30は、電流拡散層20の表面から延びるメサ構造である。
【0049】
図1に示されるLED構造30は、基板表面11をおおむね横断する方向に延びるメサ形状の構造である。したがって、図1のLED構造は、複数のおおむね平坦な表面を含む。複数のほぼ平坦な表面は、複数の側壁37、および発光面38を含む。発光面38は、LED構造30の基板10とは反対側の表面である。
【0050】
図1の実施形態において、LED構造の(0 0 0 1)結晶面は、基板表面11に平行である。したがって、側壁37の表面は、LED構造の(0 0 0 1)結晶面および基板表面11に直交している。LED構造30の側壁37は、基板表面11(または、電流拡散層20)と発光面38との間に延在するLED構造30の表面である。図1に示されるように、LED構造30の側壁37は、LED構造30が上方に設けられた電流拡散層20の表面にも直交している。当然ながら、いくつかの実施形態において、電流拡散層は随意であってよく、あるいは電流拡散層が平坦ではない上面を有してもよいことを、理解できるであろう。
【0051】
n型半導体層32は、任意のIII族チッ化物であってよい。例えば、図1の実施形態において、n型半導体層32を、GaNから形成することができる。n型半導体層32を、例えば、SiまたはGe不純物、あるいは任意の他の適切な電子ドナーでドープすることができる。n型半導体層32を、電流拡散層20と電気的に接触するように、電流拡散層20上に形成することができる。
【0052】
活性層34は、光子を生成するための1つ以上の量子井戸を含むことができる。量子井戸を、バンドギャップが異なるIII族チッ化物の複数の層から形成することができる。いくつかの実施形態においては、Inを含むIII族チッ化物合金を使用して、量子井戸を形成することができる。III族チッ化物を含むLED用の複数の量子井戸活性層が、当業者に知られている。図2が、GaNとInGaNとの交互の層を含む活性層34の一例を示している。量子井戸を形成するために使用されるInGaN層は、GaN層の厚さと比べて比較的薄い。したがって、活性層34のバンドギャップは、層の最大のバンドギャップ34であると見なされる。図2の実施形態について、活性層34のバンドギャップは、GaN層のバンドギャップ:3.4eVである。
【0053】
p型半導体層36は、例えばMgなどの電子受容体でドープされた任意のIII族チッ化物を含むことができる。図1の実施形態において、p型半導体層36は、MgでドープされたGaNであってよい。
【0054】
電流拡散層20は、III族チッ化物を含むことができる。電流拡散層20を、n型半導体層と同じ材料から形成することができる。例えば、図1の実施形態において、電流拡散層20をGaNから形成することができる。いくつかの実施形態において、GaN電流拡散層20は、ドープされていないGaNであってよい。他の実施形態において、GaN電流拡散層20は、n型半導体層32と同様に、いくつかのn型ドーパントを含むことができる。
【0055】
パッシベーション層40は、活性層34よりも大きいバンドギャップを有する結晶性III族チッ化物を含むことができる。結晶性III族チッ化物パッシベーション層40は、単結晶(モノ結晶)III族チッ化物パッシベーション層または多結晶性III族チッ化物パッシベーション層を含むことができる。パッシベーション層の結晶構造は、LED構造30の側壁37を形成するIII族チッ化物層の結晶構造におおむね一致するように構成される。したがって、周期的な結晶構造が、一般に、側壁界面を横切るLED構造30からパッシベーション層40への遷移によって中断されることがない。当然ながら、LED構造30と比較してパッシベーション層の分子組成が異なるため、側壁におけるパッシベーション層40とLED構造30との間の界面に、少量の格子ひずみが存在する可能性を、理解できるであろう。そのようなひずみにより、側壁37に或る程度の転位が生じる可能性がある。しかしながら、そのような転位に起因するエネルギーバンドのエネルギーレベルが、典型的には、エネルギーバンドのはるかに深い位置にあり、結晶格子の終端に起因するトラップサイトよりも低い密度でしか存在し得ないことを、理解できるであろう。
【0056】
図1の実施形態において、パッシベーション層はAlNを含む。AlNは、典型的には、活性層のバンドギャップよりも大きい約6eVのバンドギャップを有する。他の実施形態においては、パッシベーション層を、B、Al、Ga、およびInのうちの1つ以上を含むIII族チッ化物から形成することができる。例えば、パッシベーション層は、BAlInGa1-x-y-zNであってよく、ここで、0≦x≦1、0≦y≦1、0≦z≦1、およびx+y+z≦1である。
【0057】
パッシベーション層40を、少なくとも1nmの厚さで形成することができる。パッシベーション層40の厚さは、LED構造30の側壁37の表面に垂直な方向の層の厚さであると考えられる。いくつかの実施形態において、パッシベーション層の厚さは、少なくとも3nm、または5nmであってよい。LED構造30からパッシベーション層を通って表面状態39への電荷キャリアのトンネリングを低減または排除するために、本明細書で論じられるように、最小限の厚さのパッシベーション層を設けることが有利であり得る。
【0058】
パッシベーション層40を、500nm、400nm、または300nm以下の厚さで形成することができる。LEDのマトリックスのピクセル密度を制限しないために、パッシベーション層40の厚さを制限することが有利であり得る。
【0059】
いくつかの実施形態において、絶縁層をパッシベーション層を覆って堆積させることができる。絶縁層は、Al、SiO、またはSiNを含むことができる。絶縁層は、LEDアレイ前駆体を平坦化できるように、LED構造間の任意のギャップまたはボイドを埋めるように設けてもよい。したがって、絶縁層は、ギャップ充てん絶縁層であってよい。
【0060】
図3aが、パッシベーション層のないLED構造30の等角図を示している。図3aに示されるように、LED構造30の側壁37が、LED構造30の結晶構造のm面に整列し、LED構造30の隣の側壁37は、LED構造30のa面に整列する。図3bが、LED構造30の側壁37における活性層32の電子バンド構造の簡略図を示している。側壁37が不動態化されていないため、結晶構造の終端に起因するトラップサイト、ならびに結晶欠陥に起因するトラップサイトが、側壁37の表面に存在する。これらのトラップサイトが、電荷キャリア(電子eおよび正孔h)をトラップする可能性がある。その結果、非放射再結合が、図3bに矢印によって示されているように、トラップサイト39を介して発生する可能性がある。
【0061】
図4aが、パッシベーション層40を備えたLED構造30の等角図を示している。図4aに示されるように、LED構造30の側壁37が、LED構造30の結晶構造のm面に整列している。
【0062】
図4bが、LED構造30の側壁37における活性層32の電子バンド構造の簡略図を示している。結晶格子の終端に起因する表面トラップサイト39は、図4bに示されるように、パッシベーション層40の外面上に形成される。AlNパッシベーション層40は、InGaN活性層34のバンドギャップよりも大きいバンドギャップを有する。バンドギャップは、活性層の伝導帯および価電子帯から表面トラップサイト39への電荷キャリアの流れに対してパッシベーション層40が障壁として機能するように整列している。図4bに示されるように、いくつかのトラップサイトが、結晶構造の欠陥に起因し、さらにはパッシベーション層とLED構造との間に存在し得るひずみ(すなわち、転位)に起因して、パッシベーション層40とLED側壁37との間の界面に依然として存在し得る。しかしながら、残りのトラップサイトは、典型的には、エネルギーバンドのはるかに深い位置にあり、結晶格子の終端に起因する(すなわち、図3bに示されるとおりの)トラップサイトよりも低い密度でしか存在し得ない。したがって、本開示の実施形態によるパッシベーション層40を設けることで、(例えば、図3bに示されるとおりの)不動態化されていない側壁と比較して、LED構造の側壁37におけるトラップサイトの存在が低減される。このように、活性層34の側壁表面にパッシベーション層40を設けることで、LED構造30において発生する非放射再結合イベントの割合が低くなる。
【0063】
図5a、図5b、および図5cは、本開示の実施形態による3つの異なるパッシベーション層40の簡略化された電子バンド構造を示している。図5aは、単一のIII族チッ化物材料層がパッシベーション層40である実施形態を示している。したがって、図5aの実施形態は、パッシベーション層40がAlN層によってもたらされる図4bの電子バンド構造に類似している。
【0064】
図5bは、複数のパッシベーション層41、42、43を含むパッシベーション層40の電子バンド構造を示している。パッシベーション層41、42、43の各々は、活性層34のバンドギャップよりも大きいバンドギャップを有するIII族チッ化物から形成される。図5bに示されるように、パッシベーション層41、42、43の各々のバンドギャップは、LED構造の側壁から遠ざかる厚さ方向に段階的に増加する。いくつかの実施形態においては、パッシベーション層41、42、43の各々をAlGa1-xNから形成することができ、ここで、0≦x≦1である。各層のバンドギャップを変動させるために、Alの相対量を異なる層について変動させることができる。他の実施形態においては、B、Al、Ga、およびInのうちの1つ以上を含む他のIII族チッ化物半導体を使用して、複数のパッシベーション層41、42、43を形成することができる。図5bの実施形態においては、3つのパッシベーション層が設けられているが、他の実施形態においては、少なくとも2つ、3つ、4つ、または5つのパッシベーション層を設けることができる。
【0065】
図5cは、傾斜バンドギャップパッシベーション層を含むパッシベーション層40の電子バンド構造を示している。すなわち、パッシベーション層のバンドギャップが、LED構造の側壁から遠ざかる厚さ方向に増加する。例えば、パッシベーション層40をAlGa1-xNから形成することができ、ここで、0<x<1である。傾斜バンドギャップをもたらすために、層内のAlの相対量を、LED構造の側壁から遠ざかる厚さ方向に増加させることができる(すなわち、xが、LED構造の側壁から遠ざかる厚さ方向に増加する)。
【0066】
いくつかの実施形態において、LED構造の側壁から遠ざかる厚さ方向に増加するバンドギャップを有するパッシベーション層を設けることが、有利であり得る。
【0067】
図6が、図1に示した一部分Bの詳細な断面図の詳細を示している。図6は、電流拡散層20とパッシベーション層40との間に形成された界面を示している。上述のように、電流拡散層20の露出した上面を、電流拡散層20のIII族チッ化物の結晶構造の極性面に整列させることができる。結果として、パッシベーション層40と電流拡散層20との間の界面に二次元電子ガスを形成することができる。この界面における二次元電子ガスの存在は、LEDアレイのシート抵抗を減少させることにより、LEDアレイの効率を向上させることができる。
【0068】
上述のように、本開示の実施形態によれば、不動態化されるLED構造30の側壁37は、LED構造30の非極性結晶面に整列している。図7が、III族チッ化物の結晶構造を表す図を示している。図7は、III族チッ化物半導体のc面((0 0 0 1)面)の結晶構造を示している。界面に二次元電子ガスが形成されないことを確実にするために、不動態化されるLED構造30の側壁37が、LED構造30の非極性結晶面に整列することが重要である。界面における二次元電子ガスの形成は、LED接合を横切る電荷キャリアの漏れ経路をもたらす。このような漏れ経路は、LEDの効率を低下させる。したがって、本発明のパッシベーション層40は、パッシベーション層40とLED構造30との間の界面に電荷キャリアの漏れ経路が形成されないことを保証する。
【0069】
いくつかの実施形態において、LED構造30を、既知の結晶配向を有するLED構造30をもたらすために、既知の結晶配向の結晶基板上で製造することができる。例えば、図7に示されるように、この図は、Siウェーハの表面に作製されたIII族チッ化物半導体の結晶構造を表している。Siウェーハの表面は、(1 1 1)Si結晶面に整列している。LED構造30を、III族チッ化物のc面がSiウェーハの(1 1 1)面に整列するように、Siウェーハ上に製造することができる。
【0070】
図7に示されるように、Siウェーハの(1 1 1)面の結晶配向も知ることができる。例えば、Si結晶の[1 1 -2]方向を、Siウェーハ上で特定することができる。したがって、Siウェーハ上に設けられるIII族チッ化物結晶の配向も、Siウェーハの配向を参照することによって知ることができる。結果として、LED構造30を、側壁37が非極性結晶面に整列するように製造することができる。図7は、各々のエッジが非極性結晶面に整列したIII族チッ化物の(0 0 0 1)結晶面の一例を示している。
【0071】
図8が、Siウェーハ基板10上に形成された複数の異なる形状のLED構造30の平面図を示している。各々のLED構造30は、基板表面11に垂直に延びる側壁37を有する。LED構造30の各々は、LED構造30の非極性結晶面に整列した側壁37を有する。LED構造を、LED構造30a、30b、30cなど、平面図において正多角形となるように形作ることができる。第1のLED構造30aは、4つの側壁37を有し、各々の側壁は、隣接する側壁に垂直である。したがって、LED構造30aは、立方体の形状を有する。図8に示されるように、第1のLED構造の側壁37のうちの2つが、III族チッ化物結晶構造のa面に整列する一方で、他の2つの側壁は、m面に整列する。第2のLED構造30bは、6つの側壁37を有し、各々の側壁は、III族チッ化物結晶構造のa面に整列している。したがって、第2のLED構造30bは、平面図において見たときに六角形の形状を有する(すなわち、(0 0 0 1)面が六角形の断面を有する)。第3のLED構造30cは、6つの側壁37を有し、各々の側壁は、III族チッ化物結晶構造のm面に整列している。したがって、第3のLED構造30cは、平面図において見たときに六角形の形状を有する(すなわち、(0 0 0 1)面が六角形の断面を有する)。当然ながら、本開示が、a面およびm面の異なる組み合わせに整列した側壁を有するLED構造30(すなわち、平面図において見たときに不規則な形状の多角形)にも及ぶことを、理解できるであろう。そのような形状のいくつかの例が、図8に示されている。
【0072】
次に、本開示の実施形態によるLED前駆体の製造方法を説明する。図9が、図1の実施形態によるLED前駆体のアレイを製造する方法のフローチャートである。
【0073】
まず基板10が用意される。基板は、Siウェーハ、サファイアウェーハ、または薄膜電子回路の製造のための任意の他の好適な基板であってよい。基板表面11は、基板表面11上に形成されるIII族チッ化物の結晶配向も既知の結晶配向を有するように、既知の結晶配向を有することができる。例えば、図7に示されるように、(1 1 1)結晶配向を有するSiウェーハを使用することができる。III族チッ化物の配向を制御するための他の基板または基板コーティングも、適切であり得る。
【0074】
基板表面11上に緩衝層14を形成することができる。緩衝層14を、基板表面11の大部分を覆って形成することができる。緩衝層は、例えばAlNまたはGaNなど、III族チッ化物を含むことができる。緩衝層は、さらなるIII族チッ化物層のエピタキシャル成長のための表面を提供することができる。緩衝層を、金属酸化物化学蒸着(MOCVD)、分子線エピタキシ(MBE)、または原子層堆積(ALD)を使用して堆積させることができる。
【0075】
緩衝層14上に電流拡散層20を形成することができる。電流拡散層20を、緩衝層14の大部分を覆って形成することができる。他の実施形態において、アクティブマトリックス電子層などの他の電子層も、基板表面上に形成することができ、あるいは基板の一部として設けることができる。
【0076】
次に、電流拡散層20上にLED層が形成される(ステップ100)。他の実施形態においては、LED層を、基板表面11に直接形成してもよい。LED層は、LED構造を形成するための複数のIII族チッ化物層を含むことができる。したがって、LED層は、本開示の実施形態によるLED構造30に含まれるべきすべての層を含むことができる。例えば、図1の実施形態におけるLED構造30を形成するために、LED層は、図1に関して上述したように、n型半導体層32、活性層34、およびp型半導体層36を含むことができる。
【0077】
LED層が形成されると、図1に示されるように、LED層は、複数のLED構造30を形成するようにパターン加工される(ステップ110)。形成されたLED構造30は、LED構造30の非極性面に整列した側壁37を含む。
【0078】
次に、パッシベーション層40が、各々のLED構造の少なくとも活性層を覆うように、LED構造30の側壁上に形成される(ステップ120)。上述のように、パッシベーション層は、各々のLED構造30の活性層のバンドギャップよりも大きいバンドギャップを有するIII族チッ化物を含む。
【0079】
LED構造30の各々が不動態化されると、必要に応じてさらなる処理ステップ(130)を実行して、LED前駆体の各々への適切な電気的接触部を形成することができる。必要に応じて、さらなるカプセル化層をLED前駆体を覆って堆積させることもできる。
【0080】
LED層をパターン加工し、パッシベーション層を堆積させる1つの方法が、図10のフローチャートでさらに詳細に説明される。
【0081】
LED層をパターン加工するために、マスク層を使用して、形成されるLED構造30の各々のための形状を画定するように、LED層の一部分を選択的にマスクすることができる。マスク層を、当技術分野で知られている任意の適切な層から形成することができる。例えば、マスク層は、SiO層または他の適切なマスキング材料を含むことができる。マスク層は、約50nm~1000nmの厚さを有することができる。マスク層を、例えばリソグラフィーパターン加工ステップなど、任意の適切なパターン加工方法を使用してパターン加工することができる。
【0082】
マスク層を、マスクエッジを含むLED層上の形状を形成するようにパターン加工することができる。マスク層は、マスクエッジがLED層の非極性面に整列するように、LED層の結晶構造に整列される。例えば、マスク層を、複数の長方形または六角形のマスク部分を含むようにパターン加工することができる。図7および図8に関連して上述したように、長方形または六角形のマスク部分のマスクエッジの各々を、LED層のIII族チッ化物結晶構造のa面および/またはm面(すなわち、非極性面)に整列させることができる。
【0083】
LED構造30を、エッチングプロセスによって形成することができる。エッチングプロセスは、LED層のマスクされていない部分を選択的に除去し、複数のLED構造を残す。このように、エッチングプロセスによって形成されるLED構造30は、メサ構造である。側壁37がIII族チッ化物結晶構造の非極性面に整列したLED構造30を形成するために、エッチングプロセスは、LED層のIII族チッ化物層の(0 0 0 1)結晶面に直交する方向にLED構造の側壁をエッチングするように設計される。いくつかの実施形態においては、異方性エッチングプロセスを使用して、LED層のIII族チッ化物層の(0 0 0 1)結晶面に直交する方向にLED構造の側壁をエッチングすることができる。
【0084】
図10の方法によれば、LED層は最初に乾式エッチングプロセスでエッチングされる。例えば、低圧環境でのプラズマエッチングプロセスが、LED層の(0 0 0 1)結晶面に直交する側壁37を有するLED構造をもたらすために有利であり得る。
【0085】
いくつかの実施形態においては、乾式エッチングプロセスを、湿式エッチングプロセスで補足することができる。乾式エッチングプロセスの最中に導入された表面損傷を除去するために、湿式エッチングプロセスを提供することができる。したがって、湿式エッチングプロセスは、LED構造30の側壁37に存在する欠陥(ダングリングボンド、空孔)の量を減らすことができる。さらに、湿式エッチングプロセスは、LED構造30の非極性面に整列した平坦な側壁37であるLED表面積の割合を増加させることができる。
【0086】
湿式エッチングプロセスは、水酸化テトラメチルアンモニウム(TMAH)またはKOHなどのエッチング液を使用することができる。このような湿式エッチングプロセスは、(0 0 0 1)結晶面に直交する側壁37をもたらすためのIII族チッ化物結晶構造の異方性エッチングにとくに好適であり得る。湿式エッチングプロセスに続いて、さらなる湿式エッチングステップを実行して、湿式エッチングプロセスに起因してLED構造30の側壁37の表面に形成される酸化物層を除去することができる。さらなる湿式エッチングステップは、形成された酸化物をHClまたは任意の他の適切なエッチング液を使用してエッチングすることを含むことができる。したがって、湿式エッチングプロセスは、第1の湿式エッチングステップおよび第2の湿式エッチングステップを含む2ステッププロセスであってよい。第1の湿式エッチングステップが、酸化エッチングステップであってよい一方で、第2の湿式エッチングステップは、還元エッチングステップであってよい。LED構造の側壁を(0 0 0 1)結晶面に直交する方向にエッチングするための適切なエッチングプロセスのさらなる詳細を、Li et al,GaN-based Ridge Waveguides with Very Smooth and Vertical Sidewalls by ICP Dry Etching and Chemical Etching,pp.Jth2A.24,Optical Society of America,2015に見つけることができる。
【0087】
LED構造30が適切に整列した側壁37を備えて形成されると、パッシベーション層40を、LED構造30の側壁37上に形成することができる。図1の実施形態において、パッシベーション層40はAlNを含む。パッシベーション層40を、例えば、金属酸化物化学蒸着(MOCVD)、分子線エピタキシ(MBE)、または原子層堆積(ALD)など、III族チッ化物を堆積させるための任意の適切な方法を使用して堆積させることができる。パッシベーション層40は、結晶または多結晶構造を有することができる。パッシベーション層40を堆積させるための正確なやり方は、不動態化されるLED構造30の形状に依存し得る。
【0088】
図1の実施形態において、パッシベーション層は、LED構造30の側壁表面37のすべてを覆うように堆積される。図1に示されるように、パッシベーション層は、LED構造30の発光面38を覆わない。さらに、パッシベーション層40は、LED構造30間の電流拡散層20の露出面も覆う。
【0089】
図5bに示される実施形態によれば、パッシベーション層40を、複数の堆積ステップにて堆積させることができる。いくつかの実施形態において、複数の堆積ステップでのパッシベーション層40の堆積は、パッシベーション層40に亀裂が形成される可能性を低減することができる。パッシベーション層40における亀裂の形成は、LED構造30とパッシベーション層40の表面との間に漏れ経路をもたらす可能性がある。
【0090】
各々の堆積ステップは、パッシベーション副層41、42、43を堆積させることができる。パッシベーション副層41、42、43の各々を、活性層34のバンドギャップよりも大きいバンドギャップを有するIII族チッ化物から形成することができる。図5bに関して上述したように、各々のステップにて堆積される各々のパッシベーション副層の組成を、パッシベーション副層41、42、43のバンドギャップを変えるために変えることができる。
【0091】
例えば、いくつかの実施形態において、4nm以下の厚さを有するAlNを含む第1のパッシベーション副層を堆積させることが望ましいかもしれない。LED構造30の側壁37との界面を形成する第1のパッシベーション副層の厚さを4nm以下に制限することにより、パッシベーション層40に亀裂が形成される可能性を低減または排除することができる。次に、パッシベーション層40の厚さを増やすことによって電荷キャリアトンネリングの影響を低減するために、さらなるパッシベーション副層42、43を、AlNを含む第1のパッシベーション副層上に堆積させることができる。例えば、さらなるパッシベーション副層42、43は、BAlInGa1-x-y-zNを含むことができ、ここで、0≦x≦ 1、0≦y≦1、0≦z≦1、かつx+y+z≦1である。
【0092】
図5cに示される実施形態によれば、パッシベーション層40を、堆積プロセスの最中にIII族チッ化物の組成が変動する堆積ステップによって堆積させることができる。例えば、傾斜バンドギャップをもたらすために、堆積されるAlの相対量を、堆積プロセスの過程につれて増加させることができる。したがって、堆積されたパッシベーション層40は、LED構造の側壁から遠ざかる厚さ方向に増加するバンドギャップを有することができる。パッシベーション層40に存在するAlの相対量をその厚さ全体にわたって変動させることにより、パッシベーション層40と側壁37との間の界面に形成され得るひずみを低減することができる。
【0093】
パッシベーション層40が堆積されると、本開示の実施形態によるLEDアレイ前駆体1を提供することができる。LEDアレイ前駆体を、絶縁層の堆積などのさらなる製造ステップに供することができる。絶縁層を、例えば化学蒸着(CVD)などの任意の適切な堆積方法、によって堆積させることができる。
【0094】
さらに、LEDアレイを形成するために、LEDアレイ前駆体1にさらなる電気的接触部を堆積させることができる。例えば、各々のLEDアレイのp側およびn側への電気的接触部を、金属リフトオフ、金属エッチング、Cu電気めっき、または薄膜回路を製造するための任意の他の既知の方法によって堆積させることができる。
【0095】
本発明の好ましい実施形態を本明細書において詳細に説明してきたが、それらに対して、本発明または添付の特許請求の範囲の技術的範囲から逸脱することなく変更を加えることができることを、当業者であれば理解できるであろう。
図1
図2
図3a
図3b
図4a
図4b
図5a
図5b
図5c
図6
図7
図8
図9
図10