IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社デンソーの特許一覧

<>
  • 特許-非接触給電装置 図1
  • 特許-非接触給電装置 図2
  • 特許-非接触給電装置 図3
  • 特許-非接触給電装置 図4
  • 特許-非接触給電装置 図5
  • 特許-非接触給電装置 図6
  • 特許-非接触給電装置 図7
  • 特許-非接触給電装置 図8
  • 特許-非接触給電装置 図9
  • 特許-非接触給電装置 図10
  • 特許-非接触給電装置 図11
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-03-04
(45)【発行日】2024-03-12
(54)【発明の名称】非接触給電装置
(51)【国際特許分類】
   H02J 50/12 20160101AFI20240305BHJP
   H01F 38/14 20060101ALI20240305BHJP
   H02J 7/00 20060101ALI20240305BHJP
   H02J 50/40 20160101ALI20240305BHJP
   B60L 53/122 20190101ALN20240305BHJP
   B60M 7/00 20060101ALN20240305BHJP
【FI】
H02J50/12
H01F38/14
H02J7/00 P
H02J7/00 301D
H02J50/40
B60L53/122
B60M7/00 X
【請求項の数】 10
(21)【出願番号】P 2019227044
(22)【出願日】2019-12-17
(65)【公開番号】P2021097485
(43)【公開日】2021-06-24
【審査請求日】2022-11-14
(73)【特許権者】
【識別番号】000004260
【氏名又は名称】株式会社デンソー
(74)【代理人】
【識別番号】110000028
【氏名又は名称】弁理士法人明成国際特許事務所
(72)【発明者】
【氏名】中屋敷 侑生
(72)【発明者】
【氏名】▲高▼橋 将也
(72)【発明者】
【氏名】高橋 英介
(72)【発明者】
【氏名】山口 宜久
【審査官】下林 義明
(56)【参考文献】
【文献】特開2018-186603(JP,A)
【文献】特開2013-085350(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H02J 50/00 - 50/90
H02J 7/00 - 7/12
H02J 7/34 - 7/36
H01F 38/14
H01F 38/18
B60M 1/00 - 7/00
B60L 1/00 - 3/12
B60L 7/00 - 13/00
B60L 15/00 - 58/40
(57)【特許請求の範囲】
【請求項1】
受電装置に非接触で電力を供給する非接触給電装置(100,100B~100D)であって、
予め定めた動作周波数の交流電力を出力する送電出力回路(130)と、
前記交流電力を前記受電装置に送電する送電部(105,105B,105C)であって、送電コイル(112)と共振コンデンサ(116)とから構成される送電共振回路(110)と、前記送電コイルに磁気的に結合された特性可変コイル(122,122C)と特性可変コンデンサ(126)とが接続された閉回路で構成された1つ以上の特性可変回路(120,120_1,120_2,120C)と、を有する送電部と、
を備え、
前記特性可変回路は、
前記送電部から前記受電装置への送電時において、前記動作周波数が前記送電共振回路の共振周波数の近傍となるような周波数特性を有し、
前記送電部から前記受電装置への非送電時において、前記動作周波数における前記送電コイルのリアクタンスが、前記送電時における前記送電コイルのリアクタンスに比べて大きくなるような周波数特性を有する、
非接触給電装置。
【請求項2】
請求項1に記載の非接触給電装置であって、
複数の前記送電部が前記送電出力回路に対して並列に接続されている、非接触給電装置。
【請求項3】
請求項1または請求項2に記載の非接触給電装置であって、
前記特性可変回路の周波数特性は、前記送電コイルと前記受電装置に含まれる受電コイルとの間の磁気的な結合についての前記送電時における状態と前記非送電時における状態の変化に従って変化する、非接触給電装置。
【請求項4】
請求項1または請求項2に記載の非接触給電装置(100C)であって、
前記送電時と前記非送電時における前記特性可変回路(120C)の周波数特性の変化は、前記特性可変コイル(122C)のインダクタンスと前記特性可変コンデンサのキャパシタンスの少なくとも一方を変化させることで実行される、非接触給電装置。
【請求項5】
請求項1または請求項2に記載の非接触給電装置(100B)であって、
前記送電部(105B)は、複数の前記特性可変回路(120_1,120_2)を有し、
前記送電コイルのインダクタンスは、前記送電共振回路について複数の共振周波数を発生させる周波数特性を有する、非接触給電装置。
【請求項6】
請求項5に記載の非接触給電装置であって、
少なくとも1つの前記特性可変回路(120_2)の特性可変コイル(122)の前記送電コイルに対する磁気的な結合は和動結合とされ、他の少なくとも1つの前記特性可変回路(120_1)の特性可変コイル(122)の前記送電コイルに対する磁気的な結合は差動結合とされる、非接触給電装置。
【請求項7】
請求項5に記載の非接触給電装置であって、
少なくとも1つの前記特性可変回路(120_2)の特性可変コイル(122)は前記送電コイルに対して垂直方向に配置され、他の少なくとも1つの前記特性可変回路(120_1)の特性可変コイル(122)は前記送電コイルに対して水平方向に配置される、非接触給電装置。
【請求項8】
請求項5に記載の非接触給電装置であって、
各特性可変回路の共振周波数はそれぞれ異なる周波数に設定される、非接触給電装置。
【請求項9】
請求項1から請求項8のいずれか一項に記載の非接触給電装置であって、
前記送電コイルのインダクタンスは、
前記送電時において、前記動作周波数が前記送電共振回路の共振周波数となるような特性を有し、
前記非送電時において、前記動作周波数において誘導性あるいは容量性となるような特性を有する、非接触給電装置。
【請求項10】
請求項1から請求項9のいずれか一項に記載の非接触給電装置であって、
前記特性可変回路の前記特性可変コンデンサは、前記特性可変コイルの浮遊容量である、非接触給電装置。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、非接触給電装置に関する。
【背景技術】
【0002】
特許文献1には、高周波電源と各送電コイルとの間に電流制御素子が配置されたワイヤレス給電システムが開示されている。電流制御素子には、例えば可飽和リアクトルのように、高周波電源から送電コイルに流れる電流が閾値未満のときインピーダンスが上昇し、高周波電源から送電コイルに流れる電流が閾値以上のとき、インピーダンスが低下する素子が用いられている。これにより、受電コイルと対向していない送電コイルに配置された電流制御素子のインピーダンスが上昇して、高周波電源から送電コイルへの電流供給が抑制されている。
【先行技術文献】
【特許文献】
【0003】
【文献】特開2019-71719号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
しかしながら、従来技術のように、電流制御素子を送電コイルに直列に接続する構成は、送電コイルと送電共振コンデンサを直列に接続する直列共振方式の送電共振回路に対しては適用できず、汎用性が低い。また、電流制御素子のリアクタンス成分によって、送電共振回路の共振特性に影響を与えて送電特性を低下させてしまう可能性がある。また、電流制御素子として例示されている可飽和リアクトルは、インピーダンスを高くするためにはインダクタンスを大きくする必要があるため、電流制御素子として使用する可飽和リアクトルが大型化してしまう可能性がある。
【課題を解決するための手段】
【0005】
本開示の一形態によれば受電装置に非接触で電力を供給する非接触給電装置(100,100B~100D)が提供される。この非接触給電装置は、予め定めた動作周波数の交流電力を出力する送電出力回路(130)と、前記交流電力を前記受電装置に送電する送電部(105,105B,105C)であって、送電コイル(112)と共振コンデンサ(116)とから構成される送電共振回路(110)と、前記送電コイルに磁気的に結合された特性可変コイル(122,122C)と特性可変コンデンサ(126)とが接続された閉回路で構成された1つ以上の特性可変回路(120,120_1,120_2,120C)と、を備える。前記特性可変回路は、前記送電部から前記受電装置への送電時において、前記動作周波数が前記送電共振回路の共振周波数の近傍となるような周波数特性を有し、前記送電部から前記受電装置への非送電時において、前記動作周波数における前記送電コイルのリアクタンスが、前記送電時における前記送電コイルのリアクタンスに比べて大きくなるような周波数特性を有する。
この形態の非接触給電装置によれば、非送電時において、動作周波数における送電コイルのリアクタンスが、送電時における送電コイルのリアクタンスに比べて大きくなることで、送電出力回路から送電部への電流の供給を抑制することが可能である。これにより、電力を送電しない送電コイルでの損失、及び、漏洩磁束の低減を図ることができる。また、従来技術の電流制御素子のように、送電コイルに直列に接続された電流制御素子を用いずに、送電時における送電出力回路から送電部への電流の供給と、非送電時における送電出力回路から送電部への電流の供給の抑制と、を制御することできる。これにより、従来技術に比べて汎用性の高い技術を提供することができる。
【図面の簡単な説明】
【0006】
図1】第1実施形態の非接触給電装置の回路構成図。
図2】送電コイルと特性可変コイルの配置関係の一例を示す説明図。
図3】送電コイルの周波数特性の一例を示す説明図。
図4】送電コイルと特性可変コイルの結合係数による送電コイルのインダクタンスの可変幅の変化を示す説明図。
図5】特性可変コイルのQ値による送電コイルのインダクタンスの可変幅の変化を示す説明図。
図6】第2実施形態の非接触給電装置の回路構成図。
図7】送電コイルと特性可変コイルの配置関係の一例を示す説明図。
図8】送電コイルの周波数特性の一例を示す説明図。
図9】第3実施形態の非接触給電装置の回路構成図。
図10】送電コイルの周波数特性の一例を示す説明図。
図11】第1実施形態の非接触給電装置を適用した車両用非接触給電装置の概略構成図。
【発明を実施するための形態】
【0007】
A.第1実施形態:
図1には、受電装置200に非接触で電力の供給が可能な第1実施形態の非接触給電装置100の構成が示されている。
【0008】
非接触給電装置100は、電源回路140と、送電出力回路130と、送電出力回路130に並列に接続された複数の送電部105と、を備えている。各送電部105は送電共振回路110と、特性可変回路120と、を備えている。それぞれの送電共振回路110は、送電出力回路130に並列に接続されている。
【0009】
送電共振回路110は、共振により受電装置200への電力の供給を実行する回路である。送電共振回路110は、例えば、送電コイル112と、送電コイル112に直列に接続された共振コンデンサ116と、を有している。送電出力回路130は、電源回路140から供給される直流電力を予め定められた動作周波数の交流電力に変換して送電共振回路110に供給する回路である。送電出力回路130は、例えば、インバータ回路として構成される。電源回路140は、例えば、外部電源の交流電圧を整流して直流電圧を出力するAC/DCコンバータ回路として構成される。
【0010】
なお、各送電共振回路110の送電コイル112は、例えば、それぞれのコイル面が水平方向に沿うように配列される。コイル面は、コイルを形成する配線によって囲まれ、コイルを流れる電流に応じた磁束を出力する面として機能する。
【0011】
送電共振回路110と対をなす特性可変回路120は、特性可変コイル122と、特性可変コンデンサ126とが直列に接続された閉回路で構成されている。この特性可変回路120は、図2に示すように、自身の特性可変コイル122が、対をなす送電共振回路110の送電コイル112のコイル面に沿った一方の横側に配置されて、送電コイル112に磁気的に結合された状態となるように配置されている。なお、図1では、送電コイル112と特性可変コイル122とが磁気的に結合された状態にあることを2本の平行な直線にて示している。
【0012】
ここで、特性可変コイル122の配置は、図2に示した状態に限定されるものではなく、送電コイル112のコイル面に沿った他方の横側に配置されていても良く、送電コイル112のコイル面の上方側に配置されていても良い。すなわち、特性可変コイル122が、対をなす送電共振回路110の送電コイル112に磁気的に結合された状態となるように配置されていれば、その配置の位置に特に限定はない。
【0013】
特性可変コイル122と送電コイル112との間の磁気的な結合の状態の違いは、結合係数の違いとして表される。結合係数は、送電コイル112に対する特性可変コイル122の配置関係に応じて、-1よりも大きく+1未満の値をとる。
【0014】
なお、図2に示した送電コイル112は、コア310にループ状の導線312が形成されたコア有り構造のコイルを例に示している。また、特性可変コイル122は、ループ状の導線322によって構成されたコア無し構造のコイルを例に示している。なお、特性可変コイル122も、送電コイル112と同様にコア有り構造のコイルとしても良い。
【0015】
受電装置200は、電子機器や電気自動車等のように、電力を利用して作動する種々の装置に搭載される。受電装置200は、受電共振回路210と、受電回路220と、バッテリ230と、を備えている。
【0016】
受電共振回路210も、送電共振回路110と同様に、直列に接続された受電コイル212と、共振コンデンサ216と、を有している、送電共振回路110及び受電共振回路210には、一次直列二次直列コンデンサ方式(「SS方式」とも呼ばれる)が適用されている。また、送電側が単相の送電コイル112で構成され、受電側が単相の受電コイル212で構成された送電側単相-受電側単相の非接触給電方式が適用されている。受電共振回路210は、送電共振回路110と同じ共振周波数で共振し、受電コイル212と送電コイル112との間が磁気的に結合された共振結合の状態において、受電コイル212に誘導された交流の電力を得る回路である。
【0017】
受電回路220は、例えば、受電共振回路210で得られた交流の電力を直流の電力に変換し、負荷としてのバッテリ230に充電する回路である。バッテリに充電された電力は、受電装置200が搭載された装置において電力として利用される。
【0018】
なお、図1は、受電装置200の受電コイル212のコイル面が、非接触給電装置100の1番目の送電部105の送電コイル112のコイル面の上方に配置されている状態が例として示されている。この場合、受電コイル212は、1番目の送電コイル112、及び、1番目の送電コイル112と磁気的に結合された状態にある特性可変コイル122に磁気的に結合された状態にある。
【0019】
受電コイル212が上方に配置されている1番目の送電部105では、送電共振回路110の入力インピーダンスZpが小さな値Zp0となり、送電コイル112には、動作周波数f0の出力電流Ipとして値Ip0の電流(以下、「駆動電流Ip0」とも呼ぶ)が送電出力回路130から供給される。この場合、受電コイル212には、受電コイル212と送電コイル112との間の共振結合により誘導される動作周波数f0の電流が流れて、送電共振回路110から受電共振回路210を介して受電装置200に電力の供給が実行される。
【0020】
これに対して、受電コイルが上方に配置されていない2番目以降の他の送電部105では、送電共振回路110の入力インピーダンスZpが値Zp0よりも大きな値となり、送電コイル112には、出力電流Ipとして、駆動電流Ip0に比べて小さな電流しか流れなくなる。これにより、受電コイル212が上方に配置されていない送電コイル112を有する送電部105の送電共振回路110では無駄な電力の消費の抑制が可能であり、また、漏洩磁束の低減及び送電効率の向上が可能である。
【0021】
ここで、送電コイル112のインダクタンスLpは、以下で説明するように、特性可変回路120の有無、すなわち、特性可変コイル122と送電コイル112との間の磁気的な結合の有無に応じて変化する。
【0022】
送電コイル112のインダクタンスLpは、特性可変回路120が無い場合、図3に二点鎖線で示すように、一定の値Lp0となる。これに対して、特性可変回路120が有る場合、送電コイル112のインダクタンスLpは、図3に実線および破線で示すように、周波数に応じて変化する。送電コイル112のインダクタンスLpの周波数特性は、特性可変回路120のインピーダンスの周波数特性に従って発生し、特性可変回路120の共振周波数fvよりも低周波数側で誘導性の特性を示し、高周波側で容量性の特性を示す。
【0023】
また、特性可変回路120の特性可変コイル122のインダクタンスLvは、受電コイル212の上方配置の有無、すなわち、特性可変コイル122と受電コイル212との間の磁気的な結合の有無に応じて変化する。具合的には、特性可変コイル122のインダクタンスLvは、受電コイル212の上方配置が無い場合に比べて、受電コイル212の上方配置が有る場合のほうが大きくなる。これにより、特性可変回路120の共振周波数fvは、受電コイル212の上方配置が無い場合に比べて、受電コイル212の上方配置が有る場合のほうが低くなる。
【0024】
従って、送電コイル112のインダクタンスLpの周波数特性は、図3に示すように、受電コイル212の上方配置が無い場合に比べて受電コイル212の上方配置が有る場合のほうが低周波側にシフトする。
【0025】
そこで、第1実施形態では、以下で説明するように、送電共振回路110及び特性可変回路120の各回路定数を設定している。
【0026】
まず、特性可変回路120が無い場合において、送電共振回路110の送電コイル112のインダクタンスLp及び共振コンデンサ116のキャパシタンスCpの基準値を、送電共振回路110の共振周波数が動作周波数f0に等しい周波数となるような値に設定する。ここで、「動作周波数f0に等しい周波数」は、完全な一致だけでなく動作周波数f0に等しい周波数としても差し支えないような動作周波数f0の近傍周波数を含む。本例では、送電コイル112のインダクタンスLp及び共振コンデンサ116のキャパシタンスCpの基準値はLp=Lp0及びCp=Cp0に設定されており、送電コイル112の動作周波数f0におけるリアクタンスXpは、Xp=Xp0に設定されている。
【0027】
なお、受電共振回路210の受電コイル212のインダクタンスLs及び共振コンデンサ216のキャパシタンスCsも、動作周波数f0に等しい共振周波数となるような値に設定される。
【0028】
また、特性可変回路120について、特性可変コイル122のインダクタンスLv及び特性可変コンデンサ126のキャパシタンスCvを、以下のように設定する。
【0029】
特性可変コイル122と受電コイル212との間に磁気的な結合の有無(以下、「受電コイル212の有無」とも呼ぶ)に応じて、送電コイル112のインダクタンスLpが図3に示した実線と破線の周波数特性に変化するように、特性可変コイル122のインダクタンスLv及び特性可変コンデンサ126のキャパシタンスCvの基準値を設定する。なお、特性可変コイル122のインダクタンスLv及び特性可変コンデンサ126のキャパシタンスCvの基準値は、受電コイル212が無い場合の特性可変コイル122のインダクタンスLv及び特性可変コンデンサ126のキャパシタンスCvの値である。本例では、特性可変コイル122のインダクタンスLv及び特性可変コンデンサ126のキャパシタンスCvの基準値はLv=Lvr及びCv=Cvrに設定されており、この場合の特性可変回路120の共振周波数fvは動作周波数f0に等しい値fv0よりも高い周波数に設定されている。なお、特性可変コンデンサ126のキャパシタンスCvの基準値Cvrは、特性可変コイル122のインダクタンスLvの値Lv0と特性可変コンデンサ126のキャパシタンスCvの値とから定まる特性可変回路120の共振周波数fvを動作周波数f0に等しい値fv0とするキャパシタンスの値Cv0とされている。
【0030】
受電コイル212が有る場合の特性可変コイル122のインダクタンスLvは、受電コイル212と特性可変コイル122の磁気的な結合の状態に依存して、特性可変回路120の共振周波数fvが、受電コイル212が無い場合の周波数よりも低い動作周波数f0に等しい値fv0となるような基準値Lvrよりも大きな値に変化する。本例では、受電コイル212が有る場合の特性可変コイル122のインダクタンスLvの値をLv=Lv0として示している。言い換えると、受電コイル212が無い場合の特性可変コイル122のインダクタンスLvの値である基準値Lvrは、受電コイル212が有る場合の値Lv0よりも小さい値に設定されている。
【0031】
以上のように送電共振回路110及び特性可変回路120の各回路定数が設定されている場合、各送電部105の送電共振回路110は、受電コイル212の有無に応じて以下のように動作する。
【0032】
受電コイル212の上方配置が有る1番目の送電部105の送電コイル112(図1参照)は、図3に実線で示すように、インダクタンスLpの値が送電共振回路110の共振点の値Lp0となる。これにより、この送電コイル112を含む送電共振回路110の共振周波数fpは動作周波数f0に等しい値fp0となる。この結果、図1に示すように、動作周波数f0の動作点における送電共振回路110の入力インピーダンスZpが小さな値Zp0となって、動作周波数f0の出力電流Ipとして大きな値の駆動電流Ip0が送電出力回路130から供給される。これにより、受電コイル212が上方に配置されている送電コイル112を有する送電部105の送電共振回路110から受電共振回路210を介して受電装置200に電力の供給が可能となる。
【0033】
一方、受電コイル212の上方配置が無い2番目以降の他の送電部105の送電コイル112のインダクタンスLpは、図3に破線で示すように、送電共振回路110の共振点の共振周波数fvは値fp0よりも高い値となる。これにより、この送電コイル112の動作周波数f0の動作点におけるインダクタンスLpの大きさ|Lp|は基準値Lp0よりも大きな値Lp1(図3参照)となり、動作周波数f0におけるリアクタンスXpは基準値Xp0よりも大きくなる(図1参照)。この結果、図1に示すように、送電共振回路110の入力インピーダンスZpが、受電コイル212がある場合の値Zp0よりも大きな値となって、動作周波数f0の出力電流Ipとして駆動電流Ip0に比べて小さな電流しか流れなくなる。これにより、受電コイル212が上方に配置されていない送電コイル112を有する送電部105の送電共振回路110では無駄な電力の消費の抑制が可能であり、また、漏洩磁束の低減及び送電効率の向上が可能である。
【0034】
以上説明した構成では、送電共振回路110の送電コイル112に対して受電装置200の受電コイル212が磁気的な結合を発生するような状態にある場合において、送電共振回路110の共振によって入力インピーダンスZpがZp=Zpoと小さくなる。また、送電コイル112に対して受電コイル212が磁気的な結合を発生しないような状態にある場合において、送電共振回路110の非共振によって入力インピーダンスZpがZp>Zp0と大きくなる。これにより、送電出力回路130は、受電コイル212が磁気的に結合している送電コイル112を有する送電共振回路110に対して、比較的小さい入力インピーダンスZp=Zp0に対応した大きな出力電流Ip=Ip0を供給することができる。一方、送電出力回路130は、受電コイル212が磁気的に結合していない送電コイル112を有する送電共振回路110に対して、比較的大きな入力インピーダンスZp>Zp0によって電流の供給を抑制することができる。これにより、1つの送電出力回路130で、並列に接続された複数の送電部105の送電共振回路110を駆動する場合において、電力を送電しない送電コイル112での無駄な電力の損失の低減及び漏洩磁束の低減を図ることができる。また、従来技術の電流制御素子のように、送電コイルに直列に接続された電流制御素子を用いずに、送電時における送電出力回路130から送電部105への電流の供給と、非送電時における送電出力回路130から送電部105への電流の供給の抑制と、を制御することできる。
【0035】
ここで、図4は、周波数に依存して変化する送電コイル112のインダクタンスLpの最大値と最小値の差、すなわち、特性可変幅(図3参照)と、送電コイル112と特性可変コイル122との間の結合係数と、の関係について示している。図4から分かるように、結合係数の大きさが大きいほど特性可変幅は大きくなる。この特性可変幅が大きいほど、送電を行なわない送電コイル112のインダクタンスLpの大きさ、すなわち、送電コイル112のリアクタンスXpが大きくなるように設定することが可能であり、送電を行なわない送電部105の送電共振回路110の入力インピーダンスZpをより大きくして、送電コイル112に流れる電流をより低く抑えることができる。以上のことから、特性可変コイル122は、対をなす送電コイル112との結合係数の大きさがより大きくなるように設計されることが好ましい。例えば、特性可変コイル122を送電コイル112に可能な限り近づけて配置することが好ましい。また、特性可変コイル122の軸心を送電コイル112の軸心に可能な限り一致させるように配置することが好ましい。また、特性可変コイル122のコイル径を送電コイル112のコイル径と同一の構造とすることが好ましい。
【0036】
また、図5は、送電コイル112のインダクタンスLpの特性可変幅(図3参照)と、特性可変コイル122のQ値と、の関係について示している。図5から分かるように、特性可変コイル122のQ値が大きいほど特性可変幅は大きくなる。以上のことから、特性可変コイル122のQ値がより大きくなるように設計されることが好ましい。例えば、特性可変コイル122のリアクタンスが大きくなるように、コア有り構造のコイルとすることや、コイルの巻数を大きくして自己インダクタンスを大きくすることが好ましい。また、コイルの等価直列抵抗(ESR)が小さくなるように、コイルの巻線にリッツ線等の高周波特性や温度特性に優れた導線を使うことや、コイルの巻線の断面を大きくすること、コイル長を短くすることが好ましい。
【0037】
B.第2実施形態:
図6に示す第2実施形態の非接触給電装置100Bは、第1実施形態の非接触給電装置100(図1参照)における送電部105に換えて送電部105Bを備えている。送電部105Bは、複数、本例では、2つの特性可変回路120_1,120_2を備えている点が送電部105と異なっている。
【0038】
第1の特性可変回路120_1の特性可変コイル122は、図7に示すように、第1実施形態と同様に(図2参照)、送電コイル112に対して横方向に配置されている。第2の特性可変回路120_2の特性可変コイル122は、図7に示すよう、送電コイル112に磁気的に結合された状態となるように、送電コイル112に対して垂直方向に配置されている。この配置の場合、第1の特性可変回路120_1の特性可変コイル122は、送電コイル112との間の磁気的な結合が差動結合、すなわち、負の結合係数を有する結合となり、第2の特性可変回路120_2の特性可変コイル122は、送電コイル112との間の磁気的な結合が和動結合、すなわち、正の結合係数を有する結合となっている。
【0039】
2つの特性可変回路120_1,120_2を有する構成の場合においても、図8に実線および破線で示すように、送電コイル112のインダクタンスLpは、周波数に応じて変化する周波数特性を有している。また、送電コイル112のインダクタンスLpの周波数特性は、第1実施形態における送電コイル112のインダクタンスLpの周波数特性(図3参照)と同様に、受電コイル212の上方配置が無い場合に比べて受電コイル212の上方配置が有る場合のほうが低周波側にシフトする。
【0040】
そこで、第1実施形態と同様に、送電共振回路110及び特性可変回路120_1,120_2の各回路定数を設定する(図6参照)。送電コイル112のインダクタンスLp及び共振コンデンサ116のキャパシタンスCpの基準値は、Lp=Lp0及びCp=Cp0に設定されており、送電コイル112の動作周波数f0におけるリアクタンスXpは、Xp=Xp0に設定されている。
【0041】
また、第1の特性可変回路120_1の特性可変コイル122のインダクタンスLv1及び特性可変コンデンサ126のキャパシタンスCv1の基準値は、Lv1=Lvr1<Lv0_1及びCv1=Cv0_1に設定されている。また、第2の特性可変回路120_2の特性可変コイル122のインダクタンスLv2及び特性可変コンデンサ126のキャパシタンスCv2の基準値は、Lv2=Lvr2<Lv0_2及びCv2=Cv0_2に設定されている。なお、Lv0_1及びCv0_1は、受電コイル212の上方配置が有る場合において、送電共振回路110の共振周波数が動作周波数f0となるように設定される第1の特性可変回路120_1の特性可変コイル122のインダクタンスLv1の値及び特性可変コンデンサ126のキャパシタンスCv1の値である。また、Lv0_2及びCv0_2も、受電コイル212の上方配置が有る場合において、送電共振回路110の共振周波数が動作周波数f0となるように設定される第2の特性可変回路120_2の特性可変コイル122のインダクタンスLv2の値及び特性可変コンデンサ126のキャパシタンスCv2の値である。
【0042】
上記のように送電共振回路110及び特性可変回路120_1,120_2の各回路定数を設定することにより、受電コイル212が上方に配置されている送電コイル112のインダクタンスLpを、図8に実線で示すように、送電共振回路110の共振周波数が動作点の動作周波数f0に等しくなる値Lp0とすることができる。これにより、図6に示すように、動作周波数f0の出力電流Ipとして大きな値の駆動電流Ip0を送電出力回路130から供給することができる。
【0043】
また、受電コイル212が上方に配置されていない送電コイル112のインダクタンスLpの周波数特性を、図8に破線で示すように、高周波側にシフトさせることができる。これにより、動作周波数f0の動作点における送電コイル112のインダクタンスLpを、大きさ|Lp|が基準値Lp0よりも大きくなる値-Lp2(図8参照)とすることができ、動作周波数f0におけるリアクタンスXpを基準値Xp0よりも大きくすることができる(図6参照)。この結果、動作周波数f0の出力電流Ipとして、駆動電流Ip0に比べて小さな電流しか流れなくなるようにすることができる。これにより、受電コイル212が上方に配置されていない送電コイル112を有する送電部105の送電共振回路110では無駄な電力の消費の抑制が可能であり、また、漏洩磁束の低減及び送電効率の向上が可能である。
【0044】
ここで、第1実施形態では、図3に示したように、受電コイル212が上方に配置されていない送電コイル112のインダクタンスLpを、受電コイル212が上方に配置されている場合の共振点における値Lp0よりも正側の値、すなわち、誘導性側の値にしか設定することができない。これに対して、第2実施形態では、図8に示すように、受電コイル212が上方に配置されていない送電コイル112のインダクタンスLpの値を、容量性側の値にも設定することができる。また、特性可変回路120_1,120_2の回路定数及び配置を調整して、受電コイル212の有無に応じた周波数特性のシフト量を調整することができるので、受電コイル212が上方に配置されていない送電コイル112のインダクタンスLpの値を、誘導性側の値から容量性側の値のいずれかに設定することができ、設定の範囲を広げることが可能である。
【0045】
なお、図8に示した送電コイル112のインダクタンスLpは、特性可変回路120_1,120_2のそれぞれのインピーダンスの周波数特性が合成された周波数特性に依存して、複数の共振点を有している。また、図8に示した送電コイル112のインダクタンスLpの周波数特性は、特性可変回路120_1,120_2の回路定数の設定状態や、送電コイル112と特性可変コイル122との配置状態による結合状態によって変化する。
【0046】
そこで、特性可変コイル122の配置は、図7に示した状態に限定されるものではなく、種々の位置関係とすることが可能である。すなわち、特性可変コイル122が、対をなす送電共振回路110の送電コイル112に磁気的に結合された状態となるように配置され、送電コイル112と特性可変コイル122との間の結合係数及び特性可変コイル122間の結合係数のそれぞれが、送電コイル112の周波数特性として所望の特性が得られるように配置されていれば良い。
【0047】
また、特性可変回路の数は、2つに限定されるものではなく、3以上の複数の特性可変回路を備える構成としても良い。
【0048】
また、複数の特性可変回路のうち、少なくとも一つの特性可変回路の特性可変コイルは、送電コイルとの間の磁気的な結合が差動結合、すなわち、負の結合係数を有する結合となるように配置され、他の少なくとも一つの特性可変回路の特性可変コイルは、送電コイルとの間の磁気的な結合が和動結合、すなわち、正の結合係数を有する結合となるように配置されていることが好ましい。このようにすれば、送電コイルのインダクタンスの周波数特性を複数の共振点を有する特性とすることができ、送電コイルのインダクタンスの値を、誘導性側の値から容量性側の値のいずれかに設定することができ、設定の範囲を広げることが可能である。
【0049】
また、上記したように、送電コイルのインダクタンスは、複数の特性可変回路のそれぞれのインピーダンスの周波数特性が合成された周波数特性に依存して、複数の共振点を有する。複数の特性可変回路の周波数特性は、それぞれ、共振周波数に依存して決定される。従って、複数の特性可変回路の共振周波数がそれぞれ異なるように設計することが好ましい。このようにすれば、送電コイルのインダクタンスの周波数特性を複数の共振点を有する特性とすることができ、送電コイルのインダクタンスの値を、誘導性側の値から容量性側の値のいずれかに設定することができ、設定の範囲を広げることが可能である。
【0050】
なお、第2実施形態においても、第1実施形態と同様に、特性可変コイルは、対をなす送電コイルとの結合係数の大きさがより大きくなるように設計されることが好ましい。また、特性可変コイルのQ値がより大きくなるように設計されることが好ましい。
【0051】
C.第3実施形態:
図9に示す第3実施形態の非接触給電装置100Cは、第1実施形態の非接触給電装置100(図1参照)における送電部105に換えて送電部105Cを備えている。送電部105Cは、特性可変回路120に換えて特性可変回路120Cを備えている点が送電部105と異なっている。特性可変回路120Cは、特性可変コイル122に換えて特性可変コイル122Cを備えている点が特性可変回路120と異なっている。特性可変コイル122Cには、インダクタンスが可変可能な可変インダクタが用いられている。
【0052】
第1実施形態と同様に、送電共振回路110の送電コイル112のインダクタンスLp及び共振コンデンサ116のキャパシタンスCpの基準値は、Lp=Lp0及びCp=Cp0に設定されており、送電コイル112の動作周波数f0におけるリアクタンスXpはXp=Xp0に設定されている。
【0053】
特性可変回路120Cの特性可変コンデンサ126のキャパシタンスCvの基準値はCv=Cvr=Cv0に設定されている。特性可変コイル122CのインダクタンスLvは以下のように設定される。
【0054】
受電コイル212が送電コイル112の上方に配置されている場合には、送電コイル112のインダクタンスLpがLp=0となり、特性可変回路120Cの共振周波数fvが動作周波数f0に等しい値fv0となるように、特性可変コイル122CのインダクタンスLvがLv=Lv0に設定される。
【0055】
これに対して受電コイル212が送電コイル112の上方に配置されていない場合には、特性可変回路120Cの共振周波数fvがfv>fv0あるいはfv<fv0となるように、特性可変コイル122CのインダクタンスLvがLv<Lv0あるいはLv>Lv0に設定される。
【0056】
なお、特性可変コイル122Cの設定の変更は、例えば、各送電部105Cに備えられる不図示の物体検知センサにより、送電コイル112の上方に配置される受電装置200の受電コイル212の有無を検知することにより実行することができる。
【0057】
図10に示すように、fv>f0の場合には、動作周波数f0におけるインダクタンスLpがLp>Lp0の誘導性側の値となるように送電コイル112のインダクタンスLpの周波数特性を高周波側にシフトさせることができる。また、fv<f0の場合には、動作周波数f0におけるインダクタンスLpがLp<Lp0の容量性側の値となり、その大きさ|Lp|が|Lp|>Lp0でリアクタンスXpがXp>Xp0となるように、送電コイル112のインダクタンスLpの周波数特性を低周波側にシフトさせることができる。
【0058】
第3実施形態では、受電コイル212が上方に配置されていない場合、特性可変回路120Cの共振周波数fvがfv>fv0あるいはfv<fv0となるように、特性可変コイル122CのインダクタンスLvをLv<Lv0、あるいは、Lv>Lv0に設定することができる。これにより、受電コイル212が上方に配置されていない送電コイル112のインダクタンスLpの値を、誘導性側の値から容量性側の値のいずれかに設定することができ、設定の範囲を広げることが可能である。
【0059】
なお、上記実施形態では、特性可変コイルに可変インダクタンスを用いて、特性可変コイルのインダクタンスを変化させることで、特性可変回路の共振周波数を変化させる構成を例に説明している。しかしながら、これに限定されるものではなく、特性可変コンデンサに可変コンデンサを用いて、特性可変コンデンサのキャパシタンスを変化させることで、特性可変回路の共振周波数を変化させる構成であってもよい。また、特性可変コイルのインダクタンス及び特性可変コンデンサのキャパシタンスの両方を変化させることで、特性可変回路の共振周波数を変化させる構成であってもよい。
【0060】
なお、第3実施形態においても、第1実施形態と同様に、特性可変コイルは、対をなす送電コイルとの結合係数の大きさがより大きくなるように設計されることが好ましい。また、特性可変コイルのQ値がより大きくなるように設計されることが好ましい。
【0061】
D.第4実施形態:
第1実施形態の非接触給電装置100(図1参照)は、車両用非接触給電システムの非接触給電装置100Dとして適用可能である。
【0062】
図11に示す車両用非接触給電システムは、車両走行路RSの走路に沿って敷設された非接触給電装置100Dから車両VHに搭載された受電装置200Dに対して電力を供給することが可能な給電システムである。
【0063】
非接触給電装置100Dは、非接触給電装置100(図1参照)と同様に、複数の送電部105と、複数の送電部105に交流電力を供給する送電出力回路130と、送電出力回路130に直流電力を供給する電源回路140と、を備えている。
【0064】
各送電部105は、送電共振回路110と特性可変回路120と、を備えている。
【0065】
送電共振回路110は、車両走行路RS上に敷設された不図示の送電コイル112及び共振コンデンサ116(図1参照)を有している。各送電共振回路110の送電コイル112は、車両走行路RSの走路に沿って順に敷設されている。
【0066】
図11において、x方向は送電共振回路110の送電コイル112が配列されている水平方向を示し、y方向はx方向に垂直な水平方向を示し、z方向はx及びyに垂直な上方向を示す。
【0067】
車両VHに搭載された受電装置200Dは、受電装置200(図1参照)と同様に、受電共振回路210と、受電回路220と、バッテリ230と、を備えている。
【0068】
受電共振回路210は、受電コイル212及び共振コンデンサ216(図1参照)を有している。少なくとも、受電コイル212は、車両VHの底部に、送電共振回路110の送電コイル112(図1参照)に対向するように設置されている。
【0069】
受電回路220は、受電共振回路210で得られた交流電力を直流電力に変換し、負荷としてのバッテリ230に充電する回路である。バッテリ230に充電された電力は、不図示のモータ等を駆動するために利用される。
【0070】
この車両用非接触給電システムの非接触給電装置においても、上記実施形態の非接触給電装置と同様の効果を得ることができる。
【0071】
なお、図示及び説明は省略するが、車両用非接触給電システムの非接触給電装置として、第2,第3実施形態の非接触給電装置100B,100C(図6図9参照)を適用することも可能である。
【0072】
E.他の実施形態:
(1)上記実施形態の非接触給電装置は、複数の送電共振回路を備える構成を例に説明したが、これに限定されるものではなく、1つの送電共振回路を備える構成であってもよい。この構成においても、電力を送電しない送電コイルでの無駄な電力の損失の低減及び漏洩磁束の低減を図ることができる。また、従来技術の電流制御素子のように、送電コイルに直列に接続された電流制御素子を用いずに、送電時における送電出力回路から送電部への電流の供給と、非送電時における送電出力回路から送電部への電流の供給の抑制と、を制御することできる。
【0073】
(2)上記実施形態では、直列共振を利用した送電共振回路および受電共振回路を例に説明したが、これに限定されるものではなく、並列共振を利用した送電共振回路および受電共振回路としてもよく、いずれか一方は直列共振で他方は並列共振を利用した共振回路としてもよい。従って、並列共振を利用した構成だけでなく直列共振を利用した構成の場合にも適用することができるので、従来技術に比べて汎用性の高い技術を提供することができる。
【0074】
(3)上記実施形態では、送電側の送電コイル112も受電側の受電コイル212も単相の場合を例に説明している。しかしながら、これに限定されるものではない。送電側を複数相の送電コイルの構成としてもよい。また、受電側を複数相の受電コイルの構成としてもよい。例えば、送電側は単相の導電コイルで受電側は2相あるいは3相以上の複数相の受電コイルの構成としてもよい。また、送電側は2相あるいは3相以上の複数相の送電コイルの構成で、受電側は単相、あるいは、複数相の受電コイルの構成であってもよい。
【0075】
(4)上記実施形態では、特性可変回路の特性可変コンデンサを独立した部品として備える場合を例に説明したが、特性可変コイルの浮遊容量を特性可変コンデンサとして利用すする構成としてもよい。
【0076】
本開示は、上述の実施形態に限られるものではなく、その趣旨を逸脱しない範囲において種々の構成で実現することができる。例えば、発明の概要の欄に記載した各形態中の技術的特徴に対応する実施形態中の技術的特徴は、上述の課題の一部又は全部を解決するために、あるいは、上述の効果の一部又は全部を達成するために、適宜、差し替えや、組み合わせを行うことが可能である。また、その技術的特徴が本明細書中に必須なものとして説明されていなければ、適宜、削除することが可能である。
【符号の説明】
【0077】
100,100B~100D…非接触給電装置、105,105B,105C…送電部、110…送電共振回路、112…送電コイル、116…共振コンデンサ、120,120_1,120_2…特性可変回路、120C…特性可変回路、122…特性可変コイル、122C…特性可変コイル、126…特性可変コンデンサ、130…送電出力回路、140…電源回路、200,200D…受電装置、210…受電共振回路、212…受電コイル、216…共振コンデンサ、220…受電回路、230…バッテリ、310…コア、312,322…導線、RS…車両走行路、VH…車両
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11