IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ コーニンクレッカ フィリップス エヌ ヴェの特許一覧

特許7448542睡眠スコアを算出するための睡眠関連パラメータを最適化するシステム及び方法
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-03-04
(45)【発行日】2024-03-12
(54)【発明の名称】睡眠スコアを算出するための睡眠関連パラメータを最適化するシステム及び方法
(51)【国際特許分類】
   G16H 20/00 20180101AFI20240305BHJP
【FI】
G16H20/00
【請求項の数】 15
(21)【出願番号】P 2021537726
(86)(22)【出願日】2019-12-20
(65)【公表番号】
(43)【公表日】2022-02-18
(86)【国際出願番号】 EP2019086761
(87)【国際公開番号】W WO2020136128
(87)【国際公開日】2020-07-02
【審査請求日】2022-12-16
(31)【優先権主張番号】62/785,333
(32)【優先日】2018-12-27
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】590000248
【氏名又は名称】コーニンクレッカ フィリップス エヌ ヴェ
【氏名又は名称原語表記】Koninklijke Philips N.V.
【住所又は居所原語表記】High Tech Campus 52, 5656 AG Eindhoven,Netherlands
(74)【代理人】
【識別番号】100107766
【弁理士】
【氏名又は名称】伊東 忠重
(74)【代理人】
【識別番号】100070150
【弁理士】
【氏名又は名称】伊東 忠彦
(74)【代理人】
【識別番号】100135079
【弁理士】
【氏名又は名称】宮崎 修
(72)【発明者】
【氏名】ガルシア モリーナ,ゲイリー ネルソン
【審査官】鹿谷 真紀
(56)【参考文献】
【文献】特開2007-007149(JP,A)
【文献】特開2016-031702(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G16H 10/00-80/00
(57)【特許請求の範囲】
【請求項1】
睡眠スコアパラメータを最適化するコンピュータ実装方法であって、
第1のベクトルのセットを得るステップであり、前記第1のベクトルのセットの各ベクトルが、睡眠スコアを計算するための睡眠関連パラメータのパラメータ値を含む、ステップと、
前記第1のベクトルのセットの各ベクトルに対して、前記ベクトルに関連する相関値を決定するステップであり、前記ベクトルに対する相関値は、ユーザの睡眠測定基準を表すパラメータ値のセットに関連する前記ユーザにより示された睡眠スコアと前記ベクトルとの相関の量を示す、ステップと、
(i)第1の基準を満たす相関値を有する前記第1のベクトルのセットの第1のサブセット、及び(ii)第2の基準を満たす相関値を有する前記第1のベクトルのセットの第2のサブセットに基づき、第2のベクトルのセットを生成するステップと、
前記第2のベクトルのセットの各ベクトルに対して、前記ベクトルに関連する相関値を決定するステップであり、前記ベクトルに対する相関値は、前記ユーザにより示された睡眠スコアと前記ベクトルとの相関の量を示す、ステップと、
前記睡眠関連パラメータのパラメータごとに、前記第2のベクトルのセットに関連する相関値に基づき、前記第2のベクトルのセットのうち所与のベクトルのパラメータ値を前記睡眠関連パラメータのパラメータに割り当てるステップと、
を含む方法。
【請求項2】
前記第1のベクトルのセットを得るステップは、
前記第1のベクトルのセットを生成することを含み、前記第1のベクトルのセットの各ベクトルは、前記睡眠関連パラメータのパラメータに関連するパラメータ値の範囲から、前記睡眠関連パラメータの各パラメータに対するパラメータ値を選択することによって生成され、
関連する睡眠スコアが、前記選択されたパラメータ値に基づき、前記ベクトルに対して決定され、
前記ベクトルに対する相関値が、前記関連する睡眠スコアに基づき決定される、請求項1に記載の方法。
【請求項3】
ユーザの睡眠セッションの質を反映するユーザ評価を示す、前記ユーザにより示された睡眠スコアを得るステップであって、前記ユーザにより示された睡眠スコアは、一定期間にわたって前記ユーザによって提供された複数のユーザ評価に基づき決定される、ステップをさらに含む、請求項1に記載の方法。
【請求項4】
前記所与のベクトルが、前記第2のベクトルのセットの他のベクトルに関連する相関値と比較して、前記ユーザにより示された睡眠スコアに関して最大の相関量を示す相関値に関連していることに基づき、前記第2のベクトルのセットの前記所与のベクトルを選択するステップをさらに含む、請求項1に記載の方法。
【請求項5】
前記第1のベクトルのセットに関連する前記相関値のランクを決定するステップをさらに含み、前記第1の基準は、前記相関値のランクに基づく第1のパーセントの前記相関値に対応し、前記第2の基準は、前記相関値のランクに基づく第2のパーセントの前記相関値に対応する、請求項1に記載の方法。
【請求項6】
前記第2のベクトルのセットを生成するステップは、
前記第1のベクトルのセットの第2のサブセットから2つのベクトルを選択すること、及び、
前記睡眠関連パラメータごとに、前記2つのベクトルからパラメータ値の1つを無作為に選択することによって、新しいベクトルを生成すること、
を含む、請求項5に記載の方法。
【請求項7】
前記第2のベクトルのセットの各ベクトルに対して、前記ベクトルに対する各睡眠関連パラメータの1つのパラメータ値を無作為に変更するステップをさらに含む、請求項6に記載の方法。
【請求項8】
前記決定された相関値に基づき平均相関値を決定するステップと、
前記平均相関値が相関基準を満たすことに応答して、前記第2のベクトルのセットに関連する相関値に関して最大の相関値を有する前記所与のベクトルに基づき、前記第2のベクトルのセットの前記所与のベクトルを選択するステップと、
をさらに含む、請求項1に記載の方法。
【請求項9】
前記第2のベクトルのセットの各ベクトルに関連する相関値に基づき平均相関値を決定するステップと、
前記平均相関値が相関基準を満たさないことに応答して、前記相関基準が満たされるまで、ベクトルを反復的に生成し、前記ベクトルに関連する相関値を決定することによって、新しいベクトルのセットを生成させるステップと、
をさらに含む、請求項1に記載の方法。
【請求項10】
睡眠スコアパラメータを最適化するためのシステムであって、
メモリと、
前記メモリによって格納された機械読み取り可能命令によって、
第1のベクトルのセットであり、前記第1のベクトルのセットの各ベクトルが、睡眠スコアを計算するための睡眠関連パラメータのパラメータ値を含む、第1のベクトルのセットを得て、
前記第1のベクトルのセットの各ベクトルに対して、前記ベクトルに関連する相関値を決定し、前記ベクトルに対する相関値は、ユーザの睡眠測定基準を表すパラメータ値のセットに関連する前記ユーザにより示された睡眠スコアと前記ベクトルとの相関の量を示し、
(i)第1の基準を満たす相関値を有する前記第1のベクトルのセットの第1のサブセット、及び(ii)第2の基準を満たす相関値を有する前記第1のベクトルのセットの第2のサブセットに基づき、第2のベクトルのセットを生成し、
前記第2のベクトルのセットの各ベクトルに対して、前記ベクトルに関連する相関値を決定し、前記ベクトルに対する相関値は、前記ユーザにより示された睡眠スコアと前記ベクトルとの相関の量を示し、
前記睡眠関連パラメータのパラメータごとに、前記第2のベクトルのセットに関連する相関値に基づき、前記第2のベクトルのセットのうち所与のベクトルのパラメータ値を前記睡眠関連パラメータのパラメータに割り当てる、
ように構成された1つ以上のプロセッサと、
を含むシステム。
【請求項11】
前記得られる第1のベクトルのセットは、前記1つ以上のプロセッサが、前記機械読み取り可能命令によって、
前記第1のベクトルのセットを生成し、前記第1のベクトルのセットの各ベクトルは、前記睡眠関連パラメータのパラメータに関連するパラメータ値の範囲から、前記睡眠関連パラメータの各パラメータに対するパラメータ値を選択することによって生成される
ようにさらに構成され、
関連する睡眠スコアは、前記選択されたパラメータ値に基づき、前記ベクトルに対して決定され、
前記ベクトルに対する相関値は、前記関連する睡眠スコアに基づき決定される、
ことを含む、請求項10に記載のシステム。
【請求項12】
前記1つ以上のプロセッサは、前記機械読み取り可能命令によって、
ユーザの睡眠セッションの質を反映するユーザ評価を示す、前記ユーザにより示された睡眠スコアを得るようにさらに構成され、前記ユーザにより示された睡眠スコアは、一定期間にわたって前記ユーザによって提供された複数のユーザ評価に基づき決定される、請求項10に記載のシステム。
【請求項13】
前記1つ以上のプロセッサは、前記機械読み取り可能命令によって、
前記所与のベクトルが、前記第2のベクトルのセットの他のベクトルに関連する相関値と比較して、前記ユーザにより示された睡眠スコアに関して最大の相関量を示す相関値に関連していることに基づき、前記第2のベクトルのセットの前記所与のベクトルを選択するようにさらに構成される、請求項10に記載のシステム。
【請求項14】
前記1つ以上のプロセッサは、前記機械読み取り可能命令によって、
前記第1のベクトルのセットに関連する前記相関値のランクを決定するようにさらに構成され、前記第1の基準は、前記相関値のランクに基づく第1のパーセントの前記相関値に対応し、前記第2の基準は、前記相関値のランクに基づく第2のパーセントの前記相関値に対応する、請求項10に記載のシステム。
【請求項15】
前記第2のベクトルのセットが生成されることは、前記1つ以上のプロセッサが、前記機械読み取り可能命令によって、
前記第1のベクトルのセットの第2のサブセットから2つのベクトルを選択し、
前記睡眠関連パラメータごとに、前記2つのベクトルからパラメータ値の1つを無作為に選択することによって、新しいベクトルを生成するように構成されることをさらに含む、請求項14に記載のシステム。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、睡眠スコアを算出するための睡眠関連パラメータの最適化を容易にするシステム及び方法に関する。
【背景技術】
【0002】
睡眠をモニターするためのシステムが知られている。睡眠スコアを算出するための技術が知られている。睡眠スコアは、個人の睡眠セッションからの睡眠データを使用して算出された睡眠関連因子に基づき、初期値からポイントが差し引かれる減算アプローチを介して算出することができる。睡眠関連因子は、初期化された睡眠関連パラメータ値を使用して決定される。個人にとって意味あるものであるために、睡眠スコアは、どのように睡眠スコアが決定されたかを明確且つシンプルに伝達するべきである。加えて、睡眠スコアは、個人の主観的な睡眠セッションの分析と十分に相関しているべきである。しかし、睡眠スコアを決定するために使用される現在のシステムは不明確である恐れがあり、個人の主観的な睡眠分析を正確に反映していない可能性がある。本開示は、そのようなシステムの欠陥を克服する。
【発明の概要】
【0003】
従って、本開示の1つ以上の態様は、睡眠スコアパラメータを最適化する方法に関する。当該方法は、第1のベクトルのセットを得るステップを含み、第1のベクトルのセットの各ベクトルが、睡眠スコアを計算するための睡眠関連パラメータのパラメータ値を含む。第1のベクトルのセットの各ベクトルに対して、ベクトルに関連する相関値が決定され、ベクトルに対する相関値は、ユーザの睡眠測定基準を表すパラメータ値のセットに関連するユーザにより示された睡眠スコアとベクトルとの相関の量を示す。当該方法は、(i)第1の基準を満たす相関値を有する第1のベクトルのセットの第1のサブセット、及び(ii)第2の基準を満たす相関値を有する第1のベクトルのセットの第2のサブセットに基づき、第2のベクトルのセットを生成するステップを含む。第2のベクトルのセットの各ベクトルに対して、ベクトルに関連する相関値が決定され、ベクトルに対する相関値は、ユーザにより示された睡眠スコアとベクトルとの相関の量を示す。睡眠関連パラメータのパラメータごとに、第2のベクトルのセットに関連する相関値に基づき、第2のベクトルのセットのうち所与のベクトルのパラメータ値が、睡眠関連パラメータのパラメータに割り当てられる。
【0004】
本開示の別の態様は、睡眠スコアパラメータを最適化するためのシステムに関する。当該システムは、メモリと、メモリによって格納された機械読み取り可能命令によって、第1のベクトルのセットを得るように構成された1つ以上のプロセッサとを含み、第1のベクトルのセットの各ベクトルが、睡眠スコアを計算するための睡眠関連パラメータのパラメータ値を含む。第1のベクトルのセットの各ベクトルに対して、ベクトルに関連する相関値が決定され、ベクトルに対する相関値は、ユーザの睡眠測定基準を表すパラメータ値のセットに関連するユーザにより示された睡眠スコアとベクトルとの相関の量を示す。1つ以上のプロセッサは、機械読み取り可能命令によって、(i)第1の基準を満たす相関値を有する第1のベクトルのセットの第1のサブセット、及び(ii)第2の基準を満たす相関値を有する第1のベクトルのセットの第2のサブセットに基づき、第2のベクトルのセットを生成するように構成される。第2のベクトルのセットの各ベクトルに対して、ベクトルに関連する相関値が決定され、ベクトルに対する相関値は、ユーザにより示された睡眠スコアとベクトルとの相関の量を示す。1つ以上のプロセッサは、機械読み取り可能命令によって、睡眠関連パラメータのパラメータごとに、第2のベクトルのセットに関連する相関値に基づき、第2のベクトルのセットのうち所与のベクトルのパラメータ値を睡眠関連パラメータのパラメータに割り当てるように構成される。
【0005】
本開示のさらに別の態様は、睡眠スコアパラメータを最適化するためのシステムに関する。当該システムは、第1のベクトルのセットを得るための手段であり、第1のベクトルのセットの各ベクトルが、睡眠スコアを計算するための睡眠関連パラメータのパラメータ値を含む、手段と、第1のベクトルのセットの各ベクトルに対して、ベクトルに関連する相関値を決定するための手段であり、ベクトルに対する相関値は、ユーザの睡眠測定基準を表すパラメータ値のセットに関連するユーザにより示された睡眠スコアとベクトルとの相関の程度を示す、手段と、(i)第1の基準を満たす相関値を有する第1のベクトルのセットの第1のサブセット、及び(ii)第2の基準を満たす相関値を有する第1のベクトルのセットの第2のサブセットに基づき、第2のベクトルのセットを生成するための手段と、第2のベクトルのセットの各ベクトルに対して、ベクトルに関連する相関値を決定するための手段であり、ベクトルに対する相関値は、ユーザにより示された睡眠スコアとベクトルとの相関の量を示す、手段と、睡眠関連パラメータのパラメータごとに、第2のベクトルのセットに関連する相関値に基づき、第2のベクトルのセットのうち所与のベクトルのパラメータ値を睡眠関連パラメータのパラメータに割り当てるための手段と、含む。
【0006】
本開示のこれら及び他の目的、特徴、並びに特性だけでなく、作動方法及び関連する構造要素及び部品の組み合わせの機能も製造のむだを省くことも、付随の図面を参考にして以下の説明及び添付の特許請求の範囲を考慮することによってより明らかになり、付随の図面の全てが本願明細書の一部を形成し、類似の参照番号は様々な図において対応する部分を示している。しかし、図面は例示及び説明目的のためだけにあり、本開示の範囲を定めるとして意図されないことを明確に理解されたい。
【図面の簡単な説明】
【0007】
図1A】様々な実施形態による、睡眠関連パラメータの最適化を容易にするように構成された例証的なシステムの概略図である。
図1B】様々な実施形態による、睡眠関連パラメータの最適化が行われることになるかどうかを決定する例証的なプロセスの例示的な流れ図である。
図2】様々な実施形態による、睡眠スコアを計算するために様々な睡眠因子に対して使用される複数の睡眠関連パラメータに基づき生成された染色体ベクトルの例示的な図である。
図3】様々な実施形態による、総睡眠時間と、対応する睡眠スコアポイント差し引きとの関係を記載する例示的な図である。
図4】様々な実施形態による、睡眠開始後にユーザが目覚めた回数と、対応する睡眠スコアポイント差し引きとの関係を記載する例示的な図である。
図5】様々な実施形態による、入眠潜時と、対応する睡眠スコアポイント差し引きとの関係を記載する例示的な図である。
図6】様々な実施形態による、睡眠障害の回数と、対応する睡眠スコアポイント差し引きとの関係を記載する例示的な図である。
図7】様々な実施形態による、N3睡眠持続時間と、対応する睡眠スコアポイント差し引きとの関係を記載する例示的な図である。
図8】様々な実施形態による、REM睡眠持続時間と、対応する睡眠スコアポイント差し引きとの関係を記載する例示的な図である。
図9】様々な実施形態による、就寝時間偏差と、対応する睡眠スコアポイント差し引きとの関係を記載する例示的な図である。
図10】様々な実施形態による、起床時間偏差と、対応する睡眠スコアポイント差し引きとの関係を記載する例示的な図である。
図11A】様々な実施形態による、異なる年齢群に対する累積徐波活動(「CSWA」)とN3睡眠時間との関係を記載する例示的な図である。
図11B】様々な実施形態による、異なる年齢群に対する累積徐波活動(「CSWA」)とN3睡眠時間との関係を記載する例示的な図である。
図11C】様々な実施形態による、異なる年齢群に対する累積徐波活動(「CSWA」)とN3睡眠時間との関係を記載する例示的な図である。
図12】様々な実施形態による、CSWA値と、対応する睡眠スコアボーナスとの関係を記載する例示的な図である。
図13】様々な実施形態による、睡眠スコアと、睡眠スコアを決定するために使用される種々の睡眠関連パラメータに対する算出された値とを表示する例証的なインターフェースの例示的な図である。
図14】様々な実施形態による、初期の染色体ベクトルのセットを生成するために使用される様々な睡眠因子及び各睡眠関連パラメータの値の例示的な図である。
図15】様々な実施形態による、染色体ベクトルのセットの各ベクトルに対して決定された相関値に基づき、パラメータ値をベクトルに割り当てる例証的なプロセスの例示的な流れ図である。
図16】様々な実施形態による、初期の染色体ベクトルのセット及びユーザのユーザにより示された睡眠スコアに関する相関値に基づき、新しい染色体ベクトルのセットを生成する例証的なプロセスの例示的な流れ図である。
【発明を実施するための形態】
【0008】
本明細書において使用される場合、不定冠詞又は定冠詞を伴う単数形は、その内容が何か他に明確に指示していない限り、その複数形を含む。本明細書において使用される場合、「又は」という用語は、その内容が何か他に明確に指示していない限り、「及び/又は」を意味する。本明細書において利用される場合、「数」という用語は、1又は1以上の整数(すなわち、複数)を意味する。
【0009】
図1Aは、様々な実施形態による、睡眠関連パラメータの最適化を容易にするように構成された例証的なシステムの概略図である。システム100は、一実施形態において、第1のクライアント装置110、1つ以上のコンピューティングシステム120、1つ又は複数のユーザ履歴データベース140、及び1つ又は複数の参照データベース145を含む。クライアント装置110、1つ又は複数のコンピューティングシステム120、1つ又は複数のユーザ履歴データベース140、及び1つ又は複数の参照データベース145の各々は、1つ以上のネットワーク130を介して互いに通信することができる。例えば、クライアント装置110及び1つ又は複数のコンピューティングシステム120は、イントラネット及び/又はインターネットを介して通信することができる。
【0010】
一部の実施形態では、クライアント装置110又はコンピューティングシステム120は、ユーザの活動をモニターし、1つ以上のセンサ108によって検出された入力を格納するように構成される。1つ又は複数のセンサ108は、関連するユーザの1つ以上のパラメータを測定することができる任意の適したセンサを含んでもよい。例えば、1つ又は複数のセンサ108は、1つ以上の加速度計、1つ以上のジャイロスコープ、1つ以上の脈拍数モニター、1つ以上の呼吸モニタリング装置、及び/又は1つ以上の脳波記録(「EEG」)装置を含んでもよく、一実施形態において、1つ又は複数のセンサ108は、所定の時間間隔で測定を行うように構成される。例えば、1つ又は複数のセンサ108は、(例えば、毎秒等)特定の時間間隔で「サンプル」測定を行うように(例えば、メモリ104によって格納された命令を使用して、1つ又は複数のプロセッサ102によって)構成されてもよい。サンプリングレート、すなわち、どのくらいの頻度で1つ又は複数のセンサ108が測定を行うかは、クライアント装置110によって構成可能であり、測定のタイプだけでなく、1つ又は複数のセンサ108のタイプ次第でもある。一実施形態において、サンプリングレートは動的であり、1つ又は複数のセンサ108のタイプ及び測定のタイプに基づき設定することができる。一実施形態において、サンプリングレートは、クライアント装置110を作動させるユーザによって設定され、ユーザは、1つ又は複数のセンサ108のタイプに適切であるもののユーザによる決定に基づき、サンプリングレートを手動で選択する。例えば、1つ又は複数のセンサ108が脈拍数モニターである場合、クライアント装置110は、サンプリングレートを10kHzであるように構成することができる。別の例として、1つ又は複数のセンサ108が加速度計である場合、クライアント装置110は、サンプリングレートを1,000kHzであるように構成することができる。
【0011】
クライアント装置110は、一実施形態において、限定されることなく、デスクトップコンピュータ、モバイルコンピュータ(例えばラップトップ、ウルトラブック等)、携帯電話、スマートフォン、タブレット、パーソナルデジタルアシスタント(「PDAs」)、及び/又はウェアラブルデバイス(例えば、時計、ピン/ブローチ、ヘッドフォン)等、任意の適したタイプの電子装置を含む。さらに、例示的な実施形態において、クライアント装置110は、1つ以上のプロセッサ102、メモリ104、通信回路106(「コムズ」)、及び入/出力(「I/O」)インターフェース112を含む。
【0012】
1つ又は複数のプロセッサ102は、クライアント装置110の動作及び機能を制御することができるだけでなく、クライアント装置110内の様々な構成要素間の通信を容易にすることができる任意の適した処理回路を含む。一実施形態において、1つ又は複数のプロセッサ102は、中央処理装置(「CPU」)、グラフィックスプロセッシングユニット(「GPU」)、1つ以上のマイクロプロセッサ、デジタルシグナルプロセッサ、若しくは任意の他のタイプのプロセッサ、又はそれらの任意の組み合わせを含んでもよい。別の実施形態において、1つ又は複数のプロセッサ102の機能は、フィールドプログラマブルゲートアレイ(「FPGA」)、特定用途向け集積回路(「ASICs」)、特定用途向け標準製品(「ASSPs」)、システムオンチップシステム(「SOCs」)、及び/又はコンプレックスプログラマブルロジックデバイス(「CPLDs」)を含むがこれらに限定されない、1つ以上のハードウェアロジックコンポーネントによって行われる。さらに、1つ又は複数のプロセッサ102の各々は、プログラムシステム、プログラムデータ、及び/又は1つ以上のオペレーティングシステムを格納することができるその独自のローカルメモリを含むことができる。しかし、1つ又は複数のプロセッサ102は、クライアント装置110のためのオペレーティングシステム(「OS」)、及び/又は、1つ以上のファームウェアアプリケーション、メディアアプリケーション、及び/又はそれらに常在するアプリケーションを実行することができる。
【0013】
メモリ104は、一実施形態において、クライアント装置110に対するデータを格納するために任意の適した様式で実装された任意の揮発性若しくは不揮発性メモリ、又は任意のリムーバブル若しくは非リムーバブルメモリ等、1つ以上のタイプの記憶媒体を含む。例えば、情報は、コンピュータ読み取り可能命令、データ構造、及び/又はプログラムシステムを使用して格納されてもよい。様々なタイプのストレージ/メモリは、ハードドライブ、ソリッドステートドライブ、フラッシュメモリ、永久メモリ(例えば、ROM等)、電子的に消去可能なプログラマブルリードオンリーメモリ(「EEPROM」)、CD-ROM、デジタル多用途ディスク(「DVD」)若しくは他の光記憶媒体、磁気カセット、磁気テープ、磁気ディスクストレージ若しくは他の磁気記憶装置、RAIDストレージシステム、若しくは任意の他のストレージタイプ、又はそれらの任意の組み合わせを含んでもよいが、これらに限定されない。さらに、メモリ104は、コンピュータ読み取り可能記憶媒体(「CRSM」)として実装されてもよく、これは、メモリ104内に格納された1つ以上の命令を実行するために、1つ又は複数のプロセッサ102によってアクセス可能な任意の利用可能な物理的媒体であってもよい。例えば、メモリ104は、実行されると、1つ又は複数のプロセッサ102に様々な動作を行わせる機械読み取り可能命令を格納することができる。一実施形態では、1つ又は複数のプロセッサ102を使用して1つ以上のアプリケーション(例えば、睡眠トラッキングアプリケーション、心拍数モニターアプリケーション等)を実行することに関連する機械読み取り可能命令が、メモリ104に格納される。
【0014】
通信回路106は、一実施形態において、クライアント装置110の1つ以上の構成要素が互いに、及び/又は1つ以上のさらなる装置、サーバ、及び/又はシステム(例えば、1つ以上のコンピューティングシステム120、ユーザ履歴データベース140、参照データベース145等)と通信するのを許可する又は可能にする任意の回路を含む。例示的な例として、1つ又は複数のセンサ108によって得られたデータは、インターネット等のネットワーク130を介して、任意の数の通信プロトコルを使用して1つ又は複数のコンピューティングシステム120に送信されてもよい。例えば、1つ又は複数のネットワーク130は、トランスファーコントロールプロトコル及びインターネットプロトコル(「TCP/IP」)(例えば、TCP/IP層の各々で使用されるプロトコルのいずれか等)、ハイパーテキストトランスファープロトコル(「HTTP」)、WebRTC、SIP、及びワイヤレスアプリケーションプロトコル(「WAP」)を使用してアクセスすることができ、これらは、クライアント装置110と1つ又は複数のコンピューティングシステム120との通信を容易にするために使用され得る様々なタイプのプロトコルの一部である。一実施形態では、クライアント装置110及び1つ又は複数のコンピューティングシステム120は、HTTPを使用してウェブブラウザを介して互いに通信する。システム100の1つ以上の装置間の通信を容易にするために使用される様々なさらなる通信プロトコルには、Wi-Fi(登録商標)(例えば、802.11プロトコル等)、Bluetooth(登録商標)、無線周波数システム(例えば、900MHz、1.4GHz、及び5.6GHz通信システム等)、セルラーネットワーク(例えば、GSM、AMPS、GPRS、CDMA、EV-DO、EDGE、3GSM、DECT、IS-136/TDMA、iDen、LTE、又は任意の他の適したセルラーネットワークプロトコル)、赤外線、BitTorrent、FTP、RTP、RTSP、SSH、及び/又はVoIPが含まれるが、これらに限定されない。通信回路106は、上述の例証的な通信プロトコルのいずれか等、1つ以上の通信プロトコルを使用することができる。一実施形態において、クライアント装置110は、様々な無線技術(例えば、Wi-Fi、Bluetooth、無線周波数等)を使用して、例えば、1つ又は複数のネットワーク130等のネットワークとの無線通信を容易にするための1つ以上のアンテナを含む。さらに別の実施形態において、クライアント装置110は、クライアント装置110が1つ以上の通信ネットワーク、例えば1つ又は複数のネットワーク130等と通信するのを通信回路106が可能にするように、1つ以上のユニバーサルシリアルバス(「USB」)ポート、1つ以上のイーサネット若しくはブロードバンドポート、及び/又は任意の他のタイプのハードワイヤアクセスポートを含む。
【0015】
I/Oインターフェース112は、1つ以上の外部ソースから、又は例えばユーザからの1つ以上の入力の結果として、入力データを受信するように構成される。I/Oインターフェース112は、限定されることなく、オーディオ、ビデオ、イメージ、テキストファイル、電子メール等、様々なデータフォーマットでデータを出力するようにも構成される。様々な例となるI/Oインターフェースは、1つ以上のマイクロホン若しくは他のオーディオ入力装置、1つ以上のスピーカー若しくは他のオーディオ出力装置、1つ以上の入力機構(例えば、ボタン、ノブ、スイッチ等)、1つ以上のカメラ若しくは他の画像キャプチャ装置、及び/又は1つ以上のディスプレイ画面を含む。例えば、クライアント装置110は、任意の適したサイズ及び/又は形状のディスプレイ画面を含んでもよい。様々なタイプのディスプレイには、液晶ディスプレイ(「LCD」)、モノクロディスプレイ、カラーグラフィックスアダプタ(「CGA」)ディスプレイ、拡張グラフィックスアダプタ(「EGA」)ディスプレイ、可変グラフィックスアレイ(「VGA」)ディスプレイ、若しくは任意の他のタイプのディスプレイ、又はそれらの任意の組み合わせが含まれるが、これらに限定されない。一実施形態において、クライアント装置110は、その上のタッチ入力を認識することができる静電容量センシングパネルを含むタッチスクリーン等のタッチスクリーンを含む。例えば、タッチスクリーンは、投影型静電容量タッチ(「PCT」)スクリーンであってもよく、PCTスクリーンは、1つ以上の行トレース及び/又は駆動ライントレース、並びに1つ以上の列トレース及び/又はセンシングラインを含む。
【0016】
一実施形態では、ユーザ睡眠として、クライアント装置110は、ユーザの睡眠活動をモニターする。睡眠活動は、ユーザの動き、ユーザの脈拍数、ユーザの呼吸数、ユーザの脳波活動、又はそれらの任意の組み合わせを含んでもよい。一例として、クライアント装置110は、睡眠セッションの間のユーザの動きをモニターするように構成されたウェアラブル睡眠トラッキング装置であってもよい。一実施形態において、クライアント装置110は、1つ又は複数のネットワーク130を介して、ユーザの睡眠セッションに関連するデータを1つ又は複数のコンピューティングシステム120に送信するように構成される。一実施形態において、クライアント装置110は、睡眠セッションの終了時に、データを1つ又は複数のコンピューティングシステム120に提供する。代替的又は追加的に、クライアント装置110は、定期的に(例えば、5~10分毎に)データを1つ又は複数のコンピューティングシステム120に送信するように構成される。
【0017】
一実施形態において、クライアント装置110は、所与の睡眠セッションに対する睡眠評価を入力するために、ユーザのための入力機構を提供するようにさらに構成される。例えば、グラフィカルユーザインターフェース(「GUI」)が、ディスプレイ画面(例えば、I/Oインターフェース112等)を介して表示されてもよく、GUIは、所与の睡眠セッションに対する算出された睡眠スコアを示すことができる。一実施形態において、GUIは、ユーザが睡眠セッションに対する「評価」を入力するためのオプションをさらに含む。例えば、ユーザは、例えば0~100の整数等の数値を打ち込んで、睡眠セッションのユーザの主観的評価を反映させることができてもよい。本明細書において「ユーザにより示された睡眠スコア」又は「ユーザにより指示された睡眠スコア」とも呼ばれ得る、ユーザにより提供された睡眠スコアは、1つ又は複数のコンピューティングシステム120に提供される。追加的又は代替的に、ユーザにより示された睡眠スコアは、ユーザの睡眠セッションに対する算出された睡眠スコアと共に格納されるように、1つ又は複数のユーザ履歴データベース140に提供される。ユーザにより示された睡眠スコアはまた、ユーザの睡眠セッションに関して、又は客観的因子から算出された睡眠スコアに関してユーザによって提供される1つ以上の他の主観的評価を含んでもよい。
【0018】
1つ又は複数のコンピューティングシステム120は、一実施形態において、相関サブシステム122、最適化サブシステム124、及び抽出サブシステム126を含む。サブシステム122~126の各々は、ユーザにより示された睡眠スコアと算出された睡眠スコアとの相関を行うこと、睡眠スコアを算出するための睡眠関連パラメータ値を最適化すること、並びに、ユーザ睡眠データ及び最適化された(又は最適化されることになる)睡眠関連パラメータ値に基づき睡眠スコアを算出すること等、クライアント装置110から得られたデータに基づきユーザ睡眠スコアを算出することに関連する1つ以上の動作を行うように構成される。一実施形態において、1つ又は複数のコンピューティングシステム120は、1つ又は複数のプロセッサ102、メモリ104、及び通信回路104の1つ以上のインスタンスを含み、これらは、クライアント装置110の機能性と類似している。一実施形態において、サブシステム122~126は、別個のコンピューティングシステム120(例えば、分散コンピューティングシステム等)又は単一のコンピューティングシステム120に存在する。
【0019】
一実施形態において、各サブシステムは、実行されると、サブシステムの1つ以上の機能が行われるようにする1つ以上のコンピュータプログラムを含む。例えば、コンピューティングシステム120は、特定の睡眠セッション又は睡眠セッションの集合に対するユーザの睡眠スコアを決定するように構成される。例えば、コンピュータシステム120のメモリ内に格納された1つ以上のコンピュータプログラムは、1つ以上の睡眠スコア差し引き及び/又は睡眠スコアボーナスが算出されるようにすることができ、これらの差し引き及び/又はボーナスは、所与の睡眠セッションに対する特定の睡眠スコアを算出するために使用される。1つ又は複数のコンピューティングシステム120は、クライアント装置110から睡眠セッションに関連するデータを受信し、睡眠セッションに関連する1つ以上の睡眠測定基準を決定するように構成される。例えば、睡眠アーキテクチャ、睡眠連続性、睡眠開始、及び/又は睡眠覚醒時間は全て、特定の睡眠セッションに対して決定され得る測定基準の例証的なタイプである。例えば、睡眠アーキテクチャは、各睡眠段階(例えば、N3、N2、N1、REM等)の持続時間、各睡眠段階の潜時、及び/又は各睡眠段階の生存曲線を含む。
【0020】
ユーザ履歴データベース140は、ユーザの睡眠セッション履歴に関連する情報を格納する。例えば、ユーザ履歴データベース140は、特定のユーザに対する1つ又は複数の睡眠開始の時間及び1つ又は複数の睡眠覚醒時間等を示す情報を格納することができる。一実施形態において、特定のユーザに対する歴史的な睡眠情報がユーザ履歴データベース140によって格納され、ネットワーク130を介して1つ又は複数のコンピューティングシステム120によってアクセス可能である。一実施形態において、ユーザ履歴データベース140は分離したメモリブロックを含み、これを用いて、特定のユーザの睡眠履歴に関連する情報が格納される。例えば、コンピューティングシステム120の各ユーザは、自身の睡眠情報をユーザ履歴データベース140の一部に格納させてもよい。格納された睡眠情報は、特定のユーザに対する算出された睡眠スコア、並びに、ユーザによって提供されたユーザにより示された睡眠スコアを含む。一実施形態では、算出された睡眠スコア及びユーザにより示された睡眠スコアは、共に格納されるか、又はそれらが対応する特定の睡眠セッションに関連する識別子に基づきリンクされる。一実施形態では、一定期間(例えば、1週間、1ヶ月等)にわたる各睡眠セッションに対するユーザにより示された睡眠スコアと算出された睡眠スコアとの相関が、相関サブシステム122によって決定され、これは、図2及び15を参照して以下においてより詳細に記載される。
【0021】
参照データベース145は、クライアント装置110に関連付けられたユーザに関係するデータに関連する情報を格納する。例えば、参照データベース145は、ユーザの年齢、性別、地理的位置特定、及び/又はクロノタイプを示す情報を格納することができる。一実施形態では、ユーザに対する睡眠関連パラメータを算出するためのパラメータ値が、参照データベースに格納される。例えば、参照データベース145は、各睡眠関連パラメータに対する最適化された値を格納することができ、これは、次に、そのユーザに対するその後の睡眠スコアを算出するために使用することができる。睡眠関連パラメータに対するパラメータ値の最適化は、一実施形態において、最適化サブシステム124によって行われ、これは、図2、15、及び16を参照して以下においてより詳細に記載される。
【0022】
一実施形態において、抽出サブシステム126は、図2、15、及び16を参照して以下においてより詳細に記載されるように、最適化システムからの出力に基づき、睡眠関連パラメータごとに、最適化されたパラメータ値を抽出するように構成される。例えば、最適化サブシステム124は、ユーザによって提供され且つ1つ又は複数のユーザ履歴データベース140に格納された、ユーザにより示された睡眠スコア情報と最も相関すると決定される睡眠スコアベクトルに関連する睡眠スコアを決定することができる。睡眠スコアベクトルに基づき、抽出サブシステム126は、睡眠関連パラメータに対する最適化されたパラメータ値を抽出するように構成される。次に、最適化された睡眠関連パラメータは、例えば参照データベース145に格納される。
【0023】
一実施形態において、1つ又は複数のコンピューティングシステム120は、特定の睡眠セッションに関連する差し引きの数、及び各差し引きの量(例えば、重大度/大きさ)を決定するように構成される。これを行うために、特定の睡眠セッションに関連する睡眠測定基準と、以前に得られた参照睡眠測定基準(例えば、ユーザ履歴睡眠情報、参照睡眠情報)との比較を行うことができる。1つ又は複数のコンピューティングシステム120は、これらの比較を使用して、第1の睡眠セッションに関する1つ以上の即値を決定するように構成される。例えば、即値は、睡眠スコアに適用されることになる1つ以上の差し引きを含んでもよい。
【0024】
上述及び上記のものは、ユーザ睡眠セッションデータに関して分析を行う1つ又は複数のコンピューティングシステム120に関して記載されているけれども、当業者は、クライアント装置110が、一実施形態において、同じ分析の一部又は全てを行うように構成されていることを認識することになる。例えば、クライアント装置110のメモリ104は、睡眠関連パラメータ値を最適化するために、1つ以上のプロセス(例えば、図15のプロセス1500、図16のプロセス1600等)を実行するための機械読み取り可能命令を格納することができる。代替的又は追加的に、クライアント装置110のメモリ104は、睡眠スコア差し引き、睡眠スコアボーナスを決定し、睡眠スコア差し引き及び睡眠スコアボーナスを初期睡眠スコア値に適用して、所与の睡眠セッションに対する睡眠スコアを決定するために、1つ以上のプロセスを実行するための機械読み取り可能命令を格納することができる。
【0025】
一実施形態では、7つの異なるタイプの睡眠差し引きが使用される。この実施形態において、これらの差し引きは、総睡眠時間(「TST」)、睡眠開始時間と睡眠終了時間との間の覚醒状態で費やした総時間(例えば、睡眠開始後の覚醒(「WASO」)等)、睡眠セッションの間に生じた睡眠障害の数(例えば、睡眠開始と睡眠終了との間の閾値時間を超える覚醒状態の期間等)、睡眠開始及び起床時間の規則性に依存する睡眠ルーチン、入眠潜時(「SOL」)(例えば、睡眠開始までの時間等)、N3睡眠持続時間(例えば、「深い睡眠」)に基づく差し引き、及びREM睡眠持続時間に基づく差し引きのうち1つ以上に対応する。当業者は、上述の睡眠差し引きタイプのリストは単に例証的なものであり、より多くの又はより少ない睡眠差し引きタイプを利用することができるということを認識することになる。さらに、ユーザの年齢及び検出された徐波脳活動に基づき決定されたボーナスが、ユーザによって示される特定の正の睡眠行動又は介入の効果(例えば、睡眠徐波を増強するための聴覚刺激)に適用される。
【0026】
例証的な実施形態において、1つ又は複数のコンピューティングシステム120は、初期睡眠セッションスコアから始まる。特定の睡眠セッションに対して決定された差し引きごとに、その差し引きが、初期睡眠セッションスコアに加算される。一実施形態において、差し引きは負(例えば、<0)である。或いは、例えば、差し引きは、初期睡眠セッションスコアから減算されてもよく、従って、その差し引きは正(例えば、>0)である。初期睡眠セッションスコアに各差し引きを適用(例えば、加算/減算)した後、新しい睡眠セッションスコアが得られる。一実施形態において、新しい睡眠セッションスコアは、I/Oインターフェース112を介してユーザに提供される。例えば、I/O構成要素112がディスプレイ装置を含む場合、1つ又は複数のコンピューティングシステム120は、ディスプレイ装置を介してグラフィカルユーザインターフェースによって新しい睡眠セッションスコアが表示されるようにすることができる。睡眠スコアは、一実施形態において、整数値として示される。例えば、睡眠スコアは、0から100の整数である。一実施形態では、新しい睡眠セッションスコアに加えて、算出された睡眠セッションスコアに関連する睡眠因子の大きさがユーザに表示される。例えば、図13において例示されているように、ユーザが覚醒した回数、さらに、ユーザが覚醒した回数が、現在の睡眠セッションスコアを算出するために使用される特定の睡眠関連パラメータに対する特定のパラメータ値にどのように関連するかを示すインターフェースが、ディスプレイ画面上に表示される。
【0027】
一実施形態では、算出された睡眠スコアを表示するためのインターフェースを提供することに加えて、ユーザは、睡眠セッションに対する評価を入力することができる。ユーザにより示された評価、又はユーザにより示された睡眠スコアは、ユーザが自身の睡眠セッションがどのくらい良好であったと信じたか、すなわち、自身の睡眠セッションの質を示すために、ユーザが自身の評価を入力するのを可能にする。算出された睡眠スコアは、算出された睡眠スコアがその睡眠の質を正確に反映しているという確信をユーザが持つために、ユーザにより示された睡眠スコアに近くあるべきである。例えば、算出された睡眠スコアが80であり、ユーザにより示された睡眠スコアも80である場合、計算された睡眠スコアの測定基準は、ユーザ自身の睡眠の質の評価を正確に反映している。しかし、算出された睡眠スコアが80であり、ユーザにより示された睡眠スコアが20である場合、算出された睡眠スコアの測定基準は、ユーザの睡眠の質を正確には反映していない。さらに、ユーザは、算出された睡眠スコアに関して特定の分散又は偏りを用いて、ユーザの睡眠を一貫して評価することができる。例えば、算出された睡眠スコアより5~10ポイント少ないか又は大きいユーザにより示された睡眠スコアをユーザが一貫して提供する場合、「オフセット」又は「偏り」も、より正確な睡眠スコアの算出を促進するために考慮されるべきである。
【0028】
一実施形態では、システム100内のクライアント装置110又は別の装置は、介入ユニットを含む。介入は、質の高い睡眠を促進するために、睡眠介入が出力/実施されるようにする。そのような睡眠介入構成要素には、1つ以上の聴覚刺激装置、1つ以上の視覚刺激装置、1つ以上の触覚刺激装置、1つ以上の閉ループ睡眠誘導装置、及び1つ以上のスマートウェイクアップ装置等が含まれるが、これらに限定されない。1つの例となる実施形態において、介入ユニットは、ユーザが位置する局所環境の温度が調整されるようにする。例えば、介入ユニットは、質の高い睡眠を促進するために、ユーザの家庭内のサーモスタットに温度を上昇又は下降させることができる。
【0029】
一実施形態では、睡眠セッションの間に生じた1つ以上の睡眠介入は、得られたユーザデータに基づき決定される。例えば、1つ以上の睡眠介入が第1の睡眠セッションの間に生じた場合、1つ又は複数のセンサ108によって得られたユーザデータは、これを示すことができ、従って、1つ又は複数のコンピューティングシステム120は、ユーザデータ内の1つ又は複数の介入を特定することができる。睡眠介入の各々を、新しい睡眠セッションスコアを生成するために、初期睡眠セッションスコア(又は、上記のように、差し引きを含む睡眠セッションスコア)に適用することができる。例えば、睡眠介入は、睡眠セッションスコア値を減少させるために睡眠差し引きが初期睡眠セッションスコアに適用されるのと類似した様式で睡眠セッションスコア値を増加させるために、初期睡眠スコアに適用されるボーナスとして表すことができる。
【0030】
式1からわかるように、睡眠セッションスコア値は、
【0031】
【数1】
の場合に決定することができる。
【0032】
式1において、Initial_Sleep_Scoreは、100という数等、例証的な初期睡眠セッションスコアであり、ΣSleep_Deductionsは、(例えば、各差し引きが負又はゼロの値である場合に)睡眠差し引きの全ての合計であり、ΣSleep_Interventionsは、(例えば、ボーナスが正の値である場合に)提供された睡眠介入に基づき与えられるボーナスの全ての合計である。
【0033】
図1Bは、様々な実施形態による、睡眠関連パラメータの最適化が行われることになるかどうかを決定するプロセス150の例示的な流れ図である。一実施形態において、図1Bのプロセス150は、動作152において始まる。動作152において、ユーザに対する計算された睡眠測定基準が得られる。一実施形態において、各計算された睡眠測定基準は、ユーザの所与の睡眠セッションに対して、その睡眠セッションの間にクライアント装置110から受信されたデータに基づき算出された睡眠スコアである。一実施形態では、複数の睡眠測定基準(例えば、7つの睡眠スコア、30の睡眠スコア等)が、動作152において得られる。一実施形態において、コンピューティングシステム120は、ユーザ履歴データベース140から、計算された睡眠測定基準を受信するように構成される。例えば、定期的な間隔、例えば、週1回、月1回、年1回等において、コンピューティングシステム120は、ユーザ履歴データベース140から特定のユーザの睡眠測定基準データを要求する。代替的又は追加的に、コンピューティングシステム120は、クライアント装置110を作動させるユーザからのユーザの睡眠測定基準をレビューする要求、医師からのユーザの睡眠測定基準をレビューする要求、又はその両方等、トリガーイベントによって、ユーザ履歴データベース140からユーザの睡眠測定基準データを要求するように構成される。一実施形態において、ユーザの睡眠測定基準データは、クライアント装置110から得られる。例えば、コンピューティングシステム120は、クライアント装置110のメモリ104に格納され得る特定のユーザに対する睡眠測定基準データを要求するように構成することができる。一実施形態では、ユーザの睡眠測定基準データは、特定の時間に対するユーザの平均睡眠スコアを決定するために使用される。例えば、平均の計算された睡眠スコアは、例えば、ユーザに対する計算された睡眠スコアの1週間、1ヶ月、1年に基づき決定されてもよい。
【0034】
動作154において、1つ以上のユーザにより示された睡眠スコアが得られる。本明細書において「ユーザにより指示された睡眠スコア」とも呼ばれるユーザにより示された睡眠スコアは、ユーザの1つ又は複数の睡眠セッションのユーザによる主観的な評価を示す。一実施形態において、ユーザには、ユーザにより示された睡眠スコアが入力されるのを可能にするインターフェースがクライアント装置110を介して提示される。例えば、睡眠セッションが終了した後に、ユーザは、メモリ104内に格納され得る、コンピューティングシステム120に通信され得る、及び/又はユーザ履歴データベース140内に格納され得る、ユーザの睡眠の質に対する評価を入力することができる。ユーザにより示された睡眠スコアは、例えば0から100の整数ベースの値であり得るが、他の範囲、例えば、0~1.0の間、0~10の間等が使用されてもよい。一実施形態では、ユーザにより示された睡眠スコアは、特定の時間に対するユーザによって提供された複数のユーザにより示された睡眠スコアを含む。例えば、得られたユーザにより示された睡眠スコアは、(例えば、7つのスコア等)1週間の睡眠セッションに対するものであり得る。一実施形態では、所与の時間に対するユーザにより示された睡眠スコアを受信すると、その時間に対する平均のユーザにより示された睡眠スコアが決定される。例えば、コンピューティングシステム120は、所与の時間に対するユーザからの平均のユーザにより示された睡眠スコアを算出することができる。一実施形態では、平均のユーザにより示された睡眠スコアを決定するために使用される時間は、平均の計算された睡眠スコアを決定するために使用される時間に等しい。例えば、ユーザに対する1週間の計算された睡眠スコアが使用される場合、その同じ週からの、1週間のユーザにより示された睡眠スコア、例えば、7つのユーザにより示された睡眠スコアが使用されることになる。
【0035】
動作156において、計算された睡眠スコアとユーザにより示された睡眠スコアとの相関が決定される。一実施形態において、相関サブシステム122は、所与のデータセットに対するユーザにより示された睡眠スコア及び計算された睡眠スコアに対する相関値を決定するように構成される。例えば、1つ又は複数のコンピューティングシステム120は、メモリ104、1つ又は複数のユーザ履歴データベース140、又はその両方から、所与の時間に対するユーザにより示された睡眠スコア及び計算された睡眠スコアを含むデータを受信し、受信したデータに基づき相関値を算出する。
【0036】
一実施形態において、相関サブシステム122は、データを収集した所与の時間、例えば、1週間等に対する平均の計算された睡眠スコア及び平均のユーザにより示された睡眠スコアに基づき相関を決定する。相関値は、2つの変数がどのくらい密接に関連しているかを測定する。例示的な実施形態において、2つの変数は、ユーザにより示された睡眠スコア及び計算された睡眠スコアである。一実施形態において、相関値は、ピアソン相関技術を使用して算出される。ピアソンの相関を使用して、ユーザにより示された睡眠スコアと計算された睡眠スコアとの相関が、(例えば、1週間の計算された睡眠スコアの価値等)所与のデータセットに対する平均の計算された睡眠スコアと各計算された睡眠スコアとの差、(例えば、1週間のユーザにより示された睡眠スコアの価値等)所与のデータセットに対する平均のユーザにより示された睡眠スコアと各ユーザにより示された睡眠スコアとの差、並びに、計算された睡眠スコア及びユーザにより示された睡眠スコアの両方に対する標準偏差に基づき決定される。式2は、上述の実施形態に対するピアソンの相関値の公式表現である:
【0037】
【数2】
式2において、rはピアソンの相関を使用して算出された相関値であり、SubSleepScoreは、所与のデータセットに対するi番目のユーザにより示された睡眠スコアであり、
【0038】
【数3】
は、所与のデータセットに対する平均のユーザにより示された睡眠スコアであり、CalSleepScoreは、所与のデータセットに対するi番目の計算された睡眠スコアであり、
【0039】
【数4】
は、所与のデータセットに対する平均の計算された睡眠スコアであり、
【0040】
【数5】
は、それぞれユーザにより示された睡眠スコア及び計算された睡眠スコアに対する標準偏差である。上述のものは、ピアソンの相関式を使用して推定された相関値を記載しているけれども、調整された相関係数、重み付けされた相関係数、及びスピアマン相関係数等、他の相関係数も使用することもできる。
【0041】
動作158において、相関サブシステム122は、決定された相関値が終了基準を満たしているかどうかを決定する。一実施形態において、終了基準は閾値であってもよく、その閾値を用いて相関が測定される。一実施形態において、終了基準は、例えば下限閾値等の第1の閾値を含み、その閾値を用いて相関が測定され、さらに、例えば上限閾値等の第2の閾値を含み、その閾値を用いて相関が測定される。終了基準は、コンピューティングシステム120のメモリ104、参照データベース145、及びユーザ履歴データベース140のうち1つ以上に格納される。相関値が大きいほど、ユーザにより示された睡眠スコアと計算された睡眠スコアは互いにより密接に相関している。一例として、終了基準に対する閾値は、0.3に等しくてもよい。従って、決定された相関値が0.3未満である場合、ユーザにより示された睡眠スコアと計算された睡眠スコアは、十分に相関していない。しかし、決定された相関値が0.3以下である場合、ユーザにより示された睡眠スコアと計算された睡眠スコアとは相関している。0.3の閾値は例証的であり、例えば0.2~0.5等、異なる閾値が使用されてもよい。
【0042】
さらに、一実施形態では、各睡眠セッションのユーザにより示された睡眠スコアと計算された睡眠スコアとの差が、相関サブシステム122によって決定され、その差は、ユーザにより示された睡眠スコアと計算された睡眠スコアとの類似性を算出するために使用される。次に、ユーザにより示された睡眠スコアと計算された睡眠スコアとの各差の平均値が、終了基準と比較されて、スコアが相関しているかどうかが決定される。
【0043】
動作158において、相関サブシステム122が、所与のデータセットに対する相関値が終了基準を満たすと決定する場合、プロセス150は動作160に進む。動作160において、ユーザにより示された睡眠スコア及び計算された睡眠スコアは、十分に相関していると決定されたためプロセス150は終了することになると相関サブシステム122は決定し、計算された睡眠スコアを算出するために使用される睡眠関連パラメータは、ユーザの睡眠セッションのユーザの主観的分析を正確に反映していることを示している。従って、睡眠関連パラメータは、この例において、調整する必要はない。
【0044】
しかし、動作158において、所与のデータセットに対する相関値が終了基準を満たしていないと相関サブシステム122が決定する場合、プロセス150は動作162に進む。動作162において、睡眠関連パラメータの最適化が行われる。一実施形態において、最適化サブシステム124は、図2及び14~16に関して以下に記載されるように、睡眠関連パラメータの最適化を行う。動作164において、(例えば、式1等)ユーザに対する睡眠スコアを算出するために使用される各睡眠関連パラメータに対する最適化されたパラメータ値が抽出される。一実施形態において、抽出サブシステム126は、最適化された睡眠関連パラメータ値の抽出を行う。動作162の後、プロセス150はステップ156に戻り、ここで、ステップ164において抽出された最適化された睡眠関連パラメータを使用して計算された睡眠スコアに基づき、新しい相関値が算出される。一実施形態において、新しい相関値は、計算された睡眠スコア(例えば、新しい睡眠関連パラメータ値を使用して計算されたもの等)及びユーザにより示された睡眠スコアの新しいデータセットに対して算出される。或いは、以前に得られた計算された睡眠スコアが再算出され、相関値が再計算されて、以前に計算された睡眠スコアと以前に得られたユーザにより示された睡眠スコアとが互いにどのくらい十分相関しているかが決定される。
【0045】
図2は、様々な実施形態による、睡眠スコアを計算するために様々な睡眠因子に対して使用される複数の睡眠関連パラメータに基づき生成された染色体ベクトルの例示的な図である。図2において、ユーザに対する睡眠スコアを算出するために使用される因子は、表200の第1列202に示されている。例示的な実施形態では、列202内に表示されている因子は、総睡眠時間(「TST」)因子206、睡眠開始後の覚醒(「WASO」)因子208、入眠潜時(「SOL」)因子210、睡眠障害因子212、N3持続時間因子214、REM持続時間因子216、規則性因子218、及びボーナス因子220を含む。因子206~220の各々が、ユーザに対する計算された睡眠スコアに寄与する。一実施形態において、因子206~218の各々が、上記の式1において詳述されているように、初期睡眠スコア(例えば100)から減算され、ボーナス因子220が初期睡眠スコアに加算される。
【0046】
表200の第2列204において、因子206~220の各々に関連する睡眠関連パラメータが提示されている。因子によって、含まれるパラメータの数は異なる。例えば、TST因子206は3つのパラメータを含み、WASO因子208、SOL因子210、N3持続時間因子214、REM持続時間因子216、及びボーナス因子220は各々、1つのパラメータを含み、睡眠持続時間因子212及び規則性因子218は各々、2つのパラメータを含む。例示的な実施形態において、各パラメータは、9ビットバイナリベクトルを使用して定量化される。従って、睡眠スコアを決定するための12の睡眠関連パラメータは、連結された場合、108ビットバイナリベクトル222をもたらす。一実施形態では、108ビットバイナリベクトル222が、計算された睡眠スコアとユーザにより示された睡眠スコアとの相関を最適化するために利用される。12のパラメータの各々を最適化するためのプロセスを記載することに先立ち、睡眠関連パラメータの各々に関する詳細及び睡眠スコアの計算に及ぼすその影響が記載される。
【0047】
図3は、様々な実施形態による、総睡眠時間と対応する睡眠スコアポイント差し引きとの関係を記載する例示的な図である。図3には、ユーザに対する総睡眠時間(「TST」)と睡眠スコアポイント差し引き値との関係を記載する例証的なグラフ300が示されている。一実施形態において、TSTは、ユーザが眠っていると決定された時間であってもよい。TSTは、所与の睡眠セッション内の全ての蓄積された睡眠(例えば、NREM及びREM)期間を含む。一実施形態では、ユーザが眠っているか又は覚醒しているかどうかの決定は、クライアント装置110の1つ又は複数のセンサ108から得られたデータに基づく。例えば、閾値時間(例えば、20分、60分等)よりも長い間、非運動期間を示した動作データは、ユーザが眠っていることを示すことができる。別の例として、睡眠関連脳波を示す脳波活動は、ユーザが眠っていることを示すことができる。
【0048】
1つ又は複数のセンサ108から得られたデータに基づき、例えばTST等、睡眠セッションの間にユーザが眠った合計時間を決定した後、1つ又は複数のコンピューティングシステム120が、TSTがTSTに対する所定の閾値304よりも大きい(又は等しい)かどうかを決定する。もしそうであれば、1つ又は複数のコンピューティングシステム120は、ゼロポイントのTSTポイント差し引きを適用するように構成される。例えば、閾値304が480分であり、従って、TSTに対する差し引きの量はゼロであってもよい。一実施形態において、閾値304は、上記の睡眠関連パラメータの1つであってもよい。このパラメータは、複数の睡眠セッションから得られたデータに基づき最適化することができる。
【0049】
TSTがTSTに対する閾値304未満である場合、1つ又は複数のコンピューティングシステム120は、特定の差し引きを適用するように構成される。例えば、この差し引きは、TSTの総持続時間に関連しており、従って、TSTの総持続時間に依存して差し引きが異なるように構成される。グラフ300において見られるように、第1の閾値302以下のTST持続時間に対して、第1の差し引きが1つ又は複数のコンピューティングシステム120によって適用される。一実施形態において、第1の閾値302は、TSTに基づく睡眠スコアに対して許容可能な最大ポイントの差し引きを表している。例えば、睡眠時間が30分未満である場合、1つ又は複数のコンピューティングシステム120は、最大ポイントの差し引きを適用する。一実施形態では、閾値302及びTSTに基づく最大ポイントの差し引きは、睡眠関連パラメータに対応し、これは、複数の睡眠セッションから得られたデータに基づき、特定のユーザに対して最適化され得る。TST持続時間が、第1の閾値302以上第2の閾値304未満である場合、適用される差し引きは、TSTと点ポイント差し引き量との関数関係に依存し、すなわち、比例的である。一例として、TST持続時間が閾値304未満であり閾値302より大きい場合、この差し引きはTST持続時間と線形的に関連している。
【0050】
図4は、様々な実施形態による、睡眠開始時間後の覚醒の数と、対応する睡眠スコアポイントの差し引きとの関係を記載する例示的な図である。図4は、覚醒に費やした合計時間の差し引きを決定するために使用される例示的なグラフ400を含む。睡眠開始後の覚醒(「WASO」)は、睡眠開始から睡眠終了までの間に検出された覚醒状態の期間の蓄積である。WASOは、WASO因子208に関連しており、これは、所与の睡眠セッションに対する計算された睡眠スコアに寄与する。WASOは、覚醒時間だけでなく、微小覚醒時間も含み、より一般的には、睡眠開始が特定された後に、所与の睡眠セッションの間にユーザが覚醒した状態で費やす(例えば、1つ又は複数のセンサ108によって検出されたユーザの活動が閾値を超える)いかなる時間も含む。
【0051】
一実施形態において、WASOに基づく差し引きは、表1を参照して以下において見られるように、ユーザの年齢に依存する。ユーザの年齢は、参照値WASOrefを示しており、これは、差し引きが適用されることになる前の最大WASO持続時間に対応する。
【0052】
【表1】
一実施形態において、WASOrefは、グラフ400における値402として例示されている。WASOが閾値402以下である場合、差し引きは最小である。例示的な実施形態では、WASO時間が第1の閾値402未満である場合、ゼロの差し引きが適用される。検出されたWASOが閾値404に等しいか又は閾値404を超えている場合、差し引きは最大である。一実施形態において、閾値404は、WASOrefに特定の時間(例えば、30分等)を加えたものであってもよい。WASOが閾値402を超え且つ閾値404を下回る場合、WASO因子208に対する差し引きは、図4において定められた比例性に基づき決定される。一実施形態では、WASO因子208に対する最大の差し引きは、複数の睡眠セッションから得られたデータに基づきユーザに対して最適化されることが可能な睡眠関連パラメータである。
【0053】
図5は、様々な実施形態による、入眠潜時と、対応する睡眠スコアポイント差し引きとの関係を記載する例示的な図である。図5は、入眠潜時SOLと、SOL因子210に対する睡眠スコアポイント差し引きとの関係を記載する例示的なグラフ500を含む。SOLは、ユーザが眠りにつくのにかかる時間を指す。SOLに関連する差し引きは、一実施形態において、ユーザに関連する年齢範囲に依存する。表2は、ユーザの年齢に応じてSOLrefに適用可能な様々な例証的な値を含む。一実施形態において、参照データベース145は、表2に含まれるSOLrefに対する値を格納する。例えば、様々な年齢ベースのSOL差し引きが参照データベース150によって格納され、これらの値は、ユーザの睡眠セッションに対する睡眠スコアを決定するためにコンピューティングシステム120によってアクセス可能である。
【0054】
【表2】
一実施形態において、検出されたSOLがSOLref未満である場合には差し引きは適用されず、検出されたSOLが特定の時間(例えば、30分等)だけSOLrefを超える場合には最大の差し引きが適用されるように、年齢範囲は、例えばSOLref等のSOL参照持続時間を示す。一実施形態において、例えば、クライアント装置110の1つ又は複数のセンサ108から得られたデータに基づき、検出されたSOLが、閾値502以下である場合に、SOL因子210はゼロポイントに等しい(例えば、ゼロポイントが、初期睡眠スコアから差し引かれる)ように、第1の閾値502はSOLrefである。一実施形態において、検出されたSOLが第2の閾値504以上である場合、SOL因子210に対して最大量のポイントが差し引かれる。一実施形態において、差し引かれるポイントの最大量は、複数の睡眠セッションから得られたデータに基づきユーザに対して最適化されるパラメータである。検出されたSOLが閾値504未満であり、閾値502より大きい場合、グラフ500において見られるように、SOL因子210に対して適用される差し引きは、検出されたSOL時間に比例する。
【0055】
図6は、様々な実施形態による、睡眠障害の数と、対応する睡眠スコアポイント差し引きとの関係を記載する例示的な図である。図6は、睡眠障害因子212に関する、検出された睡眠障害の数に基づく睡眠セッションスコア値に対する差し引きの関係を示す例示的なグラフ600を含む。一実施形態において、睡眠障害は、少なくとも特定時間の持続時間である睡眠開始から睡眠終了までの間の覚醒状態の期間として特徴付けられる。例えば、5分を超える覚醒状態の期間は睡眠障害とみなすことができる。
【0056】
一実施形態では、睡眠障害因子212に対する差し引きは、睡眠セッションの間に生じる睡眠障害の数に基づき適用される。睡眠障害の数が、閾値障害数602以上である場合に、最大量の差し引きが適用される。障害が睡眠セッションの間に検出されない場合は、0の差し引きが適用されるか又は差し引きは適用されない。ゼロより大きいが閾値数602未満である障害の数に対して、差し引き量は、グラフ600において記載されているように、障害の数に比例する。一実施形態において、最大の差し引き量は、検出された12以上の睡眠分布に対して25ポイントである。一実施形態では、睡眠障害の数に対する最大の差し引きは、複数の睡眠セッションに対して得られたデータに基づきユーザに対して最適化され得る睡眠関連パラメータである。さらに、一実施形態において、障害の最大数は、複数の睡眠セッションから得られたデータに基づき最適化され得る睡眠関連パラメータである。
【0057】
図7は、様々な実施形態による、N3睡眠持続時間と、対応する睡眠スコアポイント差し引きとの関係を記載する例示的な図である。図7は、N3持続時間因子214に関連する、N3睡眠の持続時間に基づき睡眠セッションスコア値を決定するのに適用可能な例示的なグラフ700を含む。一実施形態では、深い睡眠又は徐波睡眠の持続時間とも呼ばれるN3睡眠持続時間因子214に関連する差し引きは、深い睡眠の存在によって主に駆動されるとして睡眠の回復値を考慮する。所与の睡眠セッションの間に、例えばN3睡眠等の深い睡眠の持続時間が、表3によって以下において見られる年齢別の参照閾値702(例えば、N3ref等)を満たさない場合、差し引きが適用される。この差し引きは、一実施形態において、クライアント装置110の1つ又は複数のセンサ108から得られたデータに基づき決定されるその特定の睡眠セッションに対するN3の深い睡眠の持続時間に比例する(例えば、線形比例する)。一実施形態では、睡眠スコアを算出するときに適用され得る最大量の差し引き、例えば、最大のポイント数は、約0分のN3睡眠持続時間に対するものである。しかし、検出されたN3睡眠の持続時間が年齢別の参照閾値702以上である場合、差し引きは適用されない。一実施形態では、N3持続時間因子214に対する最大の差し引きは、複数の睡眠セッションから得られたデータに基づき最適化され得る睡眠関連パラメータである。
【0058】
【表3】
図8は、様々な実施形態による、REM睡眠持続時間と、対応する睡眠スコアポイント差し引きとの関係を記載する例示的な図である。図8は、REM持続時間因子216に関連する、REM睡眠の持続時間に基づき睡眠セッションスコア値を計算するのに適用可能な差し引きの例示的なグラフ800を含む。所与の睡眠セッションの間に、REM睡眠の持続時間が、表4によって以下において見られる年齢別の参照閾値802(例えば、REMref等)を満たさない場合は、差し引きが適用される。差し引きは、一実施形態において、閾値802未満であるがゼロより大きい検出されたREM持続時間に対して、その特定の睡眠セッションに対するREMの深い睡眠の持続時間に比例する(例えば、線形比例する)。一実施形態において、REM持続時間は、クライアント装置110の1つ又は複数のセンサ108から得られたデータに基づき決定される。一実施形態では、睡眠スコアを算出するときに適用され得る最大量の差し引き、例えば、最大数のポイントは、約0分のREM睡眠持続時間に対するものである。しかし、検出されたREM睡眠の持続時間が年齢別の参照閾値802以上である場合、差し引きは適用されない。一実施形態では、REM因子216に対する最大の差し引きは、複数の睡眠セッションから得られたデータに基づき最適化され得る睡眠関連パラメータである。
【0059】
【表4】
図9は、様々な実施形態による、就寝時間偏差と、対応する睡眠スコアポイント差し引きとの関係を記載する例示的な図である。図9は、規則性因子218に関連する、ユーザの平均就寝時間からの偏差の量に基づき睡眠セッションスコアを算出するのに適用可能な差し引きの例示的なグラフ900を含む。規則性因子218は、規則的な就寝時間ルーチンを持つことをユーザに奨励するアイデアに関する。従って、クライアント装置110の1つ又は複数のセンサ108から得られたデータに基づき、ユーザの就寝時間(例えば、ユーザが寝つく時間)が平均就寝時間から逸脱していると決定される場合に、差し引きが適用される。一実施形態において、平均就寝時間は、所与の期間に対する就寝時間のセットに基づき決定される。例えば、平均就寝時間は、7日間の就寝時間に基づき算出されてもよいが、他の時間も使用することができる。
【0060】
一実施形態では、現在の睡眠セッションに対する検出された就寝時間が第1の閾値902以上且つ第2の閾値以下であると決定された場合、規則性因子218に対して0ポイントの差し引きが適用されることになる。一例として、第1の閾値902から第2の閾値904までの時間は、1時間(例えば、60分等)であってもよい。所与の睡眠セッションに対する平均就寝時間からの偏差が閾値902未満又は閾値904より大きい場合、グラフ900において例示されているように、因子218に適用される差し引きは偏差量に比例し得る。一実施形態では、偏差が閾値906以下又は閾値908以上である場合、最大の差し引き量を適用することができる。例えば、平均就寝時間からの偏差が平均就寝時間から1時間(例えば、60分等)を超える場合、最大の差し引き量が因子218に対して適用されてもよい。一実施形態では、規則性因子218に適用される最大の差し引きは、複数の睡眠セッションから得られたデータに基づきユーザに対して最適化され得る睡眠関連パラメータである。さらに、一実施形態では、平均就寝時間からの最長の偏差であって、それを用いて因子218に対する最大の差し引きが適用されることになる最長の偏差も、複数の睡眠セッションから得られたデータに基づきユーザに対して最適化され得る睡眠関連パラメータである。
【0061】
図10は、様々な実施形態による、起床時間偏差と、対応する睡眠スコアポイント差し引きとの関係を記載する例示的な図である。図10は、規則性因子218に関する、ユーザの平均起床時間からの偏差の量に基づき睡眠セッションスコアを算出するのに適用可能な差し引きの例示的なグラフ1000を含む。規則的な就寝時間ルーチンを持つようにユーザに動機を与えるのと同様に、規則性因子218はまた、規則的な起床時間を持つようにユーザを奨励し、ユーザに動機を与えるために使用されてもよい。クライアント装置110の1つ又は複数のセンサ108から得られたデータに基づき、ユーザの起床時間(例えば、ユーザが睡眠から目覚めた時間等)が平均起床時間から逸脱していると決定される場合、差し引きが適用される。一実施形態において、平均起床時間は、所与の期間に対する起床時間のセットに基づき決定される。例えば、平均起床時間は、7日間の起床時間に基づき算出されてもよいが、他の時間も使用することができる。
【0062】
一実施形態では、現在の睡眠セッションからの検出された起床時間が、第1の閾値1002以上且つ第2の閾値1004以下であると決定される場合、規則性因子218に対して0ポイントの差し引きが適用されることになる。一例として、第1の閾値1002から第2の閾値1004までの時間は、1時間(例えば、60分等)であってもよい。所与の睡眠セッションに対する平均起床時間からの偏差が閾値1002未満であるか又は閾値1004よりも大きい場合、因子218に対して適用される差し引きは、グラフ1000において例示されているように、偏差量に比例し得る。一実施形態では、偏差が閾値1006以下又は閾値1008以上である場合に、最大の差し引き量を適用することができる。例えば、平均起床時間からの偏差が平均起床時間から1時間(例えば60分等)を超える場合、最大の差し引き量が因子218に対して適用されてもよい。一実施形態では、規則性因子218に適用される最大の差し引きは、複数の睡眠セッションから得られたデータに基づきユーザに対して最適化され得る睡眠関連パラメータである。さらに、一実施形態では、平均起床時間からの最長の偏差であって、それを用いて因子218に対する最大の差し引きが適用されることになる最長の偏差も、複数の睡眠セッションから得られたデータに基づきユーザに対して最適化され得る睡眠関連パラメータである。
【0063】
一実施形態において、規則性因子218は、所与の睡眠セッションに対する平均就寝時間からの偏差及び平均起床時間からの偏差の両方に基づき算出される。例えば、第1の差し引き量が平均就寝時間からの偏差に対して決定され、第2の差し引き量が平均起床時間からの偏差に対して決定される場合、第1の差し引き量及び第2の差し引き量の両方を使用して、規則性因子218に対するパラメータ値を算出することができる。一例として、第1の差し引き量と第2の差し引き量とを合計して、睡眠セッションスコアを算出するときに規則性因子218に対して使用するための総差し引き量を得ることができる。別の例として、第1の差し引き量と第2の差し引き量とを平均して、睡眠セッションスコアを算出するときに規則性因子218に対して使用するための差し引き量を得ることができる。さらに別の例として、第1の差し引き量と第2の差し引き量とに重み付けすることができ、重み付けした量を線形的に、二次的に、又は他の既知の組合せ技術を介して組み合わせることができる。
【0064】
図11A~Cは、様々な実施形態による、異なる年齢群に対する累積徐波活動(「CSWA」)とN3睡眠時間との関係を記載する例示的な図である。図11A~Cは、異なる年齢範囲に対するCSWAパラメータを表す、それぞれ例示的なグラフ1102~1106を含む。一実施形態において、介入は、クライアント装置110を作動させるユーザに提供されることが可能である。例えば、可聴音は、聴覚刺激装置を使用して提供されることが可能である。一実施形態において、可聴音は、クライアント装置110を介して提供される。一実施形態では、可聴音を生成することができる専用の介入装置が使用される。EEGに基づき検出される非急速眼球運動(「NREM」)睡眠中に、そのような可聴音が提供されて、睡眠を妨げずに、デルタ波とも呼ばれる睡眠徐波の振幅及び量を増加させることによって、個人の睡眠の回復値を増強することが可能である。睡眠徐波の振幅及び数は、一実施形態において、0.5~4.0Hz周波数帯のEEGパワーに相当する徐波活動(「SWA」)に対応する。NREM睡眠にわたって蓄積されるSWAは、例えば、提供される睡眠の回復値を定量化するために有用である。
【0065】
一実施形態では、介入に基づき適用されるボーナスの量を決定するために、送達される音の数、検出されるNREM睡眠/参照NREM睡眠の比、及び参照CSWAに対するCSWAの比が全て得られる。例えば、クライアント装置110の1つ又は複数のセンサ108及び/又は専用の介入装置から得られるデータは、送達される音の数、検出されるNREM睡眠/参照NREM睡眠の比、及び参照CSWAに対するCSWAの比を示す。検出されるNREM睡眠と参照NREM睡眠の比は、ρNREMによって示され、参照データベース145によって格納された年齢に基づく値を使用して決定され、以下に表5において詳述される。
【0066】
【表5】
一実施形態では、ρSWAによって示される参照CSWAに対するCSWAの比は、現在の睡眠セッションに関連するCSWAを、ユーザに関連する年齢群に対する検出されたNREMの持続時間中に累積されたCSWAにより割ることによって決定される。図11A~Cにおいて見られるように、様々な例となる参照曲線が、異なる年齢範囲に対して示されている。例えば、グラフ1102は、20から30歳の個人の年齢範囲に対するCSWA値を含み、グラフ1104は、30から40歳の個人の年齢範囲に対するCSWA値を含み、グラフ1106は、40から60歳の個人の年齢範囲に対するCSWA値を含む。グラフ1102、1104、及び1106に関連する情報は各々、参照データベース145によって格納され、所与の睡眠セッションに対するユーザの睡眠スコアを決定するために1つ又は複数のコンピューティングシステム120によってアクセスされる。
【0067】
図12は、様々な実施形態による、CSWA値と、対応する睡眠スコアボーナスとの関係を記載する例示的な図である。図12は、決定されたCSWA値に基づき算出された睡眠スコアに適用可能なボーナスの量を示す例示的なグラフ1200を含む。例示的な実施形態において、CSWA量は、比ρNREM及びρSWAの積に基づき算出される。ボーナスの量を決定するために、ユーザの年齢範囲に対する決定されたCSWA量をボーナス量に関連付けるシグモイド比例関数が使用される。一実施形態において、最大ボーナスは、複数の睡眠セッションから得られたデータに基づき最適化され得るパラメータであってもよい。このパラメータは、1つ又は複数のコンピューティングシステム120が所与の睡眠セッションに対するユーザの睡眠スコアを決定するときに、因子220に対して構成可能であり、使用されてもよい。一例として、最大値は30ポイントであってもよく、これは、CSWA量が1.5μV以上である場合に計算される睡眠スコアに対するボーナスとして与えることができる。しかし、CSWA量が1.5μV未満である場合、ボーナスポイントの量は、グラフ1200によって記載されているように、CSWAスコアに比例する。
【0068】
図13は、様々な実施形態による、睡眠スコアと、睡眠スコアを決定するために使用される種々の睡眠関連パラメータに対する算出された値とを表示する例となるインターフェースの例示的な図である。図13は、睡眠セッションスコアと、因子206~220の各々に対して適用可能な様々な差し引きとを含む例証的なグラフィカルユーザインターフェース1300の例示的な図である。例示的な実施形態では、I/Oインターフェース112(例えば、ディスプレイ画面等)によって表示されることが可能であるグラフィカルユーザインターフェース1300は、上記の差し引きが適用可能な初期睡眠セッションスコア値1302を含む。例えば、初期睡眠セッションスコア値を100に設定することができる。
【0069】
例示的な実施形態において、グラフィカルユーザインターフェース1300は、総睡眠時間差し引き量1304、睡眠ルーチン差し引き量1306、入眠潜時差し引き量1308、覚醒した状態で費やす時間差し引き量1310、睡眠中断の数差し引き量1312、及びN3睡眠の持続時間差し引き量1314をさらに含む。REM睡眠の持続時間及び/又は平均睡眠覚醒時間からの偏差に対するもの等、さらなる差し引きも使用されることが可能である。一例として、差し引き1304~1314の各々は、初期睡眠セッションスコア値1302に適用されると睡眠スコアの量を減少させるように、値がゼロ以下である。
【0070】
合計ベーススコア1316は、初期睡眠セッションスコア値902に各差し引き1304~1314を加算することによって決定される。このシナリオにおいて、各差し引きは負の値(例えば、≦0等)をとる。或いは、差し引き1304~1314の各々は、初期睡眠セッションスコア1302から減算される。このシナリオにおいて、各差し引きは正の値(例えば、≧0等)である。一実施形態では、1つ以上の睡眠介入から生じる1つ以上のボーナス値も、ベース/最初の睡眠セッションスコア値1302に適用される。睡眠介入は、上記のように、睡眠セッションのスコアにプラスの影響を与える。例えば、差し引き1304~1314が、睡眠セッションスコア値を減少させるという点において負である場合は、1つ又は複数のボーナス1318は、睡眠セッションスコア値を増加させるように正である。次に、特定のユーザの睡眠セッションに対して特定されたいかなる差し引き及び/又はボーナスも考慮した総睡眠セッションスコア値1320が決定される。
【0071】
図14は、様々な実施形態による、初期の染色体ベクトルのセットを生成するために使用される様々な睡眠因子及び各睡眠関連パラメータの値の例示的な図である。図14の表1400は、図2において上述したように、睡眠セッションスコアの算出に寄与する様々な睡眠関連因子を列挙する第1の列1402を含む。例えば、計算された睡眠スコアに寄与する因子には、TST因子206、WASO因子208、SOL因子210、睡眠障害の数因子212、N3睡眠持続時間因子214、REM睡眠持続時間因子216、規則性因子218(例えば、平均起床時間及び/又は就寝時間からの偏差等)、及びボーナス因子220が含まれる。
【0072】
因子206~220の各々は、表1400の列1404内に列挙された1つ以上の睡眠関連パラメータを含む。一実施形態において、TST因子206は、第1の睡眠関連パラメータ1406、第2の睡眠関連パラメータ1408、及び第3の睡眠関連パラメータ1410を含む。所与の睡眠セッションに対するTSTを算出することに関する詳細は、図3を参照して先に記載されている。この実施形態において、睡眠関連パラメータ1406は、ゼロポイントの差し引きに関連するTST持続時間を示し、睡眠関連パラメータ1408は、できるだけ最短のTST持続時間を示し、睡眠関連パラメータ1410は、最短のTST持続時間に関連する最大差し引き量を示す。一実施形態において、睡眠関連パラメータ1406には、最初に、300分、360分、又は420分(例えば、表1400において見られるように[300,360,420]分)の3つの値のうち1つが割り当てられ得る。しかし、(例えば、[360,420,480]分、[270,330,390]分、[240,300,360,420]分等)異なる値又は値の範囲が使用されることが可能である。一実施形態において、睡眠関連パラメータ1408には、最初に、60分、120分、又は180分(例えば、表1400において見られるように[60,120,180]分)の3つの値のうち1つが割り当てられ得る。睡眠関連パラメータ1406と同様に、(例えば、[60,80,100]分、[60,100,140]分、[30,60,90,120]分等)異なる値又は値の範囲を使用することができる。一実施形態において、睡眠関連パラメータ1410には、最初に、40ポイント又は50ポイント(例えば、表1400において見られるように[40,50]ポイント)の2つの値のうち1つが割り当てられ得る。41~50(例えば10ポイントの値等)、[45,50]ポイント、及び[30,40]ポイント等、限定されることなく、最小のTSTに関連するポイント差し引きに対する異なる値の範囲及び異なる値の量も使用することができる。
【0073】
一実施形態において、WASO因子208は、睡眠関連パラメータ1412を含む。所与の睡眠セッションに対するWASOを算出することに関する詳細は、図4を参照して先に記載されている。睡眠関連パラメータ1412は、最大のWASO差し引き量に関する。一実施形態において、最大のWASO差し引き量には、5ポイント又は10ポイントの2つの値のうち1つが割り当てられる。しかし、(例えば、[1,10]ポイント、[5,10,15]ポイント等)最大のWASO差し引き量に対する異なる値、値の範囲、又は値の数を使用することができる。
【0074】
一実施形態において、SOL因子210は、睡眠関連パラメータ1414を含む。所与の睡眠セッションに対するWASOを算出することに関する詳細は、図5を参照して先に記載されている。睡眠関連パラメータ1414は、最大のSOL差し引き量に関する。一実施形態において、最大のSOL差し引き量には、5ポイント又は10ポイントの2つの値のうち1つが割り当てられる。しかし、(例えば、[1,10]ポイント、[5,10,15]ポイント等)最大のWASO差し引き量に対する異なる値、値の範囲、又は値の数を使用することができる。
【0075】
一実施形態において、睡眠障害因子212は、第1の睡眠関連パラメータ1416及び第2の睡眠関連パラメータ1418を含む。所与の睡眠セッションに対する睡眠障害の数を算出することに関する詳細は、図6を参照して先に記載されている。睡眠関連パラメータ1416は、最大の睡眠中断ポイント差し引き量に関する。睡眠関連パラメータ1418は、最大数の睡眠中断と考えられる睡眠中断の数に関する。一実施形態では、睡眠関連パラメータ1416に対する中断の数差し引き量には、10ポイント又は20ポイントの2つの値のうち1つが割り当てられる。しかし、(例えば、[5,25]ポイント、[15,25]ポイント等)最大のWASO差し引き量に対する異なる値、値の範囲、又は値の数を使用することができる。一実施形態では、睡眠関連パラメータ1418に対する中断の数差し引き量には、5回の中断又は10回の中断の2つの値のうち1つが割り当てられる。しかし、(例えば、[15,20]ポイント、[20,30]ポイント等)最大のWASO差し引き量に対する異なる値、値の範囲、又は値の数を使用することができる。
【0076】
一実施形態において、N3持続時間因子214は、睡眠関連パラメータ1420を含む。所与の睡眠セッションに対するN3持続時間を算出することに関する詳細は、図7を参照して先に記載されている。睡眠関連パラメータ1420は、最大のN3差し引き量に関する。一実施形態において、最大のN3差し引き量には、10ポイント又は20ポイントの2つの値のうち1つが割り当てられる。しかし、(例えば、[5,20]ポイント、[15,20,25]ポイント等)最大のN3差し引き量に対する異なる値、値の範囲、又は値の数を使用することができる。
【0077】
一実施形態において、REM持続時間因子216は、睡眠関連パラメータ1422を含む。所与の睡眠セッションに対するREM持続時間を算出することに関する詳細は、図8を参照して先に記載されている。睡眠関連パラメータ1422は、最大のREM差し引き量に関する。一実施形態において、最大のREM差し引き量には、10ポイント又は20ポイントの2つの値のうち1つが割り当てられる。しかし、(例えば、[5,20]ポイント、[15,20,25]ポイント等)最大のREM差し引き量に対する異なる値、値の範囲、又は値の数を使用することができる。
【0078】
一実施形態において、規則性因子218は、第1の睡眠関連パラメータ1424及び第2の睡眠関連パラメータ1426を含む。所与の睡眠セッションに対する、例えば、平均就寝時間からの偏差、平均起床時間からの偏差等、規則性の数を算出することに関する詳細は、図9及び10を参照して先に記載されている。睡眠関連パラメータ1424は、平均就寝時間若しくは起床時間、又はその両方からの最長の偏差に関する。一実施形態において、睡眠関連パラメータ1424は、平均就寝時間からの偏差及び平均起床時間からの偏差の両方の平均に基づき決定される。別の実施形態において、睡眠関連パラメータ1424は、平均就寝時間からの偏差及び平均起床時間からの偏差の両方の重み付けされた組み合わせに基づき決定される。睡眠関連パラメータ1426は、平均就寝時間及び/又は起床時間からの偏差に対して差し引かれるポイントの最大量に関する。一実施形態では、平均就寝時間及び/又は起床時間からの最長の偏差には、40分又は60分の2つの値のうち1つが割り当てられる。しかし、(例えば、[30,60]分、[45,75]分等)最長の偏差時間に対する異なる値、値の範囲、又は値の数を使用することができる。一実施形態において、睡眠関連パラメータ1426に対する最長偏差ポイント差し引き量には、5ポイント又は10ポイントの2つの値のうち1つが割り当てられる。しかし、(例えば、[10,20]ポイント、[5,25]ポイント等)最長偏差ポイント差し引き量に対する異なる値、値の範囲、又は値の数を使用することができる。
【0079】
一実施形態において、ボーナス因子220は、睡眠関連パラメータ1428を含む。所与の睡眠セッションに対するボーナスを算出することに関する詳細は、図11及び12を参照して先に記載されている。睡眠関連パラメータ1428は、最大ボーナス量に関する。一実施形態において、最大ボーナス量には、20ポイント又は30ポイントの2つの値のうち1つが割り当てられる。しかし、(例えば、[10,20]ポイント、[20,40]ポイント等)最大のREM差し引き量に対する異なる値、値の範囲、又は値の数を使用することができる。
【0080】
図15は、様々な実施形態による、染色体ベクトルのセットの各ベクトルに対して決定された相関値に基づき、パラメータ値をベクトルに割り当てる例証的なプロセスの例示的な流れ図である。一実施形態において、図15のプロセス1500は、動作1502において始まる。動作1502では、第1のベクトルのセットが得られる。一実施形態において、第1のベクトルのセットは、睡眠関連パラメータ1406~1428に対する値のあり得る組み合わせに及ぶ初期のベクトルのセットである。例えば、睡眠関連パラメータ1406及び1408は3つの値を含み、睡眠関連パラメータ1410~1428は2つの値を含む。一実施形態において、各パラメータは、9ビットバイナリベクトルによって表される。例示的な実施形態では、総睡眠時間に対応する最大パラメータ値が480分であり、(2ビット)=512ビットであるため、9ビットバイナリベクトルが選択される。しかし、4ビットバイナリベクトル又は8ビットバイナリベクトル等、異なるサイズのバイナリベクトルが使用されてもよい。
【0081】
一実施態様において、初期のベクトルのセットは、10,000ベクトルを含み、各々が、12の睡眠関連パラメータ1406~1428に関連する12の9ビットバイナリベクトルから形成された108ビットバイナリベクトルである。一実施形態において、各108ビットバイナリベクトルは「染色体」と呼ばれ、計算された睡眠スコアとユーザにより示された睡眠スコアとの相関を最適化するために利用される。染色体-ベクトルは、例えば、最適化アルゴリズムの一種である遺伝的アルゴリズムに使用することができる。遺伝的アルゴリズムは、自然選択と類似のプロセスに従う最適化アルゴリズムを可能にする。さらに、遺伝的アルゴリズムは、各ベクトルのパラメータ値に対して、浮動小数点数とは対照的に整数を出力する。上述したように、整数は、ユーザに混乱を生じさせる可能性のある浮動小数点数とは対照的に、ユーザが睡眠スコア、及び睡眠スコアを生成するために適用される差し引きを容易に理解するのを可能にする。
【0082】
第1のベクトルのセットの各ベクトルは、睡眠関連パラメータ1406~1428に対するパラメータ値を含む。パラメータ値は、図14の表1400において例示されている初期値から選択される。一実施形態において、第1のベクトルのセットは、10,000個の染色体ベクトル(例えば、108ビットバイナリベクトル等)を含む。初期の、例えば第1のベクトルのセットを形成するこの初期のベクトル集団は、12の睡眠関連パラメータ1406~1428の各々に関連する値の数から生じる。例えば、睡眠関連パラメータ1406及び1408は各々、図14において見られるように、3つの値を含む(例えば、パラメータ1406は、値[300,360,420]分を含み、パラメータ1408は、値[60,120,180]分を含む)。この例に続いて、睡眠関連パラメータ1410~1428は各々、図14において見られるように、2つの値を含む(例えば、パラメータ1410は、値[40,50]ポイントを含み、パラメータ1412は、値[5,10]ポイントを含み、パラメータ1414は、値[5,10]ポイントを含み、パラメータ1416は、値[10,20]ポイントを含み、パラメータ1418は、値[5,10]中断を含み、パラメータ1420は、値[10,20]ポイントを含み、パラメータ1422は、値[10,20]ポイントを含み、パラメータ1424は、値[40,60]分を含み、パラメータ1426は、値[5,10]ポイントを含み、さらに、パラメータ1428は、値[20,30]ポイントを含む)。従って、第1のベクトルのセットは、2つの3値パラメータ(例えば、3等)と10の2値パラメータ(例えば、210等)の積で構成され、9,096の値を生じる。計算を容易にするために、さらなる無作為に選んだ4つの値を繰り返して、10,000の染色体ベクトルに達する。しかし、異なる量のベクトルを使用して、第1のベクトルのセット(例えば、100,1,000,100,000等)を形成することができ、10,000ベクトルの使用は、限定的であることを意味しない。一例として、第1の108ビットバイナリベクトル、又は染色体ベクトルCは、
=[3009b,609b,409b,59b,59b,109b,59b,109b,109b,409b,59b,209b
として表されてもよい。
【0083】
ここで、各初期睡眠関連パラメータ値は、9バイナリビットのユニークな組み合わせによって表される。例えば、ベクトルCの第1成分である3009bは、300分の初期TST値に対する9ビットバイナリベクトルである。一実施形態において、このベクトルは[1,0,0,1,0,1,1,0,0]として表されるが、これは例証的であり、異なる表現が使用されることが可能である。
【0084】
一実施形態において、1つ又は複数のコンピューティングシステム120は、第1の108ビットバイナリベクトルのセットを生成する。或いは、第1の108ビットバイナリベクトルのセットは、別個の染色体ベクトル生成システムによって生成され、このシステムは次に、第1のセットを1つ又は複数のコンピューティングシステム120に提供する。一実施形態において、第1のベクトルのセットは、参照データベース145に格納され、1つ又は複数のコンピューティングシステム120にプロセス1500を行うよう要求することに応じて1つ又は複数のコンピューティングシステム120によってアクセスされる。一実施形態において、所定の時間の後に、第1のベクトルのセットが廃棄され、その後、新しいベクトルのセットが生成されて第1のベクトルのセットに代わるように、第1のベクトルのセットは定期的に生成される。従って、新しいベクトルのセットは、「初期」のベクトルのセットであるとみなされる。
【0085】
動作1504において、第1のベクトルのセットの各ベクトルに対する相関値が決定される。一実施形態では、(例えば、1つ又は複数のコンピューティングシステム120によって)第1のベクトルのセットを生成すると、又は(例えば、参照データベース145から)第1のベクトルのセットを得ると、相関サブシステム122は、第1のベクトルのセットの各ベクトルに関連する相関値を決定するように構成される。ベクトルに対する相関値は、例えばユーザにより指示された睡眠スコア等のユーザにより示された睡眠スコアとベクトルとの相関の量を示し、これは、ユーザの睡眠測定基準を表すパラメータ値のセットに関連付けられる。一実施形態において、ユーザにより示された睡眠スコアは、ユーザ履歴データベース140から得られ、複数のユーザにより示された睡眠スコアを平均することによって決定される。例えば、ユーザにより示された睡眠スコアは、1週間、1ヶ月、1年、又は他の期間のユーザにより提供された睡眠スコアを使用する平均睡眠スコアの計算であってもよい。
【0086】
一実施形態において、相関サブシステム122は、ユーザにより示された睡眠スコアに関して各ベクトルに対する相関値を決定する。例えば、相関サブシステム122は、ユーザにより示された睡眠スコアを有するベクトルのセットからの各ベクトルに対してピアソンの相関分析を行う。上述のように、各ベクトルは、12の睡眠関連パラメータ値の各々に対する初期値を表している。12の睡眠関連パラメータ値の各々に対する初期値に基づき、あり得る睡眠スコアが、そのベクトルに対して決定される。相関サブシステム122は、所与の108ビットバイナリベクトル(例えば、染色体ベクトルC等)に関連するあり得る睡眠スコアを決定し、ユーザにより示された睡眠スコアとのあり得る睡眠スコアの相関分析を行う。一実施形態において、ユーザにより示された睡眠スコアは、ある期間(例えば、1週間、1ヶ月等)にわたってユーザによって提供される複数のユーザにより示された睡眠スコアに基づき決定された平均のユーザにより示された睡眠スコアである。一実施形態において、相関サブシステム122は、複数の相関値を生成するように構成され、その各々が、初期の睡眠関連パラメータ値のセットが与えられたあり得る睡眠スコアと、ユーザにより示された睡眠スコアとの推定された相関に対応している。一例として、第1のベクトルのセットが10,000の108ビットバイナリベクトル(例えば、染色体ベクトル等)を含む場合、相関サブシステム122は、10,000の相関値(例えば、r,r,...,r10,000)を決定する。
【0087】
動作1506では、第1のベクトルのセットに対する最適化が行われる。一実施形態において、行われる最適化は、遺伝的アルゴリズムの技術を利用する。しかし、さらなる相関最適化技術を代替的に又は追加的に行うことができる。図16のプロセス1600は、最適化プロセスの一実施形態を記載している。
【0088】
図16は、様々な実施形態による、初期の染色体ベクトルのセット及びユーザのユーザにより示された睡眠スコアに関する相関値に基づき、新しい染色体ベクトルのセットを生成するプロセス1600の例示的な流れ図である。一実施形態において、プロセス1600は、動作1602において始まる。動作1602では、第1のベクトルのセットに対する相関値がランク付けされる。上述したように、動作1504において、相関サブシステム122は、ユーザにより示された睡眠スコアに関して、第1のベクトルのセットの各ベクトルに対する相関値を決定する。相関値が決定された後、相関サブシステム122は、最適化サブシステム124に相関値を提供する。
【0089】
一実施形態において、最適化サブシステム124は、相関値の各々を、最も高い相関(例えば、1に最も近い)から最も低い相関(例えば、-1に最も近い)までランク付けする。相関値が1に近いほど、(対応するベクトルに対して使用される睡眠関連パラメータ値に基づき決定される)あり得る睡眠スコアは、ユーザによって提供されるユーザにより示された睡眠スコアにより十分に相関している。一実施形態において、相関値の適合性試験が行われる。特定の相関値に対する適合度は、例えば、式3
【0090】
【数6】
を使用して決定される。
【0091】
式(3)において、fは適合度であり、r、rはそれぞれi番目とj番目の相関値である。式3において、相関値はj=1からj=10,000まで合計されるけれども、異なる数のベクトルが初期のベクトルのセットを形成するために使用される場合、後者は異なることになる。適合度は、正規化相関値とも呼ばれる。従って、一実施形態において、最適化システム124は、適合度に基づき相関値をランク付けするように構成される。
【0092】
動作1604では、第1のベクトルのセットの第1のサブセットが決定される。第1のベクトルのサブセットは、第1の基準を満たす第1のベクトルのセットからのベクトルを含む。一実施形態において、第1の基準は、上位10パーセントの最も「適合」する相関値に対応する。例えば、関連する適合度に関するランク付けされた相関値に基づき、上位10%の適合度が選択される。上位10%の適合度の各々に関連する第1のベクトルのセットからのベクトルが特定され、それらのベクトルが第1のベクトルのサブセットを形成するために使用される。上位10%の最も適合する相関値が、第1のベクトルのサブセットを形成するように選択されるけれども、上位5%の最も適合するもの、上位20%の最も適合するもの等、他のパーセンテージも使用することができる。一実施形態において、上位パーセントの適合度は使用されない。このシナリオでは、動作1604及び1606はスキップされ、プロセス1600は動作1608に進む。
【0093】
動作1606では、第1のベクトルのセットの第2のサブセットが決定される。第2のベクトルのサブセットは、第2の基準を満たす第1のベクトルのセットからのベクトルを含む。一実施形態において、第1の基準は、次の90パーセントの相関/適合度に対応する。言い換えると、第2のベクトルのサブセットは、第1のベクトルのサブセットに含まれない第1のベクトルのセットからのベクトルのうち全てを含み、従って、ランクに基づく上位10パーセントの相関/適合度にない適合度を有する。
【0094】
動作1608では、第2のベクトルのサブセットから2つのベクトルが選択され、それら2つのベクトルを使用して新しいベクトルが生成される。新しいベクトルは「子」ベクトルと呼ばれてもよく、2つのベクトルは「親」ベクトルと呼ばれてもよい。一実施形態では、上位10パーセントの最も「適合」する相関値ではない相関値を有する第1のベクトルのセットからの第1の108ビットバイナリベクトル、及び、同様に上位10パーセントの最も「適合」する相関値ではない相関値を有する第1のベクトルのセットからの第2の108ビットバイナリベクトルが、無作為に選択される。一実施形態において、第1のベクトル及び第2のベクトルは、適合レベルに基づき第2のサブセット由来のベクトルのグループから選択される。例えば、第2のベクトルのサブセットが9,000のベクトルを含む場合、中間のベクトルのセットは、関連する適合度に基づき9,000のベクトルから無作為に選択される。例えば、非常に低い適合レベルを有するベクトルは、(依然として上位10%以内ではない)より高い適合レベルを有するベクトルよりも選択される可能性が高い。一実施形態では、第2のベクトルのサブセット由来のこのベクトルのグループからクロスオーバープロセスが行われ、これによって、子ベクトルが生成される。
【0095】
第1のベクトル及び第2のベクトルから、新しいベクトルが生成される。新しいベクトルは、睡眠関連パラメータごとに、第1のベクトル及び第2のベクトルからパラメータ値のうち1つを無作為に選択することによって構築される。例えば、パラメータ1406に対して、第1のベクトルが値Aを有し、第2のベクトルが値Bを有する場合、最適化サブシステム124が、A又はBのうち1つを無作為に選択して、新しいベクトルのパラメータ1406に対するパラメータ値として割り当てる。第2のベクトルのサブセットから無作為に選択されたベクトルのグループに含まれるベクトルの数に依存して、子ベクトルの数は変わることになる。例えば、第2のベクトルのサブセットが9,000のベクトルを含み、クロスオーバー処理のために無作為に選択されたベクトルのグループが5,000対のベクトルを含む場合、最適化システム124は、5,000の子ベクトルを生成することになる。例えば、5,000の無作為に選択された「カップル」(例えば、第2のベクトルのサブセットからの2つのベクトル等)に対して、2つの「子」ベクトルが、そのカップルの2つの「親」ベクトルの各々からのパラメータ値の再結合によって生成される。
【0096】
動作1610において、各睡眠関連パラメータの1つのパラメータが、第2のベクトルのセット(例えば、第1のベクトルのサブセット及び第2のベクトルのサブセット)の各ベクトルに対して無作為に変更される。パラメータ値を無作為に変更することは「突然変異」と呼ばれてもよく、遺伝的アルゴリズムの一態様である。一実施形態では、パラメータ値の無作為の変更(例えば、突然変異等)は、108ビットバイナリベクトルの1つのバイナリビットの0から1又は1から0のいずれかの反転である。突然変異は、1%等、既定の確率で適用される。一実施形態において、突然変異は、ベクトルの全て、例えば、第1のベクトルのサブセット及び第2のベクトルのサブセットから生成された子ベクトルの各々に適用される。
【0097】
プロセス1500に戻ると、動作1508において、第2のベクトルのセットが生成される。第2のベクトルのセットは、図16のプロセス1600によって生成されるベクトルであってもよい。例えば、プロセス1600の結果として、第2のベクトルのセットと呼ばれる新しいベクトルの「集団」が生成される。
【0098】
動作1510では、第2のベクトルのセットの各ベクトルに対する相関値が決定される。例えば、ピアソンの相関分析が、ユーザにより示された睡眠スコアに関して、第2のベクトルのセットの各ベクトルに対して行われる。一実施形態において、相関サブシステム122が、第2のベクトルのサブセットの相関分析を行うために利用される。例えば、第2のベクトルのセットの各ベクトルに対する相関値が決定された後、プロセス1500は、動作1512に進む。
【0099】
動作1512では、プロセス1600のさらなる反復が、新しいベクトルのセットを生成するために必要であるかどうかについての決定が行われる。一実施形態において、最適化サブシステム124は、プロセス1600が所定の回数繰り返されるように構成される。例えば、プロセス1600は、10,000回、100,000回、又は1,000,000回繰り返されてもよい。各反復の後、新しく生成されたベクトルのセットの平均相関値が、閾値相関値と比較される。平均相関値が相関基準を満たす場合、プロセス1500は、動作1514に進む。動作1514では、第2のベクトルのセットのうち所与のベクトルのパラメータ値が割り当てられる。一実施形態では、平均相関値が相関基準を満たすと決定することに応答して、第2のベクトルのセットのうち所与のベクトルが選択される。所与のベクトルは、第2のベクトルのセットに関連する相関値に関して最大の相関値を有する所与のベクトルに基づき選択されてもよい。言い換えると、所与のベクトルは、そのベクトルに対する睡眠関連パラメータ値を使用して算出された関連する睡眠スコアが、ユーザにより示された睡眠スコアと最も良く相関するため、選択される。しかし、平均相関が相関基準を満たさない場合、プロセス1500は動作1506に戻る。
【0100】
一実施形態において、相関基準はある値であり、平均相関値は、その値以上であれば相関基準を満たしている。例えば、その値は0.01であってもよい。或いは、相関値は、その値以下であれば、相関基準を満たしている。
【0101】
相関基準が満たされていない場合、新しいベクトルのセットが生成されてもよい。一実施形態では、新しいベクトルのセットを得るために再度プロセス1600を行うことによって、新しいベクトルのセットが生成される。従って、例えば、ベクトルの生成、相関値の決定等、プロセス1600のさらなる反復が生じる。新しいベクトルのセットが生成された後、新しいベクトルのセットに関連する平均相関値が相関基準を満たすとして決定が行われる。そうであれば、さらなる反復は必要とされず、プロセス1500は動作1514に進む。しかし、新しい平均相関値が依然として相関基準を満たさない場合は、別の反復が発生する。この反復は、相関基準を満たす相関値をもたらす新しいベクトルのセットが生成されるまで続くことになる。一実施形態において、動作1508の第2のベクトルのセットは、反復が完了した後に生成された結果として生じるベクトルのセットであり、その相関値は、さらなる反復が必要ではないことを示す。
【0102】
一実施形態において、抽出サブシステム126は、動作1514において特定されたベクトルに基づき、各睡眠関連パラメータに対する新しい睡眠関連パラメータ値を抽出するように構成される。新しい睡眠関連パラメータ値は、ユーザの睡眠セッションから得られたデータに基づき、ユーザに対して最適化されると考えられる。例えば、動作1514において特定されたベクトルが、第1の睡眠関連パラメータ値のセットによって形成される場合、このベクトルからの各睡眠関連パラメータ値が、抽出システム126によって抽出される。次に、抽出された睡眠関連パラメータは、一実施形態において、参照データベース145及び/又はユーザ履歴データベース140に格納される。従って、1つ又は複数のコンピューティングシステム120によるその後の睡眠スコア算出のために、新しく抽出された睡眠関連パラメータ値は、因子206~212の各々を決定することと共に使用される。
【0103】
一実施形態において、新しく生成されたベクトルのセットは、参照データベース145によって格納される。従って、後に睡眠関連パラメータ値の最適化が行われることになる場合、以前に生成されたベクトルのセットは、プロセス1500のための初期のベクトルのセットとして使用される。そうすることによって、1つ又は複数のコンピューティングシステム120は、睡眠スコア算出が、特定のユーザと共に進化及び適合するのを可能にする。
【0104】
一実施形態において、染色体ベクトルの使用は、1つ又は複数のコンピューティングシステム120によって計算された出力された睡眠スコアが整数値であるのを可能にする。さらに、染色体ベクトルの使用は、各睡眠因子の分解も整数値として表されるのを可能にする。従って、計算された睡眠スコアをユーザに提示する場合、図13において見られるように、スコア及び差し引きは各々、整数として示される。これは、睡眠スコアをより容易に理解する、さらに、どのように睡眠スコアが計算されたかを理解する能力をユーザに提供する。対照的に、種々の浮動小数点数差し引きが、計算された睡眠スコアにどのように影響するかを理解するのが困難であり得るため、浮動小数点数の使用はユーザに混乱を引き起こす恐れがある。従って、本明細書において記載される技術は、動的でユーザ中心の改善された睡眠関連パラメータが算出されるのを可能にするだけでなく、算出されるその後の睡眠スコアが、ユーザにとってより明確で理解しやすいものであるのも可能にする。
【0105】
特許請求の範囲において、括弧内に置かれたいかなる参照番号も特許請求の範囲を限定するとして解釈するべきではない。「含んでいる(comprising又はincluding)」という用語は、請求項に述べられたもの以外の要素又はステップの存在を除外しない。いくつかの手段を列挙する装置の請求項において、これらの手段のうちいくつかは、1つの且つ同じハードウェアのアイテムによって実現することができる。単数の要素を言及する際に不定冠詞が使用されている場合は、そのような要素の複数形の存在を除外しない。いくつかの手段を列挙するいかなる装置の請求項においても、これらの手段のうちいくつかは、1つの且つ同じハードウェアのアイテムによって実現することができる。特定の要素が互いに異なる従属項において記載されるという単なる事実は、これらの要素を組み合わせて使用することができないと示しているわけではない。
【0106】
上記の説明は、最も実用的で好ましい実施形態であると現在考慮されるものに基づき例示を目的として詳細を提供しているけれども、そのような詳細は単にその目的のためだけであり、本開示は明示的に開示された実施形態に限定されないが、それどころか、付随の特許請求の範囲の真意及び範囲内にある修正及び同等の構成をカバーするよう意図されることが理解されたい。例えば、本開示は、可能な限り、いかなる実施形態の1つ以上の特徴もいかなる他の実施形態の1つ以上の特徴とも組み合わせることができると熟考していることが理解されたい。
図1A
図1B
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11A
図11B
図11C
図12
図13
図14
図15
図16