(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-03-05
(45)【発行日】2024-03-13
(54)【発明の名称】マルチチャネルフォトニックデマルチプレクサ
(51)【国際特許分類】
G02B 6/12 20060101AFI20240306BHJP
【FI】
G02B6/12 331
(21)【出願番号】P 2022520459
(86)(22)【出願日】2020-10-21
(86)【国際出願番号】 US2020056674
(87)【国際公開番号】W WO2021096647
(87)【国際公開日】2021-05-20
【審査請求日】2022-05-25
(32)【優先日】2019-11-11
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】516326438
【氏名又は名称】エックス デベロップメント エルエルシー
(74)【代理人】
【識別番号】100079108
【氏名又は名称】稲葉 良幸
(74)【代理人】
【識別番号】100126480
【氏名又は名称】佐藤 睦
(72)【発明者】
【氏名】シューベルト,マーティン
(72)【発明者】
【氏名】アドルフ,ブライアン
(72)【発明者】
【氏名】ルー,ジェシー
【審査官】大西 孝宣
(56)【参考文献】
【文献】特開2004-219986(JP,A)
【文献】特開2004-163731(JP,A)
【文献】米国特許出願公開第2003/0011833(US,A1)
【文献】中国特許出願公開第106405730(CN,A)
【文献】YILMAZ Y.A. et al.,Inverse design of efficient and compact 1 × N wavelength demultiplexer,Optics Communications,Elsevier B.V.,2019年09月07日,Vol.454,p.124522,DOI: 10.1016/j.optcom.2019.124522
【文献】SU Logan et al.,Inverse Design and Demonstration of a Compact on-Chip Narrowband Three-Channel Wavelength Demultiplexer,ACS Photonics,American Chemical Society,2017年11月16日,Vol.5, No.2,p.301-305,DOI: 10.1021/acsphotonics.7b00987
【文献】PIGGOTT A.Y. et al.,Fabrication-constrained nanophotonic inverse design,Scientific Reports,2017年05月11日,Vol.7, No.1,p.1-7,DOI: 10.1038/s41598-017-01939-2
【文献】PIGGOTT A.Y. et al.,Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer,Nature Photonics,2015年05月11日,Vol.9, No.6,p.374-377,DOI: 10.1038/NPHOTON.2015.69
(58)【調査した分野】(Int.Cl.,DB名)
G02B 6/12 - 6/14
(57)【特許請求の範囲】
【請求項1】
4つの異なる波長チャネルを含むマルチチャネル光信号を受信するための入力領域と、
各々が前記マルチチャネル光信号から逆多重化された前記4つの異なる波長チャネルの対応するものを受信するための4つの出力領域と、
前記入力領域と前記4つの出力領域との間に光学的に配置された分散領域と、
を含み、
前記分散領域が、第1の材料及び第2の材料を含み、前記第1の材料及び第2の材料が、複数の界面を形成するように不均一に散在し、前記複数の界面の各々が、前記分散領域の屈折率の変化に対応し、及び前記分散領域を集合的に構造化して、前記入力領域が前記マルチチャネル光信号を受信すると、前記マルチチャネル光信号から前記4つの異なる波長チャネルの各々を光学的に分離し、前記4つの異なる波長チャネルの各々を前記4つの出力領域の対応するものにそれぞれ誘導するものであり、
前記複数の界面が、前記第2の材料を含む周辺領域によって少なくとも部分的に囲まれる前記分散領域
の平面に沿った材料界面パターンを形成しており、
前記材料界面パターンが、複数のアイランドを含み、前記複数のアイランドに含まれる第1のアイランドが、前記第1の材料から形成され、前記第2の材料によって囲まれ、前記複数のアイランドに含まれる第2のアイランドが、前記第2の材料から形成され、前記第1の材料によって囲まれる、マルチチャネルフォトニックデマルチプレクサ。
【請求項2】
前記材料界面パターンが、前記周辺領域から前記分散領域へと延伸する、前記第2の材料から形成された突出部を含む、請求項1に記載のマルチチャネルフォトニックデマルチプレクサ。
【請求項3】
前記材料界面パターンが、1つ又は複数の樹枝状の形状を含み、前記1つ又は複数の樹枝状の形状の各々が、前記第1の材料又は前記第2の材料から形成され、対応する方向に沿ってサイズが交互に増減される幅を有する分岐構造として定義される、請求項1に記載のマルチチャネルフォトニックデマルチプレクサ。
【請求項4】
前記第1の材料及び前記第2の材料が、前記材料界面パターンが反復最適化に基づく逆設計プロセスで得られる設計に実質的に比例するように、前記分散領域内に配列及び成形される、請求項1に記載のマルチチャネルフォトニックデマルチプレクサ。
【請求項5】
前記逆設計プロセスが、前
記反復最適化を通じて調整される性能損失及び製作損失を組み込む損失関数に少なくとも部分的に基づ
く、請求項4に記載のマルチチャネルフォトニックデマルチプレクサ。
【請求項6】
前記マルチチャネル光信号から前記4つの異なる波長チャネルの各々を光学的に分離することが、100μm×100μm又はそれ未満の既定のエリア内で行われるように構成
された、請求項1に記載のマルチチャネルフォトニックデマルチプレクサ。
【請求項7】
前記分散領域が、前記4つの異なる波長チャネルの各々に対して共通の帯域幅に対応するように構造化され、前記4つの異なる波長チャネルの各々が、異なる中心波長を有し、前記共通の帯域幅が、およそ13nm幅であり、前記異なる中心波長が、1271nm、1291nm、1311nm、1331nm、1511nm、1531nm、1551nm又は1571nmの少なくとも1つを含む、請求項1に記載のマルチチャネルフォトニックデマルチプレクサ。
【請求項8】
前記分散領域が、前記4つの異なる波長チャネルのうちの1つの波長チャネル内の所定の波長に対して、前記入力領域から、前記分散領域を通じて、前記4つの出力領域の前記対応するものに至るまで、-2dB以上のパワー伝送を有するように構造化される、請求項1に記載のマルチチャネルフォトニックデマルチプレクサ。
【請求項9】
前記分散領域が、前記入力領域から前記4つの出力領域の前記対応するもの以外の前記4つの出力領域のいずれかへの前記所定の波長に対する好ましくないパワー伝送が-30dB以下であるか、前記4つの異なる波長チャネルの各々の帯域通過領域内のリップルが1dB以下であるか、又は、前記マルチチャネル光信号の最大パワー反射が-40dB以下であるかの少なくとも1つを有するようにさらに構造化される、請求項
8に記載のマルチチャネルフォトニックデマルチプレクサ。
【請求項10】
前記分散領域が、第1の側部と、前記第1の側部の反対側の第2の側部とを含み、前記入力領域が、前記第1の側部のすぐ近くに配置され、前記4つの出力領域が、前記第2の側部のすぐ近くに配置され、前記4つの出力領域の各々が、前記4つの出力領域の他の各々と平行に位置決めされる、請求項1に記載のマルチチャネルフォトニックデマルチプレクサ。
【請求項11】
前記4つの出力領域の隣接する対が、共通の離隔距離だけ互いに離隔される、請求項
10に記載のマルチチャネルフォトニックデマルチプレクサ。
【請求項12】
複数の異なる波長チャネルを含むマルチチャネル光信号を受信するための入力領域と、
各々が前記マルチチャネル光信号から逆多重化された前記複数の異なる波長チャネルの対応するものを受信するための複数の出力領域と、
前記入力領域と前記複数の出力領域との間に光学的に配置された分散領域と、
を含み、
前記分散領域が、第1の材料及び第2の材料を含み、前記第1の材料及び第2の材料が、複数の界面を形成するように不均一に散在し、前記複数の界面の各々が、前記分散領域の屈折率の変化に対応し、及び前記分散領域を集合的に構造化して、前記入力領域が前記マルチチャネル光信号を受信すると、前記マルチチャネル光信号から前記複数の異なる波長チャネルの各々を光学的に分離し、前記複数の異なる波長チャネルの各々を前記複数の出力領域の対応するものにそれぞれ誘導するものであり、
前記複数の界面が、前記第2の材料を含む周辺領域によって少なくとも部分的に囲まれる前記分散領域
の平面に沿った材料界面パターンを形成しており、前記材料界面パターンが樹枝状形状を含み、前記樹枝状形状が、第1の材料又は第2の材料から形成される分岐構造として定義され、前記樹枝状形状が、対応する方向に沿ってサイズが交互に増減される幅を有する、マルチチャネルフォトニックデマルチプレクサ。
【請求項13】
複数の異なる波長チャネルを含むマルチチャネル光信号を受信するための入力領域と、
各々が前記マルチチャネル光信号から逆多重化された複数の異なる波長チャネルの対応するものを受信するための複数の出力領域と、
前記入力領域と前記複数の出力領域との間に光学的に配置された分散領域と、
を含み、
前記分散領域が、第1の材料及び第2の材料を含み、前記第1の材料及び第2の材料が、複数の界面を形成するように不均一に散在し、前記複数の界面の各々が、前記分散領域の屈折率の変化に対応し、及び前記分散領域を集合的に構造化して、前記入力領域が前記マルチチャネル光信号を受信すると、前記マルチチャネル光信号から前記複数の異なる波長チャネルの各々を光学的に分離し、前記複数の異なる波長チャネルの各々を前記複数の出力領域の対応するものにそれぞれ誘導するものであり、
前記分散領域が、前記複数の異なる波長チャネルのうちの1つの波長チャネル内の所定の波長に対して、前記入力領域から、前記分散領域を通じて、前記複数の出力領域の前記対応するものに至るまで、-2dB以上のパワー伝送を有するように構造化され、
前記分散領域が、前記入力領域から前記複数の出力領域の前記対応するもの以外の前記複数の出力領域のいずれかへの前記所定の波長に対する好ましくないパワー伝送が-30dB以下であるか、前記複数の異なる波長チャネルの各々の帯域通過領域内のリップルが1dB以下であるか、又は、前記マルチチャネル光信号の最大パワー反射が-40dB以下であるかの少なくとも1つを有するようにさらに構造化さ
れ、
前記複数の界面が、前記第2の材料を含む周辺領域によって少なくとも部分的に囲まれる前記分散領域の平面に沿った材料界面パターンを形成しており、
前記材料界面パターンが、複数のアイランドを含み、前記複数のアイランドに含まれる第1のアイランドが、前記第1の材料から形成され、前記第2の材料によって囲まれ、前記複数のアイランドに含まれる第2のアイランドが、前記第2の材料から形成され、前記第1の材料によって囲まれる、マルチチャネルフォトニックデマルチプレクサ。
【発明の詳細な説明】
【技術分野】
【0001】
関連出願の相互参照
[0001] 本出願は、2019年11月11日に出願された米国特許出願第16/679579号に基づき、その内容は、その全体が参照により本明細書に組み込まれる。
【0002】
技術分野
[0002] 本開示は、概して、フォトニックデバイスに関し、具体的には、排他的ではなく、光マルチプレクサ及びデマルチプレクサに関する。
【背景技術】
【0003】
背景情報
[0003] 光ファイバ通信は、典型的には、情報を搬送するために変調されている光を介して、ある場所から別の場所に情報を送信するために採用される。例えば、多くの電気通信会社は、光ファイバを使用して、電話信号、インターネット通信及びケーブルテレビ信号を送信する。しかし、光ファイバ通信用の光ファイバを配備するためのコストは、法外なものであり得る。従って、単一の光ファイバ内で利用可能な帯域幅をより効率的に使用するための技法が開発されてきた。そのような技法の1つは、異なる波長を使用して多数の光搬送波信号を単一の光ファイバにまとめる、波長分割多重化である。
【発明の概要】
【課題を解決するための手段】
【0004】
図面の簡単な説明
[0004] 本発明の非限定的且つ非包括的な実施形態は、以下の図を参照して説明され、別段の指定がない限り、様々な図全体を通じて、同様の参照番号は、同様の部分を指す。適切な場合には、図面が乱雑にならないようにするため、必ずしもすべての要素の例にラベルが付けられているとは限らない。図面は必ずしも原寸に比例するとは限らず、代わりに、説明されている原理を示すことに重点を置く。
【図面の簡単な説明】
【0005】
【
図1】[0005]本開示の実施形態による、光信号を介する2つの光通信デバイス間の光通信用のシステムを示す機能ブロック図である。
【
図2A】[0006]本開示の実施形態による、デマルチプレクサの例を示す。
【
図2B】[0006]本開示の実施形態による、マルチプレクサの例を示す。
【
図2C】[0007]本開示の実施形態による、マルチチャネル光信号の異なる波長チャネルの例を示す。
【
図3A】[0008]本開示の実施形態による、フォトニックデマルチプレクサの例の図を示す。
【
図3B】[0008]本開示の実施形態による、フォトニックデマルチプレクサの例の異なる図を示す。
【
図3C】[0008]本開示の実施形態による、フォトニックデマルチプレクサの例の異なる図を示す。
【
図3D】[0008]本開示の実施形態による、フォトニックデマルチプレクサの例の異なる図を示す。
【
図4A】[0009]本開示の実施形態による、フォトニックデマルチプレクサの例の分散領域のより詳細な断面図を示す。
【
図4B】[0009]本開示の実施形態による、フォトニックデマルチプレクサの例の分散領域のより詳細な断面図を示す。
【
図5】[0010]本開示の実施形態による、フォトニック集積回路の設計を生成するためのシステムを示す機能ブロック図である。
【
図6A】[0011]本開示の実施形態による、フォトニック集積回路について説明する例証的な模擬環境を示す。
【
図6B】[0012]本開示の実施形態による、フォトニック集積回路の動作シミュレーションの例を示す。
【
図6C】[0013]本開示の実施形態による、損失値を逆伝播することによる模擬環境内での随伴シミュレーションの例を示す。
【
図7A】[0014]本開示の実施形態による、動作及び随伴シミュレーションの時間ステップの例を示すフローチャートである。
【
図7B】[0015]本開示の実施形態による、動作シミュレーションから決定された勾配と随伴シミュレーションから決定された勾配との関係を示すチャートである。
【
図8】[0016]本開示の実施形態による、フォトニック集積回路の設計を生成するための方法の例を示す。
【発明を実施するための形態】
【0006】
詳細な説明
[0017] 本明細書では、マルチチャネルフォトニックデマルチプレクサを含むフォトニック集積回路の実施形態及びフォトニック集積回路の設計を生成するための方法について説明する。以下の説明では、実施形態の完全な理解を提供するため、多くの特定の詳細について記載する。しかし、当業者であれば、特定の詳細のうちの1つ若しくは複数がなくとも、又は、他の方法、コンポーネント、材料などを用いても、本明細書で説明される技法を実践できることが認識されよう。他の例では、ある態様を曖昧にすることを避けるため、周知の構造、材料又は動作については、詳細に示すことも説明することもしない。
【0007】
[0018] この明細書全体を通じて、「一実施形態」又は「実施形態」への言及は、実施形態と関係して説明される特定の特徴、構造又は特性が本発明の少なくとも1つの実施形態に含まれることを意味する。従って、この明細書全体を通じて、様々な場所における「一実施形態では」又は「実施形態では」の記載の出現は、必ずしもすべてが同じ実施形態を指すとは限らない。その上、特定の特徴、構造又は特性は、1つ又は複数の実施形態において、任意の適切な方法で組み合わせることができる。
【0008】
[0019] 波長分割多重化及びその変形形態(例えば、高密度波長分割多重化、粗密度波長分割多重化及び同様のもの)は、多数の光搬送波信号を単一の光ファイバにまとめることによって、光ファイバの帯域幅を利用する。多数の搬送波信号が一緒にまとめられた時点で、それらの信号は、単一の光ファイバ上である場所から別の場所に送信され、光通信デバイスによる読み取りのために逆多重化することができる。しかし、搬送波信号を互いに切り離すデバイスは、コスト、サイズ及び同様のものの観点から、依然として法外なものである。
【0009】
[0020] その上、光通信に使用されるものなどのフォトニックデバイスの設計は、単純な推測確認法(guess and check method)又は手動誘導グリッド検索を通じて場合により決定される従来の技法を通じて従来の方式で設計され、特定のアプリケーションへの適合性に合わせて既定の設計又は構築ブロックからの少数の設計パラメータが調整される。しかし、実際には、これらのデバイスは、デバイスサイズ及び機能性に応じて、数百から数十億又はそれ以上までの範囲にわたる設計パラメータを有し得る。従って、より小型のデバイスフィーチャサイズを可能にするため、フォトニックデバイスの機能性が増大し、製造公差が改善されるにつれて、デバイス設計の最適化を通じてこれらの改善を最大限に活用することがますます重要になる。
【0010】
[0021] 本明細書では、逆設計プロセスによって得ることができる設計を有するフォトニック集積回路(例えば、マルチチャネルフォトニックデマルチプレクサ及び/又はマルチプレクサ)の実施形態について説明する。より具体的には、本明細書の実施形態で説明される技法は、フォトニック集積回路の動作を左右することが見込まれる基礎物理学を理解することによって設計を生成するために、第1原理シミュレーションと組み合わせて、勾配ベースの最適化を利用する。他の実施形態では、勾配ベースの技法を使用せずにフォトニック集積回路の設計最適化を使用できることも理解されている。有利には、本明細書で説明される実施形態及び技法は、特定のアプリケーションへの適合性に基づいて既定の構築ブロックに対する少数の設計パラメータが調整されるような、フォトニックデバイスの設計に対して使用される従来の技法に限定されない。むしろ、本明細書で説明される第1原理ベースの設計は、必ずしも人間の直感に依存するとは限らず、一般に、性能、サイズ、ロバスト性又はそれらの組合せにおいて現行の最先端の設計に勝る設計をもたらし得る。さらに依然として、従来の技法によって少数の設計パラメータに限定されるというよりむしろ、本明細書で説明される実施形態及び技法は、ほぼ無制限の数の設計パラメータのスケーラブルな最適化を提供することができる。
【0011】
[0022]
図1は、本開示の実施形態による、光信号110を介する光通信デバイス101-Aと光通信デバイス101-Bとの間の光通信(例えば、波長分割多重化又は他の技法を通じるもの)用のシステム100を示す機能ブロック図である。より一般には、光通信デバイス101-Aは、1つ又は複数の光源からの光をマルチチャネル光信号110(例えば、複数の異なる波長チャネルを含む単一の光信号)に変調することによって情報を送信するように構成され、マルチチャネル光信号110は、その後、光ファイバ、導光体、導波路又は他のフォトニックデバイスを介して、光通信デバイス101-Aから光通信デバイス101-Bに送信される。光通信デバイス101-Bは、マルチチャネル光信号110を受信し、マルチチャネル光信号110から複数の異なる波長チャネルに逆多重化して送信情報を抽出する。いくつかの実施形態では、光通信デバイス101-Aと光通信デバイス101-Bは、異なる別のデバイス(例えば、1つ又は複数の光ファイバを介して別個の光トランシーバ又は受信機に通信可能に結合される光トランシーバ又は送信機)であり得ることが理解されている。しかし、他の実施形態では、光通信デバイス101-A及び101-Bは、単一のコンポーネント又はデバイス(例えば、スマートフォン、タブレット、コンピュータ、光学デバイス又は同様のもの)の一部であり得る。例えば、光通信デバイス101-A及び101-Bは両方とも、導波路を介して互いに結合されたモノリシック集積回路の構成コンポーネントであり得、導波路は、モノリシック集積回路内に埋め込まれ、光通信デバイス101-Aと光通信デバイス101-Bとの間で光信号110を搬送するように、又は、ある場所と別の場所との間で光信号を送信するように適応させたものである。
【0012】
[0023] 示される実施形態では、光通信デバイス101-Aは、コントローラ105、1つ又は複数のインタフェースデバイス107(例えば、光ファイバカプラ、導光体、導波路及び同様のもの)、マルチプレクサ(mux)、デマルチプレクサ(demux)又はそれらの組合せ109、1つ又は複数の光源111(例えば、発光ダイオード、レーザ及び同様のもの)、並びに、1つ又は複数の光センサ113(例えば、フォトダイオード、フォトトランジスタ、フォトレジスタ及び同様のもの)を含み、それらは互いに結合されている。コントローラは、1つ又は複数のプロセッサ115(例えば、1つ又は複数の中央処理装置、特定用途向け回路、フィールドプログラマブルゲートアレイ又はその他)と、メモリ117(例えば、DRAM及びSAMなどの揮発性メモリや、ROM、フラッシュメモリ及び同様のものなどの不揮発性メモリ)とを含む。光通信デバイス101-Bは、光通信デバイス101-Aと同じ又は同様の要素を含み得ることが理解されており、明確にするため、それらの要素を省略している。
【0013】
[0024] コントローラ105は、光信号110(例えば、複数の異なる波長チャネルを有するマルチチャネル光信号又はその他)の送信及び/又は受信を行うために、光通信デバイス101-Aの動作のオーケストレーションを行う。コントローラ105は、ソフトウェア(例えば、プロセッサ115に結合されたメモリ117に含まれる命令)並びに/或いはハードウェア論理(例えば、特定用途向け集積回路、フィールドプログラマブルゲートアレイ及び同様のもの)を含み、ソフトウェア及び/又はハードウェア論理は、コントローラ105によって実行されると、コントローラ105及び/又は光通信デバイス101-Aに動作を実行させる。
【0014】
[0025] 一実施形態では、コントローラ105は、複数の異なる波長チャネルを光源103に生成させ、mux/demux 109を介してそれらの波長チャネルをマルチチャネル光信号110に多重化させ、その後、インタフェースデバイス107を介して光通信デバイス101-Bへ送信させるために、光通信デバイス101-Aの動作のコレオグラフィを行うことができる。言い換えれば、光源111は、異なる波長(例えば、1271nm、1291nm、1311nm、1331nm、1511nm、1531nm、1551nm、1571又はその他)を有する光を出力することができ、その光は、コントローラ105を介して変調又はパルス化され、情報を表す複数の異なる波長チャネルが生成される。その後、複数の異なる波長チャネルは、mux/demux 109を介して組み合わされるか又は多重化されてマルチチャネル光信号110になり、インタフェースデバイス107を介して光通信デバイス101-Bに送信される。同じ又は別の実施形態では、コントローラ105は、光通信デバイス101-Bからインタフェースデバイス107を介して受信されたマルチチャネル光信号110からmux/demux 109を介して複数の異なる波長チャネルに逆多重化させるために、光通信デバイス101-Aの動作のコレオグラフィを行うことができる。
【0015】
[0026] いくつかの実施形態では、本開示のある態様を曖昧にすることを避けるため、光通信デバイス101-A及び/又は101-Bのある要素が省略されている場合があることが理解されている。例えば、光通信デバイス101-A及び101-Bは、光信号110の送信及び受信を容易にするために、増幅回路、レンズ又はコンポーネントを含み得る。さらに、いくつかの実施形態では、光通信デバイス101-A及び/又は101-Bは、必ずしも
図1に示されるすべての要素を含むとは限らないことが理解されている。例えば、一実施形態では、光通信デバイス101-A及び/又は101-Bは、複数の異なる波長チャネルをマルチチャネル光信号110に受動的に多重化する及び/又はマルチチャネル光信号110から複数の異なる波長チャネルに受動的に逆多重化することができる中間デバイスとして動作する受動デバイスである。
【0016】
[0027]
図2A及び2Bは、本開示の実施形態による、デマルチプレクサ220及びマルチプレクサ250の例をそれぞれ示す。デマルチプレクサ220及びマルチプレクサ250は、
図1に示されるmux/demux 109の可能な実施形態であり、フォトニック集積回路、シリコンフォトニックデバイス又はその他の一部であり得る。
【0017】
[0028]
図2Aに示されるように、デマルチプレクサ220は、入力領域202及び複数の出力領域204を含む。デマルチプレクサ220は、入力領域202(例えば、
図1に示されるインタフェースデバイス107に対応し得る導波路)を介して複数の異なる波長チャネル(例えば、Ch.1、Ch.2、Ch.3、...Ch.Nであり、各々は、λ
1、λ
2、λ
3、...λ
Nにそれぞれ対応する中心波長を有する)を含むマルチチャネル光信号110を受信して、マルチチャネル光信号110から複数の異なる波長チャネルの各々を光学的に分離し、複数の異なる波長チャネルの各々を複数の出力領域204(例えば、
図1に示されるインタフェースデバイス107に対応し得る複数の導波路)の対応するものにそれぞれ誘導するように構成される。より具体的には、示される実施形態では、出力領域の各々は、複数の光信号(例えば、λ
1、λ
2、λ
3、...λ
N)として出力することができる複数の異なる波長チャネルのうちの1つに対応するか又は表すマルチチャネル光信号の部分を受信する。複数の出力領域の各々は、それぞれの光センサ(例えば、
図1に示される光センサ113に対応する)に結合することができ、光センサは、さらなる処理のため、マルチチャネル光信号110から逆多重化された光信号を電気信号に変換するために利用することができる。
【0018】
[0029]
図2Bに示される実施形態では、マルチプレクサ250は、複数の入力領域254及び出力領域252を含む。マルチプレクサは、複数の異なる光信号(例えば、λ
1、λ
2、λ
3、...λ
N)の各々を複数の入力領域254(例えば、
図1に示されるインタフェースデバイス107に対応し得る複数の導波路)のそれぞれにおいて受信するように構成される。マルチプレクサ250は、複数の異なる波長チャネルの各々をマルチチャネル光信号110に光学的に組み合わせる(すなわち、多重化する)ように構造化又は構成され、マルチチャネル光信号110は、出力領域252(例えば、
図1に示されるインタフェースデバイス107に対応し得る導波路)に誘導される。いくつかの実施形態では、
図2Aに示されるデマルチプレクサ220及び
図2Bに示されるマルチプレクサ250は、各デバイスがデマルチプレクサとしてもマルチプレクサとしても機能し得るような双方向性を有し得ることが理解されている。
【0019】
[0030]
図2Cは、本開示の実施形態による、マルチチャネル光信号の異なる波長チャネルの例を示す(例えば、Ch.Nは、
図1、2A及び2Bに示されるマルチチャネル光信号110である)。チャネルの例は、
図2Aのデマルチプレクサ220及び/又は
図2Bのマルチプレクサ250によって逆多重化及び/又は多重化を行うことができるマルチチャネル光信号の複数の異なる波長チャネルに含まれる個々のチャネルを表し得る。異なる波長チャネルの各々は、1271nm、1291nm、1311nm、1331nm、1511nm、1531nm、1551nm、1571nm又はその他の少なくとも1つを含む異なる中心波長(λ
N)を有し得る。
図2Cの示される実施形態では、異なる波長チャネルは、およそ13nm幅のチャネル帯域幅212を有する。しかし、他の実施形態では、チャネル帯域幅は、幅13nmとは異なり得る。むしろ、チャネル帯域幅は、
図1のmux/demux 107、
図2Aのデマルチプレクサ220及び/又は
図2Bのマルチプレクサ250の構造に依存する構成可能なパラメータと見なすことができる。例えば、いくつかの実施形態では、複数の異なる波長チャネルの各々は、13nm又はその他に対応し得る共通の帯域幅を共有することができる。
図2Cに戻ると、チャネル帯域幅212は、通過帯域領域213(すなわち、PB
1とPB
2との間に位置するように定義される領域)の幅として定義することができる。通過帯域領域213は、デマルチプレクサ又はマルチプレクサのおよその電力伝送を表し得る。いくつかの実施形態では、通過帯域領域213は、
図2Cに示されるようなリップル(通過帯域領域212内の変動に対応する)を含み得ることが理解されている。1つ又は複数の実施形態では、通過帯域領域内のリップルは、+/-2dB以下、+/-1dB以下、+/-0.5dB以下又はその他であり得る。いくつかの実施形態では、チャネル帯域幅212は、通過帯域領域212によって定義することができる。他の実施形態では、チャネル帯域幅212は、閾値を上回る測定電力(例えば、dBth)として定義することができる。例えば、
図2Aに示されるデマルチプレクサ220は、マルチチャネル光信号110からチャネルNを光学的に分離することができ、チャネルN(すなわち、λ
N)にマッピングされた出力領域204に送信される閾値を上回る波長の範囲と同等であるチャネルNの対応するチャネル帯域幅を有し得る。同じ又は他の実施形態では、設計を最適化する際、チャネル(すなわち、チャネル帯域幅212によって定義されるもの)のアイソレーションも考慮することができる。アイソレーションは、通過帯域領域212と阻止帯域領域(例えば、SB
1より小さい領域及びSB
2より大きい領域)との間の比率として定義することができる。さらに、遷移帯域領域(例えば、SB
1とPB
1との間の第1の遷移領域及びPB
2とSB
2との間の第2の遷移領域)は、例示的なものであり、例示の目的のために強調できることが理解されている。いくつかの実施形態では、フォトニックデマルチプレクサの設計の最適化は、遷移帯域領域の傾き、幅又は同様のもののターゲットメトリクスも含み得る。
【0020】
[0031]
図3A~3Dは、本開示の実施形態による、フォトニックデマルチプレクサ320の例の異なる図を示す。フォトニックデマルチプレクサ320は、
図1に示されるmux/demux 109及び
図2Aに示されるデマルチプレクサ220の1つの可能な実装形態である。さらに、これ以降の論考は、マルチチャネル光信号から複数の異なる波長チャネルに逆多重化することができるフォトニック集積回路を対象とし得るが、他の実施形態では、デマルチプレクサ(例えば、デマルチプレクサ320)は、本開示の実施形態に従って、複数の異なる波長チャネルをマルチチャネル光信号にさらに又は代替として多重化できることが理解されている。
【0021】
[0032]
図3Aは、デマルチプレクサ320の幅321及び長さ323によって定義される活性層内の横方向平面に沿ったデマルチプレクサ320の断面図を示す。示されるように、デマルチプレクサ320は、入力領域302(例えば、
図2Aに示される入力領域202に類似する)と、複数の出力領域304(例えば、
図2Aに示される複数の出力領域204に類似する)と、入力領域302と複数の出力領域304との間に光学的に配置された分散領域とを含む。入力領域302及び複数の出力領域304(例えば、304-A、304-B、304-C、304-D)の各々は、導波路の経路に沿って光を伝播することができる導波路(例えば、スラブ導波路、ストリップ導波路、スロット導波路又は同様のもの)であり得る。分散領域330は、第1の材料及び第2の材料(例えば、
図3Dを参照)を含み、第1の材料及び第2の材料は、複数の界面を形成するように不均一に散在し、複数の界面の各々は、分散領域330の屈折率の変化に対応し、分散領域330を集合的に構造化するものであり、入力領域302がマルチチャネル光信号を受信すると、マルチチャネル光信号(例えば、
図2Aに示される光信号110)から複数の異なる波長チャネル(例えば、
図2Aに示されるCh.1、Ch.2、Ch.3、...Ch.N)の各々を光学的に分離し、複数の異なる波長チャネルの各々を複数の出力領域304の対応するものにそれぞれ誘導する。言い換えれば、入力領域302は、複数の異なる波長チャネルを含むマルチチャネル光信号を受信するように適応され、複数の出力領域304は、各々が、分散領域330を介してマルチチャネル光信号から逆多重化された複数の異なる波長チャネルの対応するものを受信するように適応される。
【0022】
[0033]
図3Aに示されるように、並びに、
図3D及び4A、4Bにより明確に示されるように、不均一に散在する第1及び第2の材料の形状及び配列は、第2の材料を含む周辺境界領域322によって少なくとも部分的に囲まれる分散領域330の断面エリアに沿って材料界面パターンを集合的に形成する複数の界面を生み出す。いくつかの実施形態では、周辺領域322は、第2の材料を含む実質的に均一な組成を有する。示される実施形態では、分散領域330は、第1の側部331及び第2の側部333を含み、その各々は、内側境界(すなわち、分散領域330と周辺領域322の外側境界に対応する一点鎖線との間に配置された周辺領域322のラベル付けされていない破線)と接する。第1の側部331及び第2の側部333は、分散領域330の対向する側部に対応するように配置される。入力領域302は、第1の側部331のすぐ近くに配置され(例えば、入力領域302の一方の側部は、分散領域330の第1の側部331に当接する)、複数の出力領域304の各々は、第2の側部333のすぐ近くに配置される(例えば、複数の出力領域304の各々の一方の側部は、分散領域330の第2の側部333に当接する)。
【0023】
[0034] 示される実施形態では、複数の出力領域304の各々は、複数の出力領域304の他の各々と平行である。しかし、他の実施形態では、複数の出力領域304は、互いに平行ではない場合も、同じ側部に配置されていない場合さえもあり得る(例えば、複数の出力領域304及び/又は入力領域302の1つ又は複数は、第1の側部331及び/又は第2の側部333に隣接する分散領域330の側部のすぐ近くに配置され得る)。いくつかの実施形態では、複数の出力領域が少なくとも3つの出力領域を含む際は、複数の出力領域の隣接するものは、共通の離隔距離だけ互いに離隔される。例えば、示されるように、隣接する出力領域304-A及び304-Bは、距離306だけ互いに離隔され、その距離は、隣接する出力領域の他の対間の離隔距離に共通し得る。
【0024】
[0035]
図3Aの実施形態で示されるように、デマルチプレクサ320は、4つの出力領域304(例えば、304-A、304-B、304-C、304-D)を含み、その各々はそれぞれ、複数の異なる波長チャネルに含まれる4つのチャネルのそれぞれにマッピングされる(すなわち、分散領域330の構造を理由に)。より具体的には、第1の材料及び第2の材料の不均一な散在によって定義される分散領域330の複数の界面は、分散領域330の断面エリアに沿って材料界面パターンを形成し(例えば、
図3A、4A又は4Bに示されるように)、入力領域302領域マルチチャネル光信号の際に、分散領域330によってマルチチャネル光信号から4つのチャネルの各々を光学的に分離させ、4つのチャネルの各々を4つの出力領域304のそれぞれにルーティングする。
【0025】
[0036] 分散領域330の第1の材料及び第2の材料は、材料界面パターンが逆設計プロセスで得られる設計に実質的に比例するように、分散領域内に配列及び成形されることに留意されたい。これについては、本開示において後にさらに詳細に論じる。より具体的には、いくつかの実施形態では、逆設計プロセスは、性能損失(例えば、機能性の実施のため)並びに製作損失(例えば、第1の材料及び第2の材料の製作性及び2値化の実施のため)を組み込む損失関数に少なくとも部分的に基づく設計の反復勾配ベースの最適化を含み得、これらの損失は、設計を生成するための反復勾配ベースの最適化を通じて低減するか又は調整することができる。同じ又は他の実施形態では、勾配ベースの最適化の代わりに又は一緒に、他の最適化技法を使用することができる。これにより、有利には、従来の設計技法では不可能であり得る既定のエリア内の機能性及び性能を達成するために、無制限に近い数の設計パラメータの最適化が可能になる。
【0026】
[0037] 例えば、一実施形態では、分散領域330は、入力領域302がマルチチャネル光信号を受信すると、35μm×35μmの既定のエリア(例えば、分散領域330の幅325及び長さ327によって定義されるようなもの)内でマルチチャネル光信号から4つのチャネルの各々を光学的に分離するように構造化される。同じ又は別の実施形態では、分散領域は、4つのチャネルの各々に対して共通の帯域幅に対応するように構造化され、4つのチャネルの各々は、異なる中心波長を有する。一実施形態では、共通の帯域幅は、およそ13nm幅であり、異なる中心波長は、1271nm、1291nm、1311nm、1331nm、1511nm、1531nm、1551nm、1571nmからなる群から選択される。いくつかの実施形態では、デマルチプレクサ320の全体の構造(例えば、入力領域321、周辺領域322、分散領域330及び複数の出力領域304を含む)は、既定のエリア(例えば、幅321及び長さ323によって定義されるようなもの)内に収まる。一実施形態では、既定のエリアは、35μm×35μmである。他の実施形態では、分散領域330及び/又はデマルチプレクサ330は、35μm×35μmより大きい又は小さい他のエリア内に収まり、それにより、デマルチプレクサ320の分散領域330(例えば、第1及び第2の材料の配列及び形状)並びに/或いは他のコンポーネントの構造が変化することが理解されている。
【0027】
[0038] 同じ又は他の実施形態では、分散領域は、複数の異なる波長チャネルのうちの1つの波長チャネル内の所定の波長に対して、入力領域302から、分散領域330を通じて、複数の出力領域304の対応するものに至るまで、-2dB以上の電力伝送を有するように構造化される。例えば、マルチチャネル光信号のチャネル1が出力領域304-Aにマッピングされている場合は、デマルチプレクサ320が入力領域302でマルチチャネル光信号を受信すると、分散領域330は、マルチチャネル光信号からチャネル1を光学的に分離し、-2dB以上の電力伝送で、チャネル1に対応するマルチチャネル光信号の部分を出力領域304-Aに誘導する。同じ又は別の実施形態では、分散領域330は、入力領域から複数の出力領域の対応するもの以外の複数の出力領域のいずれかへの所定の波長に対する好ましくない電力伝送(すなわち、アイソレーション)が-30dB以下、-22dB以下又はその他であるように構造化される。例えば、マルチチャネル光信号のチャネル1が出力領域304-Aにマッピングされている場合は、入力領域302から複数の出力領域の対応するもの(例えば、304-A)以外の複数の出力領域のいずれか1つ(例えば、304-B、304-C、304-D)への好ましくない電力伝送は、-30dB以下、-22dB以下又はその他である。いくつかの実施形態では、入力領域(例えば、入力領域302)で受信された入力信号(例えば、マルチチャネル光信号)のデマルチプレクサ320からの最大電力反射は、分散領域330又はその他によって反射して入力領域に戻り、-40dB以下、-20dB以下、-8dB以下又はその他である。他の実施形態では、電力伝送、好ましくない電力伝送、最大電力又は他の性能特性は、本明細書で論じられるそれぞれの値とは異なり得、分散領域330の構造は、デマルチプレクサ320の構造、機能性及び性能の本質的な関係によって変化し得ることが理解されている。
【0028】
[0039]
図3Bは、デマルチプレクサ320の示される実施形態に含まれる様々な層の垂直概略図又は積層を示す。しかし、本発明のある態様を曖昧にすることを避けるため、示される実施形態は包括的ではないことや、あるフィーチャ又は要素を省略できることが理解されている。示される実施形態では、デマルチプレクサ320は、基板302、誘電体層304、活性層306(例えば、
図3Aの断面図に示されるようなもの)及びクラッド層308を含む。いくつかの実施形態では、デマルチプレクサ320は、部分的に又は別の方式で、従来の製作技法(例えば、フォトリソグラフィ、電子ビームリソグラフィ及び同様のものなどのリソグラフィ技法、スパッタリング、熱蒸着、物理及び化学蒸着並びに同様のもの)と互換性があるフォトニック集積回路又はシリコンフォトニックデバイスであり得る。
【0029】
[0040] 一実施形態では、まず最初に、基板302に対応する支持基板(例えば、シリコン基板)と、誘電体層304に対応する二酸化ケイ素誘電体層と、シリコン層(例えば、真性の、ドープした又はその他)と、酸化物層(例えば、真性の、成長させた又はその他)とを含むシリコンオンインシュレータ(SOI)ウェーハを提供することができる。一実施形態では、活性層306のシリコンは、シリコンの一部分を除去するためにドライエッチングプロセスを通じて(例えば、フォトレジストマスク又は他のハードマスクを通じて)SOIウェーハに転写されるSOIウェーハ上のパターンを生み出すリソグラフィ技術によって選択的にエッチングすることができる。シリコンは、空隙を形成するために、誘電体層304に達するまでエッチングすることができ、その後、空隙には、二酸化ケイ素を埋め戻すことができ、その後、二酸化ケイ素でカプセル化し、クラッド層308を形成することができる。一実施形態では、ターゲットの構造を得るために、シリコンの完全なエッチング深度を含むいくつかのエッチング深度がある。一実施形態では、シリコンは、220nmの厚さであり得、従って、完全なエッチング深度は、220nmであり得る。いくつかの実施形態では、このプロセスは、平坦面をもたらすために使用される中間化学機械平坦化によって2回の二酸化ケイ素堆積が実行される二段階カプセル化プロセスであり得る。
【0030】
[0041]
図3Cは、
図3Aの入力領域302を含む周辺領域322の部分に沿って取られた活性層306のより詳細な図(
図3Bに対して)を示す。示される実施形態では、活性領域306は、屈折率ε
1を有する第1の材料332と、ε
1とは異なる屈折率ε
2を有する第2の材料334とを含む。第1の材料332及び第2の材料334の均一な領域は、
図3A及び3Cに示されるように、入力領域302及び複数の出力領域304に対応する導波路又は導波路の一部分を形成することができる。
【0031】
[0042]
図3Dは、分散領域330に沿って取られた活性層306のより詳細な図(
図3Bに対して)を示す。以前に説明されるように、分散領域306は、材料界面パターンを集合的に形成する複数の界面336を形成するように不均一に散在する第1の材料332(例えば、シリコン)及び第2の材料334(例えば、二酸化ケイ素)を含む。界面パターンを形成する複数の界面336の各々は、分散領域(すなわち、第1の材料332及び第2の材料334の形状及び配列)を構造化するために分散領域330の屈折率の変化に対応し、デマルチプレクサ320の機能性(すなわち、入力領域302がマルチチャネル光信号を受信した際の、マルチチャネル光信号から複数の異なる波長チャネルの光学的な分離と、複数の出力領域304の対応するものへの複数の異なる波長チャネルの各々のそれぞれの誘導)を少なくとも部分的に提供する。
【0032】
[0043]
図3A~3Dに示されるようなデマルチプレクサ320の示される実施形態では、屈折率の変化は、垂直方向に一貫したものとして示される(すなわち、第1の材料332及び第2の材料334は、デマルチプレクサ330の横方向平面又は横断面に実質的に垂直な又は直角な界面を形成することが理解されている。しかし、同じ又は他の実施形態では、複数の界面(例えば、
図3Dに示される界面336)は、デマルチプレクサ330の横方向平面又は横断面に実質的に直角ではない場合がある。
【0033】
[0044]
図4Aは、本開示の実施形態による、フォトニックデマルチプレクサ420の例の分散領域のより詳細な断面図を示す。
図4Bは、
図4Aのフォトニックデマルチプレクサ420の分散領域に対して、第1の材料432及び第2の材料434を成形及び配列することによって形成された界面パターンのより詳細な図を示す。デマルチプレクサ420は、
図1に示されるmux/demux 109、
図2Aに示されるデマルチプレクサ220及び
図3A~3Dに示されるデマルチプレクサ320の1つの可能な実装形態である。
【0034】
[0045]
図4A及び4Bに示されるように、デマルチプレクサ420は、入力領域402と、複数の出力領域404と、入力領域402と複数の出力領域404との間に光学的に配置された分散領域430とを含む。分散領域430は、内側境界436及び外側境界438を含む周辺領域422によって少なくとも部分的に囲まれる。デマルチプレクサ420の同様の名称又はラベルの要素は、本開示の実施形態で説明される他のデマルチプレクサの同様の名称又はラベルの要素に同様に対応することが理解されている。
【0035】
[0046] フォトニックデマルチプレクサ420の第1の材料432(すなわち、分散領域430内の黒色の領域)及び第2の材料434(すなわち、分散領域430内の白色の領域)は、
図4Bに示されるように、材料界面パターン431を集合的に形成する複数の界面を生み出すように不均一に散在する。より具体的には、反復勾配ベースの最適化、マルコフ連鎖モンテカルロ最適化又は他の最適化技法を利用する逆設計プロセスは、第1原理シミュレーションと組み合わせて、フォトニックデマルチプレクサ420が所望の機能性を提供するように、比例又はスケーリング方式の範囲内で、分散領域430によって実質的に複製された設計を生成する。示される実施形態では、分散領域430は、入力領域402がマルチチャネル光信号を受信すると、マルチチャネル光信号から複数の異なる波長チャネルの各々を光学的に分離し、複数の異なる波長チャネルの各々を複数の出力領域404の対応するものにそれぞれ誘導するように構造化される。より具体的には、複数の出力領域404-A、404-B、404-C、404-Dはそれぞれ、1271nm、1291nm、1311nm、1331nmに対応する中心波長を有する波長チャネルにマッピングされる。別の実施形態では、出力領域404-A、404-B、404-C、404-Dはそれぞれ、1511nm、1531nm、1551nm、1571nmに対応する中心波長を有する波長チャネルにマッピングされる。
【0036】
[0047]
図4Bに示されるように、材料界面パターン431(分散領域430内の黒線によって定義され、分散領域430内の屈折率の変化に対応するもの)は、複数の突出部442を含む。第1の突出部442-Aは、第1の材料432から形成され、周辺領域422から分散領域430へと延伸する。同様に、第2の突出部442-Bは、第2の材料434から形成され、周辺領域422から分散領域430へと延伸する。さらに
図4Bに示されるように、分散領域430は、第1の材料432又は第2の材料434から形成された複数のアイランド444を含む。複数のアイランド442は、第1のアイランド442-Aを含み、第1のアイランド442-Aは、第1の材料432から形成され、第2の材料434によって囲まれる。また、複数のアイランド442は、第2のアイランド442-Bも含み、第2のアイランド442-Bは、第2の材料434から形成され、第1の材料434によって囲まれる。
【0037】
[0048] いくつかの実施形態では、材料界面パターン431は、1つ又は複数の樹枝状の形状を含み、1つ又は複数の樹枝状の形状の各々は、第1の材料432又は第2の材料434から形成され、対応する方向に沿ってサイズが交互に増減される幅を有する分岐構造として定義される。
図4Aに戻ると、明確にするため、樹枝状の構造446は、黒色の境界線を有する白色の矢印でラベル付けされている。図から分かるように、樹枝状の構造446の幅のサイズは、分岐構造を生み出すために対応する方向(すなわち、樹枝状の構造446の長さに重なり合う白色のラベル付き矢印)に沿って交互に増減する。他の実施形態では、突出部がない場合も、アイランドがない場合も、樹枝状の構造がない場合もあり得、ゼロを含むいかなる数のいかなる材料の突出部、アイランド又は樹枝状の構造も分散領域430に含めることができ、それらの組合せも可能であることが理解されている。
【0038】
[0049] いくつかの実施形態では、逆設計プロセスは、例えば、設計の製作性を保証するために最小フィーチャサイズを実施する製作損失を含む。
図4A及び4Bに示されるフォトニックデマルチプレクサ420の示される実施形態では、界面パターン431は、第1の材料432及び第2の材料434で形成された断面エリア内の複数の界面が閾値サイズ未満の大きさの曲率半径を有さないように、分散領域430内で最小フィーチャサイズを実施するように成形される。例えば、最小フィーチャサイズが150nmである場合は、複数の界面のいずれかに対する曲率半径は、閾値サイズ未満の大きさを有し、それは、最小フィーチャサイズの半分の逆数(すなわち、1/75nm
-1)に対応する。そのような最小フィーチャサイズの実施により、製造制約、制限及び/又は歩留まりを考慮した上で製作可能ではない設計が逆設計プロセスから生成されないようにする。同じ又は他の実施形態では、製作性に関連するメトリクスの異なる又は追加の確認を利用して、最小フィーチャサイズとして最小幅又は間隔を実施することができる。
【0039】
[0050]
図5は、本開示の実施形態による、フォトニック集積回路(すなわち、フォトニックデバイス)の設計を生成するためのシステム500を示す機能ブロック図である。システム500は、フォトニック集積回路の動作を左右する基礎物理学を考慮に入れた反復勾配ベースの最適化によって設計を生成する逆設計プロセスを実行するために利用することができる。より具体的には、システム500は、第1原理シミュレーション(例えば、励起源に対するフォトニックデバイスのフィールド応答を決定するための電磁シミュレーション)及び反復勾配ベースの最適化に基づいてフォトニック集積回路の構造パラメータ(例えば、本開示で説明される実施形態の分散領域内の第1の材料及び第2の材料の形状及び配列)を最適化するために利用することができる設計ツールである。言い換えれば、システム500は、
図3A及び4Aのそれぞれに示されるデマルチプレクサ320及び420の分散領域330、430、472によって実質的に複製される(すなわち、比例的にスケーリングされる)逆設計プロセスを通じて得られる設計を提供することができる。
【0040】
[0051] 示されるように、システム500は、コントローラ505、ディスプレイ507、入力デバイス509、通信デバイス511、ネットワーク513、遠隔資源515、バス521及びバス523を含む。コントローラ505は、プロセッサ531、メモリ533、ローカルストレージ535及びフォトニックデバイスシミュレータ539を含む。フォトニックデバイスシミュレータ539は、動作シミュレーションエンジン541、製作損失計算論理543、計算論理545、随伴シミュレーションエンジン547及び最適化エンジン549を含む。いくつかの実施形態では、コントローラ505は分散システムであり得ることが理解されている。
【0041】
[0052] コントローラ505は、フォトニックデバイス(すなわち、デマルチプレクサ)の構造パラメータを最適化するためにユーザが利用するシステム500に情報を表示するために、バス523を通じてバス521に結合されたディスプレイ507(例えば、発光ダイオードディスプレイ、液晶ディスプレイ及び同様のもの)に結合される。入力デバイス509は、プロセッサ531に情報及びコマンド選択を伝達するために、バス523を通じてバス521に結合される。入力デバイス509は、ユーザとコントローラ505との間の対話を促進するために、マウス、トラックボール、キーボード、スタイラス又は他のコンピュータ周辺機器を含み得る。それに応答して、コントローラ505は、ディスプレイ507を通じて対話の検証を提供することができる。
【0042】
[0053] 任意選択によりコントローラ505に結合することができる別のデバイスは、ネットワーク513を介して分散システムの遠隔資源515にアクセスするための通信デバイス511である。通信デバイス511は、イーサネット、インターネット又は広域ネットワーク及び同様のものに結合するために使用されるものなどの多くのネットワーク周辺デバイスのいずれかを含み得る。通信デバイス511は、コントローラ505と外部との間の接続性を提供するメカニズムをさらに含み得る。
図5に示されるシステム500のコンポーネント及び関連ハードウェアのいずれか又はすべては、本開示の様々な実施形態で使用できることに留意されたい。遠隔資源515は、分散システムの一部であり得、フォトニックデバイスの構造パラメータを最適化するために、いかなる数のプロセッサ、メモリ及び他の資源も含み得る。
【0043】
[0054] コントローラ505は、フォトニックデバイスの構造パラメータを最適化するために、システム500の動作のオーケストレーションを行う。プロセッサ531(例えば、1つ又は複数の中央処理装置、グラフィックス処理ユニット及び/又はテンソル処理ユニットなど)、メモリ533(例えば、DRAM及びSRAMなどの揮発性メモリや、ROM、フラッシュメモリ及び同様のものなどの不揮発性メモリ)、ローカルストレージ535(例えば、コンピュータディスクドライブなどの磁気メモリ)並びにフォトニックデバイスシミュレータ539は、バス523を通じて互いに結合される。コントローラ505は、ソフトウェア(例えば、プロセッサ531に結合されたメモリ533に含まれる命令)並びに/或いはハードウェア論理(例えば、特定用途向け集積回路、フィールドプログラマブルゲートアレイ及び同様のもの)を含み、ソフトウェア及び/又はハードウェア論理は、コントローラ505によって実行されると、コントローラ505又はシステム500に動作を実行させる。動作は、メモリ533、ローカルストレージ535、物理デバイスシミュレータ539、及び、ネットワーク513を通じてアクセスされる遠隔資源515のいずれか1つ又は組合せの中に格納された命令に基づき得る。
【0044】
[0055] 示される実施形態では、フォトニックデバイスシミュレータ539のモジュール541~549は、フォトニックデバイス(例えば、
図1のmux/demux 107、
図2Aのデマルチプレクサ220、
図2Bのデマルチプレクサ250、
図3A~3Dのデマルチプレクサ320及び
図4A、4Bのデマルチプレクサ420)の構造パラメータを最適化するために利用することができる。いくつかの実施形態では、システム500は、とりわけ、フィールド応答(例えば、フォトニックデバイス内の電場及び磁場)をモデル化するために時間領域差分(FDTD)法を利用するシミュレーション(例えば、動作及び随伴シミュレーション)を通じて、フォトニックデバイスの構造パラメータを最適化することができる。動作シミュレーションエンジン541は、模擬環境内で励起源に応答して動作するフォトニックデバイスの電磁シミュレーションを実行するための命令を提供する。特に、動作シミュレーションは、物理デバイスの性能メトリクスを決定するために(例えば、複数のボクセルで模擬環境内のフォトニックデバイスの構造パラメータについて説明するフォトニックデバイスの初期の記述又は入力設計に基づいて)、励起源に応答して模擬環境(延いては模擬環境によって説明されるフォトニックデバイス)のフィールド応答を決定する。構造パラメータは、例えば、物理デバイスの特定の設計、材料組成、寸法及び同様のものに対応し得る。製作損失計算論理543は、製作損失を決定するための命令を提供し、製作損失は、最小フィーチャサイズを実施して製作性を保証するために利用される。いくつかの実施形態では、製作損失は、設計の2値化を実施するためにも使用される(すなわち、その結果、フォトニックデバイスは、複数の界面を形成するように散在する第1の材料及び第2の材料を含む)。計算論理545は、性能メトリクスに基づく性能損失と製作損失とを組み込む損失関数を用いて決定される損失メトリクスを計算する。随伴シミュレーションエンジン547は、動作シミュレーションエンジン541と併せて、フォトニックデバイスの構造パラメータの変化が損失メトリクスにどのように影響するかを決定するために、損失関数を用いて模擬環境を通じて損失メトリクスを逆伝播するためのフォトニックデバイスの随伴シミュレーションを実行するために利用される。最適化エンジン549は、フォトニックデバイスの構造パラメータを更新して損失メトリクスを低減し、フォトニックデバイスの改訂記述の生成(すなわち、設計の改訂)を行うために利用される。
【0045】
[0056]
図6A~6Cはそれぞれ、フォトニックデバイスについて説明する模擬環境601-Aの初期のセットアップ、模擬環境601-B内での励起源に応答したフォトニックデバイスの動作シミュレーションの実行、及び、模擬環境601-C内でのフォトニックデバイスの随伴シミュレーションの実行を示す。模擬環境201の初期のセットアップ、模擬環境201の一次元表現、物理デバイスの動作シミュレーション及び物理デバイスの随伴シミュレーションは、
図1に示されるシステム100で実装することができる。
図6A~2Cに示されるように、模擬環境601は、二次元で表される。しかし、模擬環境601及びフォトニックデバイスについて説明するために、他の次元性(例えば、三次元空間)も使用できることが理解されている。いくつかの実施形態では、
図6A~6Cに示されるフォトニックデバイスの構造パラメータの最適化は、とりわけ、励起源に対するフィールド応答(例えば、電場及び磁場)をモデル化するために時間領域差分(FDTD)法を利用するシミュレーション(例えば、動作シミュレーション及び随伴シミュレーション)を含む、逆設計プロセスを通じて達成することができる。
【0046】
[0057]
図6Aは、本開示の実施形態による、フォトニック集積回路(すなわち、導波路、デマルチプレクサ及び同様のものなどのフォトニックデバイス)について説明する例証的な模擬環境601-Aを示す。より具体的には、1つ又は複数の構造パラメータ(例えば、入力設計)によって定義されるフォトニックデバイスの初期の記述を受信することに応答して、システム(例えば、
図5のシステム500)は、フォトニックデバイスを表すように模擬環境601を構成する。示されるように、模擬環境601(及びそれに続いてフォトニックデバイス)は、二次元(又は他の次元性)空間の個々の要素(すなわち、離散化したもの)を表す複数のボクセル610によって説明される。ボクセルの各々は、二次元の正方形として示されているが、ボクセルは三次元空間の立方体又は他の形状として表せることが理解されている。また、複数のボクセル610の特定の形状及び次元性は、模擬環境601及びシミュレーションされているフォトニックデバイスに応じて調整できることが理解されている。さらに、模擬環境601の他の態様を曖昧にすることを避けるため、複数のボクセル610の一部分のみが示されていることに留意されたい。
【0047】
[0058] 複数のボクセル610の各々は、構造値、フィールド値及びソース値と関連付けることができる。集合的には、模擬環境601の構造値は、フォトニックデバイスの構造パラメータを説明する。一実施形態では、構造値は、フォトニックデバイスの構造(すなわち、材料)境界又は界面(例えば、
図4Bの界面パターン431)を集合的に説明する相対的な誘電率、透磁率及び/又は屈折率に対応し得る。例えば、界面636は、模擬環境601内で相対的な誘電率が変化する所を表し、第1の材料が第2の材料と接触するか又は接するフォトニックデバイスの境界を定義することができる。フィールド値は、ソース値によって説明される励起源に応答して計算される(例えば、マクスウェルの方程式を用いて)フィールド(又は損失)応答を説明する。フィールド応答は、例えば、複数のボクセル610の各々に対する特定の時間ステップにおける電場及び/又は磁場(例えば、1つ又は複数の直交方向における)を説明するベクトルに対応し得る。従って、フィールド応答は、フォトニックデバイスの構造パラメータ及び励起源に少なくとも部分的に基づき得る。
【0048】
[0059] 示される実施形態では、フォトニックデバイスは、物理デバイスの構造パラメータを更新又は改訂することができる設計領域630(例えば、
図3Aの分散領域330及び/又は
図4Aの分散領域430に対応する)を有する光デマルチプレクサに対応する。より具体的には、逆設計プロセスを通じて、損失関数から決定される損失メトリクスの反復勾配ベースの最適化を実行して、マルチチャネル光信号の逆多重化及び入力ポート602から出力ポート604の対応するものへの誘導を機能的に行わせるフォトニックデバイスの設計が生成される。従って、フォトニックデバイスの入力ポート602(例えば、
図3Aの入力領域302、
図4Aの入力領域404及び同様のものに対応する)は、励起源が出力(例えば、ガウスパルス、波、導波路モード応答及び同様のもの)を提供するための場所に対応する。励起源の出力は、構造パラメータに基づいてフォトニックデバイスと相互作用する(例えば、励起源に対応する電磁波は、模擬環境601内でフォトニックデバイスを通じて波が伝播するにつれて、摂動すること、再伝送されること、減衰すること、屈折すること、反射すること、回折すること、散乱すること、吸収されること、分散すること、増幅すること又はその他が可能である)。言い換えれば、励起源は、物理領域を左右する基礎物理学及びフォトニックデバイスの構造パラメータに応じて、フォトニックデバイスのフィールド応答を変化させることができる。励起源は、入力ポート602を起点とするか又はそのすぐ近くにあり、フォトニックデバイスの設計領域630を通じて出力ポート604に向けて伝播する(又は複数のボクセルのフィールド値に影響を及ぼす)ように位置決めされる。示される実施形態では、入力ポート602及び出力ポート604は、設計領域630の外側に位置決めされる。言い換えれば、示される実施形態では、フォトニックデバイスの構造パラメータの一部分のみが最適化可能である。
【0049】
[0060] しかし、他の実施形態では、構造パラメータがフォトニックデバイスの設計の任意の部分又は全体を表せるように、フォトニックデバイス全体を設計領域630内に配置することができる。模擬環境601(及びそれに続いてフォトニックデバイス)内の電場及び磁場は、励起源に応答して変化し得る(例えば、模擬環境のフィールド応答に集合的に対応する個々のボクセルのフィールド値によって表される)。光デマルチプレクサの出力ポート604は、励起源に応答してフォトニックデバイスの性能メトリクス(例えば、入力ポート602から出力ポート604の特定のものへの電力伝送)を決定するために使用することができる。初期の構造パラメータ、励起源、性能パラメータ又はメトリクス、及び、フォトニックデバイスを説明する他のパラメータを含むフォトニックデバイスの初期の記述は、システム(例えば、
図5のシステム500)によって受信され、フォトニックデバイスの第1原理ベースのシミュレーションを実行するように模擬環境601を構成するために使用される。これらの特定の値及びパラメータは、ユーザ(例えば、
図5のシステム500の)によって直接、間接的に(例えば、メモリ533、ローカルストレージ535若しくは遠隔資源515に格納された既定の値を選び出すコントローラ505を介して)又はそれらの組合せによって定義することができる。
【0050】
[0061]
図6Bは、本開示の実施形態による、模擬環境601-B内での励起源に応答したフォトニックデバイスの動作シミュレーションを示す。示される実施形態では、フォトニックデバイスは、入力ポート602で受信されたマルチチャネル光信号に含まれる複数の異なる波長チャネルの各々を光学的に分離し、複数の異なる波長チャネルの各々を複数の出力領域604の対応するものにそれぞれ誘導するための光デマルチプレクサ構造である。励起源は、複数の異なる波長チャネルから選択することができ(ランダムに又はその他の方法で)、指定された空間、位相及び/又は時間プロファイルを有する入力領域602を起点とする。動作シミュレーションは、複数の時間ステップ(示される時間ステップを含む)にわたって行われる。動作シミュレーションを実行する際、複数のボクセル610の各々に対するフィールド応答(例えば、フィールド値)の変化は、複数の時間ステップにわたって励起源に応答して漸進的に更新される。特定の時間ステップにおけるフィールド応答の変化は、構造パラメータ、励起源、及び、複数の時間ステップに含まれる直前の時間ステップにおける模擬環境601のフィールド応答に少なくとも部分的に基づく。同様に、いくつかの実施形態では、複数のボクセル610のソース値も更新される(例えば、励起源を説明する空間プロファイル及び/又は時間プロファイルに基づいて)。動作シミュレーションは漸進的であることや、模擬環境601のフィールド値(及びソース値)は、動作シミュレーションの間、複数の時間ステップの各々に対して、時間が進むにつれて各時間ステップにおいて漸進的に更新されることが理解されている。さらに、いくつかの実施形態では、更新は反復プロセスであることや、各フィールド及びソース値の更新は、各フィールド及びソース値の以前の更新に少なくとも部分的に基づくことに留意されたい。
【0051】
[0062] 動作シミュレーションが定常状態(例えば、励起源に応答したフィールド値の変化が実質的に安定するか若しくは無視できる値まで低減する)に達した時点又は終了した時点で、1つ又は複数の性能メトリクスを決定することができる。一実施形態では、性能メトリクスは、励起源によってシミュレーションされている異なる波長チャネルにマッピングされた出力ポート604の対応するものにおける電力伝送に対応する。言い換えれば、いくつかの実施形態では、性能メトリクスは、出力ポート604の特定の場所におけるターゲットモード形状での電力(対象の1つ又は複数の周波数の)を表す。性能メトリクスに少なくとも部分的に基づく入力設計(例えば、初期の設計及び/又は構造パラメータが更新されている任意の改善された設計)の損失値又はメトリクスは、損失関数を用いて決定することができる。損失メトリクスは、随伴シミュレーションと併せて、構造勾配(例えば、損失メトリクスに対する構造パラメータの影響)を決定し、構造パラメータを更新するか又は改訂して、損失メトリクスを低減する(すなわち、性能メトリクスを増加する)ために利用することができる。さらに、損失メトリクスは、デバイスの製作性を促進するため、フォトニックデバイスの最小フィーチャサイズを実施するために利用される製作損失値に基づくことに留意されたい。
【0052】
[0063]
図6Cは、本開示の実施形態による、損失メトリクスを逆伝播することによる模擬環境601-C内での随伴シミュレーションの例を示す。より具体的には、随伴シミュレーションは、時間逆行シミュレーションであり、損失メトリクスは、フォトニックデバイスと相互作用して損失応答をもたらす励起源として扱われる。言い換えれば、損失メトリクスに基づく随伴源(又は仮想源)は、出力領域(例えば、出力ポート604)又は性能メトリクスを決定する際に使用される場所に対応する他の場所に配置される。次いで、随伴源は、随伴シミュレーションの間、物理的刺激又は励起源として扱われる。模擬環境601の損失応答は、随伴源に応答して複数の時間ステップの各々(例えば、時間の逆行に伴う)に対して演算される。損失応答は、複数の時間ステップにわたって随伴源に応答して漸進的に更新される複数のボクセルの損失値を集合的に指す。損失メトリクスに基づく損失応答の変化は、損失勾配に対応し得、損失勾配は、物理デバイスのフィールド応答の変化が損失メトリクスにどのように影響するかを示す。損失勾配及びフィールド勾配は、フォトニックデバイス/模擬環境の構造勾配(例えば、模擬環境内のフォトニックデバイスの構造パラメータの変化が損失メトリクスにどのように影響するか)を決定するために、適切な方法で組み合わせることができる。特定のサイクル(例えば、動作及び随伴シミュレーション)の構造勾配が分かった時点で、構造パラメータを更新して、損失メトリクスを低減し、フォトニックデバイスの改訂記述又は設計を生成することができる。
【0053】
[0064] いくつかの実施形態では、動作シミュレーションと随伴シミュレーションの実行、構造勾配の決定、及び、損失メトリクスを低減するための構造パラメータの更新の反復サイクルは、反復勾配ベースの最適化を利用する逆設計プロセスの一部として相次いで実行される。勾配降下法などの最適化スキームは、フォトニックデバイスの構造パラメータの特定の変化量又は変化度を決定して損失メトリクスを漸進的に低減するために利用することができる。より具体的には、損失メトリクスを低減するため、サイクル終了後に毎回、構造パラメータが更新される(例えば、最適化される)。動作シミュレーション、随伴シミュレーション及び構造パラメータの更新は、損失メトリクスが実質的に収束するか又は閾値若しくは閾値範囲を下回るか若しくはその範囲内になるまで反復して繰り返され、その結果、フォトニックデバイスは、製作性を維持しながら、所望の実行されたものを提供するようになる。
【0054】
[0065]
図7Aは、本開示の実施形態による、動作シミュレーション710及び随伴シミュレーション750の時間ステップの例を示すフローチャート700である。フローチャート700は、フォトニック集積回路(例えば、電磁領域で動作するフォトニックデマルチプレクサのような光学デバイス)を説明する模擬環境(例えば、
図6A~6Cの模擬環境601)の動作シミュレーション710及び随伴シミュレーション750を実行するためにシステム(例えば、
図5のシステム500)が使用できる1つの可能な実装形態である。示される実施形態では、動作シミュレーションは、時間領域差分(FDTD)法を利用して、励起源及び/又は随伴源に対応する物理的刺激に応答して複数の時間ステップに対して複数のボクセル(例えば、
図6A~6Cに示される複数のボクセル610)の各々におけるフィールド応答(電場と磁場の両方)又は損失応答をモデル化する。
【0055】
[0066]
図7Aに示されるように、フローチャート700は、動作シミュレーション710及び随伴シミュレーション750の一部分に対する更新演算を含む。動作シミュレーション710は、複数の時間ステップにわたって(例えば、指定された時間ステップサイズを有する既定数の又は条件数の時間ステップにわたって初期の時間ステップから最終的な時間ステップまで)行われ、フィールド応答に集合的に対応する模擬環境及び/又はフォトニックデバイスを説明する複数のボクセルの電場及び磁場の変化(例えば、初期のフィールド値711からの)をモデル化する。より具体的には、更新演算(例えば、712、714、716)は、反復的であり、フィールド応答、構造パラメータ704及び1つ又は複数の励起源708に基づく。各更新演算の後には別の更新演算が続き、複数の時間ステップ内での時間の進行に伴う一連のステップを表す。例えば、更新演算714は、前の更新演算712、ソース708及び構造パラメータ704から決定されたフィールド応答に基づいてフィールド値713(例えば、
図7Bを参照)を更新する。同様に、更新演算716は、更新演算714から決定されたフィールド応答に基づいてフィールド値715(例えば、
図7Bを参照)を更新する。言い換えれば、動作シミュレーションの各時間ステップでは、フィールド値(延いてはフィールド応答)は、フォトニックデバイスの前のフィールド応答及び構造パラメータに基づいて更新される。動作シミュレーション710の最終的な時間ステップが実行された時点で、損失メトリクス718を決定することができる(例えば、既定の損失関数720に基づいて)。ブロック752から決定された損失勾配は、随伴又は仮想源(例えば、出力領域又はポートを起点とする物理的刺激又は励起源)として扱うことができ、逆方向に(最終的な時間ステップから漸進的に複数の時間ステップを通じて初期の時間ステップに到達するまで)逆伝播され、構造勾配768が決定される。
【0056】
[0067] 示される実施形態では、FDTDソルブ(例えば、動作シミュレーション710)及びバックワードソルブ(例えば、随伴シミュレーション750)問題は、高レベルから、「更新」及び「損失」演算並びにそれらの対応する勾配演算のみを使用して、図で説明されている。シミュレーションは、構造パラメータ、物理的刺激(すなわち、励起源)、並びに、模擬環境(及びフォトニックデバイス)の初期のフィールド状態が提供される(例えば、初期の記述及び/又は入力設計を通じて)初期設定に設定される。以前に論じられるように、フィールド値は、構造パラメータに基づいて励起源に応答して更新される。より具体的には、更新演算は、φによって与えられ、xi+1=φ(xi,bi,z)であり、i=1、...、nである。ここでは、nは、動作シミュレーションに対する時間ステップ(例えば、複数の時間ステップ)の総数に対応し、xiは、時間ステップiにおける模擬環境のフィールド応答(複数のボクセルの各々の電場及び磁場と関連付けられたフィールド値)に対応し、biは、時間ステップiにおける模擬環境の励起源(複数のボクセルの各々の電場及び磁場と関連付けられたソース値)に対応し、zは、物理デバイスのトポロジー及び/又は材料特性(例えば、相対的な誘電率、屈折率及び同様のもの)を説明する構造パラメータに対応する。
【0057】
[0068] FDTD法を使用すると、更新演算は、具体的には、
φ(x
i,b
i,z)=A(z)x
i+B(z)b
i (1)
として記述できることに留意されたい。すなわち、FDTD更新は、フィールド及びソース項に関して線形である。具体的には、
【数1】
及び
【数2】
は、構造パラメータzに依存し、且つ、フィールドx
i及びソースb
iのそれぞれに作用する線形演算子である。ここでは、
【数3】
と想定され、Nは、動作シミュレーションにおけるFDTDフィールド成分の数である。それに加えて、損失演算(例えば、損失関数)は、L=f(x
i,...,x
n)によって与えることができ、演算されたフィールドを入力として取り入れ、低減及び/又は最小化することができる単一の実数値スカラー(例えば、損失メトリクス)を生成するものである。
【0058】
[0069] 物理デバイスの構造パラメータの改訂又は最適化の観点から、生成予定の関連数量は
【数4】
であり、これは、損失値に対する構造パラメータの変化の影響を説明するために使用され、
図7Aに示される構造勾配768として示される。
【0059】
[0070]
図7Bは、本開示の実施形態による、動作シミュレーション及び随伴シミュレーション(例えば、逆伝播)に対する更新演算の関係を示すチャート780である。より具体的には、
図7Bは、構造勾配
【数5】
の演算に関与する動作及び随伴シミュレーション関係を要約するものであり、
【数6】
及び
【数7】
が含まれる。動作シミュレーションの更新演算714は、i番目の時間ステップにおける複数のボクセルのフィールド値713(x
i)を次の時間ステップ(すなわち、i+1時間ステップ)に更新し、それは、フィールド値715(x
i+1)に対応する。勾配755は、逆伝播(例えば、時間の逆行に伴う更新演算356)に対する
【数8】
を決定するために利用され、これは勾配769と組み合わされて、少なくとも部分的に構造勾配
【数9】
を計算するために使用される。
【数10】
は、損失メトリクスLへの各フィールドの寄与である。これは偏導関数であるため、x
i→x
i+1の因果関係を考慮しないことに留意されたい。従って、x
i→x
i+1関係を包含する
【数11】
が利用される。また、損失勾配
【数12】
は、構造勾配
【数13】
を演算するために使用することもでき、損失値Lに関するフィールドの全導関数に対応する。特定の時間ステップiにおける損失勾配
【数14】
は、
【数15】
の総和に等しい。最後に、フィールド勾配に対応する
【数16】
が使用されるが、これは、各時間/更新ステップから
【数17】
への寄与である。
【0060】
[0071] 特に、
【数18】
及び
【数19】
を直接演算するためのメモリフットプリントは非常に大きいため、手に余る数の状態テンソルを格納することは難しい。状態テンソルは、単一のシミュレーション時間ステップに対するFDTDセル(例えば、複数のボクセル)のすべての値の格納に対応する。「テンソル」という用語は、数学的な意味でのテンソル又はAlphabet,Incによって開発されたTensorFlowフレームワークによって説明されるようなテンソルを指し得ることが理解されている。いくつかの実施形態では、「テンソル」という用語は、特定の変換法則に従う多次元アレイに対応する数学的なテンソルを指す。しかし、大部分の実施形態では、「テンソル」という用語は、TensorFlowテンソルを指し、潜在的により高い次元(例えば、ベースデータタイプのn次元アレイ)へのベクトル及び行列の一般化として説明され、必ずしも特定の変換法則に限定されるとは限らない。例えば、一般的な損失関数fの場合、すべての時間ステップiに対するフィールドx
iを格納する必要があり得る。この理由は、fの大部分の選択に対して、勾配がfの独立変数の関数であるためである。この難易度は、フィールド応答の漸進的な更新が原因で及び/又は損失メトリクスの逆伝播を通じて、より大きな値のiに対する
【数20】
の値が、より小さな値のiに対する値の前に必要とされるという事実によって悪化し、それにより、即時の時間ステップにおける
【数21】
の値のみの格納を試みるスキームを使用することができなくなる。
【0061】
[0072] 追加の難易度は、構造勾配
【数22】
を演算する際にさらに示され、次式によって与えられる:
【数23】
完全を期すため、
【数24】
の総和の第1の項の完全な形態は、次式として表される:
【数25】
方程式(1)によって説明されるようなφの定義に基づくと、
【数26】
であり、これは、方程式(3)に代入して、逆伝播の随伴更新(例えば、更新演算756などの更新演算)に到達させることができ、それは以下の式として表せることに留意されたい:
【数27】
又は
【数28】
【0062】
[0073] 随伴更新は、後の時間ステップから先の時間ステップへの損失勾配(例えば、損失メトリクスからの)の逆伝播であり、
【数29】
に対するバックワードソルブと呼ぶこともできる。より具体的には、損失勾配は、最初は、損失関数を用いて動作シミュレーションから決定された損失メトリクスの逆伝播に基づき得る。構造勾配
【数30】
の総和の第2の項はフィールド勾配に対応し、次式として示される:
【数31】
[0074] 方程式(1)によって説明されるφの特定の形態に対して。従って、
【数32】
と関連付けられた総和の各項は、
【数33】
(i≧i
0)と
【数34】
(i<i
0)の両方に依存する。これらの2つの項の依存性の連鎖は相対する方向にあるため、
【数35】
をこのように演算するためには、すべてのiに対するx
i値を格納する必要があると結論付けられる。いくつかの実施形態では、すべてのフィールド値を格納する必要性は、フィールド表現を低減することによって軽減することができる。
【0063】
[0075]
図8は、本開示の実施形態による、フォトニック集積回路の設計を生成するための方法800の例を示す。方法800は、性能損失及び製作損失を含む損失関数から決定される損失メトリクスの反復勾配ベースの最適化を実行するためにシステム(例えば、
図5のシステム500)で動作を実行することによって成し遂げることができる逆設計プロセスであることが理解されている。同じ又は他の実施形態では、方法800は、機械アクセス可能記憶媒体(例えば、非一時的なメモリ)によって提供される命令として含めることができ、命令は、機械によって実行されると、フォトニック集積回路の設計を生成するための動作を機械に実行させるものである。さらに、方法800においてプロセスブロックのいくつか又はすべてが現れる順番は、限定されるものと考えられるべきでないことが理解されている。むしろ、本開示の恩恵にあずかる当業者であれば、プロセスブロックのいくつかを、示されていない様々な順番で実行することや、ましてや、並行して実行することさえもできることが理解されよう。
【0064】
[0076] ブロック810は、受信されているか又は得られているフォトニック集積回路(例えば、フォトニックデバイス)の初期の記述を表すように模擬環境を構成することを示す。いくつかの実施形態では、フォトニック集積回路は、最適化の後、特定の機能性(例えば、光デマルチプレクサとして実行すること)を有することが見込まれ得る。初期の記述は、模擬環境内でのフォトニック集積回路の構造パラメータを説明し得る。模擬環境は、フォトニックデバイスの構造パラメータを集合的に説明する複数のボクセルを含み得る。複数のボクセルの各々は、構造パラメータを説明するための構造値、物理的刺激(例えば、1つ又は複数の励起源)に対するフィールド応答(例えば、1つ又は複数の直交方向の電場及び磁場)を説明するフィールド値及び物理的刺激を説明するソース値と関連付けられる。初期の記述が受信されるか又は得られた時点で、模擬環境が構成される(例えば、ボクセルの数、ボクセルの形状/配列、並びに、ボクセルの構造値、フィールド値及び/又はソース値に対する特定の値は、初期の記述に基づいて設定される)。いくつかの実施形態では、初期の記述は、構造パラメータの値が初期の(例えば、最初の)設計にバイアスが存在しないような入力及び出力領域外のランダム値又はヌル値であり得る物理デバイスの最初の記述であり得る。初期の記述又は入力設計は相対的な用語であり得ることが理解されている。従って、いくつかの実施形態では、初期の記述は、模擬環境の文脈の範囲内で説明される物理デバイスの最初の記述(例えば、最初の動作シミュレーションを実行するための最初の入力設計)であり得る。
【0065】
[0077] しかし、他の実施形態では、初期の記述という用語は、特定のサイクル(例えば、動作シミュレーションの実行、随伴シミュレーションの動作、構造パラメータの更新)の初期の記述を指し得る。そのような実施形態では、その特定のサイクルの初期の記述又は設計は、改訂記述又は改善設計(例えば、以前のサイクルから生成されたもの)に対応し得る。一実施形態では、模擬環境は、構造パラメータを有する複数のボクセルの一部分を含む設計領域を含み、構造パラメータは、フォトニックデバイスの構造パラメータを最適化するために、更新すること、改訂すること又は変更することができる。同じ又は他の実施形態では、構造パラメータは、模擬環境の材料特性(例えば、相対的な誘電率、屈折率など)に基づいて、物理デバイスの幾何学的な境界及び/又は材料組成と関連付けられる。
【0066】
[0078] 一実施形態では、模擬環境は、第1の通信領域と複数の第2の通信領域との間で光学的に結合された設計領域を含む。いくつかの実施形態では、第1の通信領域は、入力領域又はポート(例えば、励起源が起点とする所)に対応し得、第2の通信は、複数の出力領域又はポートに対応し得る(例えば、入力ポートで受信されたマルチチャネル光信号に含まれる複数の異なる波長チャネルを光学的に分離し、異なる波長チャネルの各々を複数の出力ポートの対応するものにそれぞれ誘導する光デマルチプレクサを設計する際)。しかし、他の実施形態では、第1の通信領域は、出力領域又はポートに対応し得、複数の第2の通信領域は、複数の入力ポート又は領域に対応する(例えば、複数の入力ポートのそれぞれにおいて受信された複数の異なる波長信号を光学的に組み合わせてマルチチャネル光信号を形成し、出力ポートに誘導する光マルチプレクサを設計する際)。
【0067】
[0079] ブロック815は、複数の異なる波長チャネルの各々を複数の第2の通信領域のそれぞれにマッピングすることを示す。異なる波長チャネルは、フォトニックデバイスの初期の記述によって第2の通信領域にマッピングすることができる。例えば、フォトニックデバイスの性能メトリクスを入力ポートからマッピングされたチャネルの個々の出力ポートまでの電力伝送と関連付ける損失関数を選択することができる。一実施形態では、複数の異なる波長チャネルに含まれる第1のチャネルは、第1の出力ポートにマッピングされ、これは、第1のチャネルに対するフォトニックデバイスの性能メトリクスが第1の出力ポートに関係することを意味する。同様に、他の出力ポートは、異なる波長チャネルの各々が模擬環境内の複数の出力ポート(すなわち、第2の通信領域)のそれぞれにマッピングされるように、複数の異なる波長チャネルに含まれる同じ又は異なるチャネルにマッピングすることができる。一実施形態では、複数の第2の通信領域は、4つの領域を含み、複数の異なる波長チャネルは、4つのチャネルを含み、4つのチャネルの各々は、4つの領域の対応するものにマッピングされる。他の実施形態では、異なる数の第2の通信領域(例えば、8つの領域)や、各々が第2の通信領域のそれぞれにマッピングされる異なる数のチャネル(例えば、8つのチャネル)が存在し得る。
【0068】
[0080] ブロック820は、性能メトリクスを決定するために1つ又は複数の励起源に応答して動作している模擬環境内のフォトニック集積回路の動作シミュレーションを実行することを示す。より具体的には、物理デバイスのフィールド応答が励起源によってどのようにどのように変化するかを決定するために、フォトニック集積回路のフィールド応答が複数の時間ステップにわたって漸進的に更新される電磁シミュレーションが実行される。複数のボクセルのフィールド値は、励起源に応答して、フォトニック集積回路の構造パラメータに少なくとも部分的に基づいて更新される。それに加えて、特定の時間ステップにおける各更新演算は、前の(例えば、直前の)時間ステップに少なくとも部分的に基づき得る。
【0069】
[0081] 結果的に、動作シミュレーションは、物理的刺激に応答してフォトニックデバイスのシミュレーション済みの出力(例えば、1つ又は複数の出力ポート又は領域におけるもの)を決定するために、フォトニックデバイス(すなわち、フォトニック集積回路)と物理的刺激(すなわち、1つ又は複数の励起源)との間の相互作用をシミュレーションする。相互作用は、フォトニックデバイスの構造パラメータ及びフォトニックデバイスの動作を左右する基礎物理学に少なくとも部分的に起因する、摂動、再伝送、減衰、分散、屈折、反射、回折、吸収、散乱、増幅又はその他の電磁領域内の物理的刺激のいずれか1つ又は組合せに対応し得る。従って、動作シミュレーションは、模擬環境のフィールド応答が複数の時間ステップにわたって(例えば、既定のステップサイズで初期の時間ステップから最終的な時間ステップまで)励起源によってどのように変化するかをシミュレーションする。
【0070】
[0082] いくつかの実施形態では、シミュレーション済みの出力は、フォトニック集積回路の1つ又は複数の性能メトリクスを決定するために利用することができる。例えば、励起源は、複数の異なる波長チャネルの選択されたものに対応し得、その各々は、複数の出力ポートのうちの1つにマッピングされる。動作シミュレーションを実行する際、励起源は、第1の通信領域(すなわち、入力ポート)を起点とするか又はそのすぐ近くに配置することができる。動作シミュレーションの間、複数の異なる波長チャネルの選択されたものにマッピングされた出力ポートにおけるフィールド応答は、選択された異なる波長チャネルに対するフォトニック集積回路のシミュレーション済みの電力伝送を決定するために利用することができる。言い換えれば、動作シミュレーションは、第1の通信領域から、設計領域を通じて、複数の異なる波長チャネルの選択されたものにマッピングされた複数の第2の通信領域のそれぞれに至るまでの励起源のシミュレーション済みの電力伝送を決定することを含めて、性能メトリクスを決定するために利用することができる。いくつかの実施形態では、励起源は、フォトニック集積回路の異なる波長チャネルの各々と関連付けられた性能メトリクス(すなわち、シミュレーション済みの電力伝送)を決定するために、複数の出力ポートのすべてのスペクトルをカバーすることができる(例えば、励起源は、複数の異なる波長チャネルの各々に対する帯域通過領域と、対応する遷移帯域領域と、対応する阻止帯域領域の少なくとも一部分とに対して、少なくともターゲットの周波数範囲に広がる)。いくつかの実施形態では、複数の異なる波長チャネルの所定のものの通過帯域に広がる1つ又は複数の周波数は、設計を最適化するためにランダムに選択される(例えば、ターゲット仕様を満たす通過帯域のリップルを含む各通過帯域の全幅を有した状態でのバッチ勾配降下法)。同じ又は他の実施形態では、複数の異なる波長チャネルの各々は、異なる中心波長の共通の帯域幅を有する。
【0071】
[0083] ブロック825は、性能メトリクスと関連付けられた性能損失及び最小フィーチャサイズと関連付けられた製作損失に基づいて損失メトリクスを決定することを示す。いくつかの実施形態では、損失メトリクスは、入力値として性能損失と製作損失の両方を含む損失関数を用いて決定される。性能損失は、フォトニック集積回路の性能メトリクスとターゲット性能メトリクスとの差に対応し得る。いくつかの実施形態では、模擬環境の設計領域に対する最小フィーチャサイズは、逆設計プロセスによって生成される設計の製作性を促進するために提供することができる。製作損失は、設計領域の最小フィーチャサイズ及び構造パラメータに少なくとも部分的に基づく。より具体的には、製作損失は、設計領域が最小フィーチャサイズ未満の直径の構造要素を有さないように、設計に対する最小フィーチャサイズを実施する。これは、このシステムが特定の製作性及び/又は歩留まり要件を満たす設計を提供する上で役立つ。いくつかの実施形態では、製作損失は、設計の2値化(すなわち、第1の材料と第2の材料を混ぜ合わせて第3の材料を形成するというよりむしろ、設計は、不均一に散在する第1の材料の領域及び第2の材料の領域を含む)を実施する上でも役立つ。
【0072】
[0084] いくつかの実施形態では、製作損失は、最小フィーチャサイズに等しい幅を有する畳み込みカーネル(例えば、円形、正方形、八角形又はその他)を生成することによって決定される。次いで、畳み込みカーネルは、設計領域を越えて広がることなく、設計領域内の畳み込みカーネルに適合する設計領域内のボクセルの場所(すなわち、個々のボクセル)を決定するために、模擬環境の設計領域を通じてシフトされる。次いで、畳み込みカーネルは、第1の製作値を決定するために、ボクセルの場所と関連付けられた構造パラメータを用いて、ボクセルの場所の各々において畳み込まれる。次いで、構造パラメータが反転され、畳み込みカーネルは、第2の製作値を決定するために、反転構造パラメータを用いて、再び、ボクセルの場所の各々において畳み込まれる。その後、第1の製作値と第2の製作値が組み合わされ、設計領域に対する製作損失が決定される。製作損失を決定するこのプロセスは、閾値サイズ(すなわち、最小フィーチャサイズの半分の逆数)未満の大きさをあまり有さない曲率半径を有する設計領域の構造要素を促進することができる。
【0073】
[0085] ブロック830は、損失メトリクスに対する構造パラメータの変化の影響(すなわち、構造勾配)を決定するために、模擬環境を通じて損失関数を用いて損失メトリクスを逆伝播することを示す。損失メトリクスは、随伴又は仮想源として扱われ、フォトニック集積回路の構造勾配を決定するために、バックワードシミュレーションにおいて最終的な時間ステップから先の時間ステップに漸進的に逆伝播される。
【0074】
[0086] ブロック835は、損失メトリクスを調整するために構造パラメータを更新することによって、フォトニック集積回路の設計を改訂する(例えば、改訂記述を生成する)ことを示す。いくつかの実施形態では、損失メトリクスを調整することにより、損失メトリクスを低減することができる。しかし、他の実施形態では、損失メトリクスを必ずしも低減するとは限らない方法で、損失メトリクスを調整するか又は補償することができる。一実施形態では、損失メトリクスを調整することにより、デバイス製作性及びターゲットの性能メトリクスを維持しながらも最後的には性能が向上される設計を得るために、パラメタリゼーション空間内の一般的な指示を提供しながら、製作性を維持することができる。いくつかの実施形態では、改訂記述は、勾配降下アルゴリズム、マルコフ連鎖モンテカルロアルゴリズム又は他の最適化技法を通じて動作及び随伴シミュレーションのサイクルの後に最適化スキームを利用することによって生成される。別の表現にすると、フォトニック集積回路のシミュレーション、損失メトリクスの決定、損失メトリクスの逆伝播、及び、損失メトリクスの調整のための構造パラメータの更新の反復サイクルは、製作損失による製作性及び2値化を考慮しながら性能メトリクスとターゲット性能メトリクスとの差が閾値範囲内であるように、損失メトリクスが実質的に収束するまで相次いで実行することができる。いくつかの実施形態では、「収束する」という用語は、単に、差が閾値範囲内である及び/又は何らかの閾値を下回ることを示し得る。
【0075】
[0087] ブロック840は、性能メトリクスとターゲット性能メトリクスとの差が閾値範囲内であるように、損失メトリクスが実質的に収束するかどうかを判断することを示す。性能メトリクスとターゲット性能メトリクスとの差が閾値範囲内であるように損失メトリクスが実質的に収束するまで、複数の異なる波長チャネルから選択された励起源でのフォトニック集積回路のシミュレーション、損失メトリクスの逆伝播、及び、損失メトリクスの低減のための構造パラメータの更新による設計の改訂の反復サイクル。いくつかの実施形態では、フォトニック集積回路の設計領域の構造パラメータは、フォトニック集積回路の設計領域によって、第1の通信領域を通じて受信されたマルチチャネル光信号から複数の異なる波長チャネルの各々を光学的に分離し、ブロック815のマッピングに基づいて、複数の異なる波長チャネルの各々を複数の第2の通信領域の対応するものに誘導するためのサイクルを実行すると改訂される。
【0076】
[0088] ブロック845は、フォトニック集積回路の最適化された設計を出力することを示し、構造パラメータは、最小フィーチャサイズ及び2値化を実施しながら、閾値範囲内の性能メトリクスとターゲット性能メトリクスとの差を有するように更新されている。
【0077】
[0089] 上記で説明されるプロセスは、コンピュータソフトウェア及びハードウェアの観点から説明される。説明される技法は、有形の又は非一時的な機械(例えば、コンピュータ)可読記憶媒体内で具体化される機械実行可能命令を構成し得、機械によって実行されると、説明される動作を機械に実行させる。それに加えて、プロセスは、特定用途向け集積回路(「ASIC」)又はその他などのハードウェア内で具体化することができる。
【0078】
[0090] 有形の機械可読記憶媒体は、機械(例えば、コンピュータ、ネットワークデバイス、携帯情報端末、製造ツール、1組の1つ又は複数のプロセッサを有する任意のデバイスなど)によってアクセス可能な非一時的な形態に情報を提供する(すなわち、格納する)いかなるメカニズムも含む。例えば、機械可読記憶媒体は、記録可能/記録不可能媒体(例えば、読み取り専用メモリ(ROM)、ランダムアクセスメモリ(RAM)、磁気ディスク記憶媒体、光記憶媒体、フラッシュメモリデバイスなど)を含む。
【0079】
[0091] 本発明の示される実施形態の上記の説明は、要約書で説明されるものを含めて、網羅的であることも、本発明を開示される正確な形態に限定することも意図しない。本発明の特定の実施形態及び例は、本明細書では、例示を目的として説明されるが、当業者であれば認識されるように、本発明の範囲内で様々な変更が可能である。
【0080】
[0092] 本発明のこれらの変更は、上記の詳細な説明を踏まえて行うことができる。以下の請求項で使用される用語は、本発明を本明細書で開示される特定の実施形態に限定するものと解釈すべきではない。むしろ、本発明の範囲は、全体的に、請求項解釈の確立された原則に従って解釈されるものである以下の請求項によって決定されるものである。