IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ クームテック リミテッドの特許一覧

<>
  • 特許-粒子材料から水分を除去するための装置 図1
  • 特許-粒子材料から水分を除去するための装置 図2
  • 特許-粒子材料から水分を除去するための装置 図3
  • 特許-粒子材料から水分を除去するための装置 図4
  • 特許-粒子材料から水分を除去するための装置 図5
  • 特許-粒子材料から水分を除去するための装置 図6
  • 特許-粒子材料から水分を除去するための装置 図7
  • 特許-粒子材料から水分を除去するための装置 図8
  • 特許-粒子材料から水分を除去するための装置 図9
  • 特許-粒子材料から水分を除去するための装置 図10
  • 特許-粒子材料から水分を除去するための装置 図11
  • 特許-粒子材料から水分を除去するための装置 図12
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-03-06
(45)【発行日】2024-03-14
(54)【発明の名称】粒子材料から水分を除去するための装置
(51)【国際特許分類】
   F26B 17/10 20060101AFI20240307BHJP
   F26B 21/00 20060101ALI20240307BHJP
   F26B 5/14 20060101ALI20240307BHJP
【FI】
F26B17/10 A
F26B21/00
F26B5/14
【請求項の数】 11
【外国語出願】
(21)【出願番号】P 2022124115
(22)【出願日】2022-08-03
(62)【分割の表示】P 2019546096の分割
【原出願日】2017-11-02
(65)【公開番号】P2022166075
(43)【公開日】2022-11-01
【審査請求日】2022-08-19
(31)【優先権主張番号】1618470.7
(32)【優先日】2016-11-02
(33)【優先権主張国・地域又は機関】GB
(73)【特許権者】
【識別番号】519155446
【氏名又は名称】クームテック リミテッド
(74)【代理人】
【識別番号】100094569
【弁理士】
【氏名又は名称】田中 伸一郎
(74)【代理人】
【識別番号】100103610
【弁理士】
【氏名又は名称】▲吉▼田 和彦
(74)【代理人】
【識別番号】100109070
【弁理士】
【氏名又は名称】須田 洋之
(74)【代理人】
【識別番号】100098475
【弁理士】
【氏名又は名称】倉澤 伊知郎
(74)【代理人】
【識別番号】100130937
【弁理士】
【氏名又は名称】山本 泰史
(74)【代理人】
【識別番号】100170634
【弁理士】
【氏名又は名称】山本 航介
(72)【発明者】
【氏名】フォス-スミス パトリック
(72)【発明者】
【氏名】アンダーソン ピーター
【審査官】伊藤 紀史
(56)【参考文献】
【文献】米国特許出願公開第2014/0325867(US,A1)
【文献】特開昭48-045956(JP,A)
【文献】特公昭40-000720(JP,B1)
【文献】米国特許第04454661(US,A)
【文献】特開昭48-024363(JP,A)
【文献】特開昭49-125274(JP,A)
【文献】特開2010-214319(JP,A)
【文献】韓国登録特許第10-0722432(KR,B1)
【文献】韓国公開特許第10-2016-0024655(KR,A)
【文献】特開昭48-086171(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
F26B 17/10
F26B 21/00
F26B 5/14
(57)【特許請求の範囲】
【請求項1】
粒子材料から水分を除去する装置であって、
該装置は、
第1の端部及び第2の端部間でガス同伴粒子材料の流れを導く乾燥室を有する乾燥機を備え、
前記乾燥機は、乾燥室内のガス同伴粒子材料の流れと相互作用するように前記乾燥室内に加圧ガスを乾燥室に導くように構成され、
前記乾燥機は、前記乾燥室と加圧ガス供給源との間の流体連通のために配置された複数の案内路を定める本体と、
前記乾燥室と流体連通する第1のタイプの案内路であって、前記第1のタイプの案内路は、前記乾燥室の長手方向軸に対して半径方向に、又は、前記乾燥室の前記第1の端部及び第2の端部間におけるガス同伴粒子材料の全体的な流れ方向に対して半径方向に、加圧ガスを導くように構成されている、第1のタイプの案内路と、
前記乾燥室と流体連通する第2のタイプの案内路であって、前記第2のタイプの案内路は、前記乾燥室の長手方向軸に対して接線方向に、又は、前記乾燥室の前記第1の端部及び第2の端部間におけるガス同伴粒子材料の全体的な流れ方向に対して接線方向に加圧ガスを導くように構成されている、第2のタイプの案内路と、を含み、
前記乾燥機が、前記第2のタイプの案内路のうちの1つ又は2つ以上が前記第1のタイプの案内路のうちの少なくとも1つの案内路の下流に直列に配置されるように構成される、
装置。
【請求項2】
前記乾燥機が、前記乾燥室の長さに沿った配列の複数の前記第2のタイプの案内路を備える、
請求項1に記載の装置。
【請求項3】
前記装置は、前記乾燥室内のガス同伴粒子材料の前記流れと相互作用するようにガスを導く複数タイプのガスガイド又は案内路を有し、各タイプのガスガイド又は案内路は、前記乾燥室に沿って進む粒子材料の前記流内に特定のタイプ又は方向のガス流をもたらすように構成される、
請求項1又は2に記載の装置。
【請求項4】
前記第1のタイプのガスガイド又は案内路、及び/又は前記第2のタイプのガスガイド又は案内路は、前記乾燥室内の材料の前記流れ方向に垂直な平面内で、又は前記垂直に対して角度を成して前記乾燥室内にガス流を導くように構成される、
請求項1から3のいずれかに記載の装置。
【請求項5】
前記装置が、前記第1の端部及び前記第2の端部の間で前記乾燥室に沿って進む粒子材料の螺旋流を第1の回転方向に形成するように構成され、さらに、前記ガスガイド又は案内路は、前記ガス同伴粒子材料の流れ内に逆回転効果を生み出すために、前記第1の回転方向とは逆の第2の回転方向に概ね接線的又は回転的にガスを導くように構成される、
請求項3又は4に記載の装置。
【請求項6】
粒子材料から水分を除去する方法であって、
第1の端部及び第2の端部を有する乾燥室を準備するステップと、
前記乾燥室の前記第1の端部及び第2の端部間でガス同伴粒子材料の流れを導くステップと、
前記乾燥室内のガス同伴粒子材料の流れと相互作用させるために前記乾燥室内に加圧ガスを導くステップと、
を含み、
前記乾燥室は、長手方向軸を定め、
第1のタイプのガスガイド又は案内路は、前記乾燥室を通って進む材料の前記流れに交わらせる目的で前記乾燥室内にガスブレード又はガスシャフトを導くように構成されたタイプのものであり、第2のタイプのガスガイド又は案内路は、回転効果を生み出すために前記乾燥室内で前記長手方向軸の周囲を進むように意図された方向に前記乾燥室内にガスを導くように構成されたタイプのものであり、前記第1のタイプのガスガイドと前記第2のタイプのガスガイドとは異なり、
前記乾燥室が、前記第2のタイプのガスガイドのうちの1つ又は2つ以上が、前記第1のタイプのガスガイドのうちの少なくとも1つの下流に直列に配置されるように構成される、
ことを特徴とする方法。
【請求項7】
粒子材料から水分を除去する方法であって、
第1の端部及び第2の端部を有する乾燥室を準備するステップと、
前記乾燥室の前記第1の端部及び第2の端部間でガス同伴粒子材料の流れを導くステップと、
前記乾燥室内のガス同伴粒子材料の流れと相互作用させるために前記乾燥室内に加圧ガスを導くステップと、
を含み、
前記ガス同伴粒子材料の流れは、前記乾燥室の前記第1の端部から前記乾燥室の前記第2の端部まで第1の回転方向の螺旋流路に従うように導かれ、前記乾燥室の前記第1の端部及び第2の端部間の第1の位置において、前記乾燥室内に、前記第1の端部及び第2の端部間における前記粒子材料の移動方向に対して回転的又は接線的に、ただし前記乾燥室の前記第1の端部及び第2の端部間を移動する前記粒子材料の流れにショックを与えるために前記第1の回転方向とは逆の第2の回転方向に加圧ガスが導かれる、
ことを特徴とする方法。
【請求項8】
さらに、前記乾燥室の前記第1の端部及び第2の端部間の前記第1の位置から下流の第2の位置において前記乾燥室内に加圧ガスが導かれ、前記第2の位置における前記加圧ガスは、前記乾燥室の前記第1の端部及び第2の端部間を移動する粒子材料の螺旋流の方向を再び促すために、前記第1の端部及び第2の端部間の前記粒子材料の前記移動方向に対して回転的又は接線的に、ただし前記第1の回転方向に導かれる、
請求項7に記載の方法。
【請求項9】
粒子材料から水分を除去するための装置であって、第1の端部及び第2の端部間でガス同伴粒子材料の流れを導く乾燥室を有する乾燥器を備え、前記乾燥器は、前記乾燥室内のガス同伴粒子材料の流れと相互作用するように前記乾燥室内に加圧ガスを導くように構成され、
前記装置は、前記乾燥室内のガス同伴粒子材料の前記流れと相互作用するようにガスを導く複数タイプのガスガイド又は案内路を有し、第1のタイプのガスガイド又は案内路は、前記乾燥室を通って進む材料の前記流れに交わらせる目的で前記乾燥室内にガスブレード又はガスシャフトを導くように構成されたタイプのものであり、第2のタイプのガスガイド又は案内路は、回転効果を生み出すために前記乾燥室内で前記乾燥室の長手方向軸の周囲を進むように意図された方向に前記乾燥室内にガスを導くように構成されたタイプのものであり、前記第1のタイプのガスガイドと前記第2のタイプのガスガイドとは異なり、
前記乾燥室が、前記第2のタイプのガスガイドのうちの1つ又は2つ以上が、前記第1のタイプのガスガイドのうちの少なくとも1つの下流に直列に配置されるように構成される、
ことを特徴とする装置。
【請求項10】
前記第1のタイプ及び/又は第2のタイプのガスガイド又は案内路は、前記乾燥室内の材料の前記流れ方向に垂直な平面内で、又は前記垂直に対して角度を成す方向に前記乾燥室内に前記ガスを導くように構成される、
請求項9に記載の装置。
【請求項11】
前記乾燥室は、第1の端部及び第2の端部を有し、前記装置は、前記第1の端部と前記第2の端部との間で前記乾燥室に沿って進む粒子材料の螺旋流を第1の回転方向に形成するように構成され、さらに前記乾燥室は、前記乾燥室内のガス同伴粒子材料の流れと相互作用するようにモジュール構造の本体から前記乾燥室内に加圧ガスを導く1又は2以上のガスガイド又は案内路を含み、前記1又は2以上のガスガイド又は案内路は、前記ガス同伴粒子材料の流れ内に逆回転効果を生み出すために、前記第1の回転方向とは逆の第2の回転方向に概ね接線的又は回転的にガスを導くように構成される、
請求項9又は10に記載の装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、石炭又はバイオマスなどの粒子材料から水分を除去するための装置に関する。
【背景技術】
【0002】
湿炭は、石炭火力発電ボイラー及び超臨界温水器において著しい非効率性をもたらす。目標電気出力に達するには、石炭が乾炭である場合に必要とされるよりも多くの石炭を燃やす必要がある。また、石炭の含水量を大幅に減少させることができれば、大気排出物を大幅に減少させることもできる。
【0003】
従来、湿炭及びその他の粒子材料については、熱工程を用いて乾燥させて水分を、とりわけ表面水分を除去する。しかしながら、この工程は非常にエネルギー集約的であり、従って業界にとっては非熱的方法の価値が極めて高い。
【0004】
先願である英国特許出願公開第2494370号に1つのこのような方法が開示されており、この文献には、石炭又はその他の固体粒子材料から水分を、とりわけ表面水分を除去する装置が記載されている。この装置は、冷気を用いて有機及び無機原料を乾燥させる。
【先行技術文献】
【特許文献】
【0005】
【文献】英国特許出願公開第2494370号明細書
【発明の概要】
【発明が解決しようとする課題】
【0006】
しかしながら、このシステムの試行では、全ての条件下で高度な乾燥性能及び乾燥効率を高レベルのスループットで維持することが非常に達成困難であることが示されている。異なる材料では、しばしば効果的かつ効率的な乾燥の達成を確実にする要件も異なることが判明している。
【課題を解決するための手段】
【0007】
本発明の最も幅広い態様によれば、粒子材料から水分を除去する装置であって、第1及び第2の端部間でガス同伴粒子材料の流れを導く乾燥室を有する乾燥器を備えた装置が提供される。
【0008】
乾燥器は、乾燥室内のガス同伴粒子材料の流れと相互作用するように乾燥室内に加圧ガスを導くように構成される。
【0009】
乾燥器は、乾燥室と加圧ガス供給源との間の流体連通のために配置された複数の案内路を定めるモジュール構造の本体を含むことができる。
【0010】
モジュール構造を使用すると、例えば処理すべきいずれかの所与のタイプの粒子材料(又は、所与のタイプの材料の処理すべき表面水分含量のレベル)に合わせて乾燥器の乾燥効率を最適化するように乾燥器本体の構成を容易に調整することができる。例えば、乾燥室内に材料が存在する時間を増加又は減少させるために乾燥器本体を長く又は短くすることができる。
【0011】
例示的な実施形態では、案内路の構成が調整可能である。例えば、案内路の幅を増加又は減少させることなどによって案内路のサイズを調整することができる。このような調整能力を用いて、案内路を介して乾燥室に流入するガスの性能パラメータに影響を与えることができる。従って、乾燥器本体の構成は、処理すべきいずれかの所与のタイプの粒子材料(又は、所与のタイプの材料の処理すべき表面水分含量のレベル)に合わせて乾燥器の乾燥効率を最適化するように調整することができる。
【0012】
モジュール構造の本体は、互いに隣接して直列に配置された複数の離散要素を含むことができる。従って、所与のタイプ(又はレベル)の粒子材料(の表面水分含量)を処理するのに必要な乾燥器の所望の構成に適合するように1又は2以上の要素を交換し、及び/又は要素の配列を再編成することができる。
【0013】
例示的な実施形態では、離散要素が、1つの要素が別の要素に隣接して対になって協働するように構成される。例示的な実施形態では、対における各離散要素からの表面が、乾燥室の(すなわち、乾燥室の第1及び第2の端部間の位置の)壁部の少なくとも一部を定める。
【0014】
例示的な実施形態では、上記複数の要素の1又は2以上の対、又は上記複数の要素の各対が、上記対の第1及び第2の要素間に延びて上記対間から乾燥室内に加圧ガスを導くように構成された少なくとも1つの案内路を定める。
【0015】
例示的な実施形態では、乾燥室が、モジュール構造の本体の半径方向外向きに配置される。例えば、乾燥器はハウジングを含むことができ、ハウジング内にはモジュール構造の上記本体が位置し、乾燥室は、モジュール構造の本体の周囲に、例えばモジュール構造の本体の半径方向外面とハウジングの内面との間に環帯を定める。このような実施形態では、半径方向外向き方向の加圧ガスの流れを上記乾燥室内に導く案内路が配置される。
【0016】
例示的な実施形態では、乾燥器が、上記乾燥室と流体連通する第1のタイプの案内路を含み、上記第1のタイプの案内路が、乾燥室の長手方向軸に対して半径方向に、又は乾燥室の上記第1及び第2の端部間におけるガス同伴粒子材料の全体的な流れ方向に対して半径方向に加圧ガスを導くように構成される。
【0017】
第1のタイプの案内路は、使用時に乾燥室内に放出される半径方向のガス「ブレード」を形成するために使用することができる。
【0018】
別の実施形態では、乾燥器が、上記乾燥室と流体連通する第1のタイプの案内路を含み、上記第1のタイプの案内路は、乾燥室の長手方向軸に対して軸方向に、又は乾燥室の上記第1及び第2の端部間におけるガス同伴粒子材料の全体的な流れ方向に対して軸方向に加圧ガスを導くように構成される。
【0019】
例示的な実施形態では、第1のタイプの案内路が、「ブレード」が途切れない(すなわち、乾燥室内に放出されるガスの流れに隙間が生じない)ように360度を通じて連続する出口(すなわち、ガスを本体から乾燥室内に放出する出口)を有する。このような実施形態では、ガス同伴粒子材料が乾燥室に沿って進む際に一部のガス同伴粒子材料に加圧ガスが交わらなくなるリスクが最小限に抑えられる。この結果、装置の効率が高まる。しかしながら、第1のタイプの案内路は、使用時に乾燥室内に放出される離散のガスシャフトを定めるように非連続的な(すなわち360度未満の)出口を有する別の構成を有することもできる。このような実施形態では、乾燥室内に放出される離散のガスシャフトを複数定めるように、各それぞれの環状要素の対間に上記第1のタイプの案内路を複数設けることができる。乾燥室内に放出される離散のガスシャフトを複数定めるように第1のタイプの案内路が(例えば、円周配列で)互いに離間した複数の出口を定めるさらなる代替実施形態によっても同一又は同様の結果をもたらすことができる。
【0020】
例示的な実施形態では、乾燥器が、複数の上記第1のタイプの案内路を含む。例示的な実施形態では、上記第1のタイプの案内路のうちの少なくとも1つが、上記複数の離散要素の対間に定められる。
【0021】
例示的な実施形態では、乾燥器が、上記乾燥室と流体連通する第2のタイプの案内路を含み、上記第2のタイプの案内路は、乾燥室の長手方向軸に対して接線方向に、又は乾燥室の上記第1及び第2の端部間におけるガス同伴粒子材料の全体的な流れ方向に対して接線方向に加圧ガスを導くように構成される。第2のタイプの案内要素は、例えばガス同伴粒子材料が第1のタイプの案内路による作用を受けた後に乾燥室の上記第1及び第2の端部の間で螺旋流路を継続するように促すのに必要な遠心力をもたらすために使用することができる。従って、乾燥器の離散要素は、上記第2のタイプの案内路のうちの1つ又は2つ以上が上記第1のタイプの案内路のうちの少なくとも1つの案内路の下流に直列に配置される配列で構成することが有利となり得る。
【0022】
例示的な実施形態では、乾燥器が、複数の上記第2のタイプの案内路を含む。例示的な実施形態では、上記第2のタイプの案内路のうちの少なくとも1つが、上記複数の離散要素の対間に定められる。
【0023】
例示的な実施形態では、乾燥室内のガス同伴粒子の螺旋流の促進を高めるために、上記複数の、例えば3又は4以上の離散要素の対間に複数の上記第2のタイプの案内路が定められる。
【0024】
例示的な実施形態では、複数の離散要素が、中心アパーチャを定める本体をそれぞれが有する複数の環状要素を含む。
【0025】
例示的な実施形態では、環状要素が、1つの環状要素が別の環状要素に隣接して対になって協働するように構成される。例示的な実施形態では、各対からの中心アパーチャが、乾燥室の(すなわち、乾燥室の第1及び第2の端部間の位置に)ボアの少なくとも一部を定める。
【0026】
例示的な実施形態では、上記複数の環状要素の1又は2以上の対、又は上記複数の環状要素の各対が、上記対の第1及び第2の要素間に延びて上記対間から乾燥室に加圧ガスを導くように構成された少なくとも1つの案内路を定める。
【0027】
例示的な実施形態では、乾燥器が、複数の上記第1のタイプの案内路を含み、上記第1のタイプの案内路の少なくとも1つが、上記複数の環状要素の対間に定められる。
【0028】
例示的な実施形態では、乾燥器が、複数の上記第2のタイプの案内路を含み、上記第2のタイプの案内路の少なくとも1つが、上記複数の環状要素の対間に定められる。
【0029】
例示的な実施形態では、乾燥室が、上記環状要素のそれぞれの対間の案内路を介して加圧ガスの供給源と流体連通して配置される。
【0030】
例示的な実施形態では、装置が、上記複数の離散要素の各対における離散要素間の間隔を調整するように構成される。
【0031】
間隔の調整は、加圧ガスの供給の処理パラメータに影響を与えることができる。例えば、所与のタイプ(又はレベル)の粒子材料(の表面水分含量)を処理するのに必要な乾燥器の所望の構成に適合するように、試験を通じて最適な処理パラメータを決定することができる。従って、このような調整能力を使用して装置の乾燥性能及び効率を改善することができる。
【0032】
例示的な実施形態では、上記複数の離散要素の各対が、上記複数の離散要素の各対における第1及び第2の離散要素間の案内路の相対的間隔又は幅を設定するために少なくとも1つのスペーサ要素と協働するように構成される。
【0033】
この間隔は、間隔要素を異なる構成の(例えば、長さが短い又は長い)間隔要素と単純に交換することによって容易に調整できることが有利である。
【0034】
例示的な実施形態では、装置が、乾燥室内のガス同伴粒子材料の流れと相互作用するようにガスを導く複数タイプのガスガイド又は案内路を有し、各タイプのガスガイド又は案内路は、乾燥室に沿って進む粒子材料の流路内に特定のタイプ又は方向のガス流をもたらすように構成される。
【0035】
例示的な実施形態では、乾燥室が長手方向軸を定め、第1のタイプのガスガイド又は案内路は、乾燥室を通って進む材料の流れに交わらせる目的で乾燥室内にガスブレード又はガスシャフトを導くように構成されたタイプのものであり、第2のタイプのガスガイド又は案内路は、回転効果を生み出すために乾燥室内で長手方向軸の周囲を進むように意図された方向に乾燥室内にガスを導くように構成されたタイプのものであり、第1のタイプのガスガイドと第2のタイプのガスガイドとは異なる。
【0036】
例示的な実施形態では、第1のタイプのガスガイド又は案内路、及び/又は第2のタイプのガスガイド又は案内路が、乾燥室内の材料の流れ方向に垂直な平面内で、又は垂直に対して角度を成す方向に(例えば、概ね向き方向又は概ね前向き方向に)乾燥室内にガス流を導くように構成される。
【0037】
例示的な実施形態では、乾燥室が、第1の端部及び第2の端部を有し、装置が、上記第1の端部と上記第2の端部との間で乾燥室に沿って進む粒子材料の螺旋流を第1の回転方向(例えば、時計回り)に形成するように構成される。例示的な実施形態では、乾燥室が、乾燥室内のガス同伴粒子材料の流れと相互作用するように乾燥室内に加圧ガスを導く1又は2以上のガスガイド又は案内路を含み、上記1又は2以上のガスガイド又は案内路が、ガス同伴粒子材料の流れに逆回転効果を生み出すために、上記第1の回転方向とは逆の第2の回転方向(例えば、反時計回り)に概ね接線的又は回転的にガスを導くように構成される。
【0038】
例示的な実施形態では、ガスが、モジュール構造の本体から圧力下で乾燥室内に導かれる。
【0039】
本発明の別の態様によれば、粒子材料から水分を除去するための装置であって、第1及び第2の端部間でガス同伴粒子材料の流れを導く乾燥室を有する乾燥器を備えた装置が提供される。乾燥器は、乾燥室内のガス同伴粒子材料の流れと相互作用するように乾燥室内に加圧ガスを導くように構成される。乾燥器は、乾燥室と加圧ガスの供給源との間の流体連通のために配置された複数の案内路を定める本体を含む。案内路の構成は調整可能である。
【0040】
例えば、案内路の幅を増加又は減少させることなどによって少なくとも1つの上記案内路のサイズを調整することができる。このような調整能力を用いて、案内路を介して乾燥室に流入するガスの性能パラメータに影響を与えることができる。従って、乾燥器本体の構成は、処理すべきいずれかの所与のタイプの粒子材料(又は、所与のタイプの材料の処理すべき表面水分含量のレベル)に合わせて乾燥器の乾燥効率を最適化するように調整することができる。
【0041】
上記複数の案内路の各々は、互いに隣接して直列に配置された要素の対間に定めることができる。要素は、対における各要素からの表面が乾燥室の(すなわち、乾燥室の第1及び第2の端部間の位置の)壁部の少なくとも一部を定めるように1つの要素が別の要素に隣接して対になって協働するように構成することができる。
【0042】
例示的な実施形態では、上記要素の各対が、上記対の第1及び第2の要素間に延びて上記対間から乾燥室に加圧ガスを導くように構成された少なくとも1つの案内路を定める。
【0043】
例示的な実施形態では、乾燥室が、乾燥器本体の半径方向外向きに配置される。例えば、乾燥器はハウジングを含むことができ、ハウジング内には上記乾燥器本体が位置し、乾燥室は、乾燥器本体の周囲に、例えば乾燥器本体の半径方向外面とハウジングの内面との間に環帯を定める。このような実施形態では、半径方向外向き方向の加圧ガスの流れを上記乾燥室内に導く案内路が配置される。
【0044】
例示的な実施形態では、乾燥器が、上記乾燥室と流体連通する第1のタイプの案内路を含み、上記第1のタイプの案内路が、乾燥室の長手方向軸に対して半径方向に、又は乾燥室の上記第1及び第2の端部間におけるガス同伴粒子材料の全体的な流れ方向に対して半径方向に加圧ガスを導くように構成される。このような構成は、使用時に半径方向のガス「ブレード」を形成するために使用することができる。この「ブレード」は、実質的に途切れない(すなわち、乾燥室内に放出されるガスの流れに隙間が生じない)ものであることが有利である。従って、ガス同伴粒子材料が乾燥室に沿って進む際に一部のガス同伴粒子材料に加圧ガスが交わらなくなるリスクが最小限に抑えられる。この結果、装置の効率が高まる。
【0045】
例示的な実施形態では、乾燥器が、複数の上記第1のタイプの案内路を含み、上記第1のタイプの案内路の少なくとも1つが要素の対間に定められる。
【0046】
例示的な実施形態では、乾燥器が、上記乾燥室と流体連通する第2のタイプの案内路を含み、上記第2のタイプの案内路は、乾燥室の長手方向軸に対して接線方向に、又は乾燥室の上記第1及び第2の端部間におけるガス同伴粒子材料の全体的な流れ方向に対して接線方向に加圧ガスを導くように構成される。第2のタイプの案内要素は、例えばガス同伴粒子材料が第1のタイプの案内路による作用を受けた後に乾燥室の上記第1及び第2の端部の間で螺旋流路を継続するように促すのに必要な遠心力をもたらすために使用することができる。従って、乾燥器の要素は、上記第2のタイプの案内路のうちの1つ又は2つ以上が上記第1のタイプの案内路のうちの少なくとも1つの案内路の下流に直列に配置される配列で構成することが好ましいと考えられる。
【0047】
例示的な実施形態では、乾燥器が、複数の上記第2のタイプの案内路を含み、上記第2のタイプの案内路のうちの少なくとも1つが要素の対間に定められる。
【0048】
例示的な実施形態では、要素が、中心アパーチャを定める本体をそれぞれが有する複数の環状要素を含む。
【0049】
例示的な実施形態では、環状要素が、各対からの中心アパーチャが乾燥室の(すなわち、乾燥室の第1及び第2の端部間の位置の)ボアの少なくとも一部を定めるように1つの環状要素が別の環状要素に隣接して対になって協働するように構成される。
【0050】
例示的な実施形態では、上記複数の環状要素の各対が、上記対の第1及び第2の環状要素間に延びて上記対間から乾燥室のボア内に加圧ガスを導くように構成された少なくとも1つの案内路を定める。
【0051】
例示的な実施形態では、乾燥器が、複数の上記第1のタイプの案内路を含み、上記第1のタイプの案内路のうちの少なくとも1つが上記複数の環状要素の対間に定められる。
【0052】
例示的な実施形態では、乾燥器が、複数の上記第2のタイプの案内路を含み、上記第2のタイプの案内路のうちの少なくとも1つが上記複数の環状要素の対間に定められる。
【0053】
例示的な実施形態では、乾燥室が、上記環状要素のそれぞれの対間の案内路を介して加圧ガスの供給源と流体連通して配置される。
【0054】
例示的な実施形態では、要素の各対が、上記複数の離散要素の各対における第1及び第2の離散要素間の案内路の相対的間隔又は幅を設定するために少なくとも1つのスペーサ要素と協働するように構成される。
【0055】
この間隔は、間隔要素を異なる構成の(例えば、長さが短い又は長い)間隔要素と単純に交換することによって容易に調整できることが有利である。
【0056】
本発明のさらなる態様によれば、粒子材料から水分を除去する装置であって、第1及び第2の端部間でガス同伴粒子材料の流れを導く乾燥室を有する乾燥器を備えた装置が提供される。乾燥器は、乾燥室内のガス同伴粒子材料の流れと相互作用するように乾燥室内に加圧ガスを導くように構成される。乾燥器は、乾燥室と加圧ガスの供給源との間の流体連通のために配置された複数の案内路を定める本体を含む。乾燥器は、上記乾燥室と流体連通する第1のタイプの案内路を含み、上記第1のタイプの案内路は、乾燥室の長手方向軸に対して半径方向に、又は乾燥室の上記第1及び第2の端部間におけるガス同伴粒子材料の全体的な流れ方向に対して半径方向に加圧ガスを導くように構成される。乾燥器は、上記乾燥室と流体連通する第2のタイプの案内路を含み、上記第2のタイプの案内路は、乾燥室の長手方向軸に対して接線方向に、又は乾燥室の上記第1及び第2の端部間におけるガス同伴粒子材料の全体的な流れ方向に対して接線方向に加圧ガスを導くように構成される。
【0057】
例示的な実施形態では、上記第2のタイプの案内路のうちの1つ又は2つ以上が、乾燥室の第1及び第2の端部間において上記第1のタイプの案内路のうちの少なくとも1つの案内路の下流に直列に配置されるように構成される。例えば、乾燥器は一連の上記案内路を定めることができ、乾燥室の第1及び第2の端部間における上記ガス同伴粒子材料の流れの方向に沿って上記第1のタイプの案内路のうちの1つ又は2つ以上の直後に上記第2のタイプの案内路のうちの1つ又は2つ以上が続く。このような構成の目的は、上記第1のタイプの案内路からのガスがガス同伴粒子材料に交わった後にガス同伴粒子材料が螺旋流路に従うように促すことである。これに加えて、又はこれとは別に、上記第1のタイプの案内路からのガスがガス同伴粒子材料に交わる前にガス同伴粒子材料が螺旋流路に従うように誘発又は促進する目的で、上記第2のタイプの案内路のうちの1つ又は2つ以上が列内で上記第1のタイプの案内路の1又は2以上に先行することもできる。
【0058】
例示的な実施形態では、上記第1及び第2のタイプの少なくとも一方のタイプの案内路の構成が調整可能である。例えば、案内路の幅を増加又は減少させることなどによって案内路のサイズを調整することができる。このような調整能力を用いて、案内路を介して乾燥室に流入するガスの性能パラメータに影響を与えることができる。従って、乾燥器本体の構成は、処理すべきいずれかの所与のタイプの粒子材料(又は、所与のタイプの材料の処理すべき表面水分含量のレベル)に合わせて乾燥器の乾燥効率を最適化するように調整することができる。
【0059】
各案内路は、互いに隣接して直列に配置された1対の要素間に定めることができる。離散要素は、対における各離散要素からの表面が乾燥室の(すなわち、乾燥室の第1及び第2の端部間の位置の)壁部の少なくとも一部を定めるように1つの要素が別の要素に隣接して対になって協働するように構成することができる。
【0060】
例示的な実施形態では、上記要素の各対が、上記対の第1及び第2の要素間に延びて上記対間から乾燥室に加圧ガスを導くように構成された少なくとも1つの案内路を定める。
【0061】
例示的な実施形態では、乾燥室が、乾燥器本体の半径方向外向きに配置される。例えば、乾燥器はハウジングを含むことができ、ハウジング内には上記乾燥器本体が位置し、乾燥室は、乾燥器本体の周囲に、例えば乾燥器本体の半径方向外面とハウジングの内面との間に環帯を定める。このような実施形態では、半径方向外向き方向の加圧ガスの流れを上記乾燥室内に導く案内路が配置される。
【0062】
例示的な実施形態では、要素が、中心アパーチャを定める本体をそれぞれが有する複数の環状要素を含む。
【0063】
例示的な実施形態では、環状要素が、各対からの中心アパーチャが乾燥室の(すなわち、乾燥室の第1及び第2の端部間の位置の)ボアの少なくとも一部を定めるように1つの環状要素が別の環状要素に隣接して対になって協働するように構成される。
【0064】
例示的な実施形態では、上記複数の環状要素の各対が、上記対の第1及び第2の環状要素間に延びて上記対間から乾燥室のボア内に加圧ガスを導くように構成された少なくとも1つの案内路を定める。
【0065】
例示的な実施形態では、乾燥室が、上記環状要素のそれぞれの対間の案内路を介して加圧ガスの供給源と流体連通して配置される。
【0066】
例示的な実施形態では、要素の各対が、各対における第1及び第2の要素間の案内路の相対的間隔又は幅を設定するために少なくとも1つのスペーサ要素と協働するように構成される。
【0067】
この間隔は、間隔要素を異なる構成の(例えば、長さが短い又は長い)間隔要素と単純に交換することによって容易に調整できることが有利である。
【0068】
以下、添付図面を参照しながら本発明の実施形態について説明する。
【図面の簡単な説明】
【0069】
図1】粒子材料から表面水分を除去する装置の長手方向断面図である。
図2】装置の第1及び第2の環状要素間に位置するガスガイドを示す、図1の部分「A」の拡大詳細図である。
図3図1の装置で使用される環状要素の第1の構成の断面図である。
図4図3の環状要素を一方の側から見た斜視図である。
図5図3及び図4の環状要素の正面図である。
図6】装置のガスガイドを定めるように離間して配置された、図3図5に示す種類の第1及び第2の環状要素の断面図である。
図7図1の装置で使用される環状要素の第2の構成の断面図である。
図8図7の環状要素を一方の側から見た斜視図である。
図9図7及び図8の環状要素の正面図である。
図10図1の装置で使用される環状要素の第3の構成の断面図である。
図11図10の環状要素を一方の側から見た斜視図である。
図12図10及び図11の環状要素の正面図である。
【発明を実施するための形態】
【0070】
以下、粒子材料から水分を除去するための装置について説明する。(以下で詳述する)一般論として、このような装置は、装置にガス同伴粒子材料(gas-entrained particulate material)を導入するための入口と、装置からガス同伴粒子材料を収集するための出口とを有する。装置の意図は、材料が最初に装置に入り込んだ時よりも表面水分が少ない状態で装置から出るように粒子材料を「処理」することである。この目的のために、装置は、入口と出口との間にガス同伴粒子材料が進む流路を定める。さらに、装置は、粒子材料が流路に沿って進む際に粒子材料の表面から水分を除去する目的で、流路内に粒子材料と交わるように加圧ガス(例えば、圧縮空気)を導くように構成される。
【0071】
図1に、粒子材料から水分を除去するための装置を大まかに10で示す。装置10は、第1の端部14及び第2の端部16を備えた乾燥器ハウジング12を有する。ハウジング12は、長手方向軸X-Xを定める。この実施形態では、ハウジング12が、長手方向軸X-Xと同心状の細長いシリンダの形をとる。第1及び第2の端部14、16は、長手方向軸X-Xに沿って互いに概ね向かい合って位置するが、他の構成も可能である。
【0072】
第1の端部14には、ハウジング12内にガス同伴粒子材料を導入するための入力開口部18が設けられる。第2の端部16には、ハウジング12からガス同伴材料を収集するための出力開口部20が設けられる。
【0073】
ハウジング12は、入力開口部18と出力開口部20との間に(概ね長手方向軸X-Xに沿って矢印Yの方向に)延びる、ガス同伴粒子材料の流路を定める。
【0074】
この実施形態では、ガス同伴粒子材料の流路が、ハウジング12内に定められるチャネル26の形で乾燥室に沿って延びる。
【0075】
装置10は、複数の離散の加圧ガス流又は加圧ガスジェットをガス同伴粒子材料と交わらせる目的で連続して流路内に導くように構成される。
【0076】
図示の実施形態では、チャネル26が、直列に配置された複数の案内路22を有する本体27を貫通して流路内にガスを導くように構成されたボア24によって定められる。
【0077】
この実施形態では、チャネル26がハウジング12の長手方向軸X-Xと同心状であり、案内路22は、ボア24の側壁25を通じてガスを流路内に導くように構成される。流路は、チャネル26内でハウジング12の長手方向軸X-Xに沿って延びているので、この実施形態では、本体27から長手方向軸X-Xに対して概ね半径方向内向きの方向にガスが導かれると理解されるであろう。
【0078】
装置10は、複数のタイプの案内路22を有することができ、各タイプのガス案内路は、(例えば、流路内で異なる結果を達成する目的で)流路内に特定のタイプ又は方向のガス流をもたらすように構成される。
【0079】
図示の実施形態では、装置10が、第1のタイプのガスガイド22a及び第2のタイプのガスガイド22bを含む。第1のタイプのガスガイド22aと第2のタイプのガスガイド22bとの相違については、以下でさらに詳細に説明する。しかしながら、一般的水準で言えば、第1のタイプのガイド22aは、ガス同伴粒子の一般的な流れ方向に対して少なくとも実質的に半径方向にガスを導くように構成されるのに対し、第2のタイプのガイド22bは、ガス同伴粒子の一般的な流れ方向に対して少なくとも実質的に接線方向又は回転方向にガスを導くように構成される。従って、第1のタイプのガスガイドは、流れに垂直な方向に作用して流路内の粒子材料の表面から水分を変位させる又は奪う(strip)役割を果たすのに対し、第2のタイプのガスガイド22bは、材料がチャネル26に沿って概ね螺旋状に通過するように、粒子材料の流れを流路に沿って(例えば、流路12内の周方向に)「回転」させるのに役立つ。
【0080】
例示的な実施形態では、第1及び第2のガスガイド22a、22bが概ね直列に配置され、典型的には、第2のガスガイド22bのうちの少なくとも1つが第1のガスガイド22aのうちの2つのガスガイド間に直列に配置される。しかしながら、後述するように、例示的な実施形態では、本体27が、第1及び第2のガスガイド22a、22bの異なる又は調整可能な配置を可能にするモジュール構造を有する。
【0081】
なお、通常、ガスガイド22a、22bのガスは、例えば圧縮空気源などの遠隔ソースから供給される。図示の実施形態では、ハウジング12が、チャネル26の本体の周囲に全体チャンバ(plenary chamber)28を定め、ガスは、ガス入口82を介してチャンバ28に供給され、ガスガイド22a、22bを介して加圧下でチャンバ28から流路に移動する。或いは、各ガスガイド22a、22b(又は、ガスガイド22a、22bの組)に離散の加圧ガス源を設けることもできる。例示的な実施形態では、乾燥チャネル26が、案内路22a、22bを介する以外、全体チャンバ28又は(流路と交わるように意図された種類の)他のあらゆる加圧ガス源から分離される。
【0082】
図示の実施形態における乾燥チャネル26の本体27は、互いに協働してガスガイド22a、22bを定める、離散環状要素を含むモジュール構造を有する。各環状要素は、貫通ボア24を有する。環状要素は、例えば各環状要素のボア24がハウジング12の長手方向軸X-Xと同心的であるようにボア24が整列した状態で共に配置される。例示的な実施形態では、チャネル26が、ガス同伴粒子材料の流路を制約するために、チャネル26の側壁が環状要素の各々のボア壁25によって定められるように互いに隣接して配置された一連の上記環状要素から構成される。
【0083】
図示のように、全体チャンバ28は、(以下でさらに詳述する)環状要素の半径方向外面44とハウジング12の内面30との間に定められる。従って、この実施形態では、全体チャンバ28が、チャネル26に対して環状要素の半径方向外向きに同心的に配置された概ね環状構成を有する。この実施形態では、チャンバ28が、ハウジング12の長手方向軸X-Xと平行な方向に延びる。
【0084】
一般的水準で言えば、各ガスガイド22a、22bは、ガス源からチャネル26内にガスを導くための少なくとも1つの通路32の形をとると言える。このような通路32は、例えば製造中に固体環状要素を貫く穴を開けることによって形成することができると理解されるであろう。しかしながら、図示の実施形態では、各ガスガイド22a、22bを対向する部品(例えば、上述した種類の第1及び第2の環状要素)間に形成することにより、これらの対向する部品を連結した時に通路32が定められる(すなわち、これらの対向する部品のそれぞれの外形によって通路32の形状が決まる)ようにすることができる。この例は図1でも分かるが、一例として第1及び第2の環状要素34、36間に通過32が定められた図2の拡大図で最もはっきりと見える。
【0085】
第1のタイプのガスガイド22aの例を示す図2をさらに詳細に参照すると、通路32が半径方向に延びて第1及び第2の環状要素34、36間に定められていることが分かる。通路32の幅wは、通路32の(すなわち、半径方向の外面44とボア壁25との間に延びる)長さの大部分に沿って均一である。しかしながら、第1のガスガイド22aの通路32は、ボア24に隣接して、(図2に寸法vで示すように)幅が減少した狭い口部38を有する。口部38の制約された断面は、装置の使用時にガスが通路32を通過してチャネル26に至る際にガスの速度を高めることによってガスのジェットを形成するためのものである。従って、一般論として、第1のタイプのガスガイド22aは、装置の使用時にチャネル26に入り込む実質的に半径方向のガスブレード(blade of gas)を形成するために使用されると理解されるであろう。
【0086】
次に、図3図5を参照しながら、装置10で使用される第1の環状要素の例について詳細に説明する。
【0087】
最初に図3を参照すると、環状要素34は、前面40及び背面42を含む本体35を有する。前面40と背面42との間には、円周半径方向外面44が延びる。ボア24は概ね円形であり、環状要素34の本体35を、すなわち前面40から背面42までを貫通する。環状要素34は、前面40から延びる、ボア24の周辺に定められた突出する周辺ランド部分46を有する。環状要素34は、背面42から延びる、ボア24の周辺に定められた突出する周辺ランド部分47も有する。各ランド部分は、本体の中心軸Y-Yに平行な方向に突出する。各ランド部分46、47は、平坦部分48と傾斜部分50とで構成され、傾斜部分50は、平坦部分48とそれぞれの前面40又は背面42との間に延びる。
【0088】
これらの環状要素34の対を(例えば、図2の第1及び第2の部分34、36の形で)連結すると、対の一方の背面42と対の他方の前面とを協働的に使用して第1のタイプのガスガイド22aの通路32を定めることができる一方で、平行に保持された2つの要素34が互いに間隔を空けて、第1及び第2の部分の対向するランド部分46、47が協働的に通路32の口部38を定めるようになると理解されるであろう。さらに、口部38は、チャネル26の側壁25内に(例えば、360度を通じて広がる)連続するスロットを定めると理解されるであろう。このスロットは、ガス同伴粒子材料の流れに交わるようにチャネル本体27から出て流路に入り込むガスブレードを定める。この「ブレード」は、チャネル本体27からのガス流を実質的に途切れさせず、これによって使用時に一部の粒子材料にガス(例えば、圧縮空気)が交わらなくなるリスクを最小限に抑えることが有利である(以下でさらに詳述する)。
【0089】
他の実施形態では、スロットが、使用時に乾燥室内に放出される離散のガスシャフト(shaft of gas)を定めるように非連続的な(すなわち、360度未満にしか広がらない)出口である。このような実施形態では、乾燥室内に放出される離散のガスシャフトを複数定めるように、これらのスロットを互いに離間させて(例えば、円周配列で)複数設けることができる。各スロットは、同じ通路32と連通することも、或いは専用の通路32を伴う(すなわち、スロットの数が、隣接する要素34の対間に形成された通路の数に対応する)こともできる。
【0090】
ガス(例えば、圧縮空気)は、ハウジング12の長手方向軸X-Xに対して半径方向内向き方向に導かれるように意図されるので、この実施形態ではランド部分46、47がボア24に隣接する。他の実施形態では、ガス同伴粒子材料の流路を(例えば、全体チャンバ28と同様のチャンバ内で)環状要素の半径方向外側に向けることもでき、この場合には、口部38が環状要素の外面44に隣接して配置されるように(従って、例えばチャネル26と連通する圧力源から環状チャンバ28内のガス同伴粒子材料の流路内に向けて半径方向外向き方向にガスを導くことができるように)環状要素の外形が異なる。
【0091】
図3図5の各々から分かるように、この実施形態では、環状要素34の周辺に、前面40から背面42に(例えば、ボアの中心軸24と平行な方向に)延びる複数のアパーチャ52が分布する。
【0092】
環状要素34の各面40、42では、各アパーチャ52が凹部54によって取り囲まれる。凹部54の詳細は図3から最もはっきりと分かり、前面40に前方凹部54aが設けられ、背面42に後方凹部54bが設けられる。各凹部54a、54bは、各アパーチャ52の周辺部の(前面40及び後面42と平行に延びる)概ね平坦な表面又は肩部56を定める。
【0093】
図6に、この構成の一般的機能を示しており、この図には、ボア24及びアパーチャ52が共通軸Y-Y及びZ-Z上でそれぞれ整列する直列の環状要素34の対が示されている。この構成は、対向する凹部54a、54b間に延びる円筒キャビティを定める。
【0094】
環状要素の対間にはスペーサ58が位置し、スペーサ58の一端は凹部54a内に位置し、スペーサの他端は凹部54b内に位置する。この構成は、環状要素34の対間に(例えば、通路32に沿った幅w及び口部38における幅vの)所望の間隔を維持する役割を果たす。さらに、スペーサ58の位置は、チャンバ28とチャネル26との間の通路32に沿ったガスの流れに大きな影響を与えない。
【0095】
スペーサ58の寸法は、第1の環状要素34の離散の対間の間隔を変更するために(例えば、第1のタイプの案内要素22aから放出されるガスブレードの間隔、従って幅を増加又は減少させるように)調整することができる。実際には、いずれかの所与のシリーズに複数のサイズのスペーサを使用することにより、いずれかの所与の材料についての装置10の乾燥性能を変化させることができる。この結果、異なるタイプの粒子材料の、及び/又はいずれか1つのタイプの粒子材料の異なるバッチ間で生じ得る異なるレベルの表面水分含量の乾燥効率の改善をもたらすことができる容易に適応可能な装置が得られるようになる。通路32の幅(及び口部38の寸法/外形)は、ガスが装置を通過する際に流路の長手方向軸に沿ったその地点におけるガス同伴粒子材料と交わる圧縮空気の量/レベルを決定する。各種材料又は各表面水分含量の程度について試験を通じてガスガイド22aの好適なパラメータを求め、これに応じて装置の乾燥性能及び効率を最適化するように通路の幅/外形を調整することができる。
【0096】
図示の実施形態では、スペーサ58が管状であって円形断面を有するが、案内要素22aを通るガスの流れに過度に影響を与えることなく環状要素34間の所望の間隔を維持することを主な目的として他の構成のスペーサを使用することもできると理解されるであろう。スペーサ58は、通路32が使用時にガス(例えば、圧縮空気)の通路のための実質的に連続したスロットを定めるように、案内要素22aの周辺に分散する離散部材であると理解されるであろう。
【0097】
図示の構成は、環状要素の対34を概ね平行の配向及び間隔で共に直列に維持するのに適していることが判明した。しかしながら、例えば通路32に沿ってガス同伴粒子状物質の流路に入り込むガスの流れを大きく妨げない構成の2つの環状要素34間に延びる複数の離散のスペーサを用いてこれらの環状要素34の対を離間させる他の構成も可能であると理解されるであろう。
【0098】
次に、図7図9を参照しながら、装置10で使用される環状要素64の第2の構成例について詳細に説明する。
【0099】
最初に図7を参照すると、環状要素64は、前面68と、背面70と、前面68と後面70との間に延びる円周半径方向外面72とを含む本体65を有する。ボア24は、概ね円形である。ボア24は、第1の環状要素34のボア24に対応する。環状要素64は、ボア24の周辺に定められた、ただしこの例では前面68からしか突出しない突出する周辺ランド部分74を有する。背面70からは周辺ランド部分が突出しない。ランド部分74の構成は、ランド部分46、47について上述した通りである。
【0100】
なお、第2の環状要素64の前面68は、第1の環状要素34の背面42と直列に背面42から離間して配置されて本明細書で説明した第1のタイプのガスガイド22aを定めるように構成され、対向するランド部分46、74は、例えばガス同伴粒子状物質の流路に半径方向ガスブレードを導くための通路32の口部38を協働的に定める。
【0101】
第2の環状要素64の背面70は、通路32の代替構成を形成して、特に第2のタイプのガスガイド22bを形成するように構成される。具体的に言えば、第2の環状要素64の背面70は、円周方向に分散した複数の「凹部」又は「切り取り部分」76を有する。図8及び図9から最もはっきりと分かるように、この実施形態では、各切り取り部分76が、ボア24側に狭い口部を定めて外面72に向けて概ね半径方向に拡幅する、平面図において概ね三角形又はテーパ状の外形を有する。各切り取り部分76は、背面70の平面と平行に広がる平坦な底壁78を定める。各切り取り部分76は、ボア24の外周に対して垂直方向に角度を成して延びる対向する側壁80も定める。具体的に言えば、各切り取り部分76は、ボア24の外周に概ね正接する(図9で最もはっきりと分かる)ように配置された中心軸tを有する。使用時には、環状要素64が、平坦な前面を有する同様の環状要素(又は、対応する凹状/切り取り構成を前面に有する別のタイプの環状要素)に背面70が当接して配置された場合、この環状要素64の構成を用いて、本明細書で説明する第2の形態の、すなわちチャネル26内の流路に対して接線方向にガスを導くように構成されたガスガイド22bを形成することができる。これによってガス同伴粒子流内に回転が誘発されることにより、材料がチャネル26を通過する際に螺旋パターンに従うようにすることができる。
【0102】
ガスを半径方向外向き方向に導くことが望ましい場合(例えば、ガス同伴流がチャネル26ではなく全体チャンバ28内に存在する場合)には、凹部/切り取り部分のテーパの方向を逆にして、通路32の口部がボア24ではなく環状要素の半径方向外面に隣接するようにすることができる。
【0103】
なお、この環状要素の第2の構成も、図3図6の環状要素34を参照しながら説明したものに対応する複数の半径方向外向きアパーチャ及び凹部を含む。この実施形態では、図8及び図9からはっきりと分かるように、アパーチャ及び凹部が切り取り部分76間に位置する。従って、ここでは図7図9の実施形態のアパーチャ及び凹部については説明しない。しかしながら、図3図6を参照しながら説明した方法と同じ方法でスペーサ58を使用して、チャネル本体27の環状要素64と隣接する環状要素との間に平行な間隔を定めて調整することもできると理解されるであろう。
【0104】
次に、図10図12を参照しながら、装置10で使用される環状要素66の例について詳細に説明する。第3の環状要素66は前面82及び背面84を有し、これらの間に円周半径方向外面86が延びる。ボア24は、概ね円形である。ボア24は、第1及び第2の環状要素34及び64のボアに対応する。環状要素66は、ボア24の周辺に定められた、ただしこの例では背面84からしか突出しない突出する周辺ランド部分88を有する。前面82からは周辺ランド部分が突出せず、前面82は、外面86からボア24の外周にかけて実質的に平坦である。
【0105】
従って、第3の環状要素66の前面82は、本明細書で説明した第2のタイプのガスガイド22bの特徴である傾斜した通路32を形成するために、ボア24が整列した状態で第2の環状要素64の背面70に隣接して配置することができる。
【0106】
さらに、第3の環状要素66の背面84は、本明細書で説明した第1のタイプのガスガイド22aの特徴である半径方向通路32を定めるために、ボア24が整列した状態で第1又は第2の環状要素34、36の前面に隣接して配置することができる。
【0107】
なお、この環状要素の第3の構成も、図3図6の環状要素34を参照して説明したもの、及び図7図9の実施形態に示すようなものに対応する、複数の半径方向外向きアパーチャ及び凹部を含む。従って、ここでは図10図12の実施形態のアパーチャ及び凹部については説明しない。しかしながら、図3図6を参照しながら説明した方法と同じ方法でスペーサ58を使用して、チャネル本体27の環状要素66と隣接する環状要素との間に平行な間隔を定めて調整することもできると理解されるであろう。
【0108】
第1の環状要素34と同様に、ガスを半径方向外向き方向に導くことが望ましい場合(例えば、ガス同伴流がチャネル26ではなく全体チャンバ28内に存在する場合)には、通路32の口部の位置をボア24ではなく環状要素の半径方向外面に隣接するように入れ替えることができる。
【0109】
上記の説明から、異なるタイプの環状要素34、64、66を直列に使用することによって、異なる乾燥条件に合わせて容易に調整できる非常に適合性の高い構成の装置が可能になることが明らかなはずである。これらの環状要素は、チャネル本体27の長さに沿って直列に配置することも、或いはチャネル本体27の長さに沿って互いに離間した離散環状要素の組の形で配置することもできる。環状要素を群として直列に配置する際には、各種環状要素の半径方向外向きアパーチャを整列させることができる。細長いロッド又はボルトなどの1又は2以上の固定要素を用いて一群の環状要素の整列したアパーチャに通して、適切なスペーサが適所にある環状要素を互いに一時的に保持することもできる。この目的のために、スペーサは、このような固定要素がスペーサを貫通できるように管状であることが好ましいと思われる。
【0110】
対応するアパーチャをハウジング12に設けてこのような固定部材のそれぞれの端部を受け取り、環状要素が確実にハウジング12内の正しい位置に配置されるようにすることもできる。ナット及びボルト構成などの単純な固定機構を使用して固定部材をハウジング12に固定することもできる。これにより、モジュラーシステムの単純な組み立て及び分解を可能にして、それぞれの環状要素の配置、構成及び間隔を望む通りに変更することができる。
【0111】
例示的な実施形態では、全体チャンバ28が、通路32を通じて可能になる流体連通を除いてチャネル26から分離される。
【0112】
図1に示す実施形態では、長手方向軸X-Xに沿って延びるチャネル26内にコア部材84が同心的に位置する。コア部材84は、粒子材料が環状要素34、64、66の内面に近い状態を確実に保つのに役立つことによって、使用時にガスガイド22a、22bから放出されたガスが粒子材料に交わる可能性を高めるように、チャネル内に定められる流路の空間を制限する固体円筒部材である。
【0113】
使用時には、入力開口部18にガス同伴粒子材料(図示せず)が供給される。その後、粒子材料は、チャネル26に沿って出力開口部20に進んで排出される。
【0114】
例示的な実施形態では、空気圧縮機(図示せず)を使用して、ハウジング12のガス入口82を通じて全体チャンバ28内に圧縮空気を供給する。圧縮空気を導入すると、チャンバ28とチャネル26との間に圧力差が生じ、これによってチャンバ28から通路32を通じてチャネル26に圧縮空気が強制される。従って、圧縮空気は、ハウジング12の長手方向軸X-Xに対して半径方向内向き方向に導かれてガス同伴材料に交わる。この実施形態では、通路36の口部38が圧縮空気を加速させて、チャネル26内を通る空気同伴材料と高速で交わらせる。
【0115】
ガスガイド22a、22bの正確な構成は、装置の目標性能を達成するために必要に応じて変更することができる。異なる構成は異なる材料に適合し、これは容易に行うことができる。例えば、新たな案内要素の追加、又は案内要素の除去を行うことができる。通路32の幅wを望む通りに変更することもできる。さらに、本明細書で説明した3タイプの環状要素の順序及び配置は、特定の材料又は表面水分レベルについてどの構成が最適な性能をもたらすことが判明したかに応じて望む通りに変更することができる。
【0116】
環状要素34、64、66及びコア部材84は、あらゆる適切な材料から製造することができるが、通常は鋼又は別の好適な耐久性のある材料で形成される。
【0117】
例示的な実施形態では、チャネル本体27の長さを約1.0mとすることができ、環状要素は、通常は直径約0.2mのボアを有することができる。このような実施形態では、通常は通路32の幅wを約0.5mm及び10mmとすることができる。当然ながら、乾燥すべき材料の性質に合わせて、必要に応じて他のサイズの装置を寸法決めすることもできる。
【0118】
通常、粒子材料流は空気を同伴することができ、ガスガイドのガスは圧縮空気である。しかしながら、同伴及び流れの交差にはあらゆる好適なガスを使用することができると理解されるであろう。例えば、ガス同伴粒子材料が自然発火性である場合には、窒素ガスが最も適すると思われる。
【0119】
通常、粒子同伴ガス及びガスガイドの加圧ガスは周囲温度で動作するが、装置内の圧縮及び処理などによって生じた熱に起因してわずかに高いこともある。さらなる熱が有益な場合もあるが、装置を通過する同伴ガスに意図的に熱エネルギーを加える必要はなく、装置は、実質的に「低温」作業条件下で、すなわちシステムに有意な又は相当な熱エネルギーを加えなくても動作するように意図されている。装置内を通るガス同伴粒子の動きは、粒子材料が同伴をやめて跳躍(saltation)を引き起こさないことを確実にするように十分に高い速度に維持すべきである。
【0120】
上述したように、装置10は、複数のタイプのガスガイド又は案内路22を有することができ、これらの各々は、(例えば、流路内で異なる結果を達成する目的で)粒子材料の流路と相互作用できるように、乾燥室内に特定のタイプ又は方向のガス流をもたらすように構成される。図示の実施形態では、1つのタイプが、(例えば、材料が乾燥室の両端部間を進む際に)乾燥室内の材料の全体的な流れ方向に対して半径方向又は実質的に半径方向にガスを導くように意図される。この「半径方向」タイプの主な機能は、粒子材料の流れに交わるガスブレード又はガスシャフトを形成することによって、材料がブレード又はシャフトを通過する際に粒子材料の表面から水分を奪うことであると理解されるであろう。図示の実施形態では、他のタイプが、(例えば、材料が乾燥室の両端部間を進む際に)乾燥室内の材料の全体的な流れ方向に対して接線方向に(基本的に回転方向に)ガスを導くように意図される。この「接線/回転」タイプの主な機能は、粒子材料が乾燥室に沿って螺旋状に進むのに役立つように粒子材料の「回転」を支援することである。
【0121】
(図示の実施形態などの)例示的な実施形態では、第1のタイプのガスガイドが、乾燥室内の材料の流れ方向に厳密に垂直な平面内でガスシャフト又はガスブレードを乾燥室内に導くように構成される。しかしながら、他の実施形態では、例えばガスシャフト又はガスブレードを概ね後向き方向に(すなわち、乾燥室内の材料の流れ方向に逆らって)、又は概ね前向き方向に(すなわち、乾燥室内の材料の流れ方向に)排出するように、ガスシャフト又はガスブレードを垂直に対して角度を成す軸方向に乾燥室内に導くように構成されたタイプのガスガイドを提供することもできる。主な機能は、やはり粒子材料の流れに交わるガスブレード又はガスシャフトを形成することによって、材料がブレード又はシャフトを通過する際に粒子材料の表面から水分を奪うことである。しかしながら、これらの「角度付きの」ガスブレード又はガスシャフトは、粒子材料との斜めの接触を促すことによって、或いは単純に(「後向き」方向の場合)乾燥室の両端部間の全体的な粒子材料の流れ方向とは逆の方向に作用することによって、粒子材料が乾燥室のそれぞれの区分を通過する際に粒子材料から奪われる水分の度合いを高めることができる。
【0122】
このような角度付き又は軸方向構成は、(例えば、垂直平面から45度未満傾斜する場合に)かなりの半径方向成分を有することもできる。さらに、このような構成は、流路内の粒子材料が乾燥室の第1の端部から乾燥室の第2の端部に向かって逆方向に進む際に粒子材料に「ショック」を与えることができる「逆流」効果を形成することに基づいて、垂直平面から45度を超えて傾斜した場合に水分奪取能力が増加することができる。
【0123】
乾燥室は、乾燥室に沿って直列に配置されて、乾燥室の水分奪取能力を変化させるために乾燥室に沿った意図される粒子流方向に対して厳密に垂直方向及び/又は後向き及び/又は前向きのガスブレード又はガスシャフトの組み合わせをもたらすように構成されたガスガイドの配列を用いて構成することができる。
【0124】
例示的な実施形態では、角度付きタイプのガスガイドが、垂直から約25~65度(例えば、垂直から30~60度)の角度でガスを導くように構成される。
【0125】
(図示の実施形態などの)例示的な実施形態では、第2のタイプのガスガイドが、乾燥室内の材料の流れ方向に対して厳密に垂直な平面内で接線/回転ガス流を導くように構成される。しかしながら、他の実施形態では、例えばガス流を概ね後向き方向に(すなわち、乾燥室内の材料の流れ方向「に逆らって」)、又は概ね前向き方向に(すなわち、乾燥室内の材料の流れ方向「に」)排出するように、このような接線又は回転ガス流を垂直に対して傾斜した方向に導くように構成されたタイプのガスガイドを提供することもできる。
【0126】
この「接線/回転」タイプの主な機能は、やはり粒子材料の「回転」を支援することである。しかしながら、「後向き」の変種は、逆回転効果を引き起こすことによって粒子材料からの積極的な表面水分除去を引き起こすことにより、乾燥室内を移動する粒子材料の流れに「ショック」を与えることが判明した。「前向き」の変種は、乾燥室に沿った意図する方向における粒子材料の線形運動及び螺旋流を促し、従って乾燥室の初期段階中に(すなわち、材料の嵩密度及び水分含量が高い時に粒子材料の入口に隣接して)使用した場合、及び第2のタイプのガスガイドの「後向き」構成の直後に(すなわち、逆向きの「ショック」効果後に再び乾燥室に沿った所望の移動方向における螺旋流を促すのを支援するために)使用した場合に特に有利となり得ることが判明した。
【0127】
この場合も、乾燥室は、乾燥室に沿って直列に配置されて、乾燥室の水分奪取能力を変化させるために厳密に垂直な及び/又は逆流及び/又は前方流の回転効果の組み合わせをもたらすように配置されたガスガイドの配列を用いて構成することができる。
【0128】
例示的な実施形態では、これらのガスガイドが、垂直から約25~65度(例えば、垂直から30~60度)の角度で回転ガスを導くように構成される。
【0129】
本明細書で参照したタイプのガスガイド/案内路は、多くの異なる方法で提供することができ、例えば連結した1対の協働する要素間に形成したり、或いは固体材料を貫いて機械加工したりすることなどができると理解されるであろう。他の実施形態では、各所望のタイプのガスガイドを形成するように構成された離散ノズルを使用することなどの他の例も可能である。
【0130】
「前方」又は「後方」構成は、例えば乾燥室にガスを進入させる独自の方向の口部38又はノズルを有することや、或いは所望の角度で乾燥室に入り込むようにガスを流す通路32を本体内に構成することなどによる多くの異なる方法で達成することができる。
【0131】
上記の説明に照らせば、例示的な実施形態は、(本明細書で説明した全ての実施形態について同じように、通常は使用時に垂直とは対照的な少なくとも概ね水平であるように意図された)長手方向軸を定める乾燥室を有し、第1のタイプのガスガイド又は案内路は、乾燥室に沿って進む材料の流れに(例えば、上記長手方向軸に対して半径方向又は軸方向に)交わらせる目的でガスブレード又はガスシャフトを乾燥室内に導くように構成されたタイプのものであり、第2のタイプのガスガイド又は案内路は、回転効果を生み出すために、乾燥室内で長手方向軸の周囲を進むように意図された方向に乾燥室内にガスを導くように構成されたタイプのものであると理解されるであろう。しかしながら、いくつかの実施形態は、第1のタイプのガスガイド又は案内路のみ、又は第2のタイプのガスガイド又は案内路のみの組み合わせから恩恵を受けることもできる。
【0132】
上述した(「前方」、「後方」又は「垂直」のいずれであるかにかかわらず)「回転/接線」タイプのガスガイドは、乾燥室に沿って進む粒子材料に時計回り又は反時計回りの回転効果を与えるように構成することができると理解されるであろう。(例えば、流れの主要回転方向を反転させようと試みる形で)乾燥室の対向する第1及び第2の端部間を通過する粒子材料の螺旋流の主要回転方向とは「逆」の回転効果を使用すると、乾燥室に沿って進む粒子材料に「ショック」をもたらすことによって表面水分の減少を改善できることが判明した。従って、1又は2以上のガスガイドを含む乾燥室に沿って進む粒子材料の全体的な意図する螺旋流が第1の回転方向(例えば、時計回り)になるように装置を構成し、この第1の回転方向とは逆の第2の回転方向(例えば、反時計回り)に(「前方」、「後方」又は「垂直」のいずれであるかにかかわらず)回転的/接線的にガスを導くように1又は2以上のガスガイドを明確に構成した例示的な実施形態を提供する。乾燥室は、このようなタイプのガスガイドを「逆回転」ガスガイドの直ぐ下流の位置に1つ又は2つ以上備えることができるが、螺旋流を再び第1の回転方向に促すように構成されることが有利である。この「逆」回転ガスガイドの水分除去能力は、ガスが「後向き」方向に導かれるように構成した場合に改善することができると理解されるであろう。同様に、さらなる(下流の)ガスガイドの流れ促進能力は、ガスが前向き方向に導かれるように構成した場合に改善することができると理解されるであろう。例示的な実施形態では、ガスガイド又は案内路が、モジュール構造の本体から乾燥室に加圧ガスを導く。
【0133】
本明細書で説明した装置は、石炭、砂、バイオマス、灰及び亜炭などの幅広い範囲のガス同伴粒子材料の処理に適する。
【0134】
以上、1又は2以上の例示的な実施形態を参照しながら本発明を説明したが、添付の特許請求の範囲に定められる本発明の範囲から逸脱することなく様々な変更又は修正を行うことができると理解されるであろう。
【符号の説明】
【0135】
10 装置
12 乾燥器ハウジング
14 第1の端部
16 第2の端部
18 入力開口部
20 出力開口部
22 案内路
22a 第1のタイプのガスガイド
22b 第2のタイプのガスガイド
24 貫通ボア
25 ボア壁
26 チャネル
27 本体
28 全体チャンバ
30 内面
32 通路
34 第1の環状要素
44 環状要素の外面
64 第2の環状要素
66 第3の環状要素
84 コア部材
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12