(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-03-06
(45)【発行日】2024-03-14
(54)【発明の名称】異常検知方法および搬送装置
(51)【国際特許分類】
G05B 23/02 20060101AFI20240307BHJP
B65H 26/02 20060101ALI20240307BHJP
B41J 11/42 20060101ALI20240307BHJP
B41J 15/04 20060101ALI20240307BHJP
【FI】
G05B23/02 302Y
B65H26/02
B41J11/42
B41J15/04
(21)【出願番号】P 2020045219
(22)【出願日】2020-03-16
【審査請求日】2022-12-19
(73)【特許権者】
【識別番号】000207551
【氏名又は名称】株式会社SCREENホールディングス
(74)【代理人】
【識別番号】100135013
【氏名又は名称】西田 隆美
(72)【発明者】
【氏名】臼本 宏昭
【審査官】稲垣 浩司
(56)【参考文献】
【文献】特開2004-165282(JP,A)
【文献】特開2009-009299(JP,A)
【文献】特開2014-189337(JP,A)
【文献】特開2012-220978(JP,A)
【文献】特開2013-041448(JP,A)
【文献】特開2019-028565(JP,A)
【文献】特開2019-016209(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G05B 23/02
B65H 26/02
B41J 11/42
B41J 15/04
(57)【特許請求の範囲】
【請求項1】
搬送装置における異常検知方法であって、
a)前記搬送装置に設けられた複数のセンサから得られる複数の計測項目の計測値を入力変数とし、目的変数の実測値を教師データとして、教師あり学習アルゴリズムにより
モデルのパラメータを調整することにより、前記入力変数に対応する前記目的変数の推定値を出力する学習済みモデルを生成する工程と、
b)前記搬送装置を動作させつつ、前記複数のセンサから得られる複数の計測項目の計測値を入力変数とし、前記目的変数の実測値を教師データとして、前記教師あり学習アルゴリズムにより
前記学習済みモデルの前記パラメータを調整することにより、前記学習済みモデルを更新する工程と、
c)前記複数の計測項目のそれぞれについて、更新前後の前記学習済みモデルにおける
調整済みの前記パラメータに基づく影響度の変化を算出する工程と、
d)前記影響度の変化に基づいて、前記搬送装置の異常と関連する計測項目を特定する工程と、
を有する、異常検知方法。
【請求項2】
請求項1に記載の異常検知方法であって、
前記工程d)では、他の計測項目よりも前記影響度の変化が大きい計測項目を、前記異常と関連する計測項目として特定する、異常検知方法。
【請求項3】
請求項1または請求項2に記載の異常検知方法であって、
e)前記工程d)よりも前に、前記学習済みモデルから出力される前記目的変数の推定値が、正常範囲内であるか否かに基づいて、前記異常の有無を判定する工程
をさらに有し、
前記工程d)では、前記工程e)において前記異常があると判定された場合に、前記影響度の変化に基づいて、前記異常と関連する計測項目を特定する、異常検知方法。
【請求項4】
請求項1から請求項3までのいずれか1項に記載の異常検知方法であって、
前記搬送装置は、長尺帯状の基材を所定の搬送経路に沿って長手方向に搬送しつつ、複数のヘッドから基材の表面にインクを吐出する印刷装置であり、
前記目的変数は、複数のヘッドによるインクの吐出位置の相互のずれ量である、異常検知方法。
【請求項5】
搬送装置であって、
複数のセンサと、
前記複数のセンサから得られる複数の計測項目の計測値を入力変数とし、目的変数の実測値を教師データとして、教師あり学習アルゴリズムにより
モデルのパラメータを調整することにより、前記入力変数に対応する前記目的変数の推定値を出力する学習済みモデルを生成および更新する学習部と、
前記複数の計測項目のそれぞれについて、更新前後の前記学習済みモデルにおける
調整済みの前記パラメータから影響度を算出する影響度算出部と、
更新前後の前記学習済みモデルにおける前記影響度の変化に基づいて、前記搬送装置の異常と関連する計測項目を特定する計測項目特定部と、
を有する、搬送装置。
【請求項6】
請求項5に記載の搬送装置であって、
前記計測項目特定部は、他の計測項目よりも前記影響度の変化が大きい計測項目を、前記異常と関連する計測項目として特定する、搬送装置。
【請求項7】
請求項5または請求項6に記載の搬送装置であって、
前記学習済みモデルから出力される前記目的変数の推定値が、正常範囲内であるか否かに基づいて、前記異常の有無を判定する異常検知部
をさらに備え、
前記異常検知部が、前記異常があると判定した場合に、前記計測項目特定部は、前記影響度の変化に基づいて、前記異常と関連する計測項目を特定する、搬送装置。
【請求項8】
請求項5から請求項7までのいずれか1項に記載の搬送装置であって、
長尺帯状の基材を所定の搬送経路に沿って長手方向に搬送する搬送機構と、
前記搬送機構により搬送される基材へ向けてインクを吐出する複数のヘッドと、
をさらに備え、
前記目的変数は、複数のヘッドによるインクの吐出位置の相互のずれ量である、搬送装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、搬送装置における異常検知方法に関する。
【背景技術】
【0002】
従来、長尺帯状の基材を長手方向に搬送しつつ、複数のヘッドからインクを吐出することにより、基材に画像を印刷するインクジェット方式の印刷装置が知られている。インクジェット方式の印刷装置は、複数のヘッドから、それぞれ異なる色のインクを吐出する。そして、各色のインクにより形成される単色画像の重ね合わせによって、基材の表面に多色画像を印刷する。従来の印刷装置については、例えば特許文献1に記載されている。
【先行技術文献】
【特許文献】
【0003】
【発明の概要】
【発明が解決しようとする課題】
【0004】
この種の印刷装置では、上述した複数の単色画像の間に、僅かな位置ずれ(いわゆる「見当ずれ」)が発生する場合がある。見当ずれは、基材を搬送するローラの回転誤差や、基材の伸縮などの、様々な要因により発生する。このため、見当ずれが発生したときに、その要因を特定することは非常に困難であった。
【0005】
本発明は、このような事情に鑑みなされたものであり、搬送装置において、複数のセンサの計測項目のうち、異常と関連する計測項目を特定することができる技術を提供することを目的とする。
【課題を解決するための手段】
【0006】
上記課題を解決するため、本願の第1発明は、搬送装置における異常検知方法であって、a)前記搬送装置に設けられた複数のセンサから得られる複数の計測項目の計測値を入力変数とし、目的変数の実測値を教師データとして、教師あり学習アルゴリズムによりモデルのパラメータを調整することにより、前記入力変数に対応する前記目的変数の推定値を出力する学習済みモデルを生成する工程と、b)前記搬送装置を動作させつつ、前記複数のセンサから得られる複数の計測項目の計測値を入力変数とし、前記目的変数の実測値を教師データとして、前記教師あり学習アルゴリズムにより前記学習済みモデルの前記パラメータを調整することにより、前記学習済みモデルを更新する工程と、c)前記複数の計測項目のそれぞれについて、更新前後の前記学習済みモデルにおける調整済みの前記パラメータに基づく影響度の変化を算出する工程と、d)前記影響度の変化に基づいて、前記搬送装置の異常と関連する計測項目を特定する工程と、を有する。
【0007】
本願の第2発明は、第1発明の異常検知方法であって、前記工程d)では、他の計測項目よりも前記影響度の変化が大きい計測項目を、前記異常と関連する計測項目として特定する。
【0008】
本願の第3発明は、第1発明または第2発明の異常検知方法であって、e)前記工程d)よりも前に、前記学習済みモデルから出力される前記目的変数の推定値が、正常範囲内であるか否かに基づいて、前記異常の有無を判定する工程をさらに有し、前記工程d)では、前記工程e)において前記異常があると判定された場合に、前記影響度の変化に基づいて、前記異常と関連する計測項目を特定する。
【0009】
本願の第4発明は、第1発明から第3発明までのいずれか1発明の異常検知方法であって、前記搬送装置は、長尺帯状の基材を所定の搬送経路に沿って長手方向に搬送しつつ、複数のヘッドから基材の表面にインクを吐出する印刷装置であり、前記目的変数は、複数のヘッドによるインクの吐出位置の相互のずれ量である。
【0010】
本願の第5発明は、搬送装置であって、複数のセンサと、前記複数のセンサから得られる複数の計測項目の計測値を入力変数とし、目的変数の実測値を教師データとして、教師あり学習アルゴリズムによりモデルのパラメータを調整することにより、前記入力変数に対応する前記目的変数の推定値を出力する学習済みモデルを生成および更新する学習部と、前記複数の計測項目のそれぞれについて、更新前後の前記学習済みモデルにおける調整済みの前記パラメータから影響度を算出する影響度算出部と、更新前後の前記学習済みモデルにおける前記影響度の変化に基づいて、前記搬送装置の異常と関連する計測項目を特定する計測項目特定部と、を有する。
【0011】
本願の第6発明は、第5発明の搬送装置であって、前記計測項目特定部は、他の計測項目よりも前記影響度の変化が大きい計測項目を、前記異常と関連する計測項目として特定する。
【0012】
本願の第7発明は、第5発明または第6発明の搬送装置であって、前記学習済みモデルから出力される前記目的変数の推定値が、正常範囲内であるか否かに基づいて、前記異常の有無を判定する異常検知部をさらに備え、前記異常検知部が、前記異常があると判定した場合に、前記計測項目特定部は、前記影響度の変化に基づいて、前記異常と関連する計測項目を特定する。
【0013】
本願の第8発明は、第5発明から第7発明までのいずれか1発明の搬送装置であって、長尺帯状の基材を所定の搬送経路に沿って長手方向に搬送する搬送機構と、前記搬送機構により搬送される基材へ向けてインクを吐出する複数のヘッドと、をさらに備え、前記目的変数は、複数のヘッドによるインクの吐出位置の相互のずれ量である。
【発明の効果】
【0014】
本願の第1発明~第8発明によれば、学習済みモデルにおける影響度の変化に基づいて、搬送装置の異常と関連する計測項目を特定できる。
【0015】
特に、本願の第2発明および第6発明によれば、学習済みモデルにおける影響度が大きく変化した計測項目を、搬送装置の異常と関連する計測項目として特定できる。
【図面の簡単な説明】
【0016】
【
図2】印刷部の付近における印刷装置の部分上面図である。
【
図3】印刷装置の各部とコンピュータとの接続を示したブロック図である。
【
図4】コンピュータの機能を概念的に示したブロック図である。
【
図5】学習処理、印刷処理、および異常検知処理の流れを示したフローチャートである。
【
図7】第1変形例に係る学習処理、印刷処理、および異常検知処理の流れを示したフローチャートである。
【
図9】第2変形例に係るコンピュータの機能を概念的に示した図である。
【発明を実施するための形態】
【0017】
以下、本発明の実施形態について、図面を参照しつつ説明する。
【0018】
<1.印刷装置の構成>
図1は、本発明に係る搬送装置の一実施形態となる印刷装置1の構成を示した図である。この印刷装置1は、長尺帯状の基材9を搬送しつつ、複数のヘッド21~24から基材9へ向けてインクの液滴を吐出することにより、基材9の表面に画像を印刷する装置である。基材9は、印刷用紙であってもよく、あるいは、樹脂製のフィルムであってもよい。また、基材9は、金属箔や、ガラス製の基材であってもよい。
図1に示すように、印刷装置1は、搬送機構10、印刷部20、複数のセンサ30、画像取得部40、およびコンピュータ50を備えている。
【0019】
搬送機構10は、基材9をその長手方向に沿う搬送方向に搬送する機構である。本実施形態の搬送機構10は、巻き出し部11、複数の搬送ローラ12、および巻き取り部13を有する。基材9は、巻き出し部11から繰り出され、複数の搬送ローラ12により構成される搬送経路に沿って搬送される。各搬送ローラ12は、水平軸を中心として回転することにより、基材9を搬送経路の下流側へ案内する。基材9は、張力が掛かった状態で、複数の搬送ローラ12に掛け渡される。これにより、搬送中における基材9の弛みや皺が抑制される。搬送後の基材9は、巻き取り部13へ回収される。
【0020】
図1に示すように、基材9は、複数のヘッド21~24の下方において、複数のヘッド21~24の配列方向と略平行に移動する。このとき、基材9の印刷面は、上方(ヘッド21~24側)に向けられている。以下では、複数の搬送ローラ12のうち、印刷部20の下方に位置する4つのローラを、それぞれ、第1ローラ121、第2ローラ122、第3ローラ123、および第4ローラ124と称する。第1ローラ121、第2ローラ122、第3ローラ123、および第4ローラ124は、基材9の搬送方向に沿って、この順に配列されている。
【0021】
印刷部20は、搬送機構10により搬送される基材9に対して、インクの液滴(以下「インク滴」と称する)を吐出する処理部である。本実施形態の印刷部20は、第1ヘッド21、第2ヘッド22、第3ヘッド23、および第4ヘッド24を有する。第1ヘッド21は、第1ローラ121の上方に配置されている。第2ヘッド22は、第2ローラ122の上方に配置されている。第3ヘッド23は、第3ローラ123の上方に配置されている。第4ヘッド24は、第4ローラ124の上方に配置されている。
【0022】
図2は、印刷部20の付近における印刷装置1の部分上面図である。
図2中に破線で示したように、各ヘッド21~24の下面には、基材9の幅方向と平行に配列された複数のノズル201が設けられている。各ヘッド21~24は、複数のノズル201から基材9の上面へ向けて、多色画像の色成分となるC(シアン)、M(マゼンタ)、Y(イエロー)、K(ブラック)の各色のインク滴を、それぞれ吐出する。
【0023】
すなわち、第1ヘッド21は、搬送経路上の第1印刷位置P1において、基材9の上面に、C色のインク滴を吐出する。第2ヘッド22は、第1印刷位置P1よりも下流側の第2印刷位置P2において、基材9の上面に、M色のインク滴を吐出する。第3ヘッド23は、第2印刷位置P2よりも下流側の第3印刷位置P3において、基材9の上面に、Y色のインク滴を吐出する。第4ヘッド24は、第3印刷位置P3よりも下流側の第4印刷位置P4において、基材9の上面に、K色のインク滴を吐出する。
【0024】
本実施形態では、第1印刷位置P1は、基材9が第1ローラ121に接触する位置である。第2印刷位置P2は、基材9が第2ローラ122に接触する位置である。第3印刷位置P3は、基材9が第3ローラ123に接触する位置である。第4印刷位置P4は、基材9が第4ローラ124に接触する位置である。第1印刷位置P1、第2印刷位置P2、第3印刷位置P3、および第4印刷位置P4は、基材9の搬送方向に沿って、間隔をあけて配列されている。
【0025】
4つのヘッド21~24は、インク滴を吐出することによって、基材9の上面に、それぞれ単色画像を印刷する。そして、4つの単色画像の重ね合わせにより、基材9の上面に、多色画像が形成される。したがって、仮に、4つのヘッド21~24から吐出されるインク滴の基材9上における搬送方向の位置が相互にずれていると、印刷物の画像品質が低下する。このような、基材9上における単色画像の相互の位置ずれの大きさ(以下「見当ずれ量」と称する)を許容範囲内に抑えることが、印刷装置1の印刷品質を向上させるための重要な要素となる。
【0026】
なお、ヘッド21~24の搬送方向下流側に、基材9の印刷面に吐出されたインクを乾燥させる乾燥処理部が、さらに設けられていてもよい。乾燥処理部は、例えば、基材9へ向けて加熱された気体を吹き付けて、基材9に付着したインク中の溶媒を気化させることにより、インクを乾燥させる。ただし、乾燥処理部は、光照射等の他の方法で、インクを乾燥させるものであってもよい。
【0027】
複数のセンサ30は、基材9の搬送状態を計測するための計測器である。複数のセンサ30は、搬送機構10の各部において、互いに異なる項目の計測値を取得する。センサ30の計測項目には、例えば、搬送機構10を動作させるモータの回転速度、一部の搬送ローラ12の回転速度、基材9の張力、基材9の上下動(基材9に対して垂直な方向の変動量)、基材9のエッジの幅方向の位置、などを含めることができる。また、同一の項目を計測するセンサ30が、搬送経路の複数の位置に配置されていてもよい。複数のセンサ30は、搬送機構10の各部において、各計測項目の計測値を取得し、得られた計測値を示す信号を、コンピュータ50へ送信する。
【0028】
画像取得部40は、印刷部20を通過した基材9の上面を撮影するカメラである。画像取得部40は、印刷部20よりも搬送経路の下流側の撮影位置P5において、基材9の印刷面に対向して配置される。画像取得部40には、例えば、CCDやCMOS等の撮像素子が、幅方向に複数配列されたラインセンサが使用される。画像取得部40は、基材9の印刷面を撮影することにより、印刷済みの基材9の画像データを取得する。そして、画像取得部40は、得られた画像データを、コンピュータ50へ送信する。
【0029】
コンピュータ50は、印刷装置1内の各部の動作制御と、後述する学習処理とを行うための情報処理装置である。
図3は、コンピュータ50と、印刷装置1の各部との接続を示したブロック図である。
図3中に概念的に示したように、コンピュータ50は、CPU等のプロセッサ501、RAM等のメモリ502、およびハードディスクドライブ等の記憶部503を有する。記憶部503内には、印刷処理および後述する学習処理を実行するためのコンピュータプログラムCPが、記憶されている。また、コンピュータ50は、上述した搬送機構10、4つのヘッド21~24、複数のセンサ30、および画像取得部40と、それぞれ通信可能に接続されている。コンピュータ50は、コンピュータプログラムCPおよび後述する学習済みモデルMに従って、これらの各部を動作制御する。
【0030】
<2.コンピュータの機能について>
図4は、上述したコンピュータ50の機能を、概念的に示したブロック図である。
図4に示すように、コンピュータ50は、ずれ量実測部51、学習部52、制御部53、異常検知部54、影響度算出部55、および計測項目特定部56を有する。ずれ量実測部51、学習部52、制御部53、異常検知部54、影響度算出部55、および計測項目特定部56の各機能は、コンピュータ50のプロセッサ501が、コンピュータプログラムCPに従って動作することにより実現される。
【0031】
ずれ量実測部51は、画像取得部40から入力される画像データIに基づいて、上述した見当ずれ量を計測するための処理部である。ずれ量実測部51は、画像データIから、レジスターマークなどの特定のパターンの画像を抽出し、抽出された画像における各色のパターンの位置を、画像処理によって認識する。そして、ずれ量実測部51は、各色のパターンの位置の相互のずれ量を、見当ずれ量の実測値D1として算出する。ずれ量実測部51は、連続的に入力される画像データIに対して、このような見当ずれ量の計測を、順次に行うことにより、多数の実測値D1を取得する。取得された見当ずれ量の実測値D1は、ずれ量実測部51から学習部52へ送られる。
【0032】
学習部52は、複数のセンサ30の計測値D2から、目的変数である見当ずれ量を推定するための学習済みモデルMを、生成および更新する処理部である。学習部52は、複数のセンサ30から、計測値D2を受信する。また、学習部52は、ずれ量実測部51から見当ずれ量の実測値D1を取得する。学習部52は、計測値D2を入力変数とし、見当ずれ量の実測値D1を教師データとして、教師あり学習アルゴリズムにより、計測値D2から見当ずれ量を推定するための学習処理を行う。教師あり学習アルゴリズムとしては、例えば、サポートベクターマシン、ニューラルネットワーク、リニアモデル、勾配ブースティングなどを使用することができる。具体的には、教師あり学習用のモデルに、計測値D2を入力し、当該モデルから見当ずれ量の推定値を出力する処理を繰り返しながら、見当ずれ量の推定値が実測値D1に近づくように、モデルのパラメータを調整する。これにより、パラメータが調整された学習済みモデルMが生成される。
【0033】
また、学習部52は、後述する印刷処理の開始後に、一旦生成した学習済みモデルMを更新する処理も行う。更新処理は、印刷装置1を動作させつつ、学習済みモデルMの生成時と同様に、複数のセンサ30から得られる複数の計測項目の計測値D2を入力変数とし、見当ずれ量の実測値D1を教師データとして、教師あり学習アルゴリズムにより、学習済みモデルMを更新する。
【0034】
制御部53は、上述した搬送機構10および4つのヘッド21~24の動作を制御するための処理部である。制御部53は、学習部52により生成された学習済みモデルMを用いて、搬送機構10および4つのヘッド21~24の動作を、補正しつつ制御する。
【0035】
異常検知部54、影響度算出部55、および計測項目特定部56は、印刷装置1における基材9の搬送状態に異常がないかどうかを検知し、異常がある場合には、その異常に関連するセンサ30の計測項目を特定するための処理部である。異常検知部54、影響度算出部55、および計測項目特定部56における詳細な処理内容については、後述する。
【0036】
<3.学習処理、印刷処理、および異常検知処理について>
続いて、上述した印刷装置1における学習処理、印刷処理、および異常検知処理について、詳細に説明する。
図5は、学習処理、印刷処理、および異常検知処理の流れを示したフローチャートである。
【0037】
図5に示すように、学習部52は、まず、複数のセンサ30から計測値D2を受信するとともに、ずれ量実測部51から見当ずれ量の実測値D1を取得する(ステップS1)。複数のセンサ30の計測値D2には、モータの回転速度、搬送ローラ12の回転速度、基材9の張力、基材9の上下動、基材9のエッジの幅方向の位置、などの複数の計測項目の計測値が含まれる。また、複数のセンサ30は、連続的または断続的に計測することにより得られる多数の計測値D2を、学習部52へ入力する。また、ずれ量実測部51も、連続的または断続的に計測することにより得られる多数の見当ずれ量の実測値D1を、学習部52へ入力する。
【0038】
センサ30の計測値D2と、見当ずれ量の実測値D1とは、同一の時間範囲において取得される。ただし、各計測値と、印刷位置P1~P4における見当ずれ量との関係を学習するために、各センサ30の計測値D2を取得する時間と、見当ずれ量の実測値D1を取得する時間とを、ずらしてもよい。例えば、センサ30の計測値D2が、ある搬送ローラ12の回転速度を含む場合、その計測値D2を取得する時間と、見当ずれ量の実測値D1を取得する時間とを、搬送ローラ12、印刷位置P1~P4、および撮影位置P5の位置関係に基づいて、ずらしてもよい。
【0039】
なお、見当ずれ量の実測値D1は、周期性を有する場合が多い。このため、見当ずれ量の実測値D1を取得する時間は、少なくとも、見当ずれ量の変動の1周期分以上の時間とすることが好ましい。これにより、次のステップS2~S3の処理において、センサ30の計測値D2と、周期性を有する実測値D1との関係を、十分に学習することができる。
【0040】
複数の計測項目の計測値D2と、見当ずれ量の実測値D1とが、学習のために十分な量だけ蓄積されると、学習部52は、計測値D2を入力変数とし、見当ずれ量の実測値D1を教師データとして、教師あり学習アルゴリズムにより、計測値D2と、見当ずれ量の実測値D1との関係を学習する(ステップS2)。具体的には、教師あり学習用のモデルに、計測値D2を入力し、見当ずれ量の推定値を出力して、見当ずれ量の推定値が実測値D1に近づくように、モデルのパラメータを調整する。
【0041】
学習部52は、上記のステップS2の学習処理を、所定の終了条件が満たされるまで繰り返す(ステップS3:no)。終了条件は、例えば、モデルから出力される見当ずれ量の推定値と、見当ずれ量の実測値D1との差分が、予め設定された許容範囲内に収束すること、とすればよい。また、終了条件は、ステップS2の学習処理の繰り返し実行回数が、予め設定された回数に到達すること、としてもよい。
【0042】
終了条件が満たされると、学習部52は、学習処理を終了する(ステップS3:yes)。これにより、複数のセンサ30から得られる複数の計測項目の計測値D2から、目的変数である見当ずれ量の推定値を出力することが可能な、学習済みモデルMが生成される。
【0043】
学習済みモデルMが生成された後、印刷装置1は、製品となる基材9に対して、印刷処理を開始する(ステップS4)。このとき、コンピュータ50の制御部53は、学習済みモデルMを用いて、搬送機構10および4つのヘッド21~24の動作を、補正しつつ制御する。
【0044】
具体的には、制御部53は、搬送機構10を動作させつつ、複数のセンサ30から、計測値D2を取得する。そして、取得した計測値D2を、学習済みモデルMへ入力する。そうすると、学習済みモデルMから、見当ずれ量の推定値が出力される。制御部53は、この見当ずれ量の推定値に基づいて、搬送機構10および4つのヘッド21~24の少なくともいずれか一方の動作を補正する。
【0045】
例えば、C色とK色との間に、ある量の見当ずれが推定される場合、制御部53は、第1ヘッド21または第4ヘッド24からのインクの吐出タイミングを、見当ずれを打ち消す方向にずらす。このように、各2色間の見当ずれ量を考慮して、各ヘッド21~24からのインク滴の吐出タイミングをずらす。あるいは、搬送機構10のモータの回転速度を微調整する。これにより、基材9に対するインクの吐出位置を補正する。その結果、各2色間の見当ずれを抑制して、高品質な印刷結果を得ることができる。
【0046】
本実施形態の印刷装置1は、見当ずれ量を実測するための画像取得部40を備えている。しかしながら、画像取得部40により撮影される画像は、印刷位置P1~P4よりも下流側の撮影位置P5における画像である。したがって、画像取得部40のみでは、印刷後の見当ずれ量しか把握することができない。しかしながら、学習済みモデルMを利用すれば、印刷位置P1~P4において発生する見当ずれ量を、各センサ30の計測値D2に基づいて予め推定できる。
【0047】
印刷処理が開始された後、学習部52は、学習済みモデルMの更新処理を行う(ステップS5)。このステップS5では、印刷装置1を動作させつつ、上述したステップS2の学習処理と同様の処理を、追加で実行する。すなわち、学習部52は、複数のセンサ30から得られる複数の計測項目の計測値D2を入力変数とし、見当ずれ量の実測値D1を教師データとして、教師あり学習アルゴリズムにより、追加の機械学習を行う。具体的には、学習済みモデルMから出力される見当ずれ量の推定値を、見当ずれ量の実測値D1と比較し、推定値が実測値D1により近づくように、学習済みモデルMのパラメータを更新する。
【0048】
このように、学習済みモデルMを更新すれば、印刷装置1の使用状況の変化に応じて、より精度よく見当ずれ量を推定できる。したがって、基材9に対するインクの吐出位置を、より適切に補正できる。
【0049】
次に、異常検知部54が、印刷装置1における異常の有無を判定する(ステップS6)。本実施形態では、異常検知部54は、学習済みモデルMから出力される見当ずれ量の推定値が、予め設定された正常範囲内であるか否かに基づいて、異常の有無を判定する。すなわち、異常検知部54は、見当ずれ量の推定値が正常範囲内であれば、異常は無いと判定し、見当ずれ量の推定値が正常範囲から外れていれば、異常があると判定する。
【0050】
ステップS6において、異常検知部54が、異常が無いと判定した場合(ステップS6:no)、制御部53は、印刷処理を終了するか否かを判断する(ステップS7)。ここでは、印刷すべき画像が残っていなければ(ステップS7:yes)、制御部53は、印刷処理を終了する。また、印刷すべき画像が残っていれば(ステップS7:no)、制御部53は、印刷処理を継続しつつ、ステップS5以降の処理を再度実行する。
【0051】
一方、上述したステップS6において、異常検知部54が、異常があると判定した場合(ステップS6:yes)、コンピュータ50は、ステップS8~S11の異常発生時処理を実行する。
【0052】
異常発生時処理では、まず、影響度算出部55が、上述した複数の計測項目のそれぞれについて、更新前後の学習済みモデルMにおける影響度を算出する(ステップS8)。影響度は、学習済みモデルMにおいて、複数の計測項目の計測値D2(入力変数)から、見当ずれ量(目的変数)の推定値を算出する際の、各計測項目の重み付けを示す値である。影響度は、学習済みモデルMの学習済みのパラメータから、所定の計算式により算出することができる。また、影響度算出部55は、各計測項目の影響度を、比較可能な形に正規化して算出する。
【0053】
影響度算出部55は、ステップS5において更新される前の学習済みモデルMと、ステップS5において更新された後の学習済みモデルMと、のそれぞれにおいて、各計測項目の影響度を算出する。
図6は、このステップS8において算出される影響度の例を示した図である。
図6のように、影響度算出部55は、更新前の学習済みモデルMと、更新後の学習済みモデルMと、のそれぞれについて、算出された複数の計測項目の影響度を、値が高い順に並べたテーブルTを作成する。
【0054】
続いて、計測項目特定部56が、更新前後の学習済みモデルMにおける影響度を比較する。そして、計測項目特定部56が、更新前後の学習済みモデルMにおける影響度の変化を算出する(ステップS9)。例えば、計測項目特定部56は、計測項目毎に、更新前の影響度に対する更新後の影響度の増加量、増加率、あるいはテーブルTにおける順位の上昇数を算出する。
【0055】
続いて、計測項目特定部56は、算出された影響度の変化に基づいて、複数の計測項目のうち、印刷装置1の異常と関連する計測項目を特定する(ステップS10)。具体的には、計測項目特定部56は、ステップS9において算出された増加量、増加率、あるいはテーブルTにおける順位の上昇数が、他の計測項目よりも大きい計測項目を、異常と関連する計測項目として特定する。
【0056】
図6の例では、破線で囲まれた「モータの回転速度」の影響度が、他の計測項目の影響度に比べて、顕著に増加している。この場合、計測項目特定部56は、「モータの回転速度」を、異常と関連する計測項目として特定する。
【0057】
その後、コンピュータ50は、異常検知結果を出力する(ステップS11)。異常検知結果には、異常が検出された旨と、ステップS10において特定された計測項目とが、含まれる。異常検知結果は、例えば、コンピュータ50に接続されたディスプレイの画面に表示される。印刷装置1のユーザは、異常検知結果を確認することにより、異常が検出されたことと、その異常に関連する計測項目とを、知ることができる。したがって、画面に表示された計測項目を手がかりに、メンテナンス等の対処を行うことができる。
【0058】
<4.変形例>
以上、本発明の一実施形態について説明したが、本発明は、上記の実施形態に限定されるものではない。以下では、種々の変形例について、上記の実施形態との相違点を中心に説明する。
【0059】
<4-1.第1変形例>
図7は、第1変形例に係る学習処理、印刷処理、および異常検知処理の流れを示したフローチャートである。
図7の例では、ステップS6よりも前に、ステップS8を実行する。すなわち、異常検知部54が異常の有無を判定する前に、影響度算出部55が、複数の計測項目のそれぞれについて、更新前後の学習済みモデルMにおける影響度を算出する。このように、影響度算出部55は、異常の有無に関わらず、影響度の算出を行ってもよい。
【0060】
また、
図7の順序で処理を行う場合には、ステップS6において、異常検知部54は、更新前後の学習済みモデルMにおける影響度の変化に基づいて、異常の有無を判定してもよい。具体的には、異常検知部54は、影響度の増加量、増加率、あるいはテーブルTにおける順位の上昇数が、予め設定された閾値よりも大きい計測項目が存在する場合に、異常が発生したと判定してもよい。
【0061】
<4-2.第2変形例>
図8は、本発明に係る搬送装置の他の実施形態となる描画装置2の斜視図である。この描画装置2は、基板Wを水平に移動させつつ、基板Wの上面に露光パターンを描画する装置である。
図8に示すように、描画装置2は、搬送機構60、露光部70、複数のセンサ(図示省略)、レーザ干渉計80、およびコンピュータ90を備えている。
【0062】
搬送機構60は、ステージ63に載置された基板Wを、互いに直交する主走査方向および副走査方向に移動させる機構である。搬送機構60は、ステージ63を主走査方向に移動させる主走査機構61と、ステージ63を副走査方向に移動させる副走査機構62とを有する。露光部70は、これらの機構により主走査方向および副走査方向に移動する基板Wの上面に、レーザ光を照射する。
【0063】
主走査機構61は、一対のリニアモータ610を有する。主走査機構61は、これらのリニアモータ610を均等に動作させることにより、ステージ63のヨーイング角度(鉛直軸周りの回転角度)を略一定に保ちつつ、ステージ63を移動させる。ただし、各リニアモータの微小な駆動誤差、エア圧変動、加工誤差等によって、ステージ63のヨーイング角度が僅かに変動する場合がある。レーザ干渉計80は、このようなステージ63のヨーイング角度を実測するための手段である。
【0064】
図9は、描画装置2のコンピュータ90の機能を概念的に示した図である。このコンピュータ90も、上記実施形態のコンピュータ50と同様に、ずれ量実測部91、学習部92、制御部93、異常検知部94、影響度算出部95、および計測項目特定部96を有する。ずれ量実測部91は、レーザ干渉計80から入力される信号に基づいて、ステージ63のヨーイング角度のずれ量を実測する。
【0065】
学習部92は、ずれ量実測部91から、ヨーイング角度のずれ量の実測値D3を取得する。また、学習部92は、複数のセンサから、計測値D4を受信する。学習部92は、複数の計測値D4を入力変数とし、ヨーイング角度の実測値D3を教師データとして、教師あり学習アルゴリズムにより、計測値D4からヨーイング角度のずれ量を推定するための学習処理を行う。すなわち、この例では、ステージ63のヨーイング角度のずれ量が、目的変数となる。
【0066】
制御部93は、学習部92により生成された学習済みモデルMを用いて、搬送機構60の動作を、補正しつつ制御する。異常検知部54、影響度算出部55、および計測項目特定部56は、目的変数がヨーイング角度のずれ量である点を除いて、上記の実施形態と同様の処理を行う。これにより、この描画装置2においても、異常の有無を検知して、その異常に関連するセンサの計測項目を特定することができる。
【0067】
<4-3.他の変形例>
上記の実施形態では、センサ30の計測値D2を、教師あり学習用のモデルに、そのまま入力していた。また、上記の実施形態では、見当ずれ量の実測値D1も、そのまま教師データとして使用していた。しかしながら、センサ30の計測値D2は、所定の演算やフィルタ処理を行うことにより、機械学習に適した値に加工した上で、モデルに入力してもよい。また、見当ずれ量の実測値D1も、所定の演算やフィルタ処理を行うことより、機械学習に適した値に加工した上で、教師データとして使用してもよい。
【0068】
また、上記の実施形態では、ずれ量実測部51、学習部52、制御部53、異常検知部54、影響度算出部55、および計測項目特定部56が、1つのコンピュータ50により実現されていた。しかしながら、これらは、2つ以上のコンピュータにより実現されていてもよい。
【0069】
また、上記の実施形態では、
図2のように、各ヘッド21~24において、ノズル201が幅方向に一列に配置されていた。しかしながら、各ヘッド21~24において、ノズル201が2列以上に配置されていてもよい。
【0070】
また、上記の実施形態の印刷装置1は、4つのヘッド21~24を備えていた。しかしながら、印刷装置1が備えるヘッドの数は、2つ、3つ、あるいは5つ以上であってもよい。例えば、印刷装置1は、C,M,Y,Kの各色に加えて、特色のインクを吐出するヘッドを備えていてもよい。
【0071】
また、上記の実施形態や変形例に登場した各要素を、矛盾が生じない範囲で、適宜に組み合わせてもよい。
【符号の説明】
【0072】
1 印刷装置
2 描画装置
9 基材
10 搬送機構
11 巻き出し部
12 搬送ローラ
13 巻き取り部
20 印刷部
21 第1ヘッド
22 第2ヘッド
23 第3ヘッド
24 第4ヘッド
30 センサ
40 画像取得部
50 コンピュータ
51 ずれ量実測部
52 学習部
53 制御部
54 異常検知部
55 影響度算出部
56 計測項目特定部
60 搬送機構
61 主走査機構
62 副走査機構
63 ステージ
70 露光部
80 レーザ干渉計
90 コンピュータ
91 ずれ量実測部
92 学習部
93 制御部
94 異常検知部
95 影響度算出部
96 計測項目特定部
610 リニアモータ
D1 検討ずれ量の実測値
D2 センサの計測値
D3 ヨーイング角度の実測値
D4 センサの計測値
I 画像データ
M モデル
T テーブル
W 基板