IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ソニーセミコンダクタソリューションズ株式会社の特許一覧

<>
  • 特許-送信装置、受信装置及び伝送システム 図1
  • 特許-送信装置、受信装置及び伝送システム 図2
  • 特許-送信装置、受信装置及び伝送システム 図3
  • 特許-送信装置、受信装置及び伝送システム 図4
  • 特許-送信装置、受信装置及び伝送システム 図5
  • 特許-送信装置、受信装置及び伝送システム 図6
  • 特許-送信装置、受信装置及び伝送システム 図7
  • 特許-送信装置、受信装置及び伝送システム 図8
  • 特許-送信装置、受信装置及び伝送システム 図9
  • 特許-送信装置、受信装置及び伝送システム 図10
  • 特許-送信装置、受信装置及び伝送システム 図11
  • 特許-送信装置、受信装置及び伝送システム 図12
  • 特許-送信装置、受信装置及び伝送システム 図13
  • 特許-送信装置、受信装置及び伝送システム 図14
  • 特許-送信装置、受信装置及び伝送システム 図15
  • 特許-送信装置、受信装置及び伝送システム 図16
  • 特許-送信装置、受信装置及び伝送システム 図17
  • 特許-送信装置、受信装置及び伝送システム 図18
  • 特許-送信装置、受信装置及び伝送システム 図19
  • 特許-送信装置、受信装置及び伝送システム 図20
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-03-07
(45)【発行日】2024-03-15
(54)【発明の名称】送信装置、受信装置及び伝送システム
(51)【国際特許分類】
   H04N 23/60 20230101AFI20240308BHJP
   H04N 23/76 20230101ALI20240308BHJP
【FI】
H04N23/60 300
H04N23/76
【請求項の数】 20
(21)【出願番号】P 2022511720
(86)(22)【出願日】2021-03-09
(86)【国際出願番号】 JP2021009096
(87)【国際公開番号】W WO2021199944
(87)【国際公開日】2021-10-07
【審査請求日】2024-01-29
(31)【優先権主張番号】P 2020064353
(32)【優先日】2020-03-31
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】316005926
【氏名又は名称】ソニーセミコンダクタソリューションズ株式会社
(74)【代理人】
【識別番号】100103850
【弁理士】
【氏名又は名称】田中 秀▲てつ▼
(74)【代理人】
【識別番号】100114177
【弁理士】
【氏名又は名称】小林 龍
(74)【代理人】
【識別番号】100066980
【弁理士】
【氏名又は名称】森 哲也
(72)【発明者】
【氏名】佐藤 弘和
【審査官】▲徳▼田 賢二
(56)【参考文献】
【文献】国際公開第2018/225449(WO,A1)
【文献】特開平8-321989(JP,A)
【文献】特開2003-143611(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H04N 23/60
H04N 23/76
(57)【特許請求の範囲】
【請求項1】
撮像画像におけるROI(Region Of Interest)の座標情報に基づいて、前記ROIの画像データのシェーディング補正処理を実行する処理部と
前記シェーディング補正処理が行われた前記ROIの画像データをペイロードデータで送出するとともに、ROI情報をエンベデッドデータで送出する送信部と、
を備える送信装置。
【請求項2】
前記処理部は、前記ROIの前記座標情報として少なくとも前記ROIの左上端部の座標を用いる
請求項1に記載の送信装置。
【請求項3】
前記処理部は、
前記ROIの左上端部の座標に基づいて前記撮像画像内における前記ROIの画像データの各画素の座標を生成し、生成した各画素の座標に基づいて前記ROIの画像データの各画素について輝度の増幅を行う
請求項2に記載の送信装置。
【請求項4】
前記ROIの左上端部の座標を起点として前記撮像画像内における前記ROIのX座標を計測する第一カウンタと、
前記ROIの左上端部の座標を起点として前記撮像画像内における前記ROIのY座標を計測する第二カウンタと、を備え
前記処理部は、
前記第一カウンタおよび前記第二カウンタを用いて前記ROIの画像データの各画素の座標を生成する
請求項3に記載の送信装置。
【請求項5】
前記第一カウンタおよび前記第二カウンタは、カウンタ値が不連続な値に更新可能であり、
前記処理部は、前記第一カウンタおよび前記第二カウンタを用いて前記撮像画像に含まれる複数の前記ROIの画像データの各画素の座標を生成する
請求項4に記載の送信装置。
【請求項6】
前記シェーディング補正処理に用いられる補正値が保持された補正値テーブルを備え、
前記処理部は、前記座標情報に基づいて前記補正値テーブルから取得した前記補正値を用いて前記ROIの画像データの輝度を増幅する
請求項1に記載の送信装置。
【請求項7】
前記処理部は、前記ROIの画像データの各画素の座標に対応する前記補正値を前記補正値テーブルから取得して、前記ROIの画像データの各画素について感度の調整を行う
請求項6に記載の送信装置。
【請求項8】
撮像画像におけるROI(Region Of Interest)の座標情報に基づいて、前記ROIの画像データのシェーディング補正処理を実行する処理部、及び前記シェーディング補正処理が行われた前記ROIの画像データをペイロードデータで送出するとともに、ROI情報をエンベデッドデータで送出する送信部を有する送信装置と、
前記ROIに含まれる画像の画像データをペイロードデータに含むとともに、ROI情報をエンベデッドデータに含む伝送信号を受信する受信部を有する受信装置と、
を備える伝送システム。
【請求項9】
前記送信装置は、前記処理部において前記ROIの左上端部の座標に基づいて前記撮像画像内における前記ROIの画像データの各画素の座標を前記座標情報として生成し、生成した前記ROIの画像データの各画素について輝度の増幅を行う
請求項8に記載の伝送システム。
【請求項10】
前記送信装置は、前記シェーディング補正処理に用いられる補正値が保持された補正値テーブルを有し、前記座標情報に基づいて前記補正値テーブルから取得した前記補正値を用いて前記ROIの画像データの輝度を増幅する
請求項8に記載の伝送システム。
【請求項11】
所定の撮像画像から切り出されたROI(Region Of Interest)の画像データをペイロードデータに含むとともに、前記ROIに対応するROI情報をエンベデッドデータに含む伝送信号を受信する受信部と、
前記ROI情報から抽出した前記ROIの座標情報に基づいて、前記ROIの画像データのシェーディング補正処理を実行する処理部と、
を備える受信装置。
【請求項12】
前記処理部は、前記ROIの前記座標情報として少なくとも前記ROIの左上端部の座標を前記ROI情報から抽出する
請求項11に記載の受信装置。
【請求項13】
前記処理部は、前記ROIの左上端部の座標に基づいて前記撮像画像内における前記ROIの画像データの各画素の座標を生成し、生成した各画素の座標に基づいて前記ROIの画像データの各画素について輝度の増幅を行う
請求項12に記載の受信装置。
【請求項14】
前記ROIの左上端部の座標を起点として前記撮像画像内における前記ROIのX座標を計測する第一カウンタと、
前記ROIの左上端部の座標を起点として前記撮像画像内における前記ROIのY座標を計測する第二カウンタと、を備え
前記処理部は、
前記第一カウンタおよび前記第二カウンタを用いて前記ROIの画像データの各画素の座標を生成する
請求項13に記載の受信装置。
【請求項15】
前記第一カウンタおよび前記第二カウンタは、カウンタ値が不連続な値に更新可能であり、
前記処理部は、前記第一カウンタおよび前記第二カウンタを用いて前記撮像画像に含まれる複数の前記ROIの画像データの各画素の座標を生成する
請求項14に記載の受信装置。
【請求項16】
前記シェーディング補正処理に用いられる補正値が保持された補正値テーブルを備え、
前記処理部は、前記座標情報に基づいて前記補正値テーブルから取得した前記補正値を用いて前記ROIの画像データの輝度を増幅する
請求項11に記載の受信装置。
【請求項17】
前記処理部は、前記ROIの画像データの各画素の座標に対応する前記補正値を前記補正値テーブルから取得して、前記ROIの画像データの各画素について感度の調整を行う
請求項16に記載の受信装置。
【請求項18】
ROI(Region Of Interest)の画像データをペイロードデータで送出するとともに、ROI情報をエンベデッドデータで送出する送信装置と、
所定の撮像画像から切り出されたROI(Region Of Interest)の画像データをペイロードデータに含むとともに、前記ROIに対応するROI情報をエンベデッドデータに含む伝送信号を受信する受信部、及び前記ROI情報から抽出した前記ROIの座標情報に基づいて、前記ROIの画像データのシェーディング補正処理を実行する処理部を有する受信装置と、
を備える伝送システム。
【請求項19】
前記受信装置は、前記処理部において、前記ROIの前記座標情報として少なくとも前記ROIの左上端部の座標を前記ROI情報から抽出し、抽出した前記左上端部の座標に基づいて前記撮像画像内における前記ROIの画像データの各画素の座標を前記座標情報として生成し、生成した前記ROIの画像データの各画素について輝度の増幅を行う
請求項18に記載の伝送システム。
【請求項20】
前記受信装置は、
前記シェーディング補正処理に用いられる補正値が保持された補正値テーブルを備え、前記処理部において、前記座標情報に基づいて前記補正値テーブルから取得した前記補正値を用いて前記ROIの画像データの輝度を増幅する
請求項18に記載の伝送システム。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、送信装置、受信装置及び伝送システムに関する。
【背景技術】
【0002】
近年、データ量の大きなデータを大量に送信する用途が増えてきている。伝送システムに大きな負荷がかかりやすく、最悪の場合には、伝送システムがダウンし、データ伝送が行えなくなるおそれがある。
【0003】
伝送システムのダウンを避けるために、例えば、撮影した画像を全て送信するのではなく、撮影対象の物体を特定し、特定した物体を切り出した一部の画像だけを送信することが行われていることが知られている(例えば特許文献1~4)。
【先行技術文献】
【特許文献】
【0004】
【文献】特開2016-201756号公報
【文献】特開2014-39219号公報
【文献】特開2013-164834号公報
【文献】特開2012-209831号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
撮像画像から切り出した一部の注目領域(ROI(Region Of Interest))を伝送する場合のシェーディング補正処理について、何ら検討されていない。
本開示の目的は、撮像画像から切り出した一部の注目領域(ROI)のシェーディング補正処理を実現することにある。
【課題を解決するための手段】
【0006】
本開示の一態様による送信装置は、撮像画像におけるROI(Region Of Interest)の座標情報に基づいて、前記ROIの画像データのシェーディング補正処理を実行する処理部と前記シェーディング補正処理が行われた前記ROIの画像データをペイロードデータで送出するとともに、ROI情報をエンベデッドデータで送出する送信部と、を備える。
【0007】
本開示の一態様による受信装置は、所定の撮像画像から切り出されたROI(Region Of Interest)の画像データをペイロードデータに含むとともに、前記ROIに対応するROI情報をエンベデッドデータに含む伝送信号を受信する受信部と、前記ROI情報から抽出した前記ROIの座標情報に基づいて、前記ROIの画像データのシェーディング補正処理を実行する処理部と、を備える。
【0008】
本開示の一態様による伝送システムは、撮像画像におけるROI(Region Of Interest)の座標情報に基づいて、前記ROIの画像データのシェーディング補正処理を実行する処理部、及び前記シェーディング補正処理が行われた前記ROIの画像データをペイロードデータで送出するとともに、ROI情報をエンベデッドデータで送出する送信部を有する送信装置と、前記ROIに含まれる画像の画像データをペイロードデータに含むとともに、ROI情報をエンベデッドデータに含む伝送信号を受信する受信部を有する受信装置と、を備える。
【0009】
また、本開示の他の一態様による伝送システムは、ROI(Region Of Interest)の画像データをペイロードデータで送出するとともに、ROI情報をエンベデッドデータで送出する送信装置と、所定の撮像画像から切り出されたROI(Region Of Interest)の画像データをペイロードデータに含むとともに、前記ROIに対応するROI情報をエンベデッドデータに含む伝送信号を受信する受信部、及び前記ROI情報から抽出した前記ROIの座標情報に基づいて、前記ROIの画像データのシェーディング補正処理を実行する処理部を有する受信装置と、を備える。
【図面の簡単な説明】
【0010】
図1】映像伝送システムの概略構成例を表す図である。
図2図1の映像送信装置の概略構成例を表す図である。
図3】撮像画像に2つのROIが含まれているときの、伝送データの生成手順の一例を表す図である。
図4】パケットヘッダの構成例を表す図である。
図5】伝送データの構成例を表す図である。
図6】伝送データの構成例を表す図である。
図7】ロングパケットのペイロードデータの構成例を表す図である。
図8図1の映像受信装置の概略構成例を表す図である。
図9】伝送データに2つの画像が含まれているときの、撮像画像に含まれる2つのROI画像の生成手順の一例を表す図である。
図10】撮像画像において特定された物体が配置された領域を模式的に示す図である。
図11】特定された物体に対して設定されたROI領域の一例を示す図である。
図12】ROI画像の位置情報がロングパケットのペイロードデータに含められている伝送データの構成例を示す図である。
図13】シェーディング補正の対象となる撮像画像に含まれる注目領域の一例を模して気に示す図である。
図14】シェーディング補正処理に用いられる補正値テーブルの一例を示す図である。
図15】本開示におけるシェーディング補正処理を模式的に示す図である。
図16】第1実施形態による映像送信装置、映像受信装置及び映像伝送システムの概略構成を示すブロック図である。
図17】本開示におけるシェーディング補正処理に用いる注目領域の座標情報の生成を行う座標情報生成処理の流れの一例を示すフローチャートである。
図18】第1実施形態による映像送信装置、映像受信装置及び映像伝送システムにおけるシェーディング補正処理の流れの一例を示すフローチャートである。
図19】第2実施形態による映像送信装置、映像受信装置及び映像伝送システムの概略構成を示すブロック図である。
図20】第2実施形態による映像送信装置、映像受信装置及び映像伝送システムにおけるシェーディング補正処理の流れの一例を示すフローチャートである。
【発明を実施するための形態】
【0011】
以下、本開示を実施するための形態について、図面を参照して詳細に説明する。以下の説明は本開示の一具体例であって、本開示は以下の態様に限定されるものではない。
【0012】
以下、本開示による技術を実施するための形態(以下、「実施形態」と称する)について、以下の順序により説明する。
1.本開示の前提技術1(撮像画像から切り出した一部(形状が矩形状)の注目領域(ROI)を伝送する技術)
2.本開示の前提技術2(撮像画像から切り出した一部(形状が非矩形状)の注目領域(ROI)を伝送する技術)
3.本開示の実施形態におけるシェーディング補正処理の原理
4.本開示の第1実施形態による映像送信装置、映像受信装置及び映像伝送システム
5.本開示の第2実施形態による映像送信装置、映像受信装置及び映像伝送システム
【0013】
1.本開示の前提技術1:
[構成]
近年、スマートフォンなどの携帯デバイスやカメラデバイスなどでは、扱う画像データの大容量化が進み、デバイス内又は異なるデバイス間でのデータ伝送に高速化、かつ低消費電力化が求められている。このような要求に応えるため、携帯デバイスやカメラデバイス向けの接続インタフェースとして、MIPIアライアンスが策定したC-PHY規格やD-PHY規格といった高速インタフェース規格の標準化が進められている。C-PHY規格やD-PHY規格は、通信プロトコルの物理層(physical layer:PHY)のインタフェース規格である。また、C-PHY規格やD-PHY規格の上位プロトコル・レイヤとして、携帯デバイスのディスプレイ向けのDSIや、カメラデバイス向けのCSIが存在する。
【0014】
本開示の前提技術に係る映像伝送システム1は、種々の規格で信号を送受信できるシステムであり、例えばMIPICSI-2規格、MIPICSI-3規格、又は、MIPIDSI規格で信号を送受信することができる。図1は、本開示の前提技術に係る映像伝送システム1の概要を表したものである。映像伝送システム1は、データ信号、クロック信号及び制御信号の伝送に適用されるものであり、映像送信装置100及び映像受信装置200を備えている。映像伝送システム1は、映像送信装置100と映像受信装置200とに跨がって、例えば画像データ等のデータ信号を伝送するデータレーンDLと、クロック信号を伝送するクロックレーンCLと、制御信号を伝送するカメラ制御インタフェースCCIとを備えている。図1には、1つのデータレーンDLが設けられている例が示されているが、複数のデータレーンDLが設けられていてもよい。カメラ制御インタフェースCCIは、I2C(Inter-Integrated Circuit)規格と互換性を有する双方向制御インタフェースである。
【0015】
映像送信装置100は、MIPICSI-2規格、MIPICSI-3規格、又は、MIPIDSI規格で信号を送出する装置である。CSIトランスミッタ100Aと、CCIスレーブ100Bとを有している。映像受信装置200は、CSIレシーバ200Aと、CCIマスター200Bとを有している。クロックレーンCLにおいて、CSIトランスミッタ100AとCSIレシーバ200Aとの間は、クロック信号線で接続されている。データレーンDLにおいて、CSIトランスミッタ100AとCSIレシーバ200Aとの間は、クロック信号線で接続されている。カメラ制御インタフェースCCIにおいて、CCIスレーブ100BとCCIマスター200Bとの間は、制御信号線で接続されている。
【0016】
CSIトランスミッタ100Aは、例えば、クロック信号として差動のクロック信号を生成し、クロック信号線に出力する差動信号送信回路である。CSIトランスミッタ100Aは、差動に限られず、シングルエンドや3相の信号も送信できるように構成可能である。CSIトランスミッタ100Aは、さらに、データ信号として差動のデータ信号を生成し、データ信号線に出力する差動信号送信回路でもある。CSIレシーバ200Aは、クロック信号として差動のクロック信号を、クロック信号線を介して受信し、受信した差動のクロック信号に対して所定の処理を行う差動信号受信回路である。CSIレシーバ200Aは、さらに、データ信号として差動のデータ信号を、データ信号線を介して受信し、受信した差動のデータ信号に対して所定の処理を行う差動信号受信回路でもある。
【0017】
(映像送信装置100)
図2は、映像送信装置100の構成の一例を表したものである。映像送信装置100は、CSIトランスミッタ100Aの一具体例に相当する。映像送信装置100は、例えば、撮像部110、画像処理部120,130及び送信部140を備えている。映像送信装置100は、撮像部110で得られた撮像画像111に対して所定の処理を行うことにより生成した伝送データ147Aを、データレーンDLを介して映像受信装置200に送信する。図3は、伝送データ147Aの生成手順の一例したものである。
【0018】
撮像部110は、例えば、光学レンズなどを通して得られた光学的な画像信号を画像データに変換する。撮像部110は、例えば、CCD(Charge Coupled Device)イメージセンサやCMOS(Complementary Metal Oxide Semiconductor)イメージセンサを含んで構成されている。撮像部110は、アナログ-デジタル変換回路を有しており、アナログの画像データをデジタルの画像データに変換する。変換した後のデータ形式は、各画素の色を輝度成分Y及び色差成分Cb,Crで表現するYCbCr形式であってもよいし、RGB形式などであってもよい。撮像部110は、撮像により得られた撮像画像111(デジタルの画像データ)を画像処理部120に出力する。
【0019】
画像処理部120は、撮像部110から入力された撮像画像111に対して所定の処理を行う回路である。前提技術1では、画像処理部120は、ROIの切り出しを指示する制御信号がカメラ制御インタフェースCCIを介して映像受信装置200から入力された場合に、撮像部110から入力された撮像画像111に対して所定の処理を行う場合について説明する。しかしながら、前提技術1では、映像送信装置100、すなわち送信側がROIの切り出しの座標指示する場合も適用できある。この場合、送信側は例えば、受信側から送出されるROIで取得すべき「人物」や「物体」等の情報を受信して切り出しの座標を判断および指示するように構成される。これにより、画像処理部120は、種々のデータ(120A,120B,120C)を生成し、送信部140に出力する。画像処理部130は、撮像部110から入力された撮像画像111に対して所定の処理を行う回路である。画像処理部130は、通常画像の出力を指示する制御信号がカメラ制御インタフェースCCIを介して映像受信装置200から入力された場合に、撮像部110から入力された撮像画像111に対して所定の処理を行う。これにより、画像処理部130は、画像データ130Aを生成し、送信部140に出力する。
【0020】
画像処理部130は、例えば、エンコード部131を有している。エンコード部131は、撮像画像111をエンコードして圧縮像データ130Aを生成する。画像処理部130は、例えば、圧縮像データ130Aの形式として、JPEG(Joint Photographic Experts Group)規格に準拠した圧縮形式等により撮像画像111を圧縮する。
【0021】
画像処理部120は、例えば、ROI切り出し部121、ROI解析部122、重なり検出部123、優先度設定部124、エンコード部125及び画像処理制御部126を有している。
【0022】
ROI切り出し部121は、撮像部110から入力された撮像画像111に含まれる撮影対象の1又は複数の物体を特定し、特定した物体ごとに注目領域ROIを設定する。注目領域ROIは、例えば、特定した物体を含む方形状の領域である。ROI切り出し部121は、撮像画像111から、各注目領域ROIの画像(例えば図3中のROI画像112)を切り出す。ROI切り出し部121は、さらに、設定した注目領域ROIごとに、識別子として領域番号を付与する。ROI切り出し部121は、例えば、撮像画像111において、2つの注目領域ROIを設定した場合には、一方の注目領域ROI(例えば図3中の注目領域ROI1)に対して、領域番号1を付与し、他方の注目領域ROI(例えば図3中の注目領域ROI2)に対して、領域番号2を付与する。ROI切り出し部121は、例えば、付与した識別子(領域番号)を記憶部に格納する。ROI切り出し部121は、例えば、撮像画像111から切り出した各ROI画像112を記憶部に格納する。ROI切り出し部121は、さらに、例えば、各注目領域ROIに付与した識別子(領域番号)を、ROI画像112と関連づけて、記憶部に格納する。
【0023】
ROI解析部122は、注目領域ROIごとに、撮像画像111における注目領域ROIの位置情報113を導出する。位置情報113は、例えば、注目領域ROIの左上端座標(Xa,Ya)と、注目領域ROIのX軸方向の長さと、注目領域ROIのY軸方向の長さとによって構成されている。注目領域ROIのX軸方向の長さは、例えば、注目領域ROIのX軸方向の物理領域長さXLaである。注目領域ROIのY軸方向の長さは、例えば、注目領域ROIのY軸方向の物理領域長さYLaである。物理領域長さとは、注目領域ROIの物理的な長さ(データ長)を指している。位置情報113において、注目領域ROIの左上端とは異なる位置の座標が含まれていてもよい。ROI解析部122は、例えば、導出した位置情報113を記憶部に格納する。ROI解析部122は、例えば、注目領域ROIに対して付与された識別子(領域番号)と関連づけて、記憶部に格納する。
【0024】
ROI解析部122は、注目領域ROIごとに、位置情報113として、さらに、例えば、注目領域ROIのX軸方向の出力領域長さXLcや、注目領域ROIのY軸方向の出力領域長さYLcを導出してもよい。出力領域長さとは、例えば、注目領域ROIに対して間引き処理や画素加算などによる解像度変更がなされた後の注目領域ROIの物理的な長さ(データ長)である。ROI解析部122は、例えば、注目領域ROIごとに、位置情報113の他に、例えば、センシングインフォメーション、露光情報、ゲイン情報、AD(Analog-Digital)語長、画像フォーマットなどを導出し、記憶部に格納してもよい。
【0025】
センシングインフォメーションとは、注目領域ROIに含まれる物体についての演算内容や、ROI画像112に対する後段信号処理のための補足情報などを指している。露光情報とは、注目領域ROIの露光時間を指している。ゲイン情報とは、注目領域ROIのゲイン情報を指している。AD語長とは、注目領域ROI内でAD変換された1画素あたりのデータの語長を指している。画像フォーマットとは、注目領域ROIの画像のフォーマットを指している。ROI解析部122は、例えば、撮像画像111に含まれる注目領域ROIの数(ROI数)を導出し、記憶部に格納してもよい。
【0026】
重なり検出部123は、撮像画像111において、撮影対象の複数の物体が特定されたときには、撮像画像111における複数の注目領域ROIの位置情報113に基づいて、2以上の注目領域ROI同士が重なり合う重なり領域(ROO(Region Of Overlap))を検出する。つまり、重なり検出部123は、重なり領域ROOごとに、撮像画像111における重なり領域ROOの位置情報114を導出する。重なり検出部123は、例えば、導出した位置情報114を記憶部に格納する。重なり検出部123は、例えば、導出した位置情報114を重なり領域ROOと対応付けて、記憶部に格納する。重なり領域ROOは、例えば、互いに重なり合う2以上の注目領域ROIにおいて最も小さな注目領域ROIと同じ大きさか、それよりも小さな方形状の領域である。位置情報114は、例えば、重なり領域ROOの左上端座標(Xb,Yb)と、重なり領域ROOのX軸方向の長さと、重なり領域ROOのY軸方向の長さとによって構成されている。重なり領域ROOのX軸方向の長さは、例えば、物理領域長さXLbである。重なり領域ROOのY軸方向の長さは、例えば、物理領域長さYLbである。位置情報114において、注目領域ROIの左上端とは異なる位置の座標が含まれていてもよい。
【0027】
優先度設定部124は、撮像画像111において、注目領域ROIごとに優先度115を付与する。優先度設定部124は、例えば、付与した優先度115を記憶部に格納する。優先度設定部124は、例えば、付与した優先度115を注目領域ROIと対応付けて、記憶部に格納する。優先度設定部124は、注目領域ROIごとに付与されている領域番号とは別に、優先度115を注目領域ROIごとに付与してもよいし、注目領域ROIごとに付与されている領域番号を、優先度115の代わりとしてもよい。優先度設定部124は、例えば、優先度115を注目領域ROIと関連付けて、記憶部に格納してもよいし、注目領域ROIごとに付与されている領域番号を注目領域ROIと関連付けて、記憶部に格納してもよい。
【0028】
優先度115は、各注目領域ROIの識別子であり、撮像画像111における複数の注目領域ROIのいずれに対して重なり領域ROOの割愛が行われたかを判別することの可能な判別情報である。優先度設定部124は、例えば、それぞれが重なり領域ROOを含む2つの注目領域ROIにおいて、一方の注目領域ROIに対して優先度115として1を付与し、他方の注目領域ROIに対して優先度115として2を付与する。この場合には、後述の伝送画像116の作成に際して、優先度115の数値が大きい方の注目領域ROIに対して、重なり領域ROOの割愛が行われる。なお、優先度設定部124は、注目領域ROIごとに付与されている領域番号と同じ番号を、注目領域ROIに対して優先度115として付与してもよい。優先度設定部124は、例えば、各注目領域ROIに付与した優先度115を、ROI画像112と関連づけて、記憶部に格納する。
【0029】
エンコード部125は、各伝送画像116を、エンコードして圧縮像データ120Aを生成する。エンコード部125は、例えば、圧縮像データ120Aの形式として、JPEG規格に準拠した圧縮形式等により各伝送画像116を圧縮する。エンコード部125は、上記の圧縮処理を行う前に、各伝送画像116を生成する。エンコード部125は、撮像画像111から得られた複数のROI画像112において重なり領域ROOの画像118が重複して含まれないように、撮像画像111から得られた複数のROI画像112から画像118を割愛したものである複数の伝送画像116を生成する。
【0030】
エンコード部125は、例えば、注目領域ROIごとに付与されている優先度115に基づいて、複数のROI画像112のいずれに対して画像118の割愛を行うかを決定する。なお、エンコード部125は、例えば、注目領域ROIごとに付与されている領域番号を優先度115として用いることにより、複数のROI画像112のいずれに対して画像118の割愛を行うかを決定してもよい。エンコード部125は、上記のようにして特定されたROI画像112において画像118を割愛したものを、伝送画像116(例えば図3の伝送画像116a2)とする。エンコード部125は、重なり領域ROOを含まないROI画像112や、上記の決定により画像118が割愛されないこととなったROI画像112については、ROI画像112そのものを伝送画像116(例えば図3の伝送画像116a1)とする。
【0031】
画像処理制御部126は、ROI情報120B及びフレーム情報120Cを生成し、送信部140に送信する。ROI情報120Bは、例えば、各位置情報113を含んでいる。ROI情報120Bは、さらに、例えば、各注目領域ROIのデータタイプ、撮像画像111に含まれる注目領域ROIの数、各注目領域ROIの領域番号(又は優先度115)、各注目領域ROIのデータ長、及び各注目領域ROIの画像フォーマットのうち少なくとも1つを含んでいる。フレーム情報120Cは、例えば、フレームごとに付与されるバーチャルチャネルの番号、各注目領域ROIのデータタイプ、ラインごとのペイロード(Payload)長などを含んでいる。データタイプには、例えば、YUVデータ、RGBデータ又はRAWデータなどが含まれている。データタイプには、さらに、例えば、ROI形式のデータ又は通常形式のデータなどが含まれている。ペイロード長は、例えば、ロングパケット(LongPacket)のペイロードに含まれるピクセル数であり、例えば、注目領域ROIごとのピクセル数である。ここで、ペイロードとは、映像送信装置100及び映像受信装置200の間で伝送される主要なデータ(アプリケーションデータ)を指している。ロングパケットとは、パケットヘッダPHとパケットフッタPFとの間に配置されるパケットを指している。
【0032】
送信部140は、画像処理部120,130から入力された種々のデータ(120A,120B,120C,130A)に基づいて伝送データ147Aを生成し、送出する回路である。送信部140は、撮像画像111における各注目領域ROIについてのROI情報120Bをエンベデッドデータ(EmbeddedData)で送出する。送信部140は、さらに、ROIの切り出しを指示する制御信号がカメラ制御インタフェースCCIを介して映像受信装置200から入力された場合に、各注目領域ROIの画像データ(圧縮像データ120A)をロングパケットのペイロードデータ(PayloadData)で送出する。このとき、送信部140は、各注目領域ROIの画像データ(圧縮像データ120A)を互いに共通のバーチャルチャネルで送出する。また、送信部140は、各注目領域ROIの画像データ(圧縮像データ120A)を画像データフレームによって送出するとともに、各注目領域ROIについてのROI情報120Bを画像データフレームのヘッダで送出する。送信部140は、また、通常画像の出力を指示する制御信号がカメラ制御インタフェースCCIを介して映像受信装置200から入力された場合に、通常の画像データ(圧縮像データ130A)をロングパケットのペイロードデータで送出する。
【0033】
送信部140は、例えば、LINK制御部141、ECC生成部142、PH生成部143、EBDバッファ144、ROIデータバッファ145、通常画像データバッファ146及び合成部147を有している。LINK制御部141、ECC生成部142、PH生成部143、EBDバッファ144及びROIデータバッファ145は、ROIの切り出しを指示する制御信号がカメラ制御インタフェースCCIを介して映像受信装置200から入力された場合に、合成部147への出力を行う。通常画像データバッファ146は、通常画像の出力を指示する制御信号がカメラ制御インタフェースCCIを介して映像受信装置200から入力された場合に、合成部147への出力を行う。
【0034】
なお、ROIデータバッファ145が、通常画像データバッファ146を兼ねていてもよい。この場合、送信部140は、ROIデータバッファ145及びROIデータバッファ145のそれぞれの出力端と、合成部147の入力端との間に、ROIデータバッファ145及びROIデータバッファ145のいずれかの出力を選択するセレクタを有していてもよい。
【0035】
LINK制御部141は、例えば、フレーム情報120CをラインごとにECC生成部142及びPH生成部143に出力する。ECC生成部142は、例えば、フレーム情報120Cにおける1ラインのデータ(例えば、バーチャルチャネルの番号、各注目領域ROIのデータタイプ、ラインごとのペイロード長など)に基づいて、そのラインの誤り訂正符号を生成する。ECC生成部142は、例えば、生成した誤り訂正符号をPH生成部143に出力する。PH生成部143は、例えば、フレーム情報120Cと、ECC生成部142で生成された誤り訂正符号とを用いて、1ラインごとにパケットヘッダPHを生成する。このとき、パケットヘッダPHは、例えば、図4に示したように、ロングパケットのペイロードデータのパケットヘッダである。このパケットヘッダPHには、例えば、DI、WC及びECCが含まれている。WCは、映像受信装置200に対してパケットの終わりをワード数で示すための領域である。WCには、例えば、ペイロード長が含まれており、例えば、注目領域ROIごとのピクセル数が含まれている。ECCは、ビットエラーを修正するための値を格納する領域である。ECCには、誤り訂正符号が含まれている。DIは、データ識別子を格納する領域である。DIには、VC(バーチャルチャネル)の番号及びDataType(各注目領域ROIのデータタイプ)が含まれている。VC(バーチャルチャネル)は、パケットのフロー制御のために導入された概念であり、同一のリンクを共用する複数の独立したデータストリームをサポートするためのメカニズムである。PH生成部143は、生成したパケットヘッダPHを合成部147に出力する。
【0036】
EBDバッファ144は、ROI情報120Bを一次的に格納し、所定のタイミングでROI情報120Bをエンベデッドデータとして合成部147に出力する。エンベデッドデータとは、画像データフレーム(後述の図5参照)のヘッダ又はフッタに埋め込むことの可能な追加情報を指している。エンベデッドデータには、例えば、ROI情報120Bが含まれている。
【0037】
ROIデータバッファ145は、圧縮像データ120Aを一次的に格納し、所定のタイミングで圧縮像データ120Aをロングパケットのペイロードデータとして合成部147に出力する。ROIデータバッファ145は、ROIの切り出しを指示する制御信号がカメラ制御インタフェースCCIを介して映像受信装置200から入力された場合に、圧縮像データ120Aをロングパケットのペイロードデータとして合成部147に出力する。通常画像データバッファ146は、圧縮像データ130Aを一次的に格納し、所定のタイミングで圧縮像データ130Aをロングパケットのペイロードデータとして合成部147に出力する。通常画像データバッファ146は、通常画像の出力を指示する制御信号がカメラ制御インタフェースCCIを介して映像受信装置200から入力された場合に、圧縮像データ130Aをロングパケットのペイロードデータとして合成部147に出力する。
【0038】
合成部147は、通常画像の出力を指示する制御信号がカメラ制御インタフェースCCIを介して映像受信装置200から入力された場合に、入力されたデータ(圧縮像データ130A)に基づいて、伝送データ147Aを生成する。合成部147は、生成した伝送データ147Aを、データレーンDLを介して映像受信装置200に出力する。一方、合成部147は、ROIの切り出しを指示する制御信号がカメラ制御インタフェースCCIを介して映像受信装置200から入力された場合に、入力された各種データ(パケットヘッダPH、ROI情報120B、及び圧縮像データ120A)に基づいて、伝送データ147Aを生成する。合成部147は、生成した伝送データ147Aを、データレーンDLを介して映像受信装置200に出力する。つまり、合成部147は、DataType(各注目領域ROIのデータタイプ)をロングパケットのペイロードデータのパケットヘッダPHに含めて送出する。また、合成部147は、各注目領域ROIの画像データ(圧縮像データ120A)を互いに共通のバーチャルチャネルで送出する。
【0039】
伝送データ147Aは、例えば、図5に示したような画像データフレームによって構成されている。画像データフレームは、通常、ヘッダ領域、パケット領域、及びフッタ領域を有している。図5では、便宜的に、フッタ領域の記載が省略されている。伝送データ147Aのフレームヘッダ領域R1には、エンベデッドデータが含まれている。このとき、エンベデッドデータには、ROI情報120Bが含まれている。図5において、伝送データ147Aのパケット領域R2には、1ラインごとに、ロングパケットのペイロードデータが含まれており、さらに、ロングパケットのペイロードデータを挟み込む位置にパケットヘッダPH及びパケットフッタPFが含まれている。さらに、パケットヘッダPHとパケットフッタPFを挟み込む位置にローパワーモードLPが含まれている。
【0040】
このとき、パケットヘッダPHには、例えば、DI、WC及びECCが含まれている。WCには、例えば、ペイロード長が含まれており、例えば、注目領域ROIごとのピクセル数が含まれている。ECCには、誤り訂正符号が含まれている。DIには、VC(バーチャルチャネルの番号)及びDataType(各注目領域ROIのデータタイプ)が含まれている。本実施の形態では、各ラインのVCには、互いに共通のバーチャルチャネルの番号が付与されている。また、図5において、伝送データ147Aのパケット領域R2には、圧縮像データ147Bが含まれている。圧縮像データ147Bは、1つの圧縮像データ120A、又は複数の圧縮像データ120Aによって構成されている。ここで、図5において、パケットヘッダPH寄りのパケット群には、例えば、図3中の伝送画像116a1の圧縮像データ120A(120A1)が含まれており、パケットヘッダPHから離れたパケット群には、例えば、図3中の伝送画像116a2の圧縮像データ120A(120A2)が含まれている。これら2つの圧縮像データ120A1,120A2によって圧縮像データ147Bが構成されている。各ラインのロングパケットのペイロードデータには、圧縮像データ147Bにおける1ライン分のピクセルデータが含まれている。
【0041】
図6は、伝送データ147Aの構成例を表したものである。伝送データ147Aは、例えば、フレームヘッダ領域R1及びパケット領域R2を含んでいる。なお、図6には、フレームヘッダ領域R1の中身が詳細に例示されている。また、図6では、ローパワーモードLPが省略されている。
【0042】
フレームヘッダ領域R1には、例えば、伝送データ147Aの識別子としてのフレーム番号F1が含まれている。フレームヘッダ領域R1は、パケット領域R2に含まれる圧縮像データ147Bについての情報を含んでいる。フレームヘッダ領域R1は、例えば、圧縮像データ147Bに含まれる圧縮像データ120Aの数(ROI数)と、圧縮像データ147Bに含まれる各圧縮像データ120Aに対応するROI画像112についての情報(ROI情報120B)とを含んでいる。
【0043】
合成部147は、例えば、伝送データ147Aのパケット領域R2において、圧縮像データ147Bを、圧縮像データ120Aの画素行ごとに分けて配置する。したがって、伝送データ147Aのパケット領域R2には、重なり領域ROOの画像118に対応する圧縮像データが重複して含まれていない。また、合成部147は、例えば、伝送データ147Aのパケット領域R2において、撮像画像111のうち各伝送画像116と対応しない画素行を割愛している。したがって、伝送データ147Aのパケット領域R2には、撮像画像111のうち各伝送画像116に対応しない画素行は含まれていない。なお、図6のパケット領域R2において、破線で囲んだ箇所が、重なり領域ROOの画像118の圧縮像データに相当する。
【0044】
パケットヘッダPH寄りのパケット群(例えば図6中の1(n))と、パケットヘッダPHから離れたパケット群(例えば図6中の2(1))との境界は、パケットヘッダPH寄りのパケット群(例えば図6中の1(n))の圧縮像データに対応するROI画像112の物理領域長さXLa1によって特定される。パケットヘッダPH寄りのパケット群(例えば図6中の1(n))に含まれる重なり領域ROOの画像118に対応する圧縮像データにおいて、パケットの開始位置は、パケットヘッダPHから離れたパケット群(例えば図6中の2(1))に対応するROI画像112の物理領域長さXLa2によって特定される。
【0045】
合成部147は、例えば、伝送データ147Aのパケット領域R2において、1ラインごとに、ロングパケットのペイロードデータを生成する際に、ロングパケットのペイロードデータに、例えば、圧縮像データ147Bにおける1ライン分のピクセルデータの他に、例えば、図7に示したように、ROI情報120Bを含めてもよい。つまり、合成部147は、ROI情報120Bをロングパケットのペイロードデータに含めて送出してもよい。このとき、ROI情報120Bは、例えば、図7(A)~図7(K)に示したように、撮像画像111に含まれる注目領域ROIの数(ROI数)、各注目領域ROIの領域番号(又は優先度115)、各注目領域ROIのデータ長、及び各注目領域ROIの画像フォーマットのうち少なくとも1つを含んでいる。ROI情報120Bは、ロングパケットのペイロードデータにおいて、パケットヘッダPH側の端部(つまり、ロングパケットのペイロードデータの先頭)に配置されることが好ましい。
【0046】
(映像受信装置200)
次に、映像受信装置200について説明する。図8は、映像受信装置200の構成の一例を表したものである。図9は、映像受信装置200におけるROI画像223Aの生成手順の一例を表したものである。映像受信装置200は、映像送信装置100と共通の規格(例えば、MIPICSI-2規格、MIPICSI-3規格、又は、MIPIDSI規格)で信号を受信する装置である。映像受信装置200は、例えば、受信部210及び情報処理部220を有している。受信部210は、映像送信装置100から出力された伝送データ147Aを、データレーンDLを介して受信し、受信した伝送データ147Aに対して所定の処理を行うことにより、種々のデータ(214A,215A,215B)を生成し、情報処理部220に出力する回路である。情報処理部220は、受信部210から受信した種々のデータ(214A,215A)に基づいて、ROI画像223Aを生成したり、受信部210から受信したデータ(215B)に基づいて、通常画像224Aを生成したりする回路である。
【0047】
受信部210は、例えば、ヘッダ分離部211、ヘッダ解釈部212、ペイロード分離部213、EBD解釈部214及びROIデータ分離部215を有している。
【0048】
ヘッダ分離部211は、伝送データ147Aを、データレーンDLを介して映像送信装置100から受信する。つまり、ヘッダ分離部211は、撮像画像111における各注目領域ROIについてのROI情報120Bをエンベデッドデータに含むとともに、各注目領域ROIの画像データ(圧縮像データ120A)をロングパケットのペイロードデータに含む伝送データ147Aを受信する。ヘッダ分離部211は、受信した伝送データ147Aをフレームヘッダ領域R1とパケット領域R2とに分離する。ヘッダ解釈部212は、フレームヘッダ領域R1に含まれるデータ(具体的にはエンベデッドデータ)に基づいて、パケット領域R2に含まれるロングパケットのペイロードデータの位置を特定する。ペイロード分離部213は、ヘッダ解釈部212によって特定されたロングパケットのペイロードデータの位置に基づいて、パケット領域R2に含まれるロングパケットのペイロードデータを、パケット領域R2から分離する。
【0049】
EBD解釈部214は、エンベデッドデータをEBDデータ214Aとして、情報処理部220に出力する。EBD解釈部214は、さらに、エンベデッドデータに含まれるデータタイプから、ロングパケットのペイロードデータに含まれる画像データがROIの画像データ116の圧縮像データ120Aであるか、又は、通常画像データの圧縮像データ130Aであるか判別する。EBD解釈部214は、判別結果をROIデータ分離部215に出力する。
【0050】
ロングパケットのペイロードデータに含まれる画像データがROIの画像データ116の圧縮像データ120Aである場合、ROIデータ分離部215は、ロングパケットのペイロードデータをペイロードデータ215Aとして、情報処理部220(具体的にはROIデコード部222)に出力する。ペイロードデータに含まれる画像データが通常画像データの圧縮像データ130Aである場合、ROIデータ分離部215は、ロングパケットのペイロードデータをペイロードデータ215Bとして、情報処理部220(具体的には通常画像デコード部224)に出力する。ロングパケットのペイロードデータにROI情報120Bが含まれている場合には、ペイロードデータ215Aは、ROI情報120Bと、圧縮像データ147Bのうち1ライン分のピクセルデータとを含んでいる。
【0051】
情報処理部220は、EBDデータ214Aに含まれるエンベデッドデータから、ROI情報120Bを抽出する。情報処理部220は、情報抽出部221で抽出したROI情報120Bに基づいて、受信部210で受信した伝送データ147Aに含まれるロングパケットのペイロードデータから、撮像画像111における各注目領域ROIの画像(ROI画像112)を抽出する。情報処理部220は、例えば、情報抽出部221、ROIデコード部222、ROI画像生成部223及び通常画像デコード部224を有している。
【0052】
通常画像デコード部224は、ペイロードデータ215Bをデコードし、通常画像224Aを生成する。ROIデコード部222は、ペイロードデータ215Aに含まれる圧縮像データ147Bをデコードし、画像データ222Aを生成する。この画像データ222Aは、1又は複数の伝送画像116によって構成されている。
【0053】
情報抽出部221は、EBDデータ214Aに含まれるエンベデッドデータから、ROI情報120Bを抽出する。情報抽出部221は、例えば、EBDデータ214Aに含まれるエンベデッドデータから、例えば、撮像画像111に含まれる注目領域ROIの数、各注目領域ROIの領域番号(又は優先度115)、各注目領域ROIのデータ長、及び各注目領域ROIの画像フォーマットを抽出する。つまり、伝送データ147Aは、当該伝送データ147Aから得られる複数の伝送画像116のいずれに対して重なり領域ROOの画像118の割愛が行われたかを判別することの可能な判別情報として、各伝送画像116に対応する注目領域ROIの領域番号(又は優先度115)を含んでいる。
【0054】
ROI画像生成部223は、情報抽出部221で得られたROI情報120Bに基づいて、2以上の注目領域ROI同士が重なり合う重なり領域ROOを検出する。
【0055】
情報抽出部221が、例えば、EBDデータ214Aに含まれるエンベデッドデータから、ROI画像112a1に対応する注目領域ROIの座標(例えば左上端座標(Xa1,Ya1))、長さ(例えば物理領域長さXLa1,YLa1)及び領域番号1(又は優先度115(=1))を抽出する。情報抽出部221が、さらに、例えば、EBDデータ214Aに含まれるエンベデッドデータから、ROI画像112a2に対応する注目領域ROIの座標(例えば左上端座標(Xa2,Ya2))、長さ(例えば物理領域長さXLa2,YLa2)及び領域番号2(又は優先度115(=2))を抽出する。
【0056】
このとき、ROI画像生成部223は、抽出したこれらの情報(以下、「抽出情報221A」と称する。)に基づいて、重なり領域ROOの位置情報114を導出する。ROI画像生成部223は、上記の重なり領域ROOの位置情報114として、例えば、重なり領域ROOの座標(例えば左上端座標(Xb1,Yb1))及び長さ(例えば物理領域長さXLb1,YLb1)を導出する。
【0057】
なお、ROI画像生成部223は、EBDデータ214Aに含まれるエンベデッドデータからROI情報120Bを取得する代わりに、ペイロードデータ215AからROI情報120Bを取得してもよい。この場合、ROI画像生成部223は、ペイロードデータ215Aに含まれるROI情報120Bに基づいて、2以上の注目領域ROI同士が重なり合う重なり領域ROOを検出してもよい。また、ROI画像生成部223は、ペイロードデータ215Aに含まれるROI情報120Bから、抽出情報221Aを抽出してもよく、そのようにして抽出した抽出情報221Aに基づいて、重なり領域ROOの位置情報114を導出してもよい。
【0058】
ROI画像生成部223は、さらに、画像データ222Aと、抽出情報221Aと、重なり領域ROOの位置情報114とに基づいて、撮像画像111における各注目領域ROIの画像(ROI画像112a1,112a2)を生成する。ROI画像生成部223は、生成した画像をROI画像223Aとして出力する。
【0059】
[手順]
次に、図3図9を参考にして、映像伝送システム1におけるデータ伝送の手順の一例について説明する。
【0060】
まず、撮像部110は、撮像により得られた撮像画像111(デジタルの画像データ)を画像処理部120に出力する。ROI切り出し部121は、撮像部110から入力された撮像画像111に含まれる2つの注目領域ROI1,ROI2を特定する。ROI切り出し部121は、撮像画像111から、各注目領域ROI1,ROI2の画像(ROI画像112a1,112a2)を切り出す。ROI切り出し部121は、注目領域ROI1に対して識別子として領域番号1を付与し、注目領域ROI2に対して識別子として領域番号2を付与する。
【0061】
ROI解析部122は、注目領域ROIごとに、撮像画像111における注目領域ROIの位置情報113を導出する。ROI解析部122は、注目領域ROI1に基づいて、注目領域ROI1の左上端座標(Xa1,Ya1)と、注目領域ROI1のX軸方向の長さ(XLa1)と、注目領域ROI1のY軸方向の長さ(YLa1)とを導出する。ROI解析部122は、注目領域ROI2に基づいて、注目領域ROI2の左上端座標(Xa2,Ya2)と、注目領域ROI2のX軸方向の長さ(XLa2)と、注目領域ROI2のY軸方向の長さ(YLa2)とを導出する。
【0062】
重なり検出部123は、撮像画像111における2つの注目領域ROI1,ROI2の位置情報113に基づいて、2つの注目領域ROI1,ROI2同士が重なり合う重なり領域ROOを検出する。つまり、重なり検出部123は、撮像画像111における重なり領域ROOの位置情報114を導出する。重なり検出部123は、撮像画像111における重なり領域ROOの位置情報114として、重なり領域ROOの左上端座標(Xb1,Yb1)と、重なり領域ROOのX軸方向の長さ(XLb1)と、重なり領域ROOのY軸方向の長さ(YLb1)とを導出する。
【0063】
優先度設定部124は、2つの注目領域ROI1,ROI2において、一方の注目領域ROI1に対して優先度115として1を付与し、他方の注目領域ROI2に対して優先度115として2を付与する。
【0064】
エンコード部125は、2つの注目領域ROI1,ROI2において重なり領域ROOの画像118が重複して含まれないように、撮像画像111から得られた2つのROI画像112a1,112a2から画像118を割愛したものである2つの伝送画像116a1,116a2を生成する。
【0065】
エンコード部125は、2つの注目領域ROI1,ROI2の領域番号(又は優先度115)に基づいて、2つのROI画像112a1,112a2のいずれに対して画像118の割愛を行うかを決定する。エンコード部125は、2つの注目領域ROI1,ROI2において、領域番号(又は優先度115)の大きい方である注目領域ROI2に対応するROI画像112a2に対して画像118の割愛を行い、これにより、伝送画像116a2を生成する。エンコード部125は、2つの注目領域ROI1,ROI2において、領域番号(又は優先度115)の小さな方である注目領域ROI1に対応するROI画像112a1については、ROI画像112a1そのものを伝送画像116a1とする。
【0066】
画像処理制御部126は、ROI情報120B及びフレーム情報120Cを生成し、送信部140に送信する。送信部140は、画像処理部120,130から入力された種々のデータ(120A,120B,120C,130A)に基づいて伝送データ147Aを生成する。送信部140は、生成した伝送データ147Aを、データレーンDLを介して映像受信装置200に送出する。
【0067】
受信部210は、映像送信装置100から出力された伝送データ147Aを、データレーンDLを介して受信する。受信部210は、受信した伝送データ147Aに対して所定の処理を行うことにより、EBDデータ214A及びペイロードデータ215Aを生成し、情報処理部220に出力する。
【0068】
情報抽出部221は、EBDデータ214Aに含まれるエンベデッドデータから、ROI情報120Bを抽出する。情報抽出部221は、EBDデータ214Aに含まれるエンベデッドデータから、ROI画像112a1に対応する注目領域ROIの座標(例えば左上端座標(Xa1,Ya1))、長さ(例えば物理領域長さXLa1,YLa1)及び領域番号1(又は優先度115(=1))を抽出する。情報抽出部221は、さらに、ROI画像112a2に対応する注目領域ROIの座標(例えば左上端座標(Xa2,Ya2))、長さ(例えば物理領域長さXLa2,YLa2)及び領域番号2(又は優先度115(=2))を抽出する。ROIデコード部222は、ペイロードデータ215Aに含まれる圧縮像データ147Bをデコードし、画像データ222Aを生成する。
【0069】
ROI画像生成部223は、抽出したこれらの情報(抽出情報221A)に基づいて、重なり領域ROOの位置情報114を導出する。ROI画像生成部223は、上記の重なり領域ROOの位置情報114として、例えば、重なり領域ROOの座標(例えば左上端座標(Xb1,Yb1))及び長さ(例えば物理領域長さXLb1,YLb1)を導出する。ROI画像生成部223は、さらに、画像データ222Aと、抽出情報221Aと、重なり領域ROOの位置情報114とに基づいて、撮像画像111における各注目領域ROIの画像(ROI画像112a1,112a2)を生成する。
【0070】
[効果]
次に、本実施の形態に係る映像伝送システム1の効果について説明する。
【0071】
近年、データ量の大きなデータを大量に送信する用途が増えてきている。伝送システムに大きな負荷がかかりやすく、最悪の場合には、伝送システムがダウンし、データ伝送が行えなくなるおそれがある。
【0072】
従来では、伝送システムのダウンを避けるために、例えば、撮影した画像を全て送信するのではなく、撮影対象の物体を特定し、特定した物体を切り出した一部の画像だけを送信することが行われている。
【0073】
ところで、イメージセンサからアプリケーションプロセッサへの伝送に用いられる方式として、MIPICSI-2が用いられることがある。この方式を用いてROIを伝送しようとした場合、様々な制約により、ROIの伝送が容易ではないことがある。
【0074】
一方、本実施の形態では、撮像画像111における各注目領域ROIについてのROI情報120Bがエンベデッドデータで送出されるとともに、各注目領域ROIの画像データがロングパケットのペイロードデータで送出される。これにより、映像送信装置100から送出された伝送データ147Aを受信した装置(映像受信装置200)において、伝送データ147Aから、各注目領域ROIの画像データ(ROI画像112)を容易に抽出することができる。その結果、様々な制約の下でも、注目領域ROIの伝送を行うことができる。
【0075】
また、本実施の形態では、各注目領域ROIの画像データ(圧縮像データ120A)が互いに共通のバーチャルチャネルで送出される。これにより、同一パケットの中で複数のROI画像112を送ることができるので、複数のROI画像112を送る間に、LPモードに入る必要がなく、高い伝送効率を得ることができる。
【0076】
また、本実施の形態では、各注目領域ROIのデータタイプがロングパケットのペイロードデータのパケットヘッダPHに含めて送出される。これにより、エンベデッドデータにアクセスしなくても、ロングパケットのペイロードデータのパケットヘッダPHにアクセスするだけで、各注目領域ROIのデータタイプが得られる。これにより、映像受信装置200における処理速度を速くすることができるので、高い伝送効率を得ることができる。
【0077】
また、本実施の形態において、ROI情報120Bがロングパケットのペイロードデータに含めて送出される場合には、エンベデッドデータにアクセスしなくても、ロングパケットのペイロードデータにアクセスするだけで、ROI情報120Bが得られる。これにより、映像受信装置200における処理速度を速くすることができるので、高い伝送効率を得ることができる。
【0078】
また、本実施の形態では、伝送データ147Aに含まれるエンベデッドデータから、各注目領域ROIについてのROI情報120Bが抽出されるとともに、抽出されたROI情報120Bに基づいて、伝送データ147Aに含まれるロングパケットのペイロードデータから、各注目領域ROIの画像(ROI画像112)が抽出される。これにより、伝送データ147Aから、各注目領域ROIの画像(ROI画像112)を容易に抽出することができる。その結果、様々な制約の下でも、注目領域ROIの伝送を行うことができる。
【0079】
2.本開示の前提技術2:
撮像画像から切り出した一部(形状が非矩形状)の注目領域(ROI)を伝送する技術について、図1から図9を参照しつつ図10から図12を用いて説明する。すなわち、方形状(矩形状)以外の形状を有する撮影対象の物体の画像を送受信する技術について、説明する。図10は、撮像画像111において特定された物体が配置された領域を模式的に示す図である。なお、図10では、理解を容易にするため、15行×23列の撮像素子で構成された撮像領域で撮像された撮像画像111が模式的に図示されている。図11は、特定された物体に対して設定されたROI領域の一例を示す図である。
【0080】
前提技術2では、前提技術1と同様に、ROIの切り出しを指示する制御信号がカメラ制御インタフェースCCIを介して映像受信装置200から映像送信装置100に入力された場合に、撮像部110から入力された撮像画像111に対して所定の処理を行う場合について説明する。しかしながら、前提技術2では、映像送信装置100、すなわち送信側がROIの切り出しの座標指示する場合も適用できある。この場合、送信側は例えば、受信側から送出されるROIで取得すべき「人物」や「物体」等の情報を受信して切り出しの座標を判断および指示するように構成される。
【0081】
ROIの切り出しを指示する制御信号がカメラ制御インタフェースCCIを介して映像受信装置200から入力される。これにより、図10に示すように、ROI切り出し部121は、撮像画像111に含まれる撮影対象の4つの物体1~4を特定する。物体1は例えば、撮像画像111内の左上領域の一部を占める矩形状を有している。物体2は例えば、撮像画像111内で物体1の右側の一部の領域を占め、矩形の上側の両側角部及び下辺の一部が欠落した形状を有している。物体3は例えば、撮像画像111内で物体2の下方の一部の領域を占め、矩形の四隅が欠落した形状を有している。物体4は例えば、撮像画像111内で物体3の下方の一部の領域を占め、矩形の上側の両側角部が欠落した形状を有している。物体3及び物体4は一部が重なり合っている。
【0082】
図11に示すように、ROI切り出し部121(図2参照)は、特定した物体1~4をそれぞれ含む最小の矩形を注目領域ROI1~ROI4として設定する。ROI切り出し部121は、物体1に対して注目領域ROI1を設定し、ROI画像112a1を切り出す。また、ROI切り出し部121は、物体2に対して注目領域ROI2を設定し、ROI画像112a2を切り出す。また、ROI切り出し部121は、物体3に対して注目領域ROI3を設定し、ROI画像112a3を切り出す。さらに、ROI切り出し部121は、物体4に対して注目領域ROI4を設定し、ROI画像112a4を切り出す。
【0083】
ROI切り出し部121は、注目領域ROI1と、注目領域ROI1に付与した領域番号「1」とを関連付けて記憶部に格納する。ROI切り出し部121は、注目領域ROI2と、注目領域ROI2に付与した領域番号「2」とを関連付けて記憶部に格納する。ROI切り出し部121は、注目領域ROI3と、注目領域ROI3に付与した領域番号「3」とを関連付けて記憶部に格納する。ROI切り出し部121は、注目領域ROI4と、注目領域ROI4に付与した領域番号「4」とを関連付けて記憶部に格納する。
【0084】
ROI解析部122(図2参照)は、注目領域ROI1~ROI4のそれぞれの位置情報を導出する。ROI解析部122は、注目領域ROI1の位置情報として例えば、X軸方向の物理領域長さXLa1及びY軸方向の物理領域長さYLa1を導出する。ROI解析部122は、注目領域ROI2の位置情報として例えば、X軸方向の物理領域長さXLa2及びY軸方向の物理領域長さYLa2を導出する。ROI解析部122は、注目領域ROI3の位置情報として例えば、X軸方向の物理領域長さXLa3及びY軸方向の物理領域長さYLa3を導出する。ROI解析部122は、注目領域ROI4の位置情報として例えば、X軸方向の物理領域長さXLa4及びY軸方向の物理領域長さYLa4を導出する。ROI解析部122は、注目領域ROIごとに、位置情報113として、さらに、例えば、注目領域ROIのX軸方向の出力領域長さXLcや、注目領域ROIのY軸方向の出力領域長さYLcを導出してもよい。
【0085】
ROI解析部122は、注目領域ROIのそれぞれのX軸方向及びY軸方向の長さを導出することによって、後段への情報として注目領域ROI1~ROI4のそれぞれの大きさや総データ量を導出する。これにより、後段に相当する映像受信装置200はメモリ領域を確保できる。
【0086】
ROI解析部122は、撮影対象の物体及び注目領域の形状が一致していない場合には、注目領域ROIの位置情報ではなく、ROI画像112a1~112a4の位置情報を導出するように構成されている。ROI解析部122は、ROI画像112a1~112a4の位置情報として、各行の左端座標(xn,yn)及びX軸方向の物理領域長さXLnを導出する。また、ROI画像112a2の2行目のようにROI画像が分離している場合には、ROI解析部122は、分離している部分のそれぞれについて位置情報を導出する。ROI解析部122は、注目領域ROI1~ROI4の領域番号と、ROI画像112a1~112a4の位置情報とを対応付けて記憶部に格納する。
【0087】
また、ROI解析部122は、例えば、注目領域ROI1~ROI4ごとに、位置情報の他に、例えば、センシングインフォメーション、露光情報、ゲイン情報、AD語長、画像フォーマットなどを導出し、領域番号と対応付けて記憶部に格納してもよい。
【0088】
重なり検出部123(図2参照)は、撮影対象の物体が矩形状の場合には、注目領域同士が重なり合う領域ではなく、ROI画像同士が重なり合う領域を重なり領域として導出する。図11に示すように、重なり検出部123は、ROI画像112a3及びROI画像123a4が重なり合う領域として重なり領域ROOを導出する。重なり検出部123は、導出した重なり領域ROOを注目領域ROI3,ROI4の位置情報のそれぞれに対応付けて記憶部に格納する。
【0089】
優先度設定部124(図2参照)は、優先度「1」を注目領域ROI1に付与し、優先度1を注目領域ROI1に対応付けて記憶部に格納する。優先度設定部124は、優先度「1」よりも優先度が低い優先度「2」を注目領域ROI2に付与し、優先度2を注目領域ROI2に対応付けて記憶部に格納する。優先度設定部124は、優先度「2」よりも優先度が低い優先度「3」を注目領域ROI3に付与し、優先度3を注目領域ROI3に対応付けて記憶部に格納する。優先度設定部124は、優先度「3」よりも優先度が低い優先度「4」を注目領域ROI4に付与し、優先度4を注目領域ROI4に対応付けて記憶部に格納する。
【0090】
エンコード部125(図2参照)は、ROI画像112a1~112a4のそれぞれについて伝送画像を生成する。注目領域ROI4は注目領域ROI3よりも優先度が低いので、エンコード部125は、ROI画像112a4から重なり領域ROOを割愛して伝送画像を生成する。
【0091】
画像処理制御部126(図2参照)は、ROI情報及びフレーム情報を生成し、送信部140(図2参照)に送信する。ROI情報には例えば、ROI画像112a1~112a4のそれぞれの位置情報が含まれる。ROI情報にはその他に、上述の撮影対象の物体が矩形状の場合と同様の情報(例えば注目領域ROI1~ROI4のそれぞれデータタイプ、撮像画像111に含まれる注目領域ROI1~ROI4の数、注目領域ROI1~ROI4の領域番号及び優先度など)が含まれる。フレーム情報には例えば、注目領域ROI1~ROI4のデータタイプなど、上述の撮影対象の物体が矩形状の場合と同様の情報が含まれる。
【0092】
送信部140(図2参照)に設けられたLINK制御部141は、画像処理制御部126から入力されるフレーム情報及びROI情報をラインごとにECC生成部142及びPH生成部143(いずれも図2参照)に出力する。ECC生成部142は例えば、フレーム情報における1ラインのデータ(例えば、バーチャルチャネルの番号、注目領域ROI1~ROI4のそれぞれのデータタイプ、ラインごとのペイロード長など)に基づいて、そのラインの誤り訂正符号を生成する。ECC生成部142は例えば、生成した誤り訂正符号をPH生成部143に出力する。PH生成部143は例えば、フレーム情報と、ECC生成部142で生成された誤り訂正符号とを用いて、1ラインごとにパケットヘッダPH(図4参照)を生成する。
【0093】
EBDバッファ144(図2参照)は、ROI情報を一次的に格納し、所定のタイミングでROI情報をエンベデッドデータとして合成部147(図2参照)に出力する。
【0094】
ROIデータバッファ145(図2参照)は、エンコード部125から入力される圧縮像データを一次的に格納し、例えばROIの切り出しを指示する制御信号がカメラ制御インタフェースCCIを介して映像受信装置200から入力された場合に、圧縮像データ120Aをロングパケットのペイロードデータとして合成部147に出力する。
【0095】
合成部147は、ROIの切り出しを指示する制御信号がカメラ制御インタフェースCCIを介して映像受信装置200から入力された場合に、入力された各種データ(パケットヘッダPH、ROI情報及びROIデータバッファ145を介してエンコード部125から入力された圧縮像データ)に基づいて、伝送データ147Aを生成する。合成部147は、生成した伝送データ147Aを、データレーンDLを介して映像受信装置200に出力する。つまり、合成部147は、注目領域ROI1~ROI4のそれぞれのデータタイプをロングパケットのペイロードデータのパケットヘッダPHに含めて送出する。また、合成部147は、注目領域ROI1~ROI4のそれぞれの画像データ(圧縮像データ)を互いに共通のバーチャルチャネルで送出する。
【0096】
撮影対象の物体が矩形状でない場合、ROI画像112a1~112a4の位置情報は、パケットヘッダPH又はロングパケットのペイロードデータに含められる。ROI画像112a1~112a4の位置情報は、PH生成部143によってパケットヘッダPHに含められる。一方、ROI画像112a1~112a4の位置情報は、合成部147によってロングパケットのペイロードデータに含められる。
【0097】
図12は、ROI画像112a1~112a4の位置情報がロングパケットのペイロードデータに含められている伝送データ147Aの構成例を示す図である。図12に示すように、伝送データ147Aは例えば、フレームヘッダ領域R1及びパケット領域R2を含んでいる。なお、図12には、フレームヘッダ領域R1の中身が詳細に例示されている。また、図12では、ローパワーモードLPが省略されている。
【0098】
フレームヘッダ領域R1には例えば、伝送データ147Aの識別子としてのフレーム番号F1が含まれている。フレームヘッダ領域R1は、パケット領域R2に含まれる圧縮像データについての情報を含んでいる。フレームヘッダ領域R1は例えば、圧縮像データの数(ROI数)と、各圧縮像データに対応するROI画像112a1~112a4のそれぞれについての情報(ROI情報)とを含んでいる。ROI情報は、領域番号、物理領域長さ、矩形出力領域大きさ、優先度、露光情報、ゲイン情報、AD語長及び画像フォーマットを含んでいる。物理領域長さは、ROI画像の最大長さであり、矩形出力領域大きさは、注目領域ROIの大きさである。
【0099】
図12中に示す「Info」は、ロングパケットのペイロードに格納される領域情報を示している。ROI画像112a1~112a4の位置情報は、例えば「info」に格納される。ROI画像112a1~112a4の位置情報は、ロングパケットのペイロードの先頭部分に格納される。ROI画像を構成し連続する各画素行のX軸方向の物理領域長さが同じであり、かつ当該各画素行に異なる領域番号のROI画像が含まれていない場合には、当該各画素行のうちの2行目以降の画素行の画像データを含むロングパケットのペイロードには、領域情報「info」が格納されていなくてもよい。本例では、ROI画像112a1は、全ての画素行のうちの連続する1行目から4行目の画素行においてX軸方向の物理領域長さが同じであり、当該1行目から4行目の画素行には、異なる領域番号のROI画像が含まれていない。このため、ROI画像112a1を構成し連続する1行目から4行目の画素行のうちの2行目以降に相当する2行目から4行目の画素行の画像データを含むそれぞれのロングパケットのペイロードには、領域情報「info」が格納されていない。また、本例では、ROI画像112a4は、全ての画素行のうちの連続する2行目及び3行目の画素行においてX軸方向の物理領域長さが同じであり、当該2行目及び3行目の画素行には、異なる領域番号のROI画像が含まれていない。このため、ROI画像112a4を構成し連続する2行目及び3行目の画素行のうちの2行目以降に相当する3行目の画素行の画像データを含むロングパケットのペイロードには、領域情報「info」が格納されていない。なお、X軸方向の物理領域長さが同じであり、かつ当該各画素行に異なる領域番号のROI画像が含まれていない場合でも、各行のペイロードに領域情報「info」が格納されていてもよい。
【0100】
合成部147は例えば、伝送データ147Aのパケット領域R2において、ROI画像112a1~112a4のそれぞれを圧縮して生成された圧縮像データを画素行ごとに分けて配置する。図12中に示す「1」は、ロングパケットのペイロードに格納されたROI画像112a1の圧縮像データを示している。図12中に示す「2」は、ロングパケットのペイロードに格納されたROI画像112a2の圧縮像データを示している。図12中に示す「3」はROI画像112a3の圧縮像データを示している。図12中に示す「4」は、ロングパケットのペイロードに格納されたROI画像112a4の圧縮像データを示している。なお、図12では、理解を容易にするため、各圧縮像データが区切られて示されているが、ロングパケットのペイロードに格納されるデータに区切りはない。伝送データ147Aのパケット領域R2には、重なり領域ROOの画像に対応する圧縮像データ112bが重複して含まれていない。また、合成部147は、例えば、伝送データ147Aのパケット領域R2において、撮像画像111のうち各伝送画像と対応しない画素行を割愛している。したがって、伝送データ147Aのパケット領域R2には、撮像画像111のうち各伝送画像に対応しない画素行は含まれていない。
【0101】
次に、伝送データ147Aを受信した場合の映像受信装置200の動作について説明する。
受信部210に設けられたヘッダ分離部211(いずれも図8参照)は、伝送データ147Aを、データレーンDLを介して映像送信装置100から受信する。つまり、ヘッダ分離部211は、撮像画像111における注目領域ROI1~ROI4についてのROI情報をエンベデッドデータに含むとともに、注目領域ROI1~ROI4の画像データ(圧縮像データ)をロングパケットのペイロードデータに含む伝送データ147Aを受信する。ヘッダ分離部211は、受信した伝送データ147Aをフレームヘッダ領域R1とパケット領域R2とに分離する。
【0102】
ヘッダ解釈部212(図8参照)は、フレームヘッダ領域R1に含まれるデータ(具体的にはエンベデッドデータ)に基づいて、パケット領域R2に含まれるロングパケットのペイロードデータの位置を特定する。
【0103】
ペイロード分離部213(図8参照)は、ヘッダ解釈部212によって特定されたロングパケットのペイロードデータの位置に基づいて、パケット領域R2に含まれるロングパケットのペイロードデータをパケット領域R2から分離する。
【0104】
EBD解釈部214は、エンベデッドデータをEBDデータとして、情報処理部220(図8参照)に出力する。EBD解釈部214は、さらに、エンベデッドデータに含まれるデータタイプから、ロングパケットのペイロードデータに含まれる画像データがROIの画像データ116の圧縮像データであるか、又は、通常画像データの圧縮像データであるか判別する。EBD解釈部214は、判別結果をROIデータ分離部215(図8参照)に出力する。
【0105】
ROIデータ分離部215は、ロングパケットのペイロードデータに含まれる画像データがROIの画像データが入力されると、ロングパケットのペイロードデータをペイロードデータとして、情報処理部220(具体的にはROIデコード部222(図8参照))に出力する。ROI情報が含まれているロングパケットのペイロードデータには、ROI情報と圧縮像データのうち1ライン分のピクセルデータとが含まれている。
【0106】
情報処理部220に設けられた情報抽出部221(図8参照)は、EBD解釈部214から入力されるEBDデータに含まれるエンベデッドデータから、撮像画像111に含まれる注目領域ROI1~ROI4の数(本例では4つ)、注目領域ROI1~ROI4の領域番号1~4及び優先度1から4、注目領域ROI1~ROI4のそれぞれのデータ長、並びに注目領域ROI1~ROI4のそれぞれの画像フォーマットを抽出する。さらに、情報抽出部221は、当該エンベデッドデータから、ROI画像112a1~112a4の位置情報を抽出する。
【0107】
ROIデコード部222は、ペイロードデータに含まれている圧縮像データ147Bをデコードし、ROI画像112a1~112a4の位置情報を抽出するとともに、画像データ(伝送画像によって構成)を生成する。ROIデコード部222は、例えば6行目の画素行に対応するペイロードデータが入力された場合、当該ペイロードデータから、ROI画像112a1の1つの位置情報と、ROI画像112a2の2つの位置情報とを抽出し、6行目の画素行に対応するROI画像112a1,112b1の画像データ(伝送画像)をそれぞれ生成する。
【0108】
ROIデコード部222は、例えば10行目の画素行に対応するペイロードデータが入力された場合、当該ペイロードデータから、ROI画像112a3の1つの位置情報と、ROI画像112a4の1つの位置情報とを抽出し、ROI画像112a3,112b4の画像データ(伝送画像)をそれぞれ生成する。
【0109】
ROI画像生成部223(図8参照)は、情報抽出部221で得られたROI情報、ROIデコード部222で抽出されたROI画像112a1~112a4の位置情報及びROIデコード部222で生成された伝送画像に基づいて、撮像画像111における注目領域ROI1~ROI4のROI画像112a1~112a4を生成する。ROI画像生成部223は、例えば6行目の画素行に対応するペイロードデータから抽出されたROI画像112a1の1つの位置情報及びROI画像112a2の2つの位置情報並びにそれらの伝送画像が入力された場合、X軸方向に延在する5画素分のROI画像112a1と、当該ROI画像112a1とは5画素分離れた位置でX軸方向に延在する4画素分のROI画像112a2と、当該ROI画像112a2から2画素分離れた位置でX軸方向に延在する2画素分のROI画像112a2とを生成する(図10参照)。
【0110】
また、ROI画像生成部223は、情報抽出部221で得られたROI情報に基づいて、注目領域ROI3及び注目領域ROI4同士が重なり合う重なり領域ROOを検出する。ROI画像生成部223は、検出した重なり領域ROOと、10行目の画素行に対応するペイロードデータから抽出されたROI画像112a3,112a4のそれぞれ位置情報と、伝送画像とに基づいて、X軸方向に延在する4画素分のROI画像112a3と、当該ROI画像112a3に1画素分が重なった状態でX軸方向に延在する3画素分のROI画像112a4とを生成する(図10参照)。
【0111】
ROI画像生成部223は、生成した画像をROI画像として後段の装置(不図示)に出力する。
【0112】
このようにして、映像送信装置100及び映像受信装置200は、撮影対象の物体が矩形以外の形状を有していても、ROI画像として送受信することができる。
【0113】
3.本開示の実施形態におけるシェーディング補正処理の原理:
次に、本開示の実施形態におけるシェーディング補正処理の原理について図13から図15を用いて説明する。図13は、シェーディング補正処理の対象となる撮像画像に含まれるROI領域の一例を示す図である。図14は、シェーディング補正処理に用いられる補正値テーブルの一例を示す図である。また、図15は本開示におけるシェーディング補正処理を模式的に示す図である。
【0114】
図13に示すように、撮像画像αには3つの注目領域(注目領域ROI0~2)が含まれている。例えばレンズを用いて撮像された画像(本例では撮像画像α)には、光源の向きやレンズ収差などの影響により、画像中央部に比べて画像周辺部が暗くなる現象(輝度ムラや濃度ムラ)が生じる場合がある。この現象を解消するための方法としてシェーディング補正がある。
【0115】
シェーディング補正処理では、例えば撮像画像内の領域に応じて撮像画像の輝度を調整(増幅)することで、輝度ムラや濃度ムラなどを補正して画像の輝度を均一化することができる。このため、シェーディング補正処理では、撮像画像内の領域に応じて輝度の増幅度合を調整する。例えば、撮像画像の周辺部は相対的に輝度が低くなるため、輝度の増幅度合を大きくする。また、撮像画像の中央部は相対的に輝度が高くなるため、輝度の増幅度合を小さくするか、または増幅せずに撮像時の輝度を維持する。したがって、撮像画像全体に対するシェーディング補正処理では、撮像画像内の領域に応じたシェーディング補正値(輝度の増幅に用いる補正値)に基づいて撮像画像内の各領域の輝度を増幅する。これにより、撮像画像全体の輝度が均一化される。
【0116】
しかしながら、撮像画像内の注目領域(ROI)については、都度切り出される範囲および大きさが不明である。このため、注目領域についてシェーディング補正を行う場合、当該注目領域が撮像画像内のいずれの領域に位置しているかによって、輝度の増幅度合い、つまりシェーディング補正値を判定する必要がある。
【0117】
例えば、注目領域が撮像画像内の周辺部に該当するか、または撮像画像内の中央部に該当するかによって、対応するシェーディング補正値が異なる。このため、撮像画像内において位置及びサイズが任意に選択される注目領域では、撮像画像(本例では、撮像画像α)全体と同様のシェーディング補正処理を行うことができない。例えば図13に示すように、撮像画像α内に3つの注目領域(注目領域ROI0~2)が含まれる場合、各注目領域で感度の調整度合いは異なる。また注目領域ROI0~2のように、互いに空間を隔てて複数の注目領域が存在する場合、撮像内における不連続な領域に対してシェーディング補正を行うことになる。さらに、各注目領域内においても、撮像画像αの周辺部よりか又は中央部よりかによって、画素ごとの輝度の増幅の度合、つまり対応するシェーディング補正値が異なる場合がある。
【0118】
そこで、本実施形態による伝送システムは、映像装置または映像受信装置のいずれかにおいて、撮像画像内における注目領域の座標情報に基づいて、注目領域の画像データのシェーディング補正処理を実行するように構成されている。これにより、注目領域の画像データの輝度を撮像画像内の領域に応じた度合いで増幅して、輝度を均一化することができる。ここで、座標情報とは、撮像画像α内における注目領域の位置を表す情報(位置情報)である。本実施形態では、注目領域の座標情報として、少なくとも注目領域の左上端部の座標が用いられる。以下、シェーディング補正処理に用いる注目領域の座標情報について説明する。
【0119】
(注目領域の座標情報)
ここで、本実施形態におけるシェーディング補正処理において用いられる注目領域の座標情報について説明する。
【0120】
図13に示すように、撮像画像α内には、矩形状の注目領域ROI0~2が、所定の間隔を設けて配置されている。撮像画像αの原点α_o(0,0)を撮像画像αの左上端部の画素とする。上述のとおり、注目領域が設定される場合、当該注目領域の座標情報およびサイズ情報(X軸方向の長さ及びY軸方向の長さ)が導出される。本例において撮像画像αに注目領域ROI0~2を設定する場合、図13に示すように、注目領域ROI0の座標情報として、例えば注目領域ROI0の左上端部を示す始点Pr0の座標(R0X,R0Y)が導出される。ここで、注目領域ROI0の始点Pr0の座標(R0X,R0Y)が注目領域ROI0の左上端部の画素となる。また、座標情報に加え、注目領域ROI0のサイズ情報として、X軸方向の長さR0W及びY軸方向の長さR0Hが導出される。
【0121】
また同様に、注目領域ROI1の座標情報として、例えば始点Pr1の座標(R1X,R1Y)が導出される。ここで、始点Pr1の座標(R1X,R1Y)が注目領域ROI1の左上端部の画素となる。さらに、注目領域ROI1のサイズ情報としてX軸方向の長さR1W及びY軸方向の長さR1Hが導出される。また同様に、注目領域ROI2の座標情報として、例えば始点Pr2の座標(R2X,R2Y)が導出される。ここで、始点Pr2の座標(R2X,R2Y)が注目領域ROI2の左上端部の画素となる。さらに注目領域ROI2のサイズ情報としてX軸方向の長さR2W及びY軸方向の長さR2Hが導出される。
【0122】
注目領域ROI0,ROI1,ROI2の始点Pr0,Pr1,Pr2の各座標は、撮像画像α内での注目領域ROI0,ROI1,ROI2の位置を表している。このため、始点Pr0,Pr1,Pr2の各座標は、撮像画像の原点α_o(0,0)、つまり撮像画像αの左上端部の画素を基準とする座標である。本実施形態では、送信装置における注目領域の設定時に座標情報として注目領域の左上端部の座標が導出され、以降の処理に用いるために保持される。詳しくは後述するが、注目領域の左上端部の座標は、シェーディング補正処理においても用いられる。また、注目領域の設定時においては座標情報とともにサイズ情報(X軸方向の長さ及びY軸方向の長さ)も導出され、以降の処理(シェーディング補正処理など)に用いるために保持される。
【0123】
また、本実施形態において、シェーディング補正処理にあたっては、撮像画像内における注目領域の画像データの各画素の座標が座標情報として生成される。座標情報としての当該各画素の座標は、注目領域の左上端部の座標に基づいて生成される。つまり、シェーディング補正処理に用いる座標情報には、注目領域の左上端部の座標に加えて、注目領域の画像データの各画素の座標が含まれる。そして、生成された注目領域の画像データの各画素について、座標情報に応じたシェーディング補正値による輝度の増幅が行われる。これにより、注目領域の画像データに対するシェーディング補正処理の精度を向上させることができる。ここで、注目領域の画像データの画素ごと(画素単位)の座標の生成について説明する。
【0124】
(注目領域における画素単位の座標情報)
本実施形態では、注目領域の左上端部(始点)の画素を示す座標および注目領域のサイズ情報を用いて注目領域の画像データにおける各画素の座標を生成する。本実施形態において、注目領域のサイズ情報は画素数を示している。つまり、注目領域のX軸方向の長さは、当該注目領域の画像データにおけるX軸方向の画素数を示し、Y軸方向の長さは当該注目領域の画像データにおけるY軸方向の画素数を示す。また、注目領域全体の画素数は、X軸方向の長さ(画素数)とY軸方向の長さ(画素数)との乗算(X軸方向の長さ×Y軸方向の長さ)で算出される。また、Y軸方向の長さは、注目領域の画像データにおける画素行数を示す。例えば、所定の注目領域において画像データのY軸方向の長さが10画素であれば、当該画像データは10行の画素行で構成される。
【0125】
本実施形態において、撮像画像内における各座標位置には1画素の画像データが配置されている。つまり、注目領域内の各座標と注目領域における画像データの各画素とは1対1で対応する。本実施形態では、注目領域の左上端部(始点)の画素を示す座標を起点として、X軸方向の長さ(画素数)に基づいてX座標を計測(カウント)する。これにより、撮像画像内における注目領域の画像データの各画素の相対座標(画素座標)を画素行単位で生成することができる。また、注目領域の画像データのY軸方向の長さ(画素数)、すなわち画素行数に基づいて画素行単位での画素座標の生成を繰り返すことにより、注目領域の画像データ全体の画素座標を生成することができる。
【0126】
例えば、注目領域ROI0のX軸方向長さR0Wは、注目領域ROI0の画像データにおけるX軸方向の画素数(画素行データを構成する画素数)を示す。また、注目領域ROI0のY軸方向長さR0Hは、注目領域ROI0の画像データにおけるY軸方向の画素数(画素用データ数)を示す。したがって、注目領域ROI0の始点Pr0の座標(R0X,R0Y)を起点として、「X軸方向長さR0W-1」の画素数分だけ、始点PR0のX座標を1加算しながら計測(カウント)する。これにより、注目領域ROI0の画像データの先頭の画素行について、始点Pr0の座標(R0X,R0Y)を含めたX軸方向長さR0Wが示す画素数分の座標が生成される。
【0127】
以降、注目領域ROI0の始点Pr0の座標(R0X,R0Y)をY軸方向に1座標(1画素)ずつ移動させながら、画素行単位でX軸方向長さ(画素数)に相当する画素座標を生成する。注目領域ROI0における画素座標の生成処理は、画素行数(Y軸方向の長さR0H)の分だけ繰り返し実行される。具体的には、画素行単位での画素座標の生成処理が「Y軸方向長さ-1」の回数だけ繰り返される。これにより、最終的に注目領域ROI0の右下端(終点)Er0の座標(R0X+(R0W-1),ER0Y+(R0H-1))が生成される。つまり、注目領域ROI0内の画像データを構成する全画素行、すなわち注目領域ROIの画像データ内の全画素の座標が生成される。
【0128】
このように、注目領域ROI0の画像データの各画素の座標は、注目領域ROI0の始点Pr0の座標(R0X,R0Y)に基づいて生成される。より具体的には、注目領域ROI0の画像データの各画素の座標は、注目領域ROI0の始点Pr0の座標(R0X,R0Y)とサイズ情報(X軸方向の長さR0W、Y軸方向の長さR0H)を用いて生成される。これにより、撮像画像α内における注目領域ROI0の画像データの各画素の座標を生成することができる。注目領域ROI1,ROI2についても同様にして、画像データの全画素の座標が生成される。
【0129】
(撮像画像のブロック領域)
本実施形態では、シェーディング補正処理において、注目領域の画像データに対し、シェーディング補正値を用いて輝度の増幅が行われる。シェーディング補正値は、例えば輝度の増幅のために画像データに対して乗算される値(数値)である。本実施形態においてシェーディング補正値は、撮像画像(本例では撮像画像α)を所定数の画素数で分割した領域であるブロック領域(本例では、ブロック領域Br)と対応付けられている。
【0130】
図13に示すように、撮像画像αにおけるブロック領域Brは、一領域あたり256(Pixel)×256(Pixel)=65536Pixel(画素)で構成された画像領域である。つまり各ブロック領域は、65536画素分の画像データの座標に対応している。また図13に示すように、撮像画像αは2304Pixel(X軸方向の長さ)×1536Pixel(Y軸方向の長さ)=3538944Pixel(画素)で構成される画像である。このため、撮像画像αにおけるブロック領域Brの個数は54(=3538944Pixel(全画素数)/65536Pixel(1ブロック領域単位の画素数))となる。つまり、撮像画像αは54個のブロック領域Brに分割されている。より具体的には、撮像画像αは、X軸方向9個かつY軸方向6個の54個の座標領域に分割される。図13では、理解を容易にするため、54個のブロック領域Brのうち、右上端のブロック領域Brのみを図示している。
【0131】
撮像画像αにおいて、各ブロック領域Brには、撮像画像内の位置(座標)に応じて好適なシェーディング補正値が対応付けられている。例えば、撮像画像αの周辺部に相当するブロック領域Brには、相対的に大きい値のシェーディング補正値が対応付いている。このため、相対的に輝度が低くなる撮像画像αの周辺部の画像データの輝度を適切に増幅させることができる。また、例えば撮像画像αの中心部に相当するブロック領域Brには、相対的に小さい値のシェーディング補正値が対応付いている。このため、相対的に輝度が高くなる撮像画像αの中心部の画像データの輝度の増幅を少なくして周辺部の輝度とのバランスを調整することができる。
【0132】
本実施形態において、注目領域のシェーディング補正処理では、注目領域の画像データの各画素がいずれのブロック領域Brに属しているかが判定される。つまり、注目領域の画像データの画素座標が、いずれのブロック領域Br内の座標に対応しているかが判定される。これにより、注目領域内の画像データの各画素が属するブロック領域Brに対応するシェーディング補正値によって、各画素の画像データに好適なシェーディング補正処理が行われる。
【0133】
(補正値テーブル)
本実施形態では、撮像画像内のブロック領域に対応するシェーディング補正値は、補正値テーブルに保持されている。ここで、図13を参照しつつ図14を用いてシェーディング補正テーブルについて説明する。
【0134】
図14は、補正値テーブルt1内の各記憶領域を本実施形態の撮像画像α内のブロック領域Brと対応づけて示す図である。補正値テーブルt1には、撮像画像α内の座標情報に対応づけて補正値が保持されている。具体的には、本実施形態における補正値テーブルT1は、複数のアドレス領域Asで構成されている。複数のアドレス領域Asのそれぞれは、撮像画像αを所定の画素数(本例では、65536画素)で区切ったブロック領域Brのそれぞれと紐づいている。一のアドレス領域Asには、紐付けられた一のブロック領域Brに対応するシェーディング補正値が保持されている。つまり、一のアドレス領域Asには、撮像画像α内の所定数の画素座標(本例では65536画素分の画像データの画素座標)を含む一のブロック領域Brに対応づけて、補正値が保持されている。
【0135】
図14に示すように、本例において補正値テーブルt1は、撮像画像αの54個の座標領域にそれぞれ対応付けられた54個のアドレス領域Asで構成されている。アドレス領域Asは、シェーディング補正値を保持可能な記憶領域である。本例の補正値テーブルt1において54個のアドレス領域Asには、0~53の連番のアドレスが紐付けられている。アドレス値「0」は、撮像画像αにおいて左上端部のブロック領域Brに対応するアドレス領域Asを示すアドレス値であり、アドレス値「53」は、撮像画像αにおいて→下端部のブロック領域Brに対応するアドレス領域Asを示すアドレス値である。
【0136】
補正値テーブルt1の各記憶領域は、撮像画像αにおける一のブロック領域Br、すなわち256(Pixel)×256(Pixel)=65536Pixel(画素)分の画素座標に対応している。このため、補正値テーブルt1の各記憶領域には、撮像画像αの54個のブロック領域Br内に位置する画素座標のそれぞれと対応した一の補正値が保持される。つまり、アドレス領域As内の一のシェーディング補正値は、ブロック領域Br内の複数(本例では、65536画素)の画素座標と対応づいており、シェーディング補正値と画素座標とは、1対多の関係となる。
【0137】
例えば、図14に示すように補正値テーブルT1のアドレス値「0」~「8」の9個のアドレス領域Asは、撮像画像α内の上側周辺部に位置する9個のブロック領域Brに対応する。より詳細には、アドレス値「0」の記憶領域は、撮像画像αの原点α_oを含むブロック領域Brに対応している。このため、例えば撮像画像αの原点α_oを含むブロック領域Br内の各画素についての輝度の増幅には、アドレス値「0」の記憶領域に保持されたシェーディング補正値が用いられる。
【0138】
このように、本実施形態におけるシェーディング補正処理では、撮像画像内における注目領域の座標情報に基づいて補正値テーブルから取得したシェーディング補正値を用いて注目領域の画像データの輝度を増幅する。具体的には、注目領域の画像データの各画素の座標に対応するシェーディング補正値を補正値テーブルから取得して、注目領域の画像データの各画素について輝度の調整を行う。
【0139】
ここで、図15を用いて、注目領域ROI0~2の画像データについてのシェーディング補正処理について説明する。図15では理解を容易にするため、撮像画像αにおける54個のブロック領域Brと各ブロック領域Brに対応する補正値テーブルt1のアドレス領域Asとを併せて図示している。また図15では、ブロック領域Brおよびアドレス領域Asと注目領域ROI0~2との対応付けを図示している。
【0140】
本例では、注目領域ROI0の画像データについてシェーディング補正処理を行う場合、撮像画像α内における注目領域ROI0の座標情報、つまり注目領域ROIの相対座標に基づいて、注目領域ROI0の各画素がいずれのブロック領域Brに属しているかが判定される。各画素が属するブロック領域Brが判定されると、当該ブロック領域Brに対応する補正値テーブルt1のアドレス値が導出される。そして、導出されたアドレス値に紐づくアドレス領域Asから、ブロック領域Brに対応するシェーディング補正値が取得され、取得されたシェーディング補正値を用いて注目領域ROI0の画像データの輝度を画素ごとに増幅する。これにより、ブロック領域Brに対応するシェーディング補正値によって、注目領域ROI0の各画素の画像データのシェーディング補正処理が行われる。
【0141】
図15に示すように、注目領域ROI0の画像データは、補正値テーブルT1における6つのブロック領域Brに亘って配置されている。これら6つのブロック領域Brのそれぞれは、アドレス値「1」、「2」、「10」、「11」、「19」「20」のそれぞれに対応する6つのアドレス領域Asのそれぞれ対応している。このため、注目領域ROI0の画像データ関するシェーディング補正処理には、これらの6つのアドレス領域Asに保持されているシェーディング補正値が用いられる。
【0142】
注目領域ROI0の画像データのシェーディング補正処理にあたっては、注目領域ROI0の画像データの各画素の相対座標(画素座標)が生成される。そして、生成された画素座標が属するブロック領域Brが判定され、次いで判定したブロック領域Brに対応する補正値テーブルt1のアドレス値が導出する。上述のように、撮像画像α内のブロック領域Brは、補正値テーブルt1のアドレス領域を示すアドレス値と1対1で紐づいている。したがって、注目領域ROI0の画像データの画素座標を生成して、当該画素座標が撮像画像α内のいずれのブロック領域Brに属しているかを判定することで、注目領域ROI0の画像データの各画素座標に応じた補正値テーブルt1のアドレス値を導出することができる。
【0143】
また例えば、撮像画像α内の各座標領域内の座標を補正値テーブルT1の各記憶領域のアドレス値に変換する変換テーブル(不図示)を用いて、注目領域ROI0の画像データの各画素座標に対応する補正値テーブルt1のアドレス値を取得してもよい。
【0144】
例えば、シェーディング補正処理において生成された注目領域ROI0の画像データ画素座標が、補正値テーブルt1のアドレス値「1」に対応するブロック領域Brに属する座標であったとする。この場合、注目領域ROI0における当該画素座標の画像データの輝度は、補正値テーブルT1のアドレス値「1」のアドレス領域Asに保持されているシェーディング補正値によって増幅される。同様にして、補正値テーブルt1のアドレス値「2」に対応するブロック領域Brに含まれる画素座標が生成された場合、当該アドレス値「2」に対応するアドレス領域Asに保持されたシェーディング補正値によって当該画素座標の画像データの輝度が増幅される。また、生成された注目領域ROI0の画像データの画素座標が、補正値テーブルT1のアドレス値「10」「11」「19」「20」に対応するブロック領域Brに含まれる場合も同様に、対応するアドレス値のアドレス領域Asに保持されたシェーディング補正値によって、各画素座標の画像データの輝度が増幅される。
【0145】
撮像画像α内の注目領域ROI1,ROI2についても同様に、画像データの画素ごとの相対座標である画素座標が属するブロック領域Brに基づいて、補正値テーブルt1のアドレス値を導出し、導出されたアドレス値に紐づくアドレス領域Asに保持されたシェーディング補正値によって、画素座標に対応した画素ごとの画像データの輝度が増幅される。つまり、注目領域ROI1の画像データは、補正値テーブルt1のアドレス領域Asのうち、6つのアドレス値「14」「15」「23」「24」「32」「33」に対応するブロック領域Brに跨って配置されている。このため、注目領域ROI1の各画素の画像データは、上記6つのアドレス値のうちのいずれかに紐づいたアドレス領域Asが保持するシェーディング補正値によって、輝度の増幅が行われる。各画素座標に対応するアドレス値は、画素座標が属するブロック領域Brに基づいて導出される。また同様に、注目領域ROI2の画像データは、4つのアドレス値「39」「40」「48」「49」の6つのアドレス値のいずれかに紐づいてアドレス領域Asが保持するシェーディング補正値によって輝度の増幅が行われる。
【0146】
なお、上述のように、撮像画像の周辺部は中心部に比べて輝度が低くなっている。このため、撮像画像αの上側周辺部のブロック領域Brに対応する補正値テーブルt1のアドレス0~8のアドレス領域As、下側周辺部のブロック領域Brに対応するアドレス値45~53のアドレス領域As、左側周辺部のブロック領域Brに対応するアドレス値9,18,27,36のアドレス領域As、および右側周辺部のブロック領域Brに対応するアドレス値17,26,35,44のアドレス領域Asには、相対的に大きな値のシェーディング補正値が保持されている。したがって、周辺部の座標領域に対応する補正値を用いる場合、注目領域の画像データの輝度増幅の度合は大きくなる。これにより、例えば撮像画像αの周辺部に配置された注目領域ROI(例えば注目領域ROI0,ROI2)の画像データの輝度を撮像画像αの中心部の画像データと同様の輝度まで増幅することができる。
【0147】
また、撮像画像αの中心部のブロック領域Brに対応する補正値テーブルt1のアドレス値21~23,30~32に紐つくアドレス領域Asには、相対的に小さい値のシェーディング補正値が保持されている。したがって、中心部のブロック領域Brに対応するシェーディング補正値を用いる場合、注目領域の画像データの輝度増幅の度合は小さくなる。これにより、撮像画像αの中心部の画像データの輝度と周辺部の画像データの輝度との差の拡大を抑制して、撮像画像α内の画像データの輝度を均一化することができる。なお、中心部のブロック領域Brに対応するアドレス領域Asが保持するシェーディング補正値を「0」または「0」に近い値として、実質的に輝度を増幅しないように構成してもよい。
【0148】
なお、撮像画像αの周辺部、中心部以外のブロック領域Brに対応するアドレス領域Asには、例えば周辺部のブロック領域Brに対応するアドレス領域Asよりも小さい値かつ中心部のブロック領域Brに対応するアドレス領域Asよりも大きい値のシェーディング補正値が保持されていればよい。このように、補正値テーブルt1には、撮像画像αの各ブロック領域Brに応じたシェーディング補正値が保持されている。
【0149】
また、シェーディング補正値を保持する補正値テーブルt1の各アドレス領域Asは、撮像画像αのブロック領域Brのそれぞれと1対1で対応付けられている。したがって、注目領域ROI0~2の画像データのシェーディング補正処理において、各注目領域の画像データの各画素の座標(画素座標)が生成され、生成された画素座標が属するブロック領域Brを判定することで、ブロック領域Brに対応する補正値テーブルt1のアドレス値を導出することができる。このため、ブロック領域Brに応じたシェーディング補正値が取得できる。このため、注目領域ROI0~2の画像データの画素ごとに、撮像画像α内のブロック領域Brに応じたシェーディング補正値による輝度増幅を行うことができる。このようにして、本実施形態では、シェーディング補正処理により、注目領域ROI0~2のそれぞれの画像データの輝度を適切に調整することができる。
【0150】
4.本開示の第1実施形態:
次に、本開示の第1実施形態による送信装置、受信装置及び伝送システムについて図13から図15を参照しつつ、図16から図18を用いて説明する。まず、本実施形態による送信装置、受信装置及び伝送システムの概略構成について図16を用いて説明する。図16は、映像伝送システム10の概略構成を示すブロック図である。本実施形態による映像伝送システム10は、映像送信装置3と映像受信装置200とを備えている。映像伝送システム10は、例えば上記前提技術1及び2に係る映像伝送システム1と同様に、映像送信装置3及び映像受信装置200との間でMIPI CSI-3規格又はMIPI DSI規格で信号を送受信するように構成されている。
【0151】
映像伝送システム10に備えられた映像受信装置200は、上記第1及び2に係る前提技術における映像受信装置200と同一の作用・機能を奏する構成であるため同一の符号を付して説明は省略する。
【0152】
映像伝送システム10に備えられた映像送信装置3は、上記前提技術1及び2に係る映像送信装置100と同等の機能を発揮するように構成されている。つまり、映像送信装置3は、注目領域の切り出しを指示する制御信号が所定の外部装置(例えば映像受信装置200)から入力された場合に、画像センサデバイス30から入力された撮像画像に対して、映像送信装置100と同様の処理を実行可能に構成されている。映像送信装置3は、上述のシェーディング補正処理を実行可能に構成されている点で上記前提技術1及び2に係る映像送信装置100と異なっている。
【0153】
また、映像送信装置3は、通常画像の出力を指示する制御信号が映像受信装置200から入力された場合に、画像センサデバイス30から入力された撮像画像に対して、映像送信装置100と同様の処理を実行可能に構成されている。ここで、図16では、映像送信装置3は、シェーディング処理に関連する構成を中心に図示されている。このため、通常画像に係る処理を実行する構成については、図16において図示を省略する。
【0154】
本実施形態による映像送信装置3は、所定のクロック信号に同期して装置内の各処理を行う。このため、当該クロック信号に基づいて処理を行うことで、各構成は互いに処理を連動(例えば、同期)させることができる。
【0155】
図16に示すように、映像送信装置3は、対象物を撮像する画像センサデバイス30と、撮像画像に対しての所定処理および画像データの送信処理を行う送信処理部31とを備えている。画像センサデバイス30は、上記前提技術1及び2に係る映像送信装置100の撮像部110と同様の構成である。画像センサデバイス30は、例えばCCD(Charge Coupled Device)イメージセンサやCMOS(Complementary Metal OxideSemiconductor)イメージセンサを含んで構成されており、光学レンズなどを通して得られた光学的な画像信号をデジタルの画像データに変換する。画像センサデバイス30は、撮像により得られた撮像画像(例えば、撮像画像α)を送信処理部31(具体的には、画像処理回路300)に出力する。
【0156】
送信処理部31は、画像処理回路(送信装置における処理部の一例)300および画像送信部330を有している。画像処理回路300は、上記前提技術1及び2に係る映像送信装置100の画像処理部120と対応する構成であって、撮像部(画像センサデバイス30)から入力された撮像画像に対して所定の処理を行う回路である。また、画像送信部330は、上記前提技術1及び2に係る映像送信装置100の送信部140と対応する構成であって、画像処理回路300から入力された種々のデータ(120A,120B,120C等)に基づいて伝送データ347Aを生成し、送出する回路である。本実施形態において送信処理部31は、ICチップとして構成されている。
【0157】
画像処理回路300には、注目領域の切り出しを指示する制御信号とともに、切り出しの対象となる注目領域の設定に係る情報として、注目領域指定情報90Aが外部装置(例えば映像受信装置200)から入力される。注目領域指定情報90Aは、例えば撮像画像内における位置やサイズを示す情報である。注目領域指定情報90Aは、画像処理回路300が有する画像処理制御部126、補正回路301(具体的には、ROI画像座標情報生成部311)およびROI切り出し部121に入力される。
【0158】
具体的には、注目領域指定情報90Aは、位置情報として撮像画像内における注目領域の相対座標の情報(座標情報)を含んでいる。座標上には、少なくとも注目領域の左上端部の座標(始点座標)が含まれる。なお、本実施形態において位置情報は、始点座標に限られず、注目領域の右下端部の座標(終点座標)を含むように構成されてもよい。本開示における位置情報は、注目領域が矩形状の場合、4つの角部のいずれかを示す座標であればよい。また、サイズ情報として、注目領域ROIのX軸方向サイズおよびY軸方向サイズを含んでいる。本例において、撮像画像α内の注目領域ROI0~ROI2に関する注目領域指定情報90Aには、注目領域ROI0~ROI2の3つの注目領域それぞれの位置情報及びサイズ情報が含まれている。
【0159】
画像処理回路300は、画像処理制御部126、補正回路301、ROI切り出し部303およびエンコード部305を有している。画像処理制御部126は上記前提技術1及び2における画像処理部120の画像処理制御部126と同等の構成である。本実施形態において画像処理制御部126は、注目領域指定情報90Aに基づいて、ROI情報120B、フレーム情報120Cおよびを生成し、画像送信部330に送信する。また、画像処理制御部126は、入力された注目領域指定情報90Aをエンコード部305およびエンコード部305に出力する。
【0160】
本実施形態による映像送信装置3の画像処理回路300における補正回路301は、上述のシェーディング補正処理を実行する。補正回路301は、撮像画像における注目領域(ROI:Region Of Interest)の座標情報に基づいて、注目領域の画像データのシェーディング補正処理を実行する。補正回路301は、注目領域の左上端部の座標に基づいて撮像画像内における注目領域の画像データの各画素の座標を生成し、生成した各画素の座標に基づいて注目領域の画像データの各画素について輝度の増幅を行う。これにより、注目領域の画像データについてシェーディング補正が施される。補正回路301は、ROI画像座標情報生成部311、補正値テーブルRAM312および補正部313を有している。補正値テーブルRAM312には、シェーディング補正処理に用いられるシェーディング補正値が保持されている。補正回路301は、これらの構成によって、シェーディング補正処理に係る各処理を実行する。補正回路301の各構成の詳細は、後述する。
【0161】
ROI切り出し部303は、上記前提技術1及び2における画像処理部120のROI切り出し部121と同等の構成である。ROI切り出し部303は、撮像部(画像センサデバイス30)から入力された撮像画像に注目領域ROIを設定する。ROI切り出し部303は、例えば注目領域指定情報90Aに基づいて、撮像部(画像センサデバイス30)から入力された撮像画像(例えば、撮像画像α)から注目領域(ROI)を切り出す。本実施形態において、ROI切り出し部303は、撮像画像から切り出した注目領域の画像データを補正回路301(具体的には、補正部313)に出力する。ROI切り出し部303は、例えば上述のクロック信号に同期して、注目領域の画像データを画素単位で補正回路301に出力する。
【0162】
エンコード部305は、上記前提技術1及び2における画像処理部120のエンコード部125と同等の構成である。エンコード部305は、補正回路301においてシェーディング補正処理が行われた注目領域の画像データをエンコードして、圧縮像データ120Aを生成する。エンコード部305は生成した圧縮像データ120Aを画像送信部330(具体的には、後述するROIデータバッファ345)に出力する。
【0163】
(補正回路の詳細)
ROI画像座標情報生成部311は、切り出された注目領域(ROI)の画像データの画素ごとの相対座標(画素座標)を生成する。本実施形態においてROI画像座標情報生成部311は、カウンタを用いて注目領域の画像データの画素座標を生成する。本実施形態において、画像処理回路300は、種々の計測処理に用いるカウンタ部を有している。本実施形態において補正回路301は、カウンタ部として、水平カウンタXctおよび垂直カウンタYctを有している。
【0164】
水平カウンタ(第一カウンタの一例)Xctは、注目領域の画像データの各画素について、撮像画像内におけるX軸方向位置(水平位置)を計測するカウンタである。水平カウンタXctのカウンタ値は、撮像画像(例えば撮像画像α)内のX座標に相当する。本実施形態による映像送信装置3において、水平カウンタXctは、注目領域の左上端部の座標(左上端部の画素座標)を起点として撮像画像内における注目領域のX座標を計測する。
【0165】
また、垂直カウンタ(第二カウンタの一例)Yctは、注目領域の画像データの各画素について、撮像画像内におけるY軸方向位置(垂直位置)を計測するカウンタである。垂直カウンタYctの値は撮像画像内のY座標に相当し、撮像画像内の画素行の位置を示す。本実施形態による映像送信装置3において、垂直カウンタYctは、注目領域の左上端部の座標(左上端部の画素座標)を起点として撮像画像内における注目領域のY座標を計測する。例えば、水平カウンタXctおよび垂直カウンタYctの値がいずれも「0」の場合、撮像画像内の原点α_о(0,0)を示す。
【0166】
なお、水平カウンタXctおよび垂直カウンタYctは、ROI画像座標情報生成部311からカウンタ値に係る制御(カウンタ値の参照、カウンタ値のリセット等)が可能に設けられていればよい。このため、水平カウンタXctおよび垂直カウンタYctの設置箇所は、補正回路301内に限られず、例えば画像処理回路300内の任意の箇所に設置されていればよい。また、水平カウンタXctおよび垂直カウンタYctは、ROI画像座標情報生成部311が設定した任意の値でカウンタ値をリセット可能に構成されている。
【0167】
補正回路301におけるROI画像座標情報生成部311は、水平カウンタXctおよび垂直カウンタYctを用いて注目領域の画像データの各画素の座標を生成する。ここで、画素座標生成処理の流れ(画素座標生成処理方法)の一例について図17を用いて説明する。図17は、本実施形態による映像送信装置3における画素座標生成処理の流れの一例を示すフローチャートである。
【0168】
(ステップS101)
映像送信装置3に備えられた補正回路301においてROI画像座標情報生成部311は、画像データフレームの開始か否かを判定する。本実施形態において、画素座標生成処理における画像データフレームの開始は、注目領域指定情報90Aが映像受信装置200から送信されたこと示す。本例においてROI画像座標情報生成部311は、注目領域(本例では、注目領域ROI0~ROI2)についての注目領域指定情報90Aが送信されている場合に画像データフレームが開始されていると判定してステップS102に処理を移す。一方、ROI画像座標情報生成部311は、注目領域指定情報90Aが送信されていない場合に画像データフレームが開始されていないと判定して、注目領域指定情報90Aが送信されるまでステップS101の処理を所定間隔で繰り返す。
【0169】
(ステップS102)
ROI画像座標情報生成部311は、注目領域の位置情報を抽出し、ステップS103に処理を移す。具体的には、ROI画像座標情報生成部311は注目領域指定情報90Aから注目領域ROI0~ROI2の位置情報として、撮像画像α内における各注目領域の座標情報を抽出する。座標情報には、少なくとも注目領域(本例では、注目領域ROI0~2)の始点座標(左上端部の画素座標)が含まれている。
【0170】
(ステップS103)
ROI画像座標情報生成部311は、撮像画像内において最も原点寄りの注目領域の始点座標を画素座標生成処理における基準座標として設定し、ステップS104に処理を移す。具体的には、ROI画像座標情報生成部311は、最も原点寄りの注目領域の始点座標に基づいて、水平カウンタXctおよび垂直カウンタYctのカウンタ値をリセットする。リセットとは、カウンタ値を任意の値に設定する処理を示す。
【0171】
ここで、基準座標の決定について説明する。ステップS103においてROI画像座標情報生成部311は、注目領域指定情報90Aから複数の注目領域についての座標情報を抽出すると、抽出した各座標情報を始点座標(注目領域の左上端部の画素座標)のY座標の値の昇順に並び替えてY座標順データを生成する。Y座標順データには、始点座標のY座標とY軸方向サイズを示す画素数とから算出される終点Y座標(注目領域の右下端部の画素座標)が含まれる。終点Y座標は、「始点Y座標の値+Y軸方向サイズ(-1)」で算出される。生成されたY座標順データは、例えば一の注目領域指定情報90Aの入力に基づく一連のシェーディング補正処理の実行中は所定のレジスタで保持されてもよい。
【0172】
ROI画像座標情報生成部311は、Y座標順データにおいて、最もY座標の値が小さい注目領域の始点座標を、基準座標として決定する。ROI画像座標情報生成部311は基準座標を決定すると、水平カウンタXctのカウンタ値を基準座標のX座標の値にリセットし、垂直カウンタYctのカウンタ値を基準座標のY座標の値にリセットする。
【0173】
本例では、撮像画像α(図13参照)において、最も原点よりの注目領域は注目領域ROI0である。したがって、基準座標として、注目領域ROI0の左上端部を示す始点Pr0の座標(R0X,R0Y)が決定される。このため、ステップS103において、水平カウンタXctのカウンタ値が「R0X」にリセットされ、垂直カウンタYctのカウンタ値が「R0Y」にリセットされる。これにより、注目領域の画像データの画素座標が生成される。
【0174】
(ステップS104)
ROI画像座標情報生成部311は、現在の水平カウンタXctのカウンタ値および垂直カウンタYctのカウンタ値から画素座標を生成し、ステップS105に処理を移す。詳しくは後述するが、ここで生成された画素座標に基づいて、上述の補正値テーブルt1のアドレスが導出される。これにより当該アドレス値に紐付くアドレス領域As(図14参照)からシェーディング補正値が取得される。
【0175】
(ステップS105)
ROI画像座標情報生成部311は、クロック信号に同期して更新(1加算)された、水平カウンタXctのカウンタ値を取得してステップS106に処理を移す。
【0176】
(ステップS106)
ROI画像座標情報生成部311は、更新された水平カウンタXctのカウンタ値が注目領域のX座標の右端、つまり注目領域の画像データにおける一の画素行(ライン)の終端を示す値を超過しているか否かを判定する。本例において、注目領域ROI0(図13参照)の所定の画素行の右端を示す座標Mr0におけるX座標は、X座標の始点(R0X)を「X軸方向長さR0W-1」の画素数分だけインクリメント(1加算)した値「R0X+(R0W-1)」となる。ROI画像座標情報生成部311は、水平カウンタXctのカウンタ値が注目領域(例えば注目領域ROI0)のX座標の終端の値を超過していると判定すると、ステップS107に処理を移す。一方、ROI画像座標情報生成部311は、水平カウンタXctのカウンタ値が注目領域(例えば注目領域ROI0)のX座標の終端の値を超過していないと判定するとステップS104に処理を戻す。なお、一のライン上において、複数の注目領域が重なって配置されている場合、ROI画像座標情報生成部311は、本ステップS106において、重なって配置されている全ての注目領域の終端を示す値を超過しているか否かを判定する。
【0177】
(ステップS107)
ROI画像座標情報生成部311は、撮像画像内における現在の垂直カウンタYctのカウンタ値が示すY座標と同一のライン(画素行)に、現在画素座標の対象となっている注目領域以外の、他の注目領域が存在するか否かを判定する。ROI画像座標情報生成部311は、撮像画像内において、現在の垂直カウンタYctのカウンタ値が示すY座標と同一のライン(画素行)に、他の注目領域が存在するか否かを判定する。例えば、ROI画像座標情報生成部311は、Y座標順データを参照して、現在の垂直カウンタYctのカウンタ値を含む他の注目領域が存在するか否かを判定する。他の注目領域が存在するか否かを判定する同一ラインに他の注目領域が存在すると判定すると、ステップS108に処理を移す。
【0178】
ここで、垂直カウンタYctのカウンタ値が示すY座標と同一ライン上に他の注目領域が2以上ある場合には、ROI画像座標情報生成部311はX座標の始点の値が小さい注目領域を、次に画素座標の生成対象となる注目領域(次回対象ROI)として決定する。一方ROI画像座標情報生成部311は、垂直カウンタYctのカウンタ値が示すY座標と同一ライン上に次回対象ROI領域が存在しないと判定すると、ステップS109に処理を移す。
【0179】
次回対象ROIの決定には、注目領域指定情報90Aから抽出した各座標情報を始点座標(注目領域の左上端部の画素座標)のX座標の値の昇順に並び替えたX座標順データを用いる。例えば、ROI画像座標情報生成部311は、上記ステップS103において、Y座標順データと合わせてX座標順データを生成すればよい。X座標順データには、始点座標のX座標とX軸方向サイズを示す画素数とから算出される終点X座標(注目領域の各画素行の右端部の画素座標)が含まれる。さらに、X座標順データにはY座標順データに含まれる始点座標のY座標および終点Y座標が含まれてもよい。終点X座標は、「始点X座標の値+X軸方向サイズ(-1)」で算出される。生成されたX座標順データは、例えば一の注目領域指定情報90Aの入力に基づく一連のシェーディング補正処理の実行中は、Y座標順データと同様に所定のレジスタで保持されてもよい。ROI画像座標情報生成部311は、X座標順データを参照して、同一ライン上の注目領域ROIのうち、始点X座標が小さい順に次回対象ROIを決定する。
【0180】
本例においてROI画像座標情報生成部311は、例えば水平カウンタXcntのカウンタ値が注目領域ROI0の所定の画素行の右端を示す座標Mr0の値を超過した場合に、本ステップS107において、座標Mr0のY座標と同一のラインに他の注目領域が存在するか否かを判定する。図13に示すように、座標Mr0の同一ライン上には、注目領域ROI1が存在している。したがって、ROI画像座標情報生成部311は他の注目領域(本例では、注目領域ROI1)が存在すると判定してステップS108に処理を移す。一方、ROI画像座標情報生成部311は、例えば注目領域ROI0の先頭の画素行の終端までの画素座標の生成を終了した場合には、注目領域ROI0の先頭の画素行の終端(右端)座標のY座標と同一のラインには他の注目領域が存在しないと判定してステップS109に処理を移す。
【0181】
(ステップS108)
ROI画像座標情報生成部311は、他の注目領域の始点(左端部)のX座標で水平カウンタXctのカウンタ値をリセットしてステップS104に処理を戻す。具体的には、ROI画像座標情報生成部311は、次に画素座標の生成対象となる注目領域(次回対象ROI)の始点座標のX座標の値で、水平カウンタXctのカウンタ値をリセットする。これにより、次に画素座標の生成対象となる注目領域の画素行の先頭画素から画素座標の生成が開始される。例えば、次に画素座標の生成対象となる注目領域が注目領域ROI1である場合、始点Pr0の座標(R0X,R0Y)のX座標の値「R1X」で水平カウンタXctのカウンタ値がリセットされる。
【0182】
このように、画素座標生成処理においてROI画像座標情報生成部311は、水平カウンタXctのカウンタ値を不連続な値に更新する。つまり、水平カウンタXctは、不連続な値に更新可能なカウンタである。
【0183】
(ステップS109)
ROI画像座標情報生成部311は、撮像画像における次のライン(画素行)上に注目領域の画像データが存在するか否かを判定する。具体的には、ROI画像座標情報生成部311は、垂直カウンタYctのカウンタ値を1加算した値に更新し、更新後の値が示す撮像画像内のY座標に注目領域の画像データが存在するか否かを判定する。ROI画像座標情報生成部311は、Y座標順データを参照して、更新後の垂直カウンタYctのカウンタ値が示すY座標上に注目領域の画像データが存在していると判定すると、ステップS110に処理を移す。一方、ROI画像座標情報生成部311は、更新後の垂直カウンタYctのカウンタ値が示すY座標上に注目領域の画像データが存在していないと判定するとステップS111に処理を移す。
【0184】
(ステップS110)
ROI画像座標情報生成部311は、X座標順データを参照し、次のライン(画素行)上の左端の注目領域の始点X座標の値で水平カウンタXcntのカウンタ値をリセットしてステップS104に処理を移す。具体的には、ROI画像座標情報生成部311は、X座標順データを参照して、ステップS109で更新した垂直カウンタYctのカウンタ値がY座標上の注目領域のうち最も小さい始点X座標を取得し、当該始点X座標で水平カウンタXcntのカウンタ値をリセットする。これにより、撮像画像内の次のラインにおいて、最も左よりの注目領域から画素座標の生成が開始される。
【0185】
(ステップS111)
ROI画像座標情報生成部311は、撮像画像における次のライン(画素行)よりさらに下に注目領域(次に画素座標の生成対象となる次回対象ROI)が存在するか否かを判定する。具体的には、ROI画像座標情報生成部311は、Y座標順データを参照して、ステップS109で更新した垂直カウンタYctのカウンタ値が示すY座標よりもさらに下に次回対象ROIが存在するか否かを判定する。ROI画像座標情報生成部311は、次のラインよりさらに下に次回対象ROIが存在すると判定すると、ステップS112に処理を移す。一方、ROI画像座標情報生成部311は、次のラインよりさらに下に次回対象ROIが存在しないと判定すると、撮像画像内の全ての注目領域の画像データの画素座標が生成されたとして画素座標生成処理を終了する。
【0186】
(ステップS112)
ROI画像座標情報生成部311は、垂直カウンタYctのカウンタ値および水平カウンタXctのカウンタ値をリセットしてステップS104に処理を戻す。具体的には、ROI画像座標情報生成部311は、Y座標順データを参照して次回対象ROIの始点座標のY座標の値で、垂直カウンタYctのカウンタ値をリセットする。また、ROI画像座標情報生成部311はX座標順データを参照して次回対象ROIの始点座標のX座標の値で水平カウンタXcntのカウンタ値をリセットする。これにより、撮像画像内においてY軸方向に間隔を設けて配置された複数の注目領域の画像データについても余すことなく画素座標を生成することができる。
【0187】
本例において、注目領域ROI1の終点座標(右下端部の画素の座標)まで画素座標が生成され、次に画素座標の生成対象となる注目領域が注目領域ROI2であるとする。この場合、ROI画像座標情報生成部311は、注目領域ROI2の始点Pr2の座標(R2X,R2Y)のX座標の値「R2X」で水平カウンタXcntのカウンタ値をリセットし、Y座標の値「R2Y」で垂直カウンタYcntをリセットする。これにより、注目領域ROI1の次に注目領域ROI2の始点(左上端部)の画素の画素座標から生成を開始することができる。
【0188】
画素座標生成処理のステップS112においてROI画像座標情報生成部311は、垂直カウンタYcntのカウンタ値を不連続な値に更新する。つまり、垂直カウンタYcntは、不連続な値に更新可能なカウンタである。本実施形態において、ROI画像座標情報生成部311は、水平カウンタXcntおよび垂直カウンタYcntを用いて撮像画像(本例では撮像画像α)に含まれる複数の注目領域(ROI)の画像データの各画素の座標を生成することができる。
【0189】
以上、図17を用いて画素座標生成処理について説明した。上述のように、補正回路301が備えるROI画像座標情報生成部311は、座標情報として少なくとも注目領域の左上端部の座標(始点座標)を用いて、画素座標を生成する。より詳細には、ROI画像座標情報生成部311は、注目領域の始点座標とサイズ情報とを用いてY座標順データおよびX座標順データを生成し、注目領域の画像データの画素座標を生成する。
【0190】
ROI画像座標情報生成部311は、画素座標を生成する度に、生成した画素座標に基づいて補正値テーブルt1のアドレス値を導出する。具体的には、ROI画像座標情報生成部311は、生成した画素座標が属する撮像画像内のブロック領域Br(図15参照)を特定する。ROI画像座標情報生成部311は特定したブロック領域Brに紐づくアドレス値を導出すると、導出したアドレス値に紐づくアドレス領域に保持されたシェーディング補正を取得して、補正部313に出力する。
【0191】
補正回路301が備える補正部313は、ROI画像座標情報生成部311が座標情報に基づいて補正値テーブルt1から取得したシェーディング補正値を用いて注目領域(ROI)の画像データの輝度を増幅する。具体的には、補正回路301において、ROI画像座標情報生成部311が注目領域の画像データの各画素の座標(画素座標)に対応するシェーディング補正値を補正値テーブルt1から取得し、取得したシェーディング補正値を用いて補正部313が当該注目領域の画像データの各画素について感度の調整を行う
【0192】
補正部313は、ROI切り出し部303から入力される注目領域の画素単位の画像データに対して、ROI画像座標情報生成部311から入力されるシェーディング補正値を乗算して輝度を増幅する。これにより、補正部313を有する補正回路注目領域の各画素の画像データの輝度を、撮像画像内の領域に応じたシェーディング補正値に基づいて増幅させることができる。このため、補正回路301を備える映像送信装置3は、シェーディング補正処理によって、注目領域の画像データの輝度を撮像画像内の領域に応じた度合いで増幅して、輝度を均一化することができる。
【0193】
補正回路301は、シェーディング補正処理を施した注目領域の画像データである補正済み画像データ313Aを、エンコード部305に出力する。エンコード部305は上述のように、補正済み画像データ303Aを画像送信部330に出力する。エンコード部305は、画素単位で入力された注目領域の画像データを画素行単位にまとめて、1ライン(1画素行)分の伝送画像を生成する。例えば、エンコード部305は、注目領域ROI0の画素単位の画像データをX軸方向の長さR0Wに相当する画素数分にまとめて、注目領域ROI0一の画素行の伝送画像を生成する。エンコード部305は、画像処理制御部126から入力された注目領域指定情報90Aに基づいて、各注目領域について画素行単位(ラインごと)に伝送画像を生成する。エンコード部305は、伝送画像をJPEG規格に準拠した圧縮形式等により圧縮した圧縮像データ120Aを画像送信部330に出力する。
【0194】
(画像送信部)
画像送信部330は、LINK制御回路341、ECC生成回路342、PH生成回路343、EBDバッファ344、ROIデータバッファ345、合成回路347および送信回路350を有している。また、画像送信部330は不図示の通常画像データバッファを有している。
【0195】
LINK制御回路341は、上記前提技術に係る映像送信装置100のLINK制御部141と同等の構成である。LINK制御回路341は、例えば画像処理制御部126から入力された、フレーム情報120CをラインごとにECC生成回路342及びPH生成回路343に出力する。ECC生成回路342は、上記前提技術に係る映像送信装置100のECC生成部142と同等の構成である。ECC生成回路342は、例えば、フレーム情報における1ラインのデータ(例えば、バーチャルチャネルの番号、注目領域ROI1~ROI2のそれぞれのデータタイプ、ラインごとのペイロード長など)に基づいて、そのラインの誤り訂正符号を生成する。ECC生成回路342は例えば、生成した誤り訂正符号をPH生成回路343に出力する。なお、ECC生成回路342は誤り訂正符号を合成回路347に出力してもよい。
【0196】
PH生成回路343は、上記前提技術に係る映像送信装置100のPH生成部143と同等の構成である。PH生成回路343は、例えば、フレーム情報と、注目領域指定情報90Aと、ECC生成回路342で生成された誤り訂正符号とを用いて、1ラインごとにパケットヘッダPH(図4参照)を生成する。また、PH生成回路343は、画像処理制御部126から入力された注目領域指定情報90AをECC生成回路342に出力してもよい。PH生成回路343は、生成したパケットヘッダPHを合成部147に出力する。
【0197】
EBDバッファ344は、上記前提技術に係る映像送信装置100のEBDバッファ144と同等の構成である。EBDバッファ344は、画像処理制御部126が生成したROI情報を一次的に格納し、所定のタイミングでROI情報をエンベデッドデータとして合成回路347に出力する。
【0198】
ROIデータバッファ345は、上記前提技術に係る映像送信装置100のROIデータバッファ145と同等の構成である。ROIデータバッファ345は、エンコード部305から入力された圧縮像データ120Aを一次的に格納し、所定のタイミングで圧縮像データ120Aをロングパケットのペイロードデータとして合成回路347に出力する。
【0199】
合成回路347は、上記前提技術に係る映像送信装置100の合成部147と同等の構成である。合成回路347は、ROIの切り出しを指示する制御信号がカメラ制御インタフェースCCIを介して映像受信装置200から入力された場合に、入力された各種データ(パケットヘッダPH、ROI情報120B、及び圧縮像データ120A)に基づいて、伝送データ347Aを生成する。合成部147は、生成した伝送データ147Aを、送信回路350に出力する。
【0200】
送信処理部(送信部の一例)31が備える画像送信部330の送信回路350は、データレーンDLを介して伝送データ147Aを映像受信装置200に出力する。具体的には、送信回路350は、シェーディング補正処理が行われた注目領域(ROI)の画像データをペイロードデータで送出する。これにより、エンベデッドデータとともに、シェーディング補正処理を施した注目領域の画像データがペイロードデータとして映像受信装置200に伝送される。
【0201】
(送信装置におけるシェーディング補正処理方法)
次に、本実施形態による送信装置、受信装置及び伝送システムにおけるシェーディング補正処理方法について図13から図17を参照しつつ図18を用いて説明する。図18は、本実施形態によるシェーディング補正を実行可能な送信装置、受信装置及び伝送システムにおけるシェーディング補正処理方法の流れの一例を示すフローチャートである。
【0202】
映像伝送システム10が起動してフレーム開始トリガが入力されると、映像受信装置200に備えられた情報処理部220(図中のCamCPU)は、ステップS21に処理を移す。
【0203】
(ステップS21)
映像伝送システム10が起動してフレーム開始トリガが入力されると、映像受信装置200に備えられた情報処理部220(図中のCamCPU)は、映像送信装置3の画像センサデバイス30の撮像画像から画像(注目領域)を切り出す切り出し位置を決定して、切り出し位置決定処理を終了する。具体的には、CamCPUは、切り出し位置を決定すると、切り出しを指示する制御信号および注目領域指定情報90Aを送出する。注目領域指定情報90Aには、注目領域の位置情報(座標情報)およびサイズ情報(X軸方向サイズおよびY軸方向サイズ)が含まれる。制御信号および注目領域指定情報90Aは、MIPIを用いたハードウェア(HW)による通信によって、映像受信装置200から映像送信装置3に送信される。
【0204】
(ステップS31)
映像送信装置3の送信処理部31が備える画像処理回路300(図中のセンサCPU)は、切り出し位置指定トリガを検出すると、画像センサデバイス30の撮像画像における切り出し位置とサイズを取得し、ステップS32に処理を移す。具体的には、画像処理回路300は、画像処理制御部126、補正回路301におけるROI画像座標情報生成部311およびROI切り出し部121において、注目領域指定情報90Aから位置情報(注目領域の座標情報)およびサイズ情報(X軸方向サイズおよびY軸方向サイズ)を取得する。
【0205】
(ステップS32)
画像処理回路300は、ROI切り出し部121において、注目領域指定情報90Aに基づいて、撮像画像内における注目領域を切り出す切り出し位置を決定し、ステップS33に処理を移す。ROI切り出し部121は、切り出し位置を決定すると、撮像画像から注目領域の画像データを切り出し、画素単位で補正回路301における補正部313に出力する。
【0206】
(ステップS33)
画像処理回路300は、補正回路301のROI画像座標情報生成部311において、注目領域の画像データの画素座標を生成して、ステップS34に処理を移す。具体的には、ROI画像座標情報生成部311は、図17に示す画素座標生成処理を実行する。ROI画像座標情報生成部311は、生成した画素座標に基づいて、注目領域の各画素の画像データが属する撮像画像内のブロック領域Br(図15参照)を特定する。ROI画像座標情報生成部311は、ブロック領域Brを特定すると、ブロック領域Brに対応する補正値テーブルt1のアドレス値を導出する。ROI画像座標情報生成部311は、当該アドレス値に紐付く補正値テーブルt1のアドレス領域Asからシェーディング補正値を取得して、補正回路301の補正部313に出力する。
【0207】
(ステップS34)
画像処理回路300は、補正回路301の補正部313において注目領域の画像データに対してシェーディング補正を行い、ステップS35に処理を移す。具体的には、補正部313は、ROI画像座標情報生成部311から入力されたシェーディング補正値を用いてROI切り出し部121から入力された注目領域の画素単位の画像データの輝度を増幅する。補正部313は、シェーディング補正処理を施した注目領域の画像データである補正済み画像データ313Aを画素単位でエンコード部305に出力する。
【0208】
(ステップS35)
画像処理回路300は、補正回路301の補正部313において撮像画像内の全ての注目領域の画像データについてシェーディング補正が完了しているか否かを判定する。具体的には、画像処理回路300は、ROI画像座標情報生成部311において、全ての注目領域の画素座標の生成が終了しているか否かによって、全ての注目領域についてのシェーディング補正が完了しているか否かを判定する。画像処理回路300は、撮像画像内の全ての注目領域の画像データの画素座標が生成されている場合(上記ステップS111のNO)に、撮像画像内の全ての注目領域の画像データについてシェーディング補正が完了していると判定してステップS36に処理を移す。一方、画像処理回路300は、撮像画像内の全ての注目領域の画像データの画素座標が生成されていない場合(上記ステップS111のYES)に、撮像画像内の全ての注目領域の画像データについてシェーディング補正が完了していないと判定して、ステップS33に処理を戻す。
【0209】
(ステップS36)
画像処理回路300は、画像処理制御部126において注目領域の位置情報(座標情報)およびサイズ情報(X軸方向サイズおよびY軸方向サイズ)を設定したROI情報を生成して画像送信部330(具体的には、EBDバッファ344)に出力する。また、画像処理回路300は、エンコード部305において、補正済み画像データ313Aを圧縮した圧縮像データ120Aを画像送信部330(具体的には、ROIデータバッファ345)に出力する。これにより、画像送信部330の合成回路347は、伝送データ347AとしてROI情報を含むエンベデッドデータおよびシェーディング補正処理を施した注目領域の画像データを含むペイロードデータを生成する。生成された伝送データ347Aは、送信回路350を介して、MIPIを用いたハードウェア(HW)による通信によって、映像受信装置200に伝送される。
【0210】
上述のようにして、本実施形態による映像送信装置3においシェーディング補正処理が実行されると、シェーディング補正を施された注目領域の画像データが映像受信装置200に伝送される。これにより、映像受信装置200は、シェーディング補正を施された注目領域の画像データに対する種々の処理を実行することができる。
【0211】
以上、本実施形態において映像送信装置3においてシェーディング補正処理を実行する映像伝送システム10について説明した。本実施形態において伝送システム10が備える映像送信装置3は、撮像画像における注目領域(ROI:Region Of Interest)の座標情報に基づいて、注目領域の画像データのシェーディング補正処理を実行する画像処理回路300とシェーディング補正処理が行われた注目領域の画像データをペイロードデータで送出する画像送信部330と、を備える。これにより、伝送システム10における映像送信装置3は、注目領域の画像データに対してシェーディング補正処理を実行することができる。
【0212】
本実施形態による映像送信装置3の画像処理回路300はシェーディング補正処理を実行可能なハードウェアとして構成されている。また本実施形態による映像送信装置3の画像送信部330は、注目領域ROIの画像データを送出可能なハードウェアとして構成されている。これにより、映像送信装置3は、注目領域の画像データのシェーディング補正処理および送信処理を高速化し、伝送システム10における単位時間あたりの画像データフレームの処理数を向上させる、すなわち高フレームレートでの処理を実現することができる。
【0213】
5.本開示の第2実施形態:
次に、本開示の第2実施形態による送信装置、受信装置及び伝送システムについて図13から図15を参照しつつ図19および図20を用いて説明する。まず、本実施形態による送信装置、受信装置及び伝送システムの概略構成について図19を用いて説明する。図16は、映像伝送システム20の概略構成を示すブロック図である。本実施形態による映像伝送システム20は、映像送信装置100と映像受信装置4とを備えている。映像伝送システム20は、例えば上記前提技術1及び2に係る映像伝送システム1と同様に、映像送信装置100及び映像受信装置4との間でMIPI CSI-3規格又はMIPI DSI規格で信号を送受信するように構成されている。
【0214】
映像伝送システム20に備えられた映像送信装置100は、上記第1及び2に係る前提技術における映像送信装置100と同一の作用・機能を奏する構成であるため同一の符号を付して説明は省略する。
【0215】
映像伝送システム20に備えられた映像受信装置4は、上記前提技術1及び2に係る映像受信装置200と同等の機能を発揮するように構成されている。つまり、映像受信装置4は、映像送信装置100から伝送された伝送データに対して、上記前提技術1及び2に係る映像受信装置200と同様の処理を実行可能に構成されている。さらに、映像受信装置4は、映像送信装置100から伝送されたROI情報を用いてシェーディング補正処理を実行できるように構成されている。そこで、図19では、映像受信装置4は、シェーディング補正処理に関連する構成を中心に図示されている。
【0216】
本実施形態による映像受信装置4は、受信部210及び信号処理部(受信装置における処理部の一例)40を有している。映像受信装置4における受信部210は、所定の撮像画像から切り出された注目領域(ROI:Region Of Interest)の画像データをペイロードデータに含むとともに、所定数の注目領域に対応するROI情報をエンベデッドデータに含む伝送信号(本例では伝送データ147A)を受信する。前提技術1及び2における映像送信装置100と同様に、本実施形態による伝送システム20を構成する映像送信装置100(図18参照)は、撮像画像111における各注目領域(ROI)の画像データをロングパケットのペイロードデータで送出するとともに、当該注目領域についてのROI情報120Bをエンベデッドデータで送出する。これにより、映像送信装置100から送出された伝送データ147Aを受信した装置(本例では、映像受信装置4)において、伝送データ147Aから、各注目領域ROIの画像データ(ROI画像112)を容易に抽出することができる。
【0217】
受信部210は、受信した伝送データ147Aに対して所定の処理を行うことにより、種々のデータ(214A,215A,215B)を生成し、信号処理部40出力する回路である。本実施形態において受信部210は、映像送信装置100との間の画像データフレームの通信が開始されたことを示すパケット(SOF)を受信すると、SOFの受信を示す所定の信号を信号処理部40に出力する。
【0218】
上記前提技術1及び2における映像受信装置200と同様に、映像受信装置4においても、受信部210は、例えば、ヘッダ分離部211、ヘッダ解釈部212、ペイロード分離部213、EBD解釈部214及びROIデータ分離部215を有している。このうち、ヘッダ分離部211、ヘッダ解釈部212は、映像受信装置200と同様の構成であるため説明は省略する。
【0219】
EBD解釈部214は、ペイロード分離部213から入力されたエンベデッドデータ213Aに含まれるデータタイプから、伝送データ147Aのペイロードデータに含まれる画像データがROIの画像データ(前提技術1及び2における注目領域の画像データ116の圧縮像データ120A)であるか、又は、通常画像のデータ(圧縮像データ130A)であるかを判別する。またEBD解釈部214は、データタイプの判別結果をROIデータ分離部215に出力する。また、EBD解釈部214は、ROI情報を含む(注目領域の画像データがペイロードデータに含まれることを示す)エンベデッドデータをEBDデータ214Aとして、信号処理部40(具体的には、情報抽出部401)に出力する。
【0220】
ROIデータ分離部215は、EBD解釈部214によるデータタイプの判別結果に基づいて、伝送データ147Aのペイロードデータに含まれる画像データが注目領域の画像データ(画像データ116の圧縮像データ120A)であると判定すると、ペイロードデータの各ラインをペイロードデータ215Aとして、1ラインごと信号処理部40(具体的にはROIデコード部402)に出力する。ペイロードデータ215Aは、圧縮像データ147Bのうち1ライン分のピクセルデータであるROI画素行データを含んでいる。ここで、ROI画素行データとは、撮像画像(例えば撮像画像α)におけるY軸座標単位(画素行単位)の注目領域の画像データを示す。
【0221】
本実施形態では、例えば映像送信装置100から送出された伝送データ147Aに係る画像データフレームを構成するトランザクション単位でペイロードデータの各ラインが映像受信装置4に伝送される。受信部210のヘッダ解釈部212においてロングパケットのペイロードデータの各ラインのヘッダが検出されると、ペイロード分離部213においてペイロードデータの各ラインがパケット領域R2から分離され、ROIデータ分離部215において各ラインのペイロードヘッダPH、ROI画素行データおよびペイロードフッタPFを含むペイロードデータ215Aが生成される。
【0222】
一方、ペイロードデータに含まれる画像データが通常画像データの圧縮像データ130Aである場合、ROIデータ分離部215は、当該ペイロードデータをペイロードデータ215Bとして、第一情報処理部230a(具体的には通常画像デコード部236)に出力する。また、ROIデータ分離部215は、EBD解釈部214から入力されたデータタイプの判別結果(画像データが通常画像データであることを示す判別結果)を、信号処理部40(具体的には通常画像座標情報生成部404)に出力する。
【0223】
信号処理部40は、上記前提技術1及び2における映像受信装置200の情報処理部220と同等の機能を発揮するように構成されている。つまり、信号処理部40は、受信部210から受信した種々のデータ(214A,215A)に基づいて、ROI画像223Aを生成したり、受信部210から受信したデータ(215B)に基づいて、通常画像224Aを生成したりする回路である。
【0224】
信号処理部40は、エンベデッドデータから抽出した注目領域(ROI)に対応するROI情報から抽出した注目領域の座標情報に基づいて、注目領域の画像データのシェーディング補正処理を実行する回路である。また、信号処理部40は、通常画像のデータ(ペイロードデータ215B)についてもシェーディング補正処理を行う。
【0225】
信号処理部40は、注目領域の画像データのシェーディング補正処理に係る構成として、情報抽出部401、ROIデコード部402、ROI画像生成部403および補正処理部410を有している。まず、注目領域の画像データのシェーディング補正処理を行うこれらの構成について説明する。
【0226】
信号処理部40が備える情報抽出部401は、EBDデータ214Aに含まれるエンベデッドデータから、ROI情報120Bを抽出する。ROI情報120Bには、位置情報として撮像画像内における注目領域の相対座標の情報(座標情報)が含まれている。また、ROI情報120Bには、サイズ情報として、注目領域ROIのX軸方向サイズおよびY軸方向サイズが含まれている。
【0227】
具体的には、情報抽出部401は、ROI情報120Bの位置情報から注目領域の座標情報として少なくとも注目領域ROIの左上端部の座標を抽出する。本例において、撮像画像α内の注目領域ROI0~ROI2に関するROI情報120Bには、注目領域ROI0~ROI2の3つの注目領域それぞれの位置情報(座標情報)及びサイズ情報が含まれている。このため、情報抽出部401は、座標情報として撮像画像αにおける3つの注目領域ROI0~2それぞれの始点座標を抽出し、サイズ情報として注目領域ROI0~2それぞれのX軸方向長さおよびY軸方向長さを抽出する。
【0228】
なお、ROI情報120Bの位置情報は、注目領域ROIの左上端部の座標(始点座標)に限られず、注目領域の右下端部の座標(終点座標)を含むように構成されてもよい。本開示における位置情報は、注目領域が矩形状の場合、4つの角部のいずれかを示す座標であればよい。
【0229】
情報抽出部401は、抽出したROI情報(座標情報及びサイズ情報)から、上記第1実施形態におけるY座標順データおよびX座標順データを生成して、補正処理部410(具体的には、ROI画像座標情報生成部411)およびROI画像生成部403に出力する。情報抽出部401は、ROI情報120Bから複数の注目領域についての座標情報を抽出すると、抽出した各注目領域の座標情報を始点座標(注目領域の左上端部の画素座標)のY座標の値の昇順に並び替えてY座標順データを生成する。Y座標順データには、始点座標のY座標とY軸方向サイズを示す画素数とから算出される終点Y座標(注目領域の右下端部の画素座標)が含まれる。
【0230】
また、X座標順データには、始点座標のX座標とX軸方向サイズを示す画素数とから算出される終点X座標(注目領域の各画素行の右端部の画素座標)が含まれる。さらに、X座標順データにはY座標順データに含まれる始点座標のY座標および終点Y座標が含まれてもよい。
【0231】
ROIデコード部402は、ROIデータ分離部215から入力されたペイロードデータ215A内のROI画素行データ(圧縮像データ147B)をデコードしてROIデコード画像データ232Aを生成する。ROIデコード部402は、生成したROIデコード画像データ232AをROI画像生成部403に出力する。
【0232】
ROI画像生成部403は、Y座標順データおよびX座標順データに基づいてペイロードデータ単位で注目領域の画像データを補正処理部410(具体的には、画像データ選択部414)に出力する。具体的には、ROI画像生成部403は、Y座標順データおよびX座標順データに基づいてペイロードデータ215A内のROI画素行データを注目領域ごとに分割して補正処理部410に出力する。
【0233】
(補正処理部)
本実施形態による映像受信装置4の信号処理部40における補正処理部410は、上述の原理によるシェーディング補正処理を実行する。補正処理部410は、ROI情報から抽出した注目領域の座標情報に基づいて、注目領域の画像データのシェーディング補正処理を実行する。補正処理部410は、注目領域の左上端部の座標(始点座標)に基づいて撮像画像内における注目領域の画像データの各画素の座標を生成し、生成した各画素の座標に基づいて注目領域の画像データの各画素について輝度の増幅を行う。これにより、注目領域の画像データについてシェーディング補正が施される。補正処理部410は、ROI画像座標情報生成部411、座標情報選択部412、補正値テーブルRAM413、画像データ選択部414および補正部415を有している。補正値テーブルRAM413には、シェーディング補正処理に用いられるシェーディング補正値が保持されている。補正処理部410は、これらの構成によって、シェーディング補正処理に係る各処理を実行する。
【0234】
本実施形態による映像受信装置4の補正処理部410におけるROI画像座標情報生成部411は、上記第1実施形態による映像送信装置3の補正回路301が有するROI画像座標情報生成部311と同等の構成である。つまり、ROI画像座標情報生成部411は、切り出された注目領域(ROI)の画像データの画素ごとの相対座標(画素座標)を生成する。
【0235】
本実施形態においてROI画像座標情報生成部411は、上記第1実施形態におけるROI画像座標情報生成部311と同様に、カウンタを用いて注目領域の画像データの画素座標を生成する。本実施形態において、補正処理部410は、種々の計測処理に用いるカウンタ部を有している。本実施形態において補正処理部410は、カウンタ部として、水平カウンタXctおよび垂直カウンタYctを有している。
【0236】
水平カウンタXctは、注目領域の左上端部の座標(左上端部の画素座標)を起点として撮像画像内における注目領域のX座標を計測する。また、垂直カウンタYctは、注目領域の左上端部の座標(左上端部の画素座標)を起点として撮像画像内における注目領域のY座標を計測する。なお、本実施形態による映像受信装置4の補正処理部410における水平カウンタXctおよび垂直カウンタYctは、上記第1実施形態による映像送信装置3の補正回路301における水平カウンタXctおよび垂直カウンタYctと同等の構成であるため、同一の符号を付して、詳細な説明は省略する。ROI画像座標情報生成部411は、水平カウンタXctおよび垂直カウンタYctを用いて注目領域の画像データの各画素の座標を生成する。ここで、ROI画像座標情報生成部411が実行する画素座標生成処理は、上記第1実施形態における補正回路301のROI画像座標情報生成部311が実行する画素座標生成処理(図17参照)と同等の処理である。このため、詳細な説明は省略する。ROI画像座標情報生成部411は、画素座標生成処理において、注目領域指定情報90Aに代えて、情報抽出部401から入力されたX座標順データおよびY座標順データを用いて、画素座標生成処理を実行する。
【0237】
つまり、ROI画像座標情報生成部411は、座標情報として少なくとも注目領域の左上端部の座標(始点座標)を用いて、画素座標を生成する。より詳細には、ROI画像座標情報生成部411は、注目領域の始点座標とサイズ情報とを用いて情報抽出部401が生成したY座標順データおよびX座標順データに基づいて、注目領域の画像データの画素座標を生成する。
【0238】
ROI画像座標情報生成部411は、画素座標を生成する度に、生成した画素座標を座標情報選択部412に出力する。座標情報選択部412は、画素座標が入力されると、入力された画素座標が属する撮像画像内のブロック領域Br(図15参照)を特定する。座標情報選択部412は、特定したブロック領域Brに紐づく補正値テーブルt1のアドレス値を導出すると、補正値テーブルt1から導出したアドレス値に紐づくアドレス領域に保持されたシェーディング補正を取得して、補正部413に出力する。
【0239】
信号処理部40の補正処理部410が備える補正部415は、座標情報選択部412が座標情報に基づいて補正値テーブルt1から取得したシェーディング補正値を用いて注目領域(ROI)の画像データの輝度を増幅する。具体的には、補正処理部410において、ROI画像座標情報生成部411が注目領域の画像データの各画素の座標(画素座標)を生成し、画素座標に対応するシェーディング補正値を座標情報選択部412が補正値テーブルt1から取得し、取得したシェーディング補正値を用いて補正部415が当該注目領域の画像データの各画素について感度の調整を行う。
【0240】
補正部415は、画像データ選択部414から入力される注目領域の画素単位の画像データに対して、座標情報選択部412から入力されるシェーディング補正値を乗算して輝度を増幅する。画像データ選択部414は、ROI画像生成部403から入力された注目領域ごとの画像データを画素単位に分割して、補正部415に出力する。本実施形態による映像受信装置4は、所定のクロック信号に同期して装置内の各処理を行う。このため、当該クロック信号に基づいて処理を行うことで、各構成は互いに処理を連動(例えば、同期)させることができる。画像データ選択部414は、例えば上述のクロック信号に同期して、注目領域の画像データを画素単位で補正部415に出力する。また、座標情報選択部412は、例えば上述のクロック信号に同期して、シェーディング補正値を補正部415に出力する。
【0241】
このように、信号処理部40の補正処理部410において補正部415は、画像データ選択部414から入力される注目領域の画素単位の画像データの輝度を増幅する。これにより、補正部415は注目領域の各画素の画像データの輝度を、撮像画像内の領域に応じたシェーディング補正値に基づいて増幅させることができる。このため、補正部415を備える映像受信装置4は、シェーディング補正処理によって、注目領域の画像データの輝度を撮像画像内の領域に応じた度合いで増幅して、輝度を均一化することができる。
【0242】
次に、信号処理部40における通常画像のシェーディング補正処理に係る構成について説明する。信号処理部40は、通常画像に係る処理を行う構成として、通常画像座標情報生成部404、通常画像デコード部405および通常画像生成部406を有している。
【0243】
通常画像デコード部405は、ROIデータ分離部215から入力されたペイロードデータ215Bをデコードし、通常画像405Aを生成する。通常画像デコード部405は、通常画像405Aを通常画像生成部406に出力する。また、通常画像座標情報生成部404は、ペイロードデータに含まれる画像データが通常画像データであること(通常画像デコード部405に通常画像のデータを含むペイロードデータ215B出力されたこと)を示す判別結果がROIデータ分離部215から入力されたことに基づいて、通常画像のデータについての画素単位の座標(画素座標)を生成して座標情報選択部412に出力する。通常画像座標情報生成部404は、例えば撮像画像α(図13参照)の原点α_o(0,0)から順に撮像画像αの右下端部(終点)の画素の座標までの各画素座標を生成して、クロック信号と同期したタイミングで座標情報選択部412に出力する。
【0244】
座標情報選択部412は、通常画像座標情報生成部404から画素座標が入力されると、ROI画像座標情報生成部411から画素座標が入力された場合と同様に、入力された画素座標が属する撮像画像内のブロック領域Br(図15参照)を特定し、特定したブロック領域Brに紐づくアドレス値を導出する。さらに、座標情報選択部412は導出したアドレス値に紐づくアドレス領域に保持されたシェーディング補正を取得して、補正部413に出力する。これにより、映像受信装置4では、通常画像のデータについても補正値テーブルt1に保持されたシェーディング補正に基づいて、シェーディング補正を行い、通常画像のデータの輝度を撮像画像内の領域に応じた度合いで増幅して、輝度を均一化することができる。
【0245】
なお、上記第1実施形態による映像送信装置3においても、映像受信装置4と同様に、通常画像のデータについて補正値テーブルt1に保持されたシェーディング補正に基づいて、シェーディング補正を行ってもよい。この場合、画像処理回路300において通常画像座標情報生成部404および座標情報選択部412と同等の構成を設ければよい。
【0246】
補正部415は、シェーディング補正処理を施した画像データ(注目領域の画像データまたは通常画像の画像データ)を補正済み画像データ415Aとして出力する。
【0247】
(受信装置におけるシェーディング補正処理方法)
次に、本実施形態による送信装置、受信装置及び伝送システムにおけるシェーディング補正処理方法について図13から図19を参照しつつ図20を用いて説明する。図20は、本実施形態によるシェーディング補正を実行可能な受信装置、送信装置及び伝送システムにおけるシェーディング補正処理方法の流れの一例を示すフローチャートである。
【0248】
映像伝送システム20が起動してフレーム開始トリガが入力されると、映像受信装置4に備えられた信号処理部40(図中のCamCPU)は、ステップS40に処理を移す。
【0249】
(ステップS40)
映像伝送システム10が起動してフレーム開始トリガが入力されると、映像受信装置200に備えられた信号処理部40(図中のCamCPU)は、映像送信装置100の撮像部110(図2参照)の撮像画像から画像(注目領域)を切り出す切り出し位置を決定して、切り出し位置決定処理を終了する。具体的には、CamCPUは、切り出し位置を決定すると、切り出しを指示する制御信号を送出する。制御信号は、MIPIを用いたハードウェア(HW)による通信によって、映像受信装置4から映像送信装置100に送信される。
【0250】
(ステップS11)
映像送信装置100が備える画像処理部120(図中のセンサCPU)は、切り出し位置指定トリガを検出すると、撮像部110の撮像画像における切り出し位置とサイズを取得し、ステップS12に処理を移す。具体的には、ROI切り出し部121は、制御信号から位置情報(注目領域の座標情報)およびサイズ情報(X軸方向サイズおよびY軸方向サイズ)を取得する。
【0251】
(ステップS12)
画像処理部120は、ROI切り出し部121において、制御信号に基づいて、撮像画像内における注目領域を切り出す切り出し位置を決定し、ステップS13に処理を移す。ROI切り出し部121は、切り出し位置を決定すると、撮像画像から注目領域の画像データを切り出し、エンコード部125に出力する。
【0252】
(ステップS13)
画像処理部120は、画像処理制御部126において注目領域の位置情報(座標情報)およびサイズ情報(X軸方向サイズおよびY軸方向サイズ)を設定したROI情報を生成して送信部140(具体的には、EBDバッファ144)に出力する。また、画像処理部120は、エンコード部125において、注目領域の画像データを圧縮した圧縮像データ120Aを送信部140(具体的には、ROIデータバッファ145)に出力する。これにより、送信部140の合成部147は、伝送データ147AとしてROI情報を含むエンベデッドデータおよび注目領域の画像データを含むペイロードデータを生成する。生成された伝送データ147Aは、MIPIを用いたハードウェア(HW)による通信によって、映像受信装置200に伝送される。
【0253】
映像受信装置4は信号処理部40において、EBD解釈部214から情報抽出部401にエンベデッドデータが入力処理されたタイミングをトリガとして、ステップS61の処理を開始する。
【0254】
(ステップS41)
映像受信装置4は、信号処理部40の401において、EBDデータ214Aに含まれるエンベデッドデータから、ROI情報120Bを抽出し、さらにROI情報120Bから注目領域の位置情報(座標情報)およびサイズ情報(X軸方向サイズおよびY軸方向サイズ)を抽出してステップS42に処理を移す。情報抽出部401は、抽出したROI情報(座標情報及びサイズ情報)からY座標順データおよびX座標順データを生成して補正処理部410に出力する。
【0255】
(ステップS42)
映像受信装置4は、補正処理部410のROI画像座標情報生成部411において、注目領域の画像データの画素座標を生成して、ステップS43に処理を移す座標情報選択部412は、ROI画像座標情報生成部411が生成した画素座標に基づいて、注目領域の各画素の画像データが属する撮像画像内のブロック領域Br(図15参照)を特定する。座標情報選択部412は、ブロック領域Brを特定すると、ブロック領域Brに対応する補正値テーブルt1のアドレス値を導出する。座標情報選択部412は、当該アドレス値に紐付く補正値テーブルt1のアドレス領域Asからシェーディング補正値を取得して、補正部415に出力する。
【0256】
(ステップS43)
映像受信装置4は、補正処理部410の補正部415において、注目領域の画像データに対してシェーディング補正を行い、ステップS44に処理を移す。具体的には、補正部415は、座標情報選択部412から入力されたシェーディング補正値を用いて画像データ選択部414から入力された注目領域の画素単位の画像データの輝度を増幅する。
【0257】
(ステップS44)
映像受信装置4は、補正処理部410において、補正部415が撮像画像内の全ての注目領域の画像データについてシェーディング補正を完了しているか否かを判定する。具体的には、補正処理部410は、ROI画像座標情報生成部411において、全ての注目領域の画素座標の生成が終了しているか否かによって、全ての注目領域についてのシェーディング補正が完了しているか否かを判定する。補正処理部410は、撮像画像内の全ての注目領域の画像データの画素座標が生成されている場合(上記ステップS111のNO)に、撮像画像内の全ての注目領域の画像データについてシェーディング補正が完了していると判定してシェーディング補正処理を終了する。一方、補正処理部410は、撮像画像内の全ての注目領域の画像データの画素座標が生成されていない場合(上記ステップS111のYES)に、撮像画像内の全ての注目領域の画像データについてシェーディング補正が完了していないと判定して、ステップS42に処理を戻す。
【0258】
上述のようにして、本実施形態による映像受信装置4においシェーディング補正処理が実行されると、シェーディング補正を施された注目領域の画像データ(補正済み画像データ415A)が補正部415から出力される。これにより、映像受信装置4は、後段の処理(例えば、所定の表示装置(不図示)への注目領域の画像データの表示等)においてシェーディング補正を施された注目領域の画像データを用いることができる。
【0259】
以上、本実施形態において映像受信装置4においてシェーディング補正処理を実行する伝送システム20について説明した。本実施形態において伝送システム20が備える映像受信装置4は、所定の撮像画像から切り出された注目領域(ROI:Region Of
Interest)の画像データをペイロードデータに含むとともに、注目領域に対応するROI情報をエンベデッドデータに含む伝送信号を受信する受信部210と、ROI情報から抽出した注目領域の座標情報に基づいて、注目領域の画像データのシェーディング補正処理を実行する信号処理部40と、を備える。これにより、伝送システム20における映像受信装置4は、注目領域の画像データに対してシェーディング補正処理を実行することができる。
【0260】
本実施形態による映像受信装置4の信号処理部40はシェーディング補正処理を実行可能なハードウェアとして構成されている。また本実施形態による映像受信装置4の受信部210は、エンベデッドデータおよびペイロードデータを含む伝送データ147Aを受信可能なハードウェアとして構成されている。これにより、映像受信装置4は、注目領域の画像データのシェーディング補正処理および送信処理を高速化し、伝送システム20における単位時間あたりの画像データフレームの処理数を向上させる、すなわち高フレームレートでの処理を実現することができる。
【0261】
以上、前提技術、実施形態及びその変形例を挙げて本開示を説明したが、本開示は上記実施形態等に限定されるものではなく、種々変形が可能である。なお、本明細書中に記載された効果は、あくまで例示である。本開示の効果は、本明細書中に記載された効果に限定されるものではない。本開示が、本明細書中に記載された効果以外の効果を持っていてもよい。
【0262】
また、例えば、本開示は以下のような構成を取ることができる。
(1)
撮像画像におけるROI(Region Of Interest)の座標情報に基づいて、前記ROIの画像データのシェーディング補正処理を実行する処理部と
前記シェーディング補正処理が行われた前記ROIの画像データをペイロードデータで送出するとともに、ROI情報をエンベデッドデータで送出する送信部と、
を備える送信装置。
(2)
前記処理部は、前記ROIの前記座標情報として少なくとも前記ROIの左上端部の座標を用いる
上記(1)に記載の送信装置。
(3)
前記処理部は、
前記ROIの左上端部の座標に基づいて前記撮像画像内における前記ROIの画像データの各画素の座標を生成し、生成した各画素の座標に基づいて前記ROIの画像データの各画素について輝度の増幅を行う
上記(2)に記載の送信装置。
(4)
前記ROIの左上端部の座標を起点として前記撮像画像内における前記ROIのX座標を計測する第一カウンタと、
前記ROIの左上端部の座標を起点として前記撮像画像内における前記ROIのY座標を計測する第二カウンタと、を備え
前記処理部は、
前記第一カウンタおよび前記第二カウンタを用いて前記ROIの画像データの各画素の座標を生成する
上記(3)に記載の送信装置。
(5)
前記第一カウンタおよび前記第二カウンタは、カウンタ値が不連続な値に更新可能であり、
前記処理部は、前記第一カウンタおよび前記第二カウンタを用いて前記撮像画像に含まれる複数の前記ROIの画像データの各画素の座標を生成する
上記(4)に記載の送信装置。
(6)
前記シェーディング補正処理に用いられる補正値が保持された補正値テーブルを備え、
前記処理部は、前記座標情報に基づいて前記補正値テーブルから取得した前記補正値を用いて前記ROIの画像データの輝度を増幅する。
上記(1)から(5)のいずれか1項に記載の送信装置。
(7)
前記処理部は、前記ROIの画像データの各画素の座標に対応する前記補正値を前記補正値テーブルから取得して、前記ROIの画像データの各画素について感度の調整を行う
上記(6)に記載の送信装置。
(8)
撮像画像におけるROI(Region Of Interest)の座標情報に基づいて、前記ROIの画像データのシェーディング補正処理を実行する処理部、及び前記シェーディング補正処理が行われた前記ROIの画像データをペイロードデータで送出するとともに、ROI情報をエンベデッドデータで送出する送信部を有する送信装置と、
前記ROIに含まれる画像の画像データをペイロードデータに含むとともに、ROI情報をエンベデッドデータに含む伝送信号を受信する受信部を有する受信装置と、
を備える伝送システム。
(9)
前記送信装置は、前記処理部において前記ROIの左上端部の座標に基づいて前記撮像画像内における前記ROIの画像データの各画素の座標を前記座標情報として生成し、生成した前記ROIの画像データの各画素について輝度の増幅を行う
上記(8)に記載の伝送システム。
(10)
前記送信装置は、前記シェーディング補正処理に用いられる補正値が保持された補正値テーブルを有し、前記座標情報に基づいて前記補正値テーブルから取得した前記補正値を用いて前記ROIの画像データの輝度を増幅する
上記(8)または(9)に記載の伝送システム。
(11)
所定の撮像画像から切り出されたROI(Region Of Interest)の画像データをペイロードデータに含むとともに、前記ROIに対応するROI情報をエンベデッドデータに含む伝送信号を受信する受信部と、
前記ROI情報から抽出した前記ROIの座標情報に基づいて、前記ROIの画像データのシェーディング補正処理を実行する処理部と、
を備える受信装置。
(12)
前記処理部は、前記ROIの前記座標情報として少なくとも前記ROIの左上端部の座標を前記ROI情報から抽出する
上記(11)に記載の受信装置。
(13)
前記処理部は、前記ROIの左上端部の座標に基づいて前記撮像画像内における前記ROIの画像データの各画素の座標を生成し、生成した各画素の座標に基づいて前記ROIの画像データの各画素について輝度の増幅を行う
上記(12)に記載の受信装置。
(14)
前記ROIの左上端部の座標を起点として前記撮像画像内における前記ROIのX座標を計測する第一カウンタと、
前記ROIの左上端部の座標を起点として前記撮像画像内における前記ROIのY座標を計測する第二カウンタと、を備え
前記処理部は、
前記第一カウンタおよび前記第二カウンタを用いて前記ROIの画像データの各画素の座標を生成する
上記(13)に記載の受信装置。
(15)
前記第一カウンタおよび前記第二カウンタは、カウンタ値が不連続な値に更新可能であり、
前記処理部は、前記第一カウンタおよび前記第二カウンタを用いて前記撮像画像に含まれる複数の前記ROIの画像データの各画素の座標を生成する
上記(14)に記載の受信装置。
(16)
前記シェーディング補正処理に用いられる補正値が保持された補正値テーブルを備え、
前記処理部は、前記座標情報に基づいて前記補正値テーブルから取得した前記補正値を用いて前記ROIの画像データの輝度を増幅する。
上記(11)から(15)のいずれか1項に記載の受信装置。
(17)
前記処理部は、前記ROIの画像データの各画素の座標に対応する前記補正値を前記補正値テーブルから取得して、前記ROIの画像データの各画素について感度の調整を行う
上記(16)に記載の受信装置。
(18)
ROI(Region Of Interest)の画像データをペイロードデータで送出するとともに、ROI情報をエンベデッドデータで送出する送信装置と、
所定の撮像画像から切り出されたROI(Region Of Interest)の画像データをペイロードデータに含むとともに、前記ROIに対応するROI情報をエンベデッドデータに含む伝送信号を受信する受信部、及び前記ROI情報から抽出した前記ROIの座標情報に基づいて、前記ROIの画像データのシェーディング補正処理を実行する処理部を有する受信装置と、
を備える伝送システム。
(19)
前記受信装置は、前記処理部において、前記ROIの前記座標情報として少なくとも前記ROIの左上端部の座標を前記ROI情報から抽出し、抽出した前記左上端部の座標に基づいて前記撮像画像内における前記ROIの画像データの各画素の座標を前記座標情報として生成し、生成した前記ROIの画像データの各画素について輝度の増幅を行う
上記(18)に記載の伝送システム。
(20)
前記受信装置は、
前記シェーディング補正処理に用いられる補正値が保持された補正値テーブルを備え、前記処理部において、前記座標情報に基づいて前記補正値テーブルから取得した前記補正値を用いて前記ROIの画像データの輝度を増幅する
上記(18)または(19)に記載の伝送システム。
【符号の説明】
【0263】
1,10,20 映像伝送システム
3,100 映像送信装置
4,200 映像受信装置
110 撮像部
42 画像加工部
100A CSIトランスミッタ
100B CCIスレーブ
111 撮像画像
112,112a1,112a2,112a3,112a4,112b1,112b4,123a4,223A ROI画像
112b 圧縮像データ
113,114 位置情報
115 優先度
116,116a1,116a2 伝送画像
118 画像
120,130 画像処理部
120A,120A1,120A2,130A,147B 圧縮像データ
120B ROI情報
120C フレーム情報
121 ROI切り出し部
122 ROI解析部
123 検出部
124 優先度設定部
125,131 エンコード部
126 画像処理制御部
140 送信部
141 LINK制御部
142 ECC生成部
143 PH生成部
145 ROIデータバッファ
144 EBDバッファ
146 通常画像データバッファ
147 合成部
147A 伝送データ
200A CSIレシーバ
200B CCIマスター
210 受信部211 ヘッダ分離部
212 ヘッダ解釈部
213 ペイロード分離部
214 EBD解釈部
214A EBDデータ
215 ROIデータ分離部
215A,215B ペイロードデータ
220 情報処理部
221 情報抽出部
221A 抽出情報
222 ROIデコード部
222A 画像データ
223 ROI画像生成部
224 通常画像デコード部
224A 通常画像
Cb 色差成分
CCI カメラ制御インタフェース
CL クロックレーン
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16
図17
図18
図19
図20