IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社 NGRの特許一覧

特許7451384パターンエッジ検出方法、パターンエッジ検出装置、パターンエッジ検出をコンピュータに実行させるためのプログラムが記録された記録媒体
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-03-08
(45)【発行日】2024-03-18
(54)【発明の名称】パターンエッジ検出方法、パターンエッジ検出装置、パターンエッジ検出をコンピュータに実行させるためのプログラムが記録された記録媒体
(51)【国際特許分類】
   G06T 7/13 20170101AFI20240311BHJP
   G06T 7/00 20170101ALI20240311BHJP
   G01N 23/2251 20180101ALI20240311BHJP
【FI】
G06T7/13
G06T7/00 350B
G06T7/00 610
G01N23/2251
【請求項の数】 38
(21)【出願番号】P 2020201982
(22)【出願日】2020-12-04
(65)【公開番号】P2021111365
(43)【公開日】2021-08-02
【審査請求日】2023-07-26
(31)【優先権主張番号】P 2020002735
(32)【優先日】2020-01-10
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】301014904
【氏名又は名称】東レエンジニアリング先端半導体MIテクノロジー株式会社
(74)【代理人】
【識別番号】100118500
【弁理士】
【氏名又は名称】廣澤 哲也
(74)【代理人】
【氏名又は名称】渡邉 勇
(72)【発明者】
【氏名】岡本 陽介
【審査官】小太刀 慶明
(56)【参考文献】
【文献】特開2019-174940(JP,A)
【文献】特開2019-129169(JP,A)
【文献】特開2019-008599(JP,A)
【文献】特開平05-324836(JP,A)
【文献】特開2017-519277(JP,A)
【文献】特開2002-373333(JP,A)
【文献】Contour extraction algorithm for edge placement error measurement using machine learning,PROCEEDINGS OF SPIE,SPIE,2020年03月20日,Vol. 11325,113252A,doi: 10.1117/12.2553663
【文献】Realizing more accurate OPC models by utilizing SEM contours,PROCEEDINGS OF SPIE,SPIE,2020年03月20日,Vol. 11325,1132524,doi: 10.1117/12.2554527
(58)【調査した分野】(Int.Cl.,DB名)
G06T 7/00 - 7/90
G06T 1/00 - 1/60
G01N 23/00 - 23/2276
G01N 21/87 - 21/958
G01N 22/00 - 22/04
A61B 5/00 - 5/22
A61B 6/00 - 6/14
A61B 8/00 - 8/15
G01B 11/00 - 11/30
G01B 15/00 - 15/08
H01L 21/00 - 21/98
(57)【特許請求の範囲】
【請求項1】
ワークピース上に形成された目標パターンの対象画像を生成し、
前記対象画像の各画素の複数の特徴量を表す特徴ベクトルを生成し、
前記特徴ベクトルを、機械学習によって構築されたモデルに入力し、
前記特徴ベクトルを持つ画素はエッジの画素であるか、または非エッジの画素であるかを示す判定結果を前記モデルから出力し、
エッジの画素を示す判定結果が得られた特徴ベクトルを持つ複数の画素を線で繋いで仮想エッジを生成する、パターンエッジ検出方法。
【請求項2】
前記モデルは、決定木である、請求項1に記載のパターンエッジ検出方法。
【請求項3】
複数の訓練用パターンを設計データから選択し、
前記複数の訓練用パターンに基づいてそれぞれ作成された複数の実パターンの複数の訓練用画像を生成し、
前記複数の訓練用画像上の前記複数の実パターンのエッジを検出し、
前記複数の訓練用画像を構成する複数の参照画素を、エッジを構成する複数の第1参照画素と、エッジを構成しない複数の第2参照画素に分類し、
前記複数の第1参照画素の複数の第1特徴ベクトルと、前記複数の第2参照画素の複数の第2特徴ベクトルを生成し、
前記複数の第1特徴ベクトルおよび前記複数の第2特徴ベクトルを含む訓練データを用いて、機械学習により前記モデルを構築する工程をさらに含む、請求項1または2に記載のパターンエッジ検出方法。
【請求項4】
前記複数の訓練用パターンは、少なくとも第1の方向に延びるエッジ、前記第1の方向と垂直な第2の方向に延びるエッジ、コーナーエッジ、終端エッジを有する複数のパターンである、請求項3に記載のパターンエッジ検出方法。
【請求項5】
前記複数の実パターンは、前記ワークピースに形成されたパターンである、請求項3または4に記載のパターンエッジ検出方法。
【請求項6】
前記複数の訓練用パターンを設計データから選択する工程は、
前記設計データに基づいて描画された複数のパターンを含む設計図面を表示画面上に表示し、
前記設計図面に含まれる複数のパターンから選択された前記複数の訓練用パターン、または前記複数の訓練用パターンが位置するエリアを視覚的に強調された態様で前記表示画面上に表示する工程である、請求項3乃至5のいずれか一項に記載のパターンエッジ検出方法。
【請求項7】
前記仮想エッジに対して法線方向に延びる複数の探索線に沿った前記対象画像の複数の輝度プロファイルを生成し、
複数の前記輝度プロファイルに基づいて複数のエッジ点を決定し、
前記複数のエッジ点を線で繋ぐことで、更新されたエッジを生成する工程をさらに含む、請求項1乃至6のいずれか一項に記載のパターンエッジ検出方法。
【請求項8】
前記目標パターンに対応するCADパターンを設計データから生成し、
前記CADパターンのエッジから、前記更新されたエッジまでの距離を測定する工程をさらに含む、請求項7に記載のパターンエッジ検出方法。
【請求項9】
ワークピース上に形成された目標パターンの対象画像を生成する画像生成装置と、
前記画像生成装置に接続された演算システムを備え、
前記演算システムは、
前記対象画像の各画素の複数の特徴量を表す特徴ベクトルを生成し、
前記特徴ベクトルを、機械学習によって構築されたモデルに入力し、
前記特徴ベクトルを持つ画素はエッジの画素であるか、または非エッジの画素であるかを示す判定結果を前記モデルから出力し、
エッジの画素を示す判定結果が得られた特徴ベクトルを持つ複数の画素を線で繋いで仮想エッジを生成する、パターンエッジ検出装置。
【請求項10】
前記モデルは、決定木である、請求項9に記載のパターンエッジ検出装置。
【請求項11】
前記演算システムは、
複数の訓練用パターンを設計データから選択し、
前記複数の訓練用パターンに基づいてそれぞれ作成された複数の実パターンの複数の訓練用画像を生成し、
前記複数の訓練用画像上の前記複数の実パターンのエッジを検出し、
前記複数の訓練用画像を構成する複数の参照画素を、エッジを構成する複数の第1参照画素と、エッジを構成しない複数の第2参照画素に分類し、
前記複数の第1参照画素の複数の第1特徴ベクトルと、前記複数の第2参照画素の複数の第2特徴ベクトルを生成し、
前記複数の第1特徴ベクトルおよび前記複数の第2特徴ベクトルを含む訓練データを用いて、機械学習により前記モデルを構築するように構成されている、請求項9または10に記載のパターンエッジ検出装置。
【請求項12】
前記複数の訓練用パターンは、少なくとも第1の方向に延びるエッジ、前記第1の方向と垂直な第2の方向に延びるエッジ、コーナーエッジ、終端エッジを有する複数のパターンである、請求項11に記載のパターンエッジ検出装置。
【請求項13】
前記複数の実パターンは、前記ワークピースに形成されたパターンである、請求項11または12に記載のパターンエッジ検出装置。
【請求項14】
前記演算システムは、表示画面を有しており、
前記演算システムは、
前記設計データに基づいて描画された複数のパターンを含む設計図面を前記表示画面上に表示し、
前記設計図面に含まれる複数のパターンから選択された前記複数の訓練用パターン、または前記複数の訓練用パターンが位置するエリアを視覚的に強調された態様で前記表示画面上に表示するように構成されている、請求項11乃至13のいずれか一項に記載のパターンエッジ検出装置。
【請求項15】
前記演算システムは、
前記仮想エッジに対して法線方向に延びる複数の探索線に沿った前記対象画像の複数の輝度プロファイルを生成し、
複数の前記輝度プロファイルに基づいて複数のエッジ点を決定し、
前記複数のエッジ点を線で繋ぐことで、更新されたエッジを生成するように構成されている、請求項9乃至14のいずれか一項に記載のパターンエッジ検出装置。
【請求項16】
前記演算システムは、
前記目標パターンに対応するCADパターンを設計データから生成し、
前記CADパターンのエッジから、前記更新されたエッジまでの距離を測定するように構成されている、請求項15に記載のパターンエッジ検出装置。
【請求項17】
走査電子顕微鏡に指令を発してワークピース上に形成された目標パターンの対象画像を生成させるステップと、
前記対象画像の各画素の複数の特徴量を表す特徴ベクトルを生成するステップと、
前記特徴ベクトルを、機械学習によって構築されたモデルに入力するステップと、
前記特徴ベクトルを持つ画素はエッジの画素であるか、または非エッジの画素であるかを示す判定結果を前記モデルから出力するステップと、
エッジの画素を示す判定結果が得られた特徴ベクトルを持つ複数の画素を線で繋いで仮想エッジを生成するステップをコンピュータに実行させるためのプログラムが記録されたコンピュータ読み取り可能な記録媒体。
【請求項18】
前記モデルは、決定木である、請求項17に記載のコンピュータ読み取り可能な記録媒体。
【請求項19】
前記プログラムは、
複数の訓練用パターンを設計データから選択するステップと、
前記走査電子顕微鏡に指令を発して、前記複数の訓練用パターンに基づいてそれぞれ作成された複数の実パターンの複数の訓練用画像を生成させるステップと、
前記複数の訓練用画像上の前記複数の実パターンのエッジを検出するステップと、
前記複数の訓練用画像を構成する複数の参照画素を、エッジを構成する複数の第1参照画素と、エッジを構成しない複数の第2参照画素に分類するステップと、
前記複数の第1参照画素の複数の第1特徴ベクトルと、前記複数の第2参照画素の複数の第2特徴ベクトルを生成するステップと、
前記複数の第1特徴ベクトルおよび前記複数の第2特徴ベクトルを含む訓練データを用いて、機械学習により前記モデルを構築するステップをさらに前記コンピュータに実行させるように構成されている、請求項17または18に記載のコンピュータ読み取り可能な記録媒体。
【請求項20】
前記複数の訓練用パターンは、少なくとも第1の方向に延びるエッジ、前記第1の方向と垂直な第2の方向に延びるエッジ、コーナーエッジ、終端エッジを有する複数のパターンである、請求項19に記載のコンピュータ読み取り可能な記録媒体。
【請求項21】
前記複数の実パターンは、前記ワークピースに形成されたパターンである、請求項19または20に記載のコンピュータ読み取り可能な記録媒体。
【請求項22】
前記複数の訓練用パターンを設計データから選択するステップは、
前記設計データに基づいて描画された複数のパターンを含む設計図面を表示画面上に表示するステップと、
前記設計図面に含まれる複数のパターンから選択された前記複数の訓練用パターン、または前記複数の訓練用パターンが位置するエリアを視覚的に強調された態様で前記表示画面上に表示するステップである、請求項19乃至21のいずれか一項に記載のコンピュータ読み取り可能な記録媒体。
【請求項23】
前記プログラムは、
前記仮想エッジに対して法線方向に延びる複数の探索線に沿った前記対象画像の複数の輝度プロファイルを生成するステップと、
複数の前記輝度プロファイルに基づいて複数のエッジ点を決定するステップと、
前記複数のエッジ点を線で繋ぐことで、更新されたエッジを生成するステップをさらに前記コンピュータに実行させるように構成されている、請求項17乃至22のいずれか一項に記載のコンピュータ読み取り可能な記録媒体。
【請求項24】
前記プログラムは、
前記目標パターンに対応するCADパターンを設計データから生成するステップと、
前記CADパターンのエッジから、前記更新されたエッジまでの距離を測定するステップをさらに前記コンピュータに実行させるように構成されている、請求項23に記載のコンピュータ読み取り可能な記録媒体。
【請求項25】
ターンが形成されているワークピースの訓練用画像を走査電子顕微鏡で生成し、
前記訓練用画像上の前記パターンのエッジを検出し、
前記訓練用画像を構成する画素の特徴ベクトルを算出し、
前記訓練用画像内のターゲット領域を、エッジ領域、エッジ近傍領域、および非エッジ領域に分割し、
前記エッジ領域内の複数の第1画素の複数の特徴ベクトル、前記エッジ近傍領域内の複数の第2画素の複数の特徴ベクトル、および前記非エッジ領域内の複数の第3画素の複数の特徴ベクトルを含む訓練データを作成し、
前記訓練データを用いて機械学習により前記モデルを作成する工程をさらに含む、請求項1または2に記載のパターンエッジ検出方法。
【請求項26】
前記複数の第1画素の数をA、前記複数の第2画素の数および前記複数の第3画素の数の合計をBとしたとき、数Aを数Bで割って得られた値(A/B)は、予め定められた数値である、請求項25に記載のパターンエッジ検出方法。
【請求項27】
数Aを数Bで割って得られた値(A/B)は、0.6~1.5の範囲にある、請求項26に記載のパターンエッジ検出方法。
【請求項28】
前記非エッジ領域は、前記エッジ領域から予め定められた画素数だけ離れており、
前記エッジ近傍領域は、前記エッジ領域と前記非エッジ領域との間に位置する、請求項25乃至27のいずれか一項に記載のパターンエッジ検出方法。
【請求項29】
前記訓練用画像内のターゲット領域を、エッジ領域、エッジ近傍領域、および非エッジ領域に分割する工程は、前記訓練用画像内のターゲット領域を、エッジ領域、除外領域、エッジ近傍領域、および非エッジ領域に分割する工程であり、
前記除外領域は、前記エッジ領域に隣接し、かつ前記エッジ領域と前記エッジ近傍領域との間に位置しており、
前記訓練データは、前記除外領域内の画素の特徴ベクトルを含まない、請求項25乃至28のいずれか一項に記載のパターンエッジ検出方法。
【請求項30】
前記ターゲット領域は、第1のエッジを含む第1領域と、前記第1エッジと垂直な第2エッジを含む第2領域と、コーナーエッジおよび終端エッジを含む第3領域を含む、請求項25乃至29のいずれか一項に記載のパターンエッジ検出方法。
【請求項31】
前記第1領域内の画素数、前記第2領域内の画素数、および前記第3領域内の画素数は、予め定められた割合にある、請求項30に記載のパターンエッジ検出方法。
【請求項32】
前記パターンエッジ検出装置は、前記モデルを作成するモデル生成装置をさらに備え
前記モデル生成装置は、
記モデルを作成するためのプログラムが格納されている記憶装置と、
前記プログラムに含まれる命令に従って演算を実行する演算装置を備え、
前記モデル生成装置は、
パターンが形成されているワークピースの訓練用画像を走査電子顕微鏡から取得し、
前記訓練用画像上の前記パターンのエッジを検出し、
前記訓練用画像を構成する画素の特徴ベクトルを算出し、
前記訓練用画像内のターゲット領域を、エッジ領域、エッジ近傍領域、および非エッジ領域に分割し、
前記エッジ領域内の複数の第1画素の複数の特徴ベクトル、前記エッジ近傍領域内の複数の第2画素の複数の特徴ベクトル、および前記非エッジ領域内の複数の第3画素の複数の特徴ベクトルを含む訓練データを作成し、
前記訓練データを用いて機械学習により前記モデルを作成するように構成されている、請求項9または10に記載のパターンエッジ検出装置。
【請求項33】
前記複数の第1画素の数をA、前記複数の第2画素の数および前記複数の第3画素の数の合計をBとしたとき、数Aを数Bで割って得られた値(A/B)は、予め定められた数値である、請求項32に記載のパターンエッジ検出装置。
【請求項34】
数Aを数Bで割って得られた値(A/B)は、0.6~1.5の範囲にある、請求項33に記載のパターンエッジ検出装置。
【請求項35】
前記非エッジ領域は、前記エッジ領域から予め定められた画素数だけ離れており、
前記エッジ近傍領域は、前記エッジ領域と前記非エッジ領域との間に位置する、請求項32乃至34のいずれか一項に記載のパターンエッジ検出装置。
【請求項36】
前記モデル生成装置は、前記訓練用画像内のターゲット領域を、エッジ領域、除外領域、エッジ近傍領域、および非エッジ領域に分割するように構成されており、
前記除外領域は、前記エッジ領域に隣接し、かつ前記エッジ領域と前記エッジ近傍領域との間に位置しており、
前記訓練データは、前記除外領域内の画素の特徴ベクトルを含まない、請求項32乃至35のいずれか一項に記載のパターンエッジ検出装置。
【請求項37】
前記ターゲット領域は、第1のエッジを含む第1領域と、前記第1エッジと垂直な第2エッジを含む第2領域と、コーナーエッジおよび終端エッジを含む第3領域を含む、請求項32乃至36のいずれか一項に記載のパターンエッジ検出装置。
【請求項38】
前記第1領域内の画素数、前記第2領域内の画素数、および前記第3領域内の画素数は、予め定められた割合にある、請求項37に記載のパターンエッジ検出装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、半導体製造に関わるウェーハまたはマスクなどのワークピース上に形成されているパターンのエッジ(輪郭線)を、走査電子顕微鏡で生成した画像から検出する方法および装置に関する。また、本発明は、そのようなパターンエッジ検出をコンピュータに実行させるためのプログラムに関する。
また、本発明は、機械学習によりエッジ検出モデルを作成する方法および装置に関する。
【背景技術】
【0002】
ウェーハなどのワークピース上に形成されたパターンのエッジ(輪郭線)は、従来、次のようにして検出される。まず、ワークピース上のパターンの画像を走査電子顕微鏡により生成する。次に、パターンの設計データ(CADデータともいう)からCADパターンを生成し、CADパターンを画像上のパターンに重ね合わせる。CADパターンは、設計データに含まれるパターンの設計情報(位置、長さ、大きさなど)に基づいて作成された仮想的なパターンである。
【0003】
図25は、画像500上のパターン501に重ね合わされたCADパターン505を示す模式図である。コンピュータは、図25に示すように、CADパターン505のエッジに対して法線方向に延びる複数の探索線507を生成し、これら探索線507に沿った画像500の輝度プロファイルを作成する。図25では、図面を簡素化するために、複数の探索線507のうちの一部のみが描かれている。
【0004】
図26は、図25に示す探索線に沿った輝度プロファイルを示す図である。図26の縦軸は輝度値を表し、横軸は探索線507上の位置を表している。コンピュータは、輝度プロファイル上の輝度値がしきい値と等しいエッジ点510を検出する。コンピュータは、同様の動作を繰り返し、すべての探索線507に沿った輝度プロファイル上の複数のエッジ点を決定する。これら複数のエッジ点を結ぶ線は、画像500上のパターン501のエッジに決定される。
【0005】
しかしながら、図27乃至図29に示すような例では、画像500上のパターンエッジを正しく決定(検出)できないことがある。すなわち、図27に示す例では、パターン501のエッジの一部が欠落しており、パターン501のエッジが、CADパターン505に垂直な探索線507上に存在しない。図28に示す例では、CADパターン505のエッジが画像上のパターン501のエッジから大きく離れているため、パターン501のエッジが探索線507上に存在しない。図29に示す例では、CADパターン505には存在しないパターン510のエッジは、探索線507を用いた従来の方法では検出することができない。
【0006】
図27乃至図29は、パターンの欠陥の例を示しており、このような欠陥のあるパターンのエッジを検出することは重要である。しかしながら、実際のパターンは設計データから乖離していることがあり、設計データを用いた従来の方法では、欠陥のあるパターンのエッジを正しく検出することができないことがあった。
【0007】
一方、ウェーハなどのワークピースに形成されているパターンのエッジを、機械学習により作成されたモデルを用いて検出する技術の開発が進められている。この技術は、パターンが現れている画像の各画素が、パターンエッジを構成する画素か否かをエッジ検出モデル(学習済みモデル)によって判定する、というものである。
【0008】
エッジ検出モデルは、予め用意された訓練データを用いて機械学習(例えばディープラーニング、決定木学習など)によって作成される。訓練データは、走査電子顕微鏡により生成されたパターン画像と、そのパターン画像を構成する各画素の正解データを含む。正解データは、各画素が、パターンのエッジを構成する画素か、またはエッジを構成しない画素のいずれかであることを特定する情報である。このような訓練データを用いて機械学習を実行することにより、エッジ検出モデルを構成するパラメータ(重み係数など)が最適化される。
【0009】
しかしながら、訓練データに使用されるパターンエッジには揺らぎがあり、かつ画像上のエッジと非エッジ領域との境界線は不明瞭である。このような訓練データを用いて作成されたエッジ検出モデルは、エッジの検出に失敗したり、あるいはエッジを誤検出することがある。精度のよいエッジ検出モデルを作成するためには、機械学習のための大量の訓練データが必要になり、結果として機械学習に非常に長い時間がかかる。
【先行技術文献】
【特許文献】
【0010】
【文献】特開2003-178314号公報
【文献】特開2013-98267号公報
【文献】特開2020-140518号公報
【発明の概要】
【発明が解決しようとする課題】
【0011】
本発明は、パターンの設計データを用いずに、画像上のパターンのエッジ(輪郭線)を検出することができるパターンエッジ検出方法およびパターンエッジ検出装置を提供する。
また、本発明は、機械学習に長い時間をかけることなく、精度のよいエッジ検出モデルを作成することができる方法および装置を提供する。
【課題を解決するための手段】
【0012】
一態様では、ワークピース上に形成された目標パターンの対象画像を生成し、前記対象画像の各画素の複数の特徴量を表す特徴ベクトルを生成し、前記特徴ベクトルを、機械学習によって構築されたモデルに入力し、前記特徴ベクトルを持つ画素はエッジの画素であるか、または非エッジの画素であるかを示す判定結果を前記モデルから出力し、エッジの画素を示す判定結果が得られた特徴ベクトルを持つ複数の画素を線で繋いで仮想エッジを生成する、パターンエッジ検出方法が提供される。
【0013】
一態様では、前記モデルは、決定木である。
一態様では、前記パターンエッジ検出方法は、複数の訓練用パターンを設計データから選択し、前記複数の訓練用パターンに基づいてそれぞれ作成された複数の実パターンの複数の訓練用画像を生成し、前記複数の訓練用画像上の前記複数の実パターンのエッジを検出し、前記複数の訓練用画像を構成する複数の参照画素を、エッジを構成する複数の第1参照画素と、エッジを構成しない複数の第2参照画素に分類し、前記複数の第1参照画素の複数の第1特徴ベクトルと、前記複数の第2参照画素の複数の第2特徴ベクトルを生成し、前記複数の第1特徴ベクトルおよび前記複数の第2特徴ベクトルを含む訓練データを用いて、機械学習により前記モデルを構築する工程をさらに含む。
【0014】
一態様では、前記複数の訓練用パターンは、少なくとも第1の方向に延びるエッジ、前記第1の方向と垂直な第2の方向に延びるエッジ、コーナーエッジ、終端エッジを有する複数のパターンである。
一態様では、前記複数の実パターンは、前記ワークピースに形成されたパターンである。
一態様では、前記複数の訓練用パターンを設計データから選択する工程は、前記設計データに基づいて描画された複数のパターンを含む設計図面を表示画面上に表示し、前記設計図面に含まれる複数のパターンから選択された前記複数の訓練用パターン、または前記複数の訓練用パターンが位置するエリアを視覚的に強調された態様で前記表示画面上に表示す工程である。
一態様では、前記パターンエッジ検出方法は、前記仮想エッジに対して法線方向に延びる複数の探索線に沿った前記対象画像の複数の輝度プロファイルを生成し、複数の前記輝度プロファイルに基づいて複数のエッジ点を決定し、前記複数のエッジ点を線で繋ぐことで、更新されたエッジを生成する工程をさらに含む。
一態様では、前記パターンエッジ検出方法は、前記目標パターンに対応するCADパターンを設計データから生成し、前記CADパターンのエッジから、前記更新されたエッジまでの距離を測定する工程をさらに含む。
【0015】
一態様では、ワークピース上に形成された目標パターンの対象画像を生成する画像生成装置と、前記画像生成装置に接続された演算システムを備え、前記演算システムは、前記対象画像の各画素の複数の特徴量を表す特徴ベクトルを生成し、前記特徴ベクトルを、機械学習によって構築されたモデルに入力し、前記特徴ベクトルを持つ画素はエッジの画素であるか、または非エッジの画素であるかを示す判定結果を前記モデルから出力し、エッジの画素を示す判定結果が得られた特徴ベクトルを持つ複数の画素を線で繋いで仮想エッジを生成する、パターンエッジ検出装置が提供される。
【0016】
一態様では、前記モデルは、決定木である。
一態様では、前記演算システムは、複数の訓練用パターンを設計データから選択し、前記複数の訓練用パターンに基づいてそれぞれ作成された複数の実パターンの複数の訓練用画像を生成し、前記複数の訓練用画像上の前記複数の実パターンのエッジを検出し、前記複数の訓練用画像を構成する複数の参照画素を、エッジを構成する複数の第1参照画素と、エッジを構成しない複数の第2参照画素に分類し、前記複数の第1参照画素の複数の第1特徴ベクトルと、前記複数の第2参照画素の複数の第2特徴ベクトルを生成し、前記複数の第1特徴ベクトルおよび前記複数の第2特徴ベクトルを含む訓練データを用いて、機械学習により前記モデルを構築するように構成されている。
【0017】
一態様では、前記複数の訓練用パターンは、少なくとも第1の方向に延びるエッジ、前記第1の方向と垂直な第2の方向に延びるエッジ、コーナーエッジ、終端エッジを有する複数のパターンである。
一態様では、前記複数の実パターンは、前記ワークピースに形成されたパターンである。
一態様では、前記演算システムは、表示画面を有しており、前記演算システムは、前記設計データに基づいて描画された複数のパターンを含む設計図面を前記表示画面上に表示し、前記設計図面に含まれる複数のパターンから選択された前記複数の訓練用パターン、または前記複数の訓練用パターンが位置するエリアを視覚的に強調された態様で前記表示画面上に表示するように構成されている。
一態様では、前記演算システムは、前記仮想エッジに対して法線方向に延びる複数の探索線に沿った前記対象画像の複数の輝度プロファイルを生成し、複数の前記輝度プロファイルに基づいて複数のエッジ点を決定し、前記複数のエッジ点を線で繋ぐことで、更新されたエッジを生成するように構成されている。
一態様では、前記演算システムは、前記目標パターンに対応するCADパターンを設計データから生成し、前記CADパターンのエッジから、前記更新されたエッジまでの距離を測定するように構成されている。
【0018】
一態様では、走査電子顕微鏡に指令を発してワークピース上に形成された目標パターンの対象画像を生成させるステップと、前記対象画像の各画素の複数の特徴量を表す特徴ベクトルを生成するステップと、前記特徴ベクトルを、機械学習によって構築されたモデルに入力するステップと、前記特徴ベクトルを持つ画素はエッジの画素であるか、または非エッジの画素であるかを示す判定結果を前記モデルから出力するステップと、エッジの画素を示す判定結果が得られた特徴ベクトルを持つ複数の画素を線で繋いで仮想エッジを生成するステップをコンピュータに実行させるためのプログラムが記録されたコンピュータ読み取り可能な記録媒体が提供される。
【0019】
一態様では、前記モデルは、決定木である。
一態様では、前記プログラムは、複数の訓練用パターンを設計データから選択するステップと、前記走査電子顕微鏡に指令を発して、前記複数の訓練用パターンに基づいてそれぞれ作成された複数の実パターンの複数の訓練用画像を生成させるステップと、前記複数の訓練用画像上の前記複数の実パターンのエッジを検出するステップと、前記複数の訓練用画像を構成する複数の参照画素を、エッジを構成する複数の第1参照画素と、エッジを構成しない複数の第2参照画素に分類するステップと、前記複数の第1参照画素の複数の第1特徴ベクトルと、前記複数の第2参照画素の複数の第2特徴ベクトルを生成するステップと、前記複数の第1特徴ベクトルおよび前記複数の第2特徴ベクトルを含む訓練データを用いて、機械学習により前記モデルを構築するステップをさらに前記コンピュータに実行させるように構成されている。
【0020】
一態様では、前記複数の訓練用パターンは、少なくとも第1の方向に延びるエッジ、前記第1の方向と垂直な第2の方向に延びるエッジ、コーナーエッジ、終端エッジを有する複数のパターンである。
一態様では、前記複数の実パターンは、前記ワークピースに形成されたパターンである。
一態様では、前記複数の訓練用パターンを設計データから選択するステップは、前記設計データに基づいて描画された複数のパターンを含む設計図面を表示画面上に表示するステップと、前記設計図面に含まれる複数のパターンから選択された前記複数の訓練用パターン、または前記複数の訓練用パターンが位置するエリアを視覚的に強調された態様で前記表示画面上に表示するステップである。
一態様では、前記プログラムは、前記仮想エッジに対して法線方向に延びる複数の探索線に沿った前記対象画像の複数の輝度プロファイルを生成するステップと、複数の前記輝度プロファイルに基づいて複数のエッジ点を決定するステップと、前記複数のエッジ点を線で繋ぐことで、更新されたエッジを生成するステップをさらに前記コンピュータに実行させるように構成されている。
一態様では、前記プログラムは、前記目標パターンに対応するCADパターンを設計データから生成するステップと、前記CADパターンのエッジから、前記更新されたエッジまでの距離を測定するステップをさらに前記コンピュータに実行させるように構成されている。
【0021】
一態様では、画像上のパターンのエッジを検出するためのエッジ検出モデルを作成する方法であって、パターンが形成されているワークピースの訓練用画像を走査電子顕微鏡で生成し、前記訓練用画像上の前記パターンのエッジを検出し、前記訓練用画像を構成する画素の特徴ベクトルを算出し、前記訓練用画像内のターゲット領域を、エッジ領域、エッジ近傍領域、および非エッジ領域に分割し、前記エッジ領域内の複数の第1画素の複数の特徴ベクトル、前記エッジ近傍領域内の複数の第2画素の複数の特徴ベクトル、および前記非エッジ領域内の複数の第3画素の複数の特徴ベクトルを含む訓練データを作成し、前記訓練データを用いて機械学習によりエッジ検出モデルを作成する、方法が提供される。
【0022】
一態様では、前記複数の第1画素の数をA、前記複数の第2画素の数および前記複数の第3画素の数の合計をBとしたとき、数Aを数Bで割って得られた値(A/B)は、予め定められた数値である。
一態様では、数Aを数Bで割って得られた値(A/B)は、0.6~1.5の範囲にある。
一態様では、前記非エッジ領域は、前記エッジ領域から予め定められた画素数だけ離れており、前記エッジ近傍領域は、前記エッジ領域と前記非エッジ領域との間に位置する。
一態様では、前記訓練用画像内のターゲット領域を、エッジ領域、エッジ近傍領域、および非エッジ領域に分割する工程は、前記訓練用画像内のターゲット領域を、エッジ領域、除外領域、エッジ近傍領域、および非エッジ領域に分割する工程であり、前記除外領域は、前記エッジ領域に隣接し、かつ前記エッジ領域と前記エッジ近傍領域との間に位置しており、前記訓練データは、前記除外領域内の画素の特徴ベクトルを含まない。
一態様では、前記ターゲット領域は、第1のエッジを含む第1領域と、前記第1エッジと垂直な第2エッジを含む第2領域と、コーナーエッジおよび終端エッジを含む第3領域を含む。
一態様では、前記第1領域内の画素数、前記第2領域内の画素数、および前記第3領域内の画素数は、予め定められた割合にある。
【0023】
一態様では、画像上のパターンのエッジを検出するためのエッジ検出モデルを作成するモデル生成装置であって、前記エッジ検出モデルを作成するためのプログラムが格納されている記憶装置と、前記プログラムに含まれる命令に従って演算を実行する演算装置を備え、前記モデル生成装置は、パターンが形成されているワークピースの訓練用画像を走査電子顕微鏡から取得し、前記訓練用画像上の前記パターンのエッジを検出し、前記訓練用画像を構成する画素の特徴ベクトルを算出し、前記訓練用画像内のターゲット領域を、エッジ領域、エッジ近傍領域、および非エッジ領域に分割し、前記エッジ領域内の複数の第1画素の複数の特徴ベクトル、前記エッジ近傍領域内の複数の第2画素の複数の特徴ベクトル、および前記非エッジ領域内の複数の第3画素の複数の特徴ベクトルを含む訓練データを作成し、前記訓練データを用いて機械学習によりエッジ検出モデルを作成するように構成されている、モデル生成装置が提供される。
【0024】
一態様では、前記複数の第1画素の数をA、前記複数の第2画素の数および前記複数の第3画素の数の合計をBとしたとき、数Aを数Bで割って得られた値(A/B)は、予め定められた数値である。
一態様では、数Aを数Bで割って得られた値(A/B)は、0.6~1.5の範囲にある。
一態様では、前記非エッジ領域は、前記エッジ領域から予め定められた画素数だけ離れており、前記エッジ近傍領域は、前記エッジ領域と前記非エッジ領域との間に位置する。
一態様では、前記モデル生成装置は、前記訓練用画像内のターゲット領域を、エッジ領域、除外領域、エッジ近傍領域、および非エッジ領域に分割するように構成されており、前記除外領域は、前記エッジ領域に隣接し、かつ前記エッジ領域と前記エッジ近傍領域との間に位置しており、前記訓練データは、前記除外領域内の画素の特徴ベクトルを含まない。
一態様では、前記ターゲット領域は、第1のエッジを含む第1領域と、前記第1エッジと垂直な第2エッジを含む第2領域と、コーナーエッジおよび終端エッジを含む第3領域を含む。
一態様では、前記第1領域内の画素数、前記第2領域内の画素数、および前記第3領域内の画素数は、予め定められた割合にある。
【0025】
一態様では、パターンが形成されているワークピースの訓練用画像を走査電子顕微鏡から取得するステップと、前記訓練用画像上の前記パターンのエッジを検出するステップと、前記訓練用画像を構成する画素の特徴ベクトルを算出するステップと、前記訓練用画像内のターゲット領域を、エッジ領域、エッジ近傍領域、および非エッジ領域に分割するステップと、前記エッジ領域内の複数の第1画素の複数の特徴ベクトル、前記エッジ近傍領域内の複数の第2画素の複数の特徴ベクトル、および前記非エッジ領域内の複数の第3画素の複数の特徴ベクトルを含む訓練データを作成するステップと、前記訓練データを用いて機械学習によりエッジ検出モデルを作成するステップをコンピュータに実行させるためのプログラムが記録されたコンピュータ読み取り可能な記録媒体が提供される。
【発明の効果】
【0026】
本発明によれば、パターンの設計データに代えて、機械学習によって作成されたモデルを用いてエッジが検出される。具体的には、モデルから出力される判定結果に基づいて仮想エッジが生成される。この仮想エッジは、画像に現れているパターンのエッジに極めて近い形状を有していると予想される。
【0027】
本発明によれば、エッジ領域内の画素と、エッジ近傍領域内の画素と、非エッジ領域内の画素を含む訓練データが機械学習に用いられる。特に、判定が難しいとされるエッジ近傍領域内の画素が訓練データに含まれるので、機械学習により作成されたエッジ検出モデルは、与えられた画素がエッジであるか否かを精度よく判定することができる。
また、本発明によれば、除外領域内の画素は、機械学習に用いられない。この除外領域内の画素は、エッジの画素かもしれないし、あるいは非エッジの画素であるかもしれない。つまり、除外領域内の画素は、不確定な画素である。このような不確定な画素の特徴ベクトルを訓練データから除外することにより、エッジ検出モデルの機械学習を早期に完了させることができる。
【図面の簡単な説明】
【0028】
図1】パターンエッジ検出装置の一実施形態を示す模式図である。
図2】対象画像を示す模式図である。
図3】仮想エッジを示す模式図である。
図4】決定木からなるモデルの一実施形態を示す模式図である。
図5】ある特徴ベクトルを図4に示す複数の決定木に入力したときの判定結果の一例を示す図である。
図6】別の特徴ベクトルを図4に示す複数の決定木に入力したときの判定結果の他の例を示す図である。
図7】仮想エッジに対して法線方向に延びる複数の探索線を示す図である。
図8図7に示す探索線のうちの1つに沿った輝度プロファイルの一例を示す図である。
図9】訓練データの作成に使用される訓練用パターンの一例を示す模式図である。
図10】表示画面上に表示された設計図面の一例を示す模式図である。
図11】選択された訓練用パターンが位置するエリアを示す枠を表示画面上に表示する実施形態を示す図である。
図12】選択された訓練用パターンを、他のパターンと相対的に視覚的に異なる態様で表示する実施形態を示す図である。
図13】エッジを構成する第1参照画素の第1特徴ベクトルと、エッジを構成しない第2参照画素の第2特徴ベクトルを含む訓練データを示す模式図である。
図14】パターンエッジ検出装置の動作を示すフローチャートの一部である。
図15】パターンエッジ検出装置の動作を示すフローチャートの残りの一部である。
図16】CADパターンのエッジから、更新されたエッジまでの距離を測定する実施形態を説明する図である。
図17】パターンエッジ検出装置の一実施形態を示す模式図である。
図18】パターンが形成されたワークピースの画像の一例を示す図である。
図19】検出されたエッジを示す図である。
図20図19に示す検出されたエッジを、図18に示す画像上に重ね合わせた図である。
図21】画素の特徴量を算出する一実施形態を説明する図である。
図22】画像内のターゲット領域を、エッジ領域、エッジ近傍領域、および非エッジ領域に分割する動作を説明する図である。
図23】エッジ検出モデルを作成する他の実施形態を説明する図である。
図24】画像内に設定された複数の領域を含むターゲット領域の一例を示す図である
図25】画像上のパターンに重ね合わされたCADパターンを示す模式図である。
図26図25に示す探索線に沿った輝度プロファイルを示す図である。
図27】欠陥のあるパターンの一例を示す図である。
図28】欠陥のあるパターンの他の例を示す図である。
図29】欠陥のあるパターンのさらに他の例を示す図である。
【発明を実施するための形態】
【0029】
以下、本発明の実施形態について図面を参照して説明する。
図1は、パターンエッジ検出装置の一実施形態を示す模式図である。図1に示すように、パターンエッジ検出装置は、走査電子顕微鏡1および演算システム3を備えている。走査電子顕微鏡1は、ワークピースの画像を生成する画像生成装置の一例である。ワークピースの例としては、半導体製造に関わるウェーハまたはマスクが挙げられる。以下に説明する実施形態では、ワークピースの例としてウェーハが採用されているが、本発明は以下の実施形態に限定されない。パターンは、ワークピースに形成されている、電子デバイスの配線パターンである。
【0030】
走査電子顕微鏡1は、演算システム3に接続されており、走査電子顕微鏡1の動作は演算システム3によって制御される。演算システム3は、データベース5およびプログラムが格納された記憶装置6と、プログラムに含まれる命令に従って演算を実行する処理装置7と、画像およびGUI(グラフィカルユーザーインターフェイス)などを表示する表示画面10を備えている。記憶装置6は、RAMなどの主記憶装置と、ハードディスクドライブ(HDD)、ソリッドステートドライブ(SSD)などの補助記憶装置を備えている。処理装置7の例としては、CPU(中央処理装置)、GPU(グラフィックプロセッシングユニット)が挙げられる。ただし、演算システム3の具体的構成はこれらの例に限定されない。
【0031】
演算システム3は、マウス12aおよびキーボード12bを備えた入力装置12をさらに備えている。ユーザーは、マウス12aおよび/またはキーボード12bを用いて、表示画面10上に現れたGUIを操作することができる。マウス12aおよびキーボード12bを備えた入力装置12は一例であり、本発明は本実施形態の入力装置12に限定されない。
【0032】
演算システム3は、少なくとも1台のコンピュータを備えている。例えば、演算システム3は、走査電子顕微鏡1に通信線で接続されたエッジサーバであってもよいし、インターネットやローカルエリアネットワークなどの通信ネットワークによって走査電子顕微鏡1に接続されたクラウドサーバであってもよい。演算システム3は、複数のサーバの組み合わせであってもよい。例えば、演算システム3は、インターネットまたはローカルエリアネットワークなどの通信ネットワークにより互いに接続されたエッジサーバとクラウドサーバとの組み合わせ、あるいは通信ネットワークで接続されていない複数のサーバの組み合わせであってもよい。
【0033】
走査電子顕微鏡1は、一次電子(荷電粒子)からなる電子ビームを発する電子銃15、電子銃15から放出された電子ビームを集束する集束レンズ16、電子ビームをX方向に偏向するX偏向器17、電子ビームをY方向に偏向するY偏向器18、電子ビームをワークピースの一例であるウェーハWにフォーカスさせる対物レンズ20を有する。
【0034】
集束レンズ16および対物レンズ20はレンズ制御装置21に接続され、集束レンズ16および対物レンズ20の動作はレンズ制御装置21によって制御される。このレンズ制御装置21は演算システム3に接続されている。X偏向器17、Y偏向器18は、偏向制御装置22に接続されており、X偏向器17、Y偏向器18の偏向動作は偏向制御装置22によって制御される。この偏向制御装置22も同様に演算システム3に接続されている。二次電子検出器25と反射電子検出器26は画像取得装置28に接続されている。画像取得装置28は二次電子検出器25と反射電子検出器26の出力信号を画像に変換するように構成される。この画像取得装置28も同様に演算システム3に接続されている。
【0035】
チャンバー30内に配置されるステージ31は、ステージ制御装置32に接続されており、ステージ31の位置はステージ制御装置32によって制御される。このステージ制御装置32は演算システム3に接続されている。ウェーハWを、チャンバー30内のステージ31に載置するための搬送装置34も同様に演算システム3に接続されている。
【0036】
電子銃15から放出された電子ビームは集束レンズ16で集束された後に、X偏向器17、Y偏向器18で偏向されつつ対物レンズ20により集束されてウェーハWの表面に照射される。ウェーハWに電子ビームの一次電子が照射されると、ウェーハWからは二次電子および反射電子が放出される。二次電子は二次電子検出器25により検出され、反射電子は反射電子検出器26により検出される。検出された二次電子の信号、および反射電子の信号は、画像取得装置28に入力され画像に変換される。画像は演算システム3に送信される。
【0037】
ウェーハW上に形成されたパターンの設計データは、記憶装置6に予め記憶されている。ウェーハW上のパターンは、設計データに基づいて作成されたものである。パターンの設計データは、パターンの頂点の座標、パターンの位置、形状、および大きさ、パターンが属する層の番号などのパターンの設計情報を含む。記憶装置6には、データベース5が構築されている。パターンの設計データは、データベース5内に予め格納される。演算システム3は、記憶装置6に格納されているデータベース5から設計データを読み出すことが可能である。設計データは、CADデータとも呼ばれる。CADは、コンピュータ支援設計(computer-aided design)の略語である。
【0038】
次に、画像上のパターンのエッジ(輪郭線)を検出する方法について説明する。まず、走査電子顕微鏡1は、ウェーハW上に形成された複数のパターンの複数の画像を生成する。演算システム3は、複数の画像のうちの1つである対象画像を走査電子顕微鏡1から取得する。図2は、対象画像を示す模式図である。対象画像50には、エッジを検出すべき目標パターン51が現れている。この目標パターン51は、ウェーハW上に形成されたパターンである。
【0039】
演算システム3は、対象画像50の各画素の複数の特徴量を表す特徴ベクトルを生成する。特徴ベクトルは、各画素の複数の特徴量を含む多次元ベクトルである。特徴量は、画素の特徴を表す数値である。本実施形態では、各画素の複数の特徴量は、その画素の輝度値と、他の画素の輝度値との差である。輝度値は、一例では、グレースケールに従った0~255の離散的な数値である。本実施形態では、他の画素は隣接する画素である。一実施形態では、他の画素は、隣接していない画素であってもよい。
【0040】
演算システム3は、微分フィルタを対象画像50に適用することで、複数の特徴量を含む特徴ベクトルを生成する。具体的には、演算システム3は、ある画素の輝度値と、その画素の周囲に存在する複数の画素の輝度値との複数の差を算出する。これらの算出された複数の差は、1つの特徴ベクトルに含まれる複数の特徴量を構成する。
【0041】
例えば、図2に示す画素P1の輝度値が100であり、その画素P1の周囲に存在する複数の画素の輝度値が200,150,100,50である場合、算出される差は-100,-50,0,50である。したがって、この例における画素P1の特徴ベクトルは、(-100,-50,0,50)と表される。一方、図2に示す画素P2の輝度値が10であり、その画素P2の周囲に存在する複数の画素の輝度値が20,15,10,10である場合、算出される差は-10,-5,0,0である。したがって、この例における画素P2の特徴ベクトルは、(-10,-5,0,0)と表される。
【0042】
本実施形態では、特徴ベクトルに含まれる特徴量の数は4つであるが、本発明はこの実施形態に限られない。特徴ベクトルは、4つよりも小さい、または4つよりも大きい数の特徴量を含んでもよい。
【0043】
演算システム3は、特徴ベクトルを構成する複数の特徴量を、機械学習によって構築されたモデルに入力し、エッジの画素または非エッジの画素を示す判定結果をモデルから出力する。このモデルは、訓練データを用いて、機械学習によって作成された学習済みモデルである。訓練データは、複数の画素のそれぞれの特徴ベクトルと、これら特徴ベクトルの正解データを含む。正解データは、ある特徴ベクトルを持つ画素が、パターンのエッジを構成する画素か、またはエッジを構成しない画素のいずれかであることを特定する情報である。訓練データに含まれる複数の画素の特徴ベクトルのそれぞれは、正解データと結び付けられる(関連付けられる)。
【0044】
このような訓練データを用いた機械学習によって作成されたモデルは、未知の画素の特徴ベクトルから、その未知の画素がエッジの画素であるか、または非エッジの画素であるか判別することができる。すなわち、未知の画素の特徴ベクトルがモデルに入力されると、モデルはエッジの画素または非エッジの画素を示す判定結果を出力する。
【0045】
演算システム3は、エッジの画素を示す判定結果が得られた特徴ベクトルを持つ複数の画素を選択し、選択された複数の画素を線で繋いで仮想エッジを生成する。図3は、仮想エッジを示す模式図である。演算システム3は、エッジの画素を示す判定結果が得られた特徴ベクトルを持つ複数の画素PXを線で繋ぐことで、仮想エッジ55を形成する。この仮想エッジ55は、ウェーハW上の目標パターン51(図2参照)のエッジに近い形状を有していると予想される。
【0046】
本実施形態では、モデルには決定木が使用されている。決定木は、機械学習のアルゴリズムの一例であるランダムフォレストのアルゴリズムに従って構築されたモデル(学習済みモデル)である。
【0047】
図4は、決定木からなるモデルの一実施形態を示す模式図である。図4に示すように、モデル60は、複数の決定木60A,60B,60Cを備えている。各画素の特徴ベクトルは、これら決定木60A,60B,60Cのそれぞれに入力される。複数の決定木60A,60B,60Cは、各決定木のアルゴリズムに従って、特徴ベクトルを持つ画素がエッジの画素であるか、または非エッジの画素であるかを判定する。図4に示す例では、モデル60は3つの決定木60A,60B,60Cから構成されているが、決定木の数は特に限定されない。一実施形態では、モデル60は1つの決定木のみを備えてもよい。
【0048】
図5は、特徴ベクトル(-100,-50,0,50)を図4に示す複数の決定木60A,60B,60Cに入力したときの判定結果の一例を示す図である。特徴ベクトル(-100,-50,0,50)は、3つの決定木60A,60B,60Cにそれぞれ入力される。第1の決定木60Aおよび第2の決定木60Bは、特徴ベクトル(-100,-50,0,50)を持つ画素はエッジの画素であると判定し、第3の決定木60Cは、特徴ベクトル(-100,-50,0,50)を持つ画素は非エッジの画素であると判定している。
【0049】
図6は、特徴ベクトル(-10,-5,0,0)を図4に示す複数の決定木60A,60B,60Cに入力したときの判定結果の一例を示す図である。特徴ベクトル(-10,-5,0,0)は、3つの決定木60A,60B,60Cにそれぞれ入力される。すべての決定木60A,60B,60Cは、特徴ベクトル(-10,-5,0,0)を持つ画素は非エッジの画素であると判定している。
【0050】
判定結果は、決定木60A,60B,60Cの数だけ存在し、判定結果は決定木60A,60B,60Cによって異なることがありうる。演算システム3は、エッジの画素を示す判定結果、または非エッジの画素を示す判定結果のうち、数の多い方を採用する。図5に示す例では、3つの決定木60A,60B,60Cのうち2つは、エッジの画素を示す判定結果を出力し、他の1つは非エッジの画素を示す判定結果を出力する。この場合は、演算システム3は、数の多い方の判定結果を採用し、入力された特徴ベクトル(-100,-50,0,50)を持つ画素はエッジの画素であると決定する。図6に示す例では、すべての決定木60A,60B,60Cは、非エッジの画素を示す判定結果を出力している。この場合は、演算システム3は、入力された特徴ベクトル(-10,-5,0,0)を持つ画素は非エッジの画素であると決定する。
【0051】
決定木は、ニューラルネットワークなどの他のモデルに比べて、早く機械学習が終了できるという利点がある。例えば、訓練データを用いて複数の決定木を構築するための機械学習は、1分~5分程度で完了する。したがって、決定木を備えたモデル60を採用することで、機械学習を開始してから仮想エッジ55の生成までの時間を短くすることができる。
【0052】
一般に、同じ設計データからパターンが作成される場合であっても、パターンのエッジ形状はウェーハごとにわずかに異なる。あるウェーハ上のパターンの画像を用いて作成されたモデルは、他のウェーハ上のパターンのエッジ検出に失敗することがある。本実施形態によれば、訓練データの作成に使用された実パターンと、仮想エッジ55を生成すべき目標パターン51は、同じウェーハ(ワークピース)W上に形成されている。つまり、学習フェーズにおけるモデル60の機械学習と、エッジ検出フェーズにおける仮想エッジ55の生成は、同じウェーハ(ワークピース)Wの画像を用いて実行される。したがって、演算システム3は、訓練データを用いて機械学習により構築されたモデル60を用いて、目標パターン51の仮想エッジ55を高い精度で生成することができる。
【0053】
本実施形態では、機械学習によって構築されたモデル60として、複数の決定木が使用されているが、本発明は本実施形態に限定されない。一実施形態では、機械学習によって構築されたモデル60は、サポートベクターマシン、またはニューラルネットワークからなるモデルであってもよい。モデル60がニューラルネットワークである場合、特徴ベクトルは、ニューラルネットワークの入力層に入力され、判定結果はニューラルネットワークの出力層から出力される。ニューラルネットワークの機械学習には、ディープラーニングが好適である。
【0054】
図3に示す仮想エッジ55は、図2に示す目標パターン51のエッジに極めて近い形状を有していると予想される。一実施形態では、演算システム3は、仮想エッジ55に基づいて、目標パターン51のエッジを検出する工程をさらに実行してもよい。この目標パターン51のエッジ検出は、図25および図26を参照して説明した従来のエッジ検出方法と同じようにして実行される。ただし、CADパターンに代えて仮想エッジ55が使用される。具体的には、図7に示すように、演算システム3は、仮想エッジ55に対して法線方向に延びる複数の探索線65に沿った対象画像50の複数の輝度プロファイルを生成し、複数の輝度プロファイルに基づいて複数のエッジ点EPを決定し、複数のエッジ点EPを線で繋ぐことで、更新されたエッジ67を生成する。
【0055】
図8は、図7に示す探索線65のうちの1つに沿った輝度プロファイルの一例を示す図である。演算システム3は、輝度プロファイル上の輝度値がしきい値と等しいエッジ点EPを決定する。演算システム3は、図7に示すように、複数の探索線65に沿った複数の輝度プロファイル上の複数のエッジ点EPを決定し、これらエッジ点EPを線で繋ぐことで、更新されたエッジ67を生成し、更新されたエッジ67を対象画像50上に描画する。この更新されたエッジ67は、目標パターン51(図2参照)の実際のエッジに極めて近い形状を有していると予想される。
【0056】
次に、モデル60を構築するための機械学習に用いられる訓練データについて説明する。訓練データは、上述したように、仮想エッジ55を生成すべき目標パターン51が形成されたウェーハW上の複数の実パターンの画像から作成される。演算システム3は、複数の訓練用パターンを設計データから選択する。設計データ(CADデータともいう)は、ウェーハW上に形成されているパターンの設計データである。
【0057】
モデル60のエッジ判定精度を高めるために、訓練データは様々なエッジ形状を持つパターンの画像から作成されることが望ましい。このような観点から、訓練データの作成に使用される訓練用パターンは、図9に示すように、第1の方向に延びるエッジE1、第1の方向と垂直な第2の方向に延びるエッジE2、コーナーエッジE3、終端エッジE4を有する複数のパターンPT1,PT2,PT3を含む。演算システム3は、このような様々な形状のエッジE1~E4を持つ複数の訓練用パターンPT1,PT2,PT3を設計データから抽出(選択)する。
【0058】
演算システム3は、設計データに基づいて描画された設計図面を表示画面10(図1参照)に表示するように構成されている。図10は、表示画面10上に表示された設計図面75の一例を示す模式図である。設計図面75には、設計データに基づいて描画された種々のパターンが含まれる。ユーザーは、表示画面10上の設計図面75を目視により確認しながら、図9に示すような、多方向に延びるエッジを有するパターンPT1,PT2,PT3を選択することができる。より具体的には、ユーザーは、図1に示すマウス12aおよびキーボード12bを備えた入力装置12を操作して、図10に示すように、設計図面75上の複数のパターンから、複数の訓練用パターンPT1,PT2,PT3を選択することができる。
【0059】
ユーザーは、入力装置12を操作して、訓練用パターンPT1,PT2,PT3の一部を削除または変更することができ、あるいは設計図面75上の別のパターンを訓練用パターンPT1,PT2,PT3に追加することも可能である。
【0060】
演算システム3は、選択された複数の訓練用パターンPT1,PT2,PT3、またはこれらパターンPT1,PT2,PT3が位置するエリアを視覚的に強調された態様で表示する。例えば、図11に示すように、選択された訓練用パターンPT1,PT2,PT3が位置するエリアを示す枠80を表示画面10上に表示してもよいし、あるいは、図12に示すように、選択された訓練用パターンPT1,PT2,PT3自体を他のパターンと相対的に視覚的に異なる態様で表示してもよい。図12に示す例では、選択された訓練用パターンPT1,PT2,PTは、他のパターンよりも太い線で表示されているが、他の例では、選択された訓練用パターンPT1,PT2,PT3は、他のパターンとは異なる色で表示されてもよい。ユーザーは、表示画面10上の複数の訓練用パターンPT1,PT2,PT3を目視により確認することができる。
【0061】
走査電子顕微鏡1は、選択された複数の訓練用パターンに基づいてそれぞれ作成された複数の実パターンの複数の訓練用画像を生成する。このとき、走査電子顕微鏡1は、仮想エッジ55を生成すべき目標パターン51の画像を生成してもよい。演算システム3は、複数の訓練用画像を走査電子顕微鏡1から取得し、記憶装置6内に記憶する。
【0062】
次に、演算システム3は、複数の訓練用画像上の複数の実パターンのエッジを検出する。このエッジ検出は、図25および図26を参照して説明した従来のエッジ検出方法に従って実行される。すなわち、演算システム3は、複数の訓練用パターンにそれぞれ対応する複数のCADパターンを設計データから生成する。演算システム3は、各CADパターンにコーナーラウンド処理を適用して、丸みを帯びたコーナーエッジを形成してもよい。次に、演算システム3は、これらCADパターンを訓練用画像上の複数のパターンにそれぞれ重ね合わせる。演算システム3は、CADパターンのエッジに対して法線方向に延びる複数の探索線を生成し、これら探索線に沿った画像の複数の輝度プロファイルを作成する。演算システム3は、1つの輝度プロファイル上の輝度値がしきい値と等しいエッジ点を決定する。さらに、演算システム3は、同様の動作を繰り返し、すべての探索線に沿った輝度プロファイル上の複数のエッジ点を決定する。演算システム3は、これら複数のエッジ点を線で結び、エッジ点を結んだ線を、訓練用画像上の実パターンのエッジとする。このようにして訓練用画像上の実パターンのエッジが検出(決定)される。
【0063】
このような訓練用画像上の実パターンのエッジ検出の結果、演算システム3は、訓練用画像を構成する各参照画素に、エッジ画素のラベル、または非エッジ画素のラベルを付すことができる。すなわち、演算システム3は、複数の訓練用画像を構成する複数の参照画素を、エッジを構成する第1参照画素と、エッジを構成しない第2参照画素に分類する。
【0064】
演算システム3は、複数の第1参照画素の複数の第1特徴ベクトルと、複数の第2参照画素の複数の第2特徴ベクトルを生成する。各特徴ベクトルは、上述したように、各参照画素の複数の特徴量を含む多次元ベクトルである。演算システム3は、複数の第1特徴ベクトルおよび複数の第2特徴ベクトルと、これら特徴ベクトルの正解データを含む訓練データを作成する。正解データは、ある特徴ベクトルを持つ画素がパターンのエッジを構成する画素か、またはエッジを構成しない画素のいずれかであることを特定する情報である。訓練データに含まれる第1特徴ベクトルおよび第2特徴ベクトルのそれぞれは、正解データと結び付けられる(関連付けられる)。
【0065】
図13は、エッジを構成する第1参照画素の第1特徴ベクトルと、エッジを構成しない第2参照画素の第2特徴ベクトルを含む訓練データ70を示す模式図である。第1特徴ベクトルには、エッジの画素を表す正解データのラベルが付され、第2特徴ベクトルには、非エッジの画素を表す正解データのラベルが付されている。演算システム3は、訓練データ70を用いて、機械学習によりモデル60を構築する。
【0066】
本実施形態では、モデル60は複数の決定木60A,60B,60Cから構成されている。演算システム3は、訓練データ70から無作為に抽出された複数の第1特徴ベクトルおよび複数の第2ベクトルをそれぞれ含む複数のデータグループ70A,70B,70Cを作成し、これらデータグループ70A,70B,70Cを用いて複数の決定木60A,60B,60Cを構築する。より具体的には、演算システム3はデータグループ70Aを用いて、決定木60Aのモデルパラメータを決定する。同じようにして、演算システム3は、データグループ70Bを用いて決定木60Bのモデルパラメータを決定し、データグループ70Cを用いて決定木60Cのモデルパラメータを決定する。
【0067】
演算システム3は、上述のようにして決定されたモデルパラメータを備えた複数の決定木60A,60B,60Cからなるモデル60を、上記訓練データ70を用いて検証する。具体的には、演算システム3は、訓練データ70に含まれる第1特徴ベクトルをモデル60に入力し、モデル60から判定結果を出力させ、判定結果がエッジ画素を示しているか否かを照合する。同様に、演算システム3は、訓練データ70に含まれる第2特徴ベクトルをモデル60に入力し、モデル60から判定結果を出力させ、判定結果が非エッジ画素を示しているか否かを照合する。演算システム3はこのような検証を繰り返し実行して複数の判定結果を取得し、これら複数の判定結果が正解データに合致している割合である判定精度を算出する。
【0068】
判定精度が設定値以上であれば、演算システム3は、上述したように、モデル60を用いて仮想エッジ55の生成を実行する。判定精度が設定値よりも小さければ、演算システム3は、訓練データの作成およびモデルの機械学習を再度実行する。一実施形態では、演算システム3は、判定精度が設定値よりも小さい場合は、モデル60を使用せず、図25および図26を参照して説明した従来のエッジ検出方法に従って目標パターン51のエッジを検出してもよい。
【0069】
図14および図15は、今まで説明したパターンエッジ検出装置の動作を示すフローチャートである。
ステップ1では、演算システム3は、複数の訓練用パターンを設計データから選択(抽出)する。選択される訓練用パターンは、図9に示すように、第1の方向に延びるエッジE1、第1の方向と垂直な第2の方向に延びるエッジE2、コーナーエッジE3、終端エッジE4を有する複数のパターンを含む。
ステップ2では、走査電子顕微鏡1は、選択された複数の訓練用パターンに基づいてそれぞれ作成された複数の実パターンの複数の訓練用画像を生成する。このとき、走査電子顕微鏡1は、仮想エッジを生成すべき目標パターン51の画像を生成してもよい。
【0070】
ステップ3では、演算システム3は、複数の訓練用画像上の複数の実パターンのエッジを検出する。このエッジ検出は、図25および図26を参照して説明した従来のエッジ検出方法に従って実行される。
ステップ4では、演算システム3は、複数の訓練用画像を構成する複数の参照画素を、エッジを構成する第1参照画素と、エッジを構成しない第2参照画素に分類する。
ステップ5では、演算システム3は、複数の第1参照画素の複数の第1特徴ベクトルと、複数の第2参照画素の複数の第2特徴ベクトルを生成する。具体的には、演算システム3は、各参照画素の複数の特徴量を表す特徴ベクトルを生成する。
ステップ6では、演算システム3は、複数の第1特徴ベクトルおよび複数の第2特徴ベクトルと、これら特徴ベクトルの正解データを含む訓練データ70を作成する(図13参照)。
【0071】
ステップ7では、演算システム3は、訓練データ70を用いて機械学習を実行し、モデル60を構築する。より具体的には、演算システム3は、ある特徴ベクトルがモデル60に入力されたとき、モデル60が正しい判定結果を出力するように、モデルパラメータを調節する。
ステップ8では、演算システム3は、訓練データ70を用いてモデル60の判定精度を検証する。具体的には、演算システム3は、訓練データ70に含まれる複数の特徴ベクトルを1つずつモデル60に入力し、モデル60から複数の判定結果を出力する。演算システム3は、これら複数の判定結果が正解データに合致している割合である判定精度を算出する。
【0072】
ステップ9では、演算システム3は、判定精度を設定値と比較する。判定精度が設定値よりも小さい場合は、動作フローはステップ6に戻る。一実施形態では、判定精度が設定値よりも小さい場合は、動作フローはステップ6に戻らずに、演算システム3は、図25および図26を参照して説明した従来のエッジ検出方法に従って目標パターン51のエッジを検出してもよい。
【0073】
上述したステップ9において、判定精度が設定値以上であれば、図15に示すように、ステップ10にて、演算システム3は、モデル60を用いて仮想エッジを生成する。具体的には、演算システム3は、対象画像50の各画素の複数の特徴量を表す特徴ベクトルを生成し、特徴ベクトルをモデル60に入力し、エッジの画素または非エッジの画素を示す判定結果をモデル60から出力する。演算システム3は、エッジの画素を示す判定結果が得られた特徴ベクトルを持つ複数の画素を線で繋いで仮想エッジを生成する。
【0074】
ステップ11では、演算システム3は、仮想エッジを基準エッジとして用いて、従来のエッジ検出方法に従ってエッジ検出を実行し、更新されたエッジを生成する。具体的には、図7および図8に示すように、演算システム3は、仮想エッジ55に対して法線方向に延びる複数の探索線65を生成し、これら探索線65に沿った対象画像50の複数の輝度プロファイルを生成し、複数の輝度プロファイルに基づいて複数のエッジ点EPを決定し、複数のエッジ点EPを線で繋ぐことで、更新されたエッジ67を生成する。
【0075】
ステップ12では、演算システム3は、上記ステップ11で生成された、更新されたエッジ67が、CADパターンのエッジからどの程度離れているか検査する。具体的には、図16に示すように、演算システム3は、設計データから目標パターン51に対応するCADパターン75を生成し、CADパターン75を対象画像50上の目標パターン51に重ね合わせ、CADパターン75のエッジから、目標パターン51の更新されたエッジ67までの距離を複数の測定点で測定する。複数の測定点は、CADパターンのエッジ上に配列されている。このステップ12によれば、更新されたエッジ67が、設計データからどの程度乖離しているか(あるいは設計データにどの程度近いか)が分かる。
【0076】
少なくとも1つのコンピュータを備えた演算システム3は、記憶装置6に電気的に格納されたプログラムに含まれる命令に従って動作する。すなわち、演算システム3は、走査電子顕微鏡1に指令を発してワークピース上に形成された目標パターン51の対象画像50を生成させるステップと、対象画像50の各画素の複数の特徴量を表す特徴ベクトルを生成するステップと、前記特徴ベクトルを、機械学習によって構築されたモデル60に入力するステップと、前記特徴ベクトルを持つ画素はエッジの画素であるか、または非エッジの画素であるかを示す判定結果をモデル60から出力するステップと、エッジの画素を示す判定結果が得られた特徴ベクトルを持つ複数の画素を線で繋いで仮想エッジ55を生成するステップを実行する。
【0077】
これらステップを演算システム3に実行させるためのプログラムは、非一時的な有形物であるコンピュータ読み取り可能な記録媒体に記録され、記録媒体を介して演算システム3に提供される。または、プログラムは、インターネットまたはローカルエリアネットワークなどの通信ネットワークを介して演算システム3に入力されてもよい。
【0078】
訓練データに使用されるパターンエッジには揺らぎがあり、かつ画像上のエッジと非エッジ領域との境界線は不明瞭である。このような訓練データを用いて作成されたモデル(以下、エッジ検出モデルという)は、エッジの検出に失敗したり、あるいはエッジを誤検出することがある。精度のよいモデルを作成するためには、機械学習のための大量の訓練データが必要になり、結果として機械学習に非常に長い時間がかかる。
【0079】
そこで、以下に説明する実施形態は、機械学習に長い時間をかけることなく、精度のよいエッジ検出モデルを作成することができる方法および装置を提供する。図17は、パターンエッジ検出装置の他の実施形態を示す模式図である。特に説明しない本実施形態の構成および動作は、図1乃至図16を参照して説明した実施形態と同じであるので、その重複する説明を省略する。
【0080】
演算システム3は、ワークピースWに形成されているパターンのエッジを検出するためのエッジ検出モデルを生成するモデル生成装置80を備えている。画像取得装置28は、モデル生成装置80に接続されている。
【0081】
モデル生成装置80は、少なくとも1台のコンピュータから構成される。モデル生成装置80は、プログラムが格納された記憶装置80aと、プログラムに含まれる命令に従って演算を実行する処理装置80bを備えている。記憶装置80aは、RAMなどの主記憶装置と、ハードディスクドライブ(HDD)、ソリッドステートドライブ(SSD)などの補助記憶装置を備えている。処理装置80bの例としては、CPU(中央処理装置)、GPU(グラフィックプロセッシングユニット)が挙げられる。ただし、モデル生成装置80の具体的構成はこれらの例に限定されない。記憶装置80aは記憶装置6と一体であってもよく、処理装置80bは処理装置7と一体であってもよい。
【0082】
モデル生成装置80は、画像取得装置28から送られた画像上のパターンのエッジを検出するためのエッジ検出モデルを機械学習により作成するように構成される。以下、エッジ検出モデルの作成について説明する。
【0083】
まず、パターンが形成されているワークピースWが用意される。走査電子顕微鏡1は、ワークピースWの訓練用画像を生成し、モデル生成装置80は、訓練用画像を走査電子顕微鏡1から取得する。図18は、パターンが形成されたワークピースWの訓練用画像の一例を示す図である。図18に示す例では、訓練用画像には複数のパターンが現れている。これらのパターンは、訓練データに使用される訓練用パターンである。モデル生成装置80は、訓練用画像上のパターンのエッジを検出する。エッジの検出には、Sobelフィルタや、Canny法などの公知の画像処理技術が使用される。あるいは、エッジ検出は、図25および図26を参照して説明した従来のエッジ検出方法に従って実行されてもよい。一実施形態では、ユーザーは、検出されたエッジを手動で補正してもよい。さらに、一実施形態では、エッジはユーザーにより描画されてもよい。
【0084】
図19は、検出されたエッジを示す図である。図19に示すように、検出されたエッジは線で表される。モデル生成装置80は、検出されたエッジを、ワークピースWの訓練用画像に重ね合わせる。図20は、図19に示す検出されたエッジを、図18に示す訓練用画像上に重ね合わせた図である。
【0085】
次に、モデル生成装置80は、図18に示す訓練用画像を構成する各画素の複数の特徴量を表す特徴ベクトルを生成する。特徴ベクトルは、各画素の複数の特徴量を含む多次元ベクトルである。特徴量は、画素の特徴を表す数値である。本実施形態では、各画素の複数の特徴量は、その画素の輝度値と、他の画素の輝度値との差である。輝度値は、一例では、グレースケールに従った0~255の離散的な数値である。本実施形態では、他の画素は隣接する画素である。一実施形態では、他の画素は、隣接していない画素であってもよい。
【0086】
画素の特徴量を算出する一実施形態について、図21を参照して説明する。図21に示すように、モデル生成装置80は、訓練用画像に微分フィルタを適用し、各画素の特徴量を算出する。より具体的には、モデル生成装置80は、訓練用画像を構成する画素の輝度値を複数の方向に沿って微分し、各方向に並ぶ2つの画素間での輝度値の差からなる特徴量を各画素について算出する。
【0087】
図21に示す例では、モデル生成装置80は、0度、45度、90度、135度の方向に沿って画素の輝度値を微分する。すなわち、モデル生成装置80は、0度方向に並ぶ画素の輝度値の差、45度方向に並ぶ画素の輝度値の差、90度方向に並ぶ画素の輝度値の差、および135度方向に並ぶ画素の輝度値の差を算出する。したがって、各画素について、4つの数値からなる特徴量が得られる。例えば、図21の符号P1で示す画素の特徴量は、200,50,0,-50から構成される特徴ベクトルで表される。ただし、微分の角度、角度の数、および1画素当たりの特徴量の数は、本実施形態に限定されない。
【0088】
次に、モデル生成装置80は、図22に示すように、訓練用画像内のターゲット領域100を、エッジ領域R1、エッジ近傍領域R2、および非エッジ領域R3に分割する。図22に示すターゲット領域100は、図18に示すワークピースWの訓練用画像の一部である。より具体的には、図22に示すターゲット領域100は、図18に示す訓練用画像上のパターンのエッジを含む領域である。エッジ領域R1は、図19に示す、検出されたエッジを構成する画素を含む領域である。エッジ領域R1の幅は一定である。例えば、エッジ領域R1の幅は、1画素に相当する幅であってもよいし、あるいは予め定められた数(例えば3つ)の複数の画素に相当する幅であってもよい。
【0089】
非エッジ領域R3は、エッジ領域R1から予め定められた画素数だけ離れている。エッジ近傍領域R2は、エッジ領域R1と非エッジ領域R3との間に位置する。すなわち、エッジ近傍領域R2は、エッジ領域R1および非エッジ領域R3に隣接し、かつエッジ領域R1および非エッジ領域R3に沿って延びる。エッジ近傍領域R2の幅は一定である。一実施形態では、エッジ近傍領域R2の幅は、エッジ領域R1の幅よりも広い。通常、エッジ領域R1は、エッジ近傍領域R2よりも小さく、エッジ近傍領域R2は、非エッジ領域R3よりも小さい。
【0090】
モデル生成装置80は、エッジ領域R1内の複数の画素の複数の特徴ベクトル、エッジ近傍領域R2内の複数の画素の複数の特徴ベクトル、および非エッジ領域R3内の複数の画素の複数の特徴ベクトルを含む訓練データを作成し、訓練データを用いて機械学習によりエッジ検出モデルを作成する。エッジ検出モデルの例としては、決定木およびニューラルネットワークが挙げられる。機械学習の例としては、決定木および学習ディープラーニングが挙げられる。
【0091】
訓練データは、各画素の正解データ(または正解ラベル)を含む。この正解データは、各画素が、パターンのエッジを構成する画素か、またはエッジを構成しない画素のいずれかであることを特定する情報である。エッジ領域R1内の画素は、エッジを構成する画素であり、エッジ近傍領域R2および非エッジ領域R3内の画素は、エッジを構成しない画素である。機械学習は、エッジ検出モデルに入力された特徴ベクトルを持つ画素が、エッジの画素であるか、または非エッジの画素であるかを正しく判定するためのエッジ検出モデルのパラメータ(重み係数など)を最適化する。このようにして機械学習により作成されたエッジ検出モデルは、画素の特徴ベクトルに基づいて、その画素がエッジの画素か、または非エッジの画素かを判定することができる。
【0092】
本実施形態によれば、エッジ領域R1内の画素と、エッジ近傍領域R2内の画素と、非エッジ領域R3内の画素を必然的に含む訓練データが機械学習に用いられる。特に、判定が難しいとされるエッジ近傍領域R2内の画素が訓練データに含まれるので、機械学習により作成されたエッジ検出モデルは、与えられた画素がエッジであるか否かを精度よく判定することができる。
【0093】
訓練データに含まれる非エッジ領域R3内の画素の数が、訓練データに含まれるエッジ領域R1内の画素の数よりも多すぎると、そのような訓練データを用いて作成されたエッジ検出モデルのアルゴリズムは、非エッジの画素検出に偏ってしまう。結果として、エッジ検出モデルは、入力された画素がエッジの画素であることを正しく判定することができない。そこで、エッジ検出モデルのエッジ検出精度を向上させるために、エッジ検出モデルの機械学習に使用される複数の画素は、エッジの画素(すなわちエッジ領域R1内の画素)と、非エッジの画素(すなわちエッジ近傍領域R2および非エッジ領域R3内の画素)を均等に含むことが好ましい。
【0094】
このような観点から、エッジ領域R1内の画素の数をA、エッジ近傍領域R2内の画素の数および非エッジ領域R3内の画素の数の合計をBとしたとき、数Aを数Bで割って得られた値(A/B)は予め定められた数値である。数Aを数Bで割って得られた値(A/B)は、0.6~1.5の範囲にある。エッジ検出モデルのエッジ検出精度を向上させるために、一実施形態では、訓練データに含まれるエッジ領域R1内の画素の数Aは、訓練データに含まれるエッジ近傍領域R2内の画素の数と非エッジ領域R3内の画素の数との合計Bと同じである。
【0095】
エッジ近傍領域R2内の画素の特徴ベクトルは、エッジ領域R1内の画素の特徴ベクトルと、非エッジ領域R3内の画素の特徴ベクトルの間の値を有する。このため、エッジ近傍領域R2内の画素がエッジの画素であるか、または非エッジの画素であるかを正確に判定することは難しい。別の観点から見ると、エッジ近傍領域R2内の画素の特徴ベクトルを多く含む訓練データを用いれば、エッジ検出精度の高いエッジ検出モデルを生成することができる。そこで、一実施形態では、訓練データに含まれるエッジ近傍領域R2内の画素の数は、訓練データに含まれる非エッジ領域R3内の画素の数よりも多い。
【0096】
演算システム3は、機械学習により作成したエッジ検出モデルを用いて、次のようにしてワークピースWの対象画像上のエッジを検出する。走査電子顕微鏡1は、ワークピースWの対象画像を生成し、演算システム3はワークピースWの対象画像を走査電子顕微鏡1から受け取り、ワークピースWの対象画像を構成する画素の特徴ベクトルを算出し、特徴ベクトルをエッジ検出モデルに入力し、特徴ベクトルを持つ画素はエッジの画素であるか、または非エッジの画素であるかを示す判定結果をエッジ検出モデルから出力し、エッジの画素を示す判定結果が得られた特徴ベクトルを持つ複数の画素を線で繋いでエッジを生成する。
【0097】
少なくとも1つのコンピュータを備えたモデル生成装置80は、記憶装置80aに電気的に格納されたプログラムに含まれる命令に従って動作する。すなわち、モデル生成装置80は、パターンが形成されているワークピースWの訓練用画像を走査電子顕微鏡1から取得し、訓練用画像上のパターンのエッジを検出し、訓練用画像を構成する画素の特徴ベクトルを算出し、訓練用画像内のターゲット領域を、エッジ領域R1、エッジ近傍領域R2、および非エッジ領域R3に分割し、エッジ領域R1内の複数の画素の特徴ベクトル、エッジ近傍領域R2内の複数の画素の特徴ベクトル、および非エッジ領域R3内の複数の画素の特徴ベクトルを含む訓練データを作成し、訓練データを用いて機械学習によりエッジ検出モデルを作成するステップを実行する。
【0098】
これらステップをモデル生成装置80に実行させるためのプログラムは、非一時的な有形物であるコンピュータ読み取り可能な記録媒体に記録され、記録媒体を介してモデル生成装置80に提供される。または、プログラムは、インターネットまたはローカルエリアネットワークなどの通信ネットワークを介してモデル生成装置80に入力されてもよい。
【0099】
次に、エッジ検出モデルを作成する他の実施形態について図23を参照して説明する。特に説明しない本実施形態の工程は、図17乃至図22を参照して説明した上記実施形態と同じであるので、その重複する説明を省略する。
【0100】
図23に示すように、本実施形態では、モデル生成装置80は、訓練用画像内のターゲット領域100を、エッジ領域R1、エッジ近傍領域R2、非エッジ領域R3、および除外領域R4に分割するように構成されている。除外領域R4は、エッジ領域R1に隣接し、かつエッジ領域R1とエッジ近傍領域R2との間に位置している。図23に示す除外領域R4の幅は一定である。一実施形態では、除外領域R4の幅は、エッジ近傍領域R2の幅よりも狭い。更に、一実施形態では、除外領域R4の幅は、エッジ領域R1の幅と同じか、またはエッジ領域R1の幅よりも狭い。
【0101】
訓練データは、除外領域R4内の画素の特徴ベクトルを含まない。すなわち、訓練データは、エッジ領域R1内の複数の画素の特徴ベクトル、エッジ近傍領域R2内の複数の画素の特徴ベクトル、および非エッジ領域R3内の複数の画素の特徴ベクトルを含むが、除外領域R4内の画素の特徴ベクトルを含まない。したがって、除外領域R4内の画素は、機械学習に用いられない。
【0102】
除外領域R4は、エッジ領域R1に隣接しており、除外領域R4内の各画素の特徴ベクトルは、エッジ領域R1内の各画素の特徴ベクトルとほとんど同じである。したがって、除外領域R4内の画素は、エッジの画素かもしれないし、あるいは非エッジの画素であるかもしれない。つまり、除外領域R4内の画素は、不確定な画素である。このような不確定な画素を訓練データに含めると、エッジ検出モデルが所望の正答率を満たすまで機械学習を続ける必要がある。結果として、機械学習が完了するのに長い時間がかかる。本実施形態によれば、除外領域R4内の画素の特徴ベクトルが訓練データから除外されるので、エッジ検出モデルの機械学習を早期に完了させることができる。
【0103】
エッジ検出モデルのエッジ検出精度をさらに高めるために、一実施形態では、ターゲット領域100は、訓練用画像内のさまざまなパターンエッジを含む複数の領域を含む。これは、訓練用画像上のパターンのエッジの鮮鋭度は、エッジの延びる方向に依存して変わりうるからである。
【0104】
図24は、訓練用画像内に設定された複数の領域を含むターゲット領域100の一例を示す図である。図24に示すように、ターゲット領域100は、ワークピースWの画像内のパターンの第1のエッジE1を含む第1領域T1と、第1エッジE1と垂直な第2エッジE2を含む第2領域T2と、パターンのコーナーエッジE3および終端エッジE4を含む第3領域T3を含む。訓練データは、異なる方向に延びるエッジE1,E2,E3,E4を含む複数の領域T1,T2,T3内の画素の特徴ベクトルを含む。このような訓練データを用いた機械学習は、様々な方向に延びるエッジの検出精度を向上させることができる。
【0105】
他方向に延びるエッジの検出精度をさらに向上させるために、一実施形態では、第1領域T1内の画素数、第2領域T2内の画素数、および第3領域T3内の画素数は、予め定められた割合にある。第1領域T1内の画素数をS1、第2領域T2内の画素数をS2、および第3領域T3内の画素数をS3で表すとき、S1とS2とS3の関係は次の式で表される。
S1=m×S2=n×S3
ただし、mは0.9~1.1であり、nは0.01~0.1である。
【0106】
上述した実施形態は、本発明が属する技術分野における通常の知識を有する者が本発明を実施できることを目的として記載されたものである。上記実施形態の種々の変形例は、当業者であれば当然になしうることであり、本発明の技術的思想は他の実施形態にも適用しうる。したがって、本発明は、記載された実施形態に限定されることはなく、特許請求の範囲によって定義される技術的思想に従った最も広い範囲に解釈されるものである。
【符号の説明】
【0107】
1 走査電子顕微鏡
3 演算システム
5 データベース
6 記憶装置
7 処理装置
10 表示画面
12 入力装置
15 電子銃
16 集束レンズ
17 X偏向器
18 Y偏向器
20 対物レンズ
21 レンズ制御装置
22 偏向制御装置
25 二次電子検出器
26 反射電子検出器
28 画像取得装置
30 チャンバー
31 ステージ
32 ステージ制御装置
34 搬送装置
50 対象画像
51 目標パターン
55 仮想エッジ
60 モデル
60A,60B,60C 決定木
65 探索線
67 更新されたエッジ
70 訓練データ
70A,70B,70C データグループ
75 設計図面
80 モデル生成装置
100 ターゲット領域
W ウェーハ(ワークピース)
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16
図17
図18
図19
図20
図21
図22
図23
図24
図25
図26
図27
図28
図29