IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社東芝の特許一覧 ▶ 東芝電機サービス株式会社の特許一覧

特許7451387データ処理装置、データ処理方法、及びプログラム
<>
  • 特許-データ処理装置、データ処理方法、及びプログラム 図1
  • 特許-データ処理装置、データ処理方法、及びプログラム 図2
  • 特許-データ処理装置、データ処理方法、及びプログラム 図3
  • 特許-データ処理装置、データ処理方法、及びプログラム 図4
  • 特許-データ処理装置、データ処理方法、及びプログラム 図5
  • 特許-データ処理装置、データ処理方法、及びプログラム 図6
  • 特許-データ処理装置、データ処理方法、及びプログラム 図7
  • 特許-データ処理装置、データ処理方法、及びプログラム 図8
  • 特許-データ処理装置、データ処理方法、及びプログラム 図9
  • 特許-データ処理装置、データ処理方法、及びプログラム 図10
  • 特許-データ処理装置、データ処理方法、及びプログラム 図11
  • 特許-データ処理装置、データ処理方法、及びプログラム 図12
  • 特許-データ処理装置、データ処理方法、及びプログラム 図13
  • 特許-データ処理装置、データ処理方法、及びプログラム 図14
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-03-08
(45)【発行日】2024-03-18
(54)【発明の名称】データ処理装置、データ処理方法、及びプログラム
(51)【国際特許分類】
   G01M 3/24 20060101AFI20240311BHJP
【FI】
G01M3/24 B
【請求項の数】 8
(21)【出願番号】P 2020203425
(22)【出願日】2020-12-08
(65)【公開番号】P2022090864
(43)【公開日】2022-06-20
【審査請求日】2023-02-24
(73)【特許権者】
【識別番号】000003078
【氏名又は名称】株式会社東芝
(73)【特許権者】
【識別番号】598076591
【氏名又は名称】東芝インフラシステムズ株式会社
(74)【代理人】
【識別番号】110001634
【氏名又は名称】弁理士法人志賀国際特許事務所
(72)【発明者】
【氏名】蛭間 貴博
【審査官】瓦井 秀憲
(56)【参考文献】
【文献】国際公開第2017/199455(WO,A1)
【文献】特開平10-078371(JP,A)
【文献】特開2016-142622(JP,A)
【文献】特開2020-101419(JP,A)
【文献】特開平09-166663(JP,A)
【文献】国際公開第2015/129031(WO,A1)
【文献】米国特許出願公開第2002/0124633(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
G01M 3/00- 3/40
(57)【特許請求の範囲】
【請求項1】
センサが検出した時系列信号を取得する取得部と、
前記時系列信号から変動成分の特徴量を抽出する特徴量抽出部と、
所定の長さの前記時系列信号に対して第1閾値を超える期間の割合を算出し、算出した前記期間の割合に基づいて前記特徴量の変動成分の有無を判定する判定部と、
を備え
前記特徴量抽出部は、
前記時系列信号からサチレーションが発生した区間の除去を行うサチレーション除去部と、
前記サチレーションが除去されたデータに対して所定の帯域を通過させるバンドパスフィルタと、
前記バンドパスフィルタを通過後のデータに対して振幅の絶対値化処理を行う振幅絶対値化部と、
前記振幅が絶対値化されたデータに対して、所定のカットオフ周波数で低域を通過させるローパスフィルタと、
前記ローパスフィルタを通過後のデータに対して任意に設定した時間幅に含まれるサンプルの振幅を平均化することで振幅平滑化を行うデータ平滑化部と、
前記振幅平滑化後のデータの振幅をデシベル変換するデシベル変換部と、
前記デシベル変換後のデータに対して、デシベル最小値を0基準として補正するデシベル最小値基準化部と、を備え、
前記ローパスフィルタを通過後のデータから変動成分の特徴量を抽出する
ータ処理装置。
【請求項2】
センサが検出した時系列信号を取得する取得部と、
前記時系列信号から変動成分の特徴量を抽出する特徴量抽出部と、
所定の長さの前記時系列信号に対して第1閾値を超える期間の割合を算出し、算出した前記期間の割合に基づいて前記特徴量の変動成分の有無を判定する判定部と、
を備え、
前記特徴量抽出部は、
前記時系列信号からサチレーションが発生した区間の除去を行うサチレーション除去部と、
前記サチレーションが除去されたデータに対して所定の帯域を通過させるバンドパスフィルタと、
前記バンドパスフィルタを通過後のデータに対して振幅の絶対値化処理を行う振幅絶対値化部と、
前記振幅が絶対値化されたデータに対して、所定のカットオフ周波数で低域を通過させるローパスフィルタと、
前記ローパスフィルタを通過後の振幅の最大値を正規化するように補正する振幅補正部と、
前記振幅補正部によって振幅が補正されたデータに対してグラフスムージング処理を行うデータ平滑化部と、を備え、
前記ローパスフィルタを通過後のデータから変動成分の特徴量を抽出する
データ処理装置。
【請求項3】
前記判定部は、
前記特徴量抽出部から取得したデータに対して、前記第1閾値を超えた振幅レベル期間の割合を求める判定処理部と、
全データ区間中、前記第1閾値を超えた振幅レベルの期間の割合と第2閾値を比較した結果に基づいて前記特徴量の変動成分の有無を判定する変動成分判定部と、を備える、
請求項1または請求項2に記載のデータ処理装置。
【請求項4】
前記特徴量抽出部は、
前記特徴量抽出部と前記判定部の各機能部の閾値や設定値を任意に設定する設定値設定部を、さらに備える、
請求項1から請求項3のうちのいずれか1項に記載のデータ処理装置。
【請求項5】
取得部が、センサが検出した時系列信号を取得し、
特徴量抽出部が、前記時系列信号から変動成分の特徴量を抽出し、
判定部が、所定の長さの前記時系列信号に対して第1閾値を超える期間の割合を算出し、算出した前記期間の割合に基づいて前記特徴量の変動成分の有無を判定し、
前記特徴量抽出部のサチレーション除去部が、前記時系列信号からサチレーションが発生した区間の除去を行い、
前記特徴量抽出部のバンドパスフィルタが、前記サチレーションが除去されたデータに対して所定の帯域を通過させ、
前記特徴量抽出部の振幅絶対値化部が、前記バンドパスフィルタを通過後のデータに対して振幅の絶対値化処理を行い、
前記特徴量抽出部のローパスフィルタが、前記振幅が絶対値化されたデータに対して、所定のカットオフ周波数で低域を通過させ、
前記特徴量抽出部のデータ平滑化部が、前記ローパスフィルタを通過後のデータに対して任意に設定した時間幅に含まれるサンプルの振幅を平均化することで振幅平滑化を行い、
前記特徴量抽出部のデシベル変換部が、前記振幅平滑化後のデータの振幅をデシベル変換し、
前記特徴量抽出部のデシベル最小値基準化部が、前記デシベル変換後のデータに対して、デシベル最小値を0基準として補正し、
前記特徴量抽出部が、前記ローパスフィルタを通過後のデータから変動成分の特徴量を抽出する、
データ処理方法。
【請求項6】
取得部が、センサが検出した時系列信号を取得し、
特徴量抽出部が、前記時系列信号から変動成分の特徴量を抽出し、
判定部が、所定の長さの前記時系列信号に対して第1閾値を超える期間の割合を算出し、算出した前記期間の割合に基づいて前記特徴量の変動成分の有無を判定し、
前記特徴量抽出部のサチレーション除去部が、前記時系列信号からサチレーションが発生した区間の除去を行い、
前記特徴量抽出部のバンドパスフィルタが、前記サチレーションが除去されたデータに対して所定の帯域を通過させ、
前記特徴量抽出部の振幅絶対値化部が、前記バンドパスフィルタを通過後のデータに対して振幅の絶対値化処理を行い、
前記特徴量抽出部のローパスフィルタが、前記振幅が絶対値化されたデータに対して、所定のカットオフ周波数で低域を通過させ、
前記特徴量抽出部の振幅補正部が、前記ローパスフィルタを通過後の振幅の最大値を正規化するように補正し、
前記特徴量抽出部のデータ平滑化部が、前記振幅補正部によって振幅が補正されたデータに対してグラフスムージング処理を行い、
前記特徴量抽出部が、前記ローパスフィルタを通過後のデータから変動成分の特徴量を抽出する
データ処理方法。
【請求項7】
コンピュータに、
センサが検出した時系列信号を取得させ、
前記時系列信号から変動成分の特徴量を抽出させ、
所定の長さの前記時系列信号に対して第1閾値を超える期間の割合を算出させ、算出した前記期間の割合に基づいて前記特徴量の変動成分の有無を判定させ
前記時系列信号からサチレーションが発生した区間の除去を行わせ、
前記サチレーションが除去されたデータに対して所定の帯域を通過させ、
前記所定の帯域を通過後のデータに対して振幅の絶対値化処理を行わせ、
前記振幅が絶対値化されたデータに対して、所定のカットオフ周波数で低域を通過させ、
前記低域を通過後のデータに対して任意に設定した時間幅に含まれるサンプルの振幅を平均化することで振幅平滑化を行わせ、
前記振幅平滑化後のデータの振幅をデシベル変換させ、
前記デシベル変換後のデータに対して、デシベル最小値を0基準として補正させ、
前記低域を通過後のデータから変動成分の特徴量を抽出させる、
プログラム。
【請求項8】
コンピュータに、
センサが検出した時系列信号を取得させ、
前記時系列信号から変動成分の特徴量を抽出させ、
所定の長さの前記時系列信号に対して第1閾値を超える期間の割合を算出させ、算出した前記期間の割合に基づいて前記特徴量の変動成分の有無を判定させ、
前記時系列信号からサチレーションが発生した区間の除去を行わせ、
前記サチレーションが除去されたデータに対して所定の帯域を通過させ、
前記所定の帯域を通過後のデータに対して振幅の絶対値化処理を行わせ、
前記振幅が絶対値化されたデータに対して、所定のカットオフ周波数で低域を通過させ、
前記低域を通過後の振幅の最大値を正規化するように補正させ、
振幅が補正されたデータに対してグラフスムージング処理を行わせ、
前記低域を通過後のデータから変動成分の特徴量を抽出させる、
プログラム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明の実施形態は、データ処理装置、データ処理方法、及びプログラムに関する。
【背景技術】
【0002】
上水道の末端である給水管や、その上流に位置する配水管等から発生する水漏れ(漏水)を、振動センサで取得した時系列振動データまたはマイクロホンで取得した時系列音声データを解析することにより、漏水の有無を判定する技術がある。データの測定箇所は、各家庭に備え付けられた水道メータ上やその周囲の配管または止水栓などである。判定の際に、周囲環境からのノイズが混入する場合が少なくない。ノイズは、例えば、自動車の通過音等の交通騒音や、往来する人の会話音声,屋外に設置した室外機や自動販売機等からの機械騒音などである。自動車などの交通騒音は、漏水と誤判定されてしまう場合があった。
【先行技術文献】
【特許文献】
【0003】
【文献】国際公開第2017/199455号
【文献】特開平10-78371号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
本発明が解決しようとする課題は、漏水音以外の変動成分を精度良く検出することができるデータ処理装置、データ処理方法、及びプログラムを提供することである。
【課題を解決するための手段】
【0005】
実施形態のデータ処理装置は、取得部と、特徴量抽出部と、判定部と、を持つ。取得部は、センサが検出した時系列信号を取得する。特徴量抽出部は、前記時系列信号から変動成分の特徴量を抽出する。判定部は、所定の長さの前記時系列信号に対して第1閾値を超える期間の割合を算出し、算出した前記期間の割合に基づいて前記特徴量の変動成分の有無を判定する。
【図面の簡単な説明】
【0006】
図1】漏水判定のシステム構成の一例を示す図。
図2】自動車など移動体が接近し遠ざかる際のセンサが検出した波形例を示す図。
図3図2の波形の周波数成分を解析した例を示す図。
図4】第1の実施形態に係るデータ処理装置の構成の一例を示す図。
図5】第1の実施形態に係る特徴量検出部のサチレーション除去部とバンドパスフィルタと振幅絶対値化部が行う処理例を示す図。
図6】第1の実施形態に係る特徴量検出部のローパスフィルタとデータ平滑化部とdB変換部とdB最小値基準化部が行う処理例を示す図。
図7】第1の実施形態に係る判定部の判定処理部と変動成分判定部が行う処理例を示す図。
図8】第1の実施形態に係るデータ処理装置が行う処理手順例のフローチャート。
図9】第1の実施形態による変動成分有無の判定の性能評価結果を示す図。
図10】第1の実施形態に係る判定部が用いる他の閾値の例を示す図。
図11】第2の実施形態に係るデータ処理装置の構成の一例を示す図。
図12】第2の実施形態に係る特徴量検出部のローパスフィルタと振幅補正部とデータ平滑部、判定部が行う処理例を示す図。
図13】第2の実施形態に係るデータ処理装置が行う処理手順例のフローチャート。
図14】第2の実施形態による変動成分有無の判定の性能評価結果を示す図。
【発明を実施するための形態】
【0007】
以下、実施形態のデータ処理装置、データ処理方法、及びプログラムを、図面を参照して説明する。なお、以下の実施形態では、データ処理装置として、漏水判定における変動成分の判定を行う例を説明する。
【0008】
まず、漏水判定の測定例を説明する。
図1は、漏水判定のシステム構成の一例を示す図である。データの測定箇所は、例えば、各家庭に備え付けられたメーターボックス500内の水道メータ501上やその周囲の配管、または止水栓502などである。図1の例の測定箇所は、センサ2を水道メータ501上である。センサ2は、例えば、振動を検出する振動センサ、音データを収音するマイクロホン等である。データ処理装置1と漏水検出器3は、センサ2が検出した検出データ(振動・音データなどの時系列信号)を取得する。漏水検出器3は、センサ2が検出した検出データに基づいて漏水の有無を検出する。データ処理装置1は、センサ2が検出した検出データに基づいて特徴量の変動成分の有無を検出する。
【0009】
センサ2で検出の際は、自動車の通過音等の交通騒音、往来する人の会話音声、屋外に設置した室外機や自動販売機等からの機械騒音などノイズが混入する場合がある。図2は、自動車など移動体が接近し遠ざかる際のセンサが検出した波形例を示す図である。図2において、横軸は時間(秒)であり、縦軸は振幅の大きさ(例えば(V))である。図2のように、移動体が接近し遠ざかる際は、振幅が緩やかに増大し、測定地点近傍で最大となり、緩やかに減少していく様子がわかる。なお、測定データによっては、接近状態(緩やかに増大)、遠ざかる状態(緩やかに減少)のみの場合もある。
【0010】
図3は、図2の波形の周波数成分を解析した例を示す図である。図3において、横軸は時間(秒)であり、縦軸は周波数(Hz)である。図3のように、周波数的な特徴としては3(kHz)までの高域成分が含まれている。この帯域の周波数成分が、漏水音と誤判定される要因であり、特徴量の変動成分であると考えられる。
【0011】
(第1の実施形態)
まず、本実施形態の変動成分有無を判定するデータ処理装置の構成例を説明する。
図4は、本実施形態に係るデータ処理装置の構成の一例を示す図である。図4のように、データ処理装置1は、取得部11と、特徴量抽出部12と、設定値設定部13と、判定部14と、出力部15とを備える。
【0012】
特徴量抽出部12は、サチレーション除去部121と、バンドパスフィルタ122と、振幅絶対値化部123と、ローパスフィルタ124と、データ平滑化部125と、dB変換部126と、dB最小値基準化部127とを備える。
判定部14は、判定処理部141と、変動成分判定部142とを備える。
【0013】
データ処理装置1は、センサ2が検出した検出データから特徴量を抽出し、抽出した特徴量に基づいて特徴量の変動音であるか否かを判定する。
【0014】
取得部11は、センサ2が検出した検出データを取得する。検出データは、例えば、振動や音を記録した時系列信号データである。検出データは、例えばWAVフォーマット形式に代表される時系列信号データである。検出データは、別フォーマットの時系列信号データであってもWAV形式に変換が可能なデータであってもよい。検出データは、例えば、ADPCM(Adaptive Differential Pulse Code Modulation)、MP3、WMA(Windows Media(登録商標) Audio)などの圧縮データでもよい。
【0015】
特徴量抽出部12は、取得部11が取得した検出データから変動成分の特徴量を注出し、抽出した特徴量の変動成分の特徴量を示す情報を判定部14に出力する。
【0016】
サチレーション除去部121は、取得部11が取得した検出データからサチレーションが発生した区間の除去を行い、サチレーションを除去した検出データをバンドパスフィルタ122に出力する。サチレーション除去部121は、突発成分や打撃成分の瞬時的な振幅超過の場合、任意に設定した時間窓幅で、超過部分が含まれる区間を抽出し除去する。なお、サチレーション除去部121は、例えば、所定の閾値を用いて、所定の閾値を所定時間連続して超える場合にサチレーションと判定して除去する。この閾値や所定時間も、設定値設定部13が設定する。サチレーション除去部121は、全区間においてサチレーションが発生する場合、データ自体を破棄し判定処理を行わないものとし、判定不能データとして処理する。なお、サチレーションとは、振動や音を取得又は収音した時系列信号データの振幅が、例えばWAV形式等のデータフォーマットとしての振幅限界値を超えた状態、または任意に設定した許容振幅値を超えた状態である。
【0017】
バンドパスフィルタ122は、サチレーションが除去されたデータに対して設定値設定部13によって設定される所定の帯域を通過させる。通過させる所定の帯域は、例えば、漏水音の特徴的な周波数成分が含まれている800~3000(Hz)である。なお、通過させる所定の帯域は、例えば測定地域の地質や環境等に応じて、任意の帯域に設定するようにしてもよい。
【0018】
振幅絶対値化部123は、バンドパスフィルタ122を通過後のデータに対して、絶対値化処理を行う。絶対値化処理を行う理由は、時間波形の振幅は正負の値を繰り返して示すため、連続的な時間変化を捉えやすくするためである。また、振幅絶対値化部123は、ローパスフィルタ124に入力するデータの先頭の例えば約0.5(秒)に、冒頭の0.5(秒)の信号をダミー信号として付加する。付加する理由は、ローパスフィルタ124によって、先頭区間の振幅レベルが著しく小さくなることへの対策である。
【0019】
ローパスフィルタ124は、振幅絶対値化されたデータに対して、振幅の包絡線を抽出して連続した時間変化を捉えやすくするために、設定値設定部13によって設定される例えばカットオフ周波数5(Hz)で低域を通過させることでエンベロープ処理を行う。なお、カットオフ周波数は、測定地域の地質や環境等に応じて、任意の帯域に設定するようにしてもよい。
【0020】
データ平滑化部125は、ローパスフィルタ124を通過後のデータに対して、設定値設定部13によって任意に設定した時間幅に含まれるサンプルの振幅を平均化することでスムージングを行う。平滑化によってデータの連続的な変化が捉えやすくなる。データ平滑化部125は、例えば0.1秒ごとに1秒間平均で実施する。
【0021】
dB変換部126は、データ平滑化(スムージング)後のデータの振幅をdB(デシベル)変換(音圧レベルに変換;10log10X)する。dB変換によって、振幅の持つ物理的な意味が把握しやすくなる。
【0022】
dB最小値基準化部127は、dB変換後のデータに対して、dB最小値を0基準として補正する(dB最小値基準化)。dB変換とdB最小値基準化とによって、縦軸の振幅レンジが拡大・圧縮されることなく、全データ同一の尺度で取り扱いが可能となる。実施形態では、周囲暗騒音が静かな状態(音圧0dB基準)から自動車等の移動体通過時の振幅差に着目する。
【0023】
設定値設定部13は、利用者の操作に基づいて特徴量抽出部12と判定部14の各機能部の閾値や設定値を任意に設定する。なお、設定値設定部13は、各機能部の設定値や閾値を予め記憶していてもよい。サチレーション除去部121の閾値は、例えば、許容振幅、全体に含まれるサチレーションの割合である。バンドパスフィルタ122に対する設定値は、例えば、周波数範囲(例えば800~3000(Hz)),とフィルタの種類(例えばバターワース)と次数(例えばN=3)である。ローパスフィルタ124に対する設定値は、例えば、カットオフ周波数(例えば5Hz)と、フィルタの種類(例えばバターワース)と次数(例えばN=3)である。データ平滑化部125に対する設定値は、例えば平均化する時間幅と時間ステップである。判定部14に対する閾値は、例えばdB値の閾値(閾値Δ(dB))である。
【0024】
判定部14は、特徴量抽出部12から取得したデータに対して、特徴量の変動成分の有無を判定する。
【0025】
判定処理部141は、特徴量抽出部12から取得したデータに対して、設定値設定部13が設定した閾値(第1閾値)Δ(dB)を超えた音圧レベル(dB)の期間の割合を求める。
【0026】
変動成分判定部142は、全データ区間中、閾値を超えた音圧レベルの期間の割合が閾値(第2閾値)Ω(%)を超えた場合に特徴量の変動成分あり(交通騒音あり)と判定する。
【0027】
出力部15は、変動成分有無の判定結果を、例えば、ランプ等に出力、または画像表示装置、携帯端末等の外部装置に出力する。出力部15は、有線または無線の通信部を備えていてもよい。出力部15は、例えば、特徴量の変動成分ありの場合に1を出力し、特徴量の変動成分なしの場合に0を出力する。
【0028】
次に、特徴量抽出部12が行う処理例を、図5図6を用いて説明する。図5は、本実施形態に係る特徴量検出部のサチレーション除去部とバンドパスフィルタと振幅絶対値化部が行う処理例を示す図である。図6は、本実施形態に係る特徴量検出部のローパスフィルタとデータ平滑化部とdB変換部とdB最小値基準化部が行う処理例を示す図である。図5図6の各グラフにおいて、横軸は時刻(秒)であり、縦軸はレベルである。なお、図5の例は、変動音のひとつである車の通過音のデータ処理例を示す。
【0029】
漏水が発生している際の特徴は、800~3000Hz程度の周波数成分が含まれるケースが多い。また、漏水時は、定常的な音であり、音の振幅の変化が少なく一定の音である。
なお、漏水検出器で取得するデータの長さは、一般的に10秒程度の短い時間である。漏水検出器では、長時間取得した場合においても、データから10秒程度の区間に切り出して、そのデータ区間での特徴量の変動成分有無を判定する。このため、本実施形態でも、例えば10秒間程度のデータを取得または切り出す。なお、図5の例は、8秒間の検出データを取得した例である。
【0030】
グラフg10は、取得部11が取得し特徴量抽出部12に出力する検出データの波形を示す。検出データは、測定環境が静かな状態の波形g11と、サチレーションg12と車通過時の波形g13を含む。
【0031】
グラフg20は、波形g21からサチレーション除去部121によってサチレーションg12を除去された後の波形を示す。
【0032】
グラフg30は、通過帯域周波数800~3000(Hz)、3次フィルタの設定のバンドパスフィルタ122によって帯域通過された後の波形を示す。
【0033】
グラフg40は、振幅絶対値化部123によって振幅絶対値化された後の波形を示す。
【0034】
グラフg50は、カットオフ周波数5Hz、3次フィルタの設定のローパスフィルタ124によってエンベロープ処理された後の波形を示す。
【0035】
グラフg60は、1秒間平均の設定のデータ平滑化部125によって平滑化された後の波形を示す。なお、グラフg50に対してグラフg60のデータが約1秒減っている理由は、平均化したためである。
【0036】
グラフg70は、dB変換部126によってdB変換された後の波形を示す。
【0037】
グラフg80は、dB最小値基準化部127によってdB最小値基準化によって静かな状態g81を0(dB)にされた後の波形を示す。この結果、車通過時g82と静かな状態g81との差は、約20(dB)である。
【0038】
次に、判定部14が行う処理例を用いて説明する。図7は、本実施形態に係る判定部の判定処理部と変動成分判定部が行う処理例を示す図である。図7の各グラフにおいて、横軸は時刻(秒)であり、縦軸はレベルである。
【0039】
図7の例では、判定処理部141は、グラフg100のように閾値g101以上を“1”と判定し、閾値未満を“0”と判定する。
【0040】
変動成分判定部142は、グラフg110のように判定処理部141から“1”が出力されている時刻(約3.5~4.5(秒))g111の割合を求める。図7の例では“1”の割合が約11.3%であり閾値以上であるため、変動成分判定部142は、このデータを変動音であると判定する。なお、“1”の割合の閾値Ωは、例えば10(%)である。なお、閾値Δ(=20dB)や,閾値Ω(=10%)は、任意に設定することが可能である。
【0041】
次に、データ処理装置1が行う処理手順例を説明する。
図8は、本実施形態に係るデータ処理装置が行う処理手順例のフローチャートである。
【0042】
取得部11は、センサ2が検出した検出データを取得する(ステップS1)。サチレーション除去部121は、取得部11が取得した検出データからサチレーションが発生した区間の除去を行う(ステップS2)。
【0043】
バンドパスフィルタ122は、サチレーションが除去されたデータに対して、設定値設定部13によって設定された所定の帯域を通過させる(ステップS3)。振幅絶対値化部123は、バンドパスフィルタ122を通過後のデータに対して、絶対値化処理を行う(ステップS4)。
【0044】
ローパスフィルタ124は、振幅絶対値化されたデータに対して、設定値設定部13によって設定された低域を通過させることでエンベロープ処理を行う(ステップS5)。データ平滑化部125は、ローパスフィルタ124を通過後のデータに対して、設定値設定部13によって任意に設定した時間幅に含まれるサンプルの振幅を平均化することでグラフスムージングを行う(ステップS6)。
【0045】
dB変換部126は、グラフスムージング処理後のデータの振幅をdB変換する(ステップS7)。dB最小値基準化部127は、dB変換後のデータに対して、dB最小値を0基準として補正するdB最小値基準化を行う(ステップS8)。
【0046】
判定処理部141は、特徴量抽出部12から取得したデータに対して、設定値設定部13によって設定された閾値Δ(dB)を超えた音圧レベル(dB)の期間の割合を求める(ステップS9)。変動成分判定部142は、全データ区間中、閾値を超えた音圧レベルの割合が閾値Ωを超えた場合に特徴量の変動成分が含まれていると判定し、閾値を超えた音圧レベルの割合が閾値Ω未満の場合に特徴量の変動成分が含まれていないと判定する(ステップS10)。
【0047】
次に、変動成分有無の判定の性能評価結果を説明する。
図9は、本実施形態による変動成分有無の判定の性能評価結果を示す図である。図9に示す例は、26個の実際の漏水調査現場において取得した変動成分を含んだテストデータを用いて、特徴量の変動成分の有無を判定した結果である。本実施形態によれば、88.5%の正解率であった。
【0048】
ここで、判定部14が用いる他の閾値の例を説明する。
図6図7を用いて説明した例では、判定期間のデータの極大値が1つの例を説明したが、これに限らない。図10のように、判定期間のデータの極大値の数は2つ以上であってもよい。図10は、本実施形態に係る判定部が用いる他の閾値の例を示す図である。なお、図10の各グラフの波形は、dB最小値基準化後の波形である。
【0049】
図10の各グラフにおいて、横軸は時刻(秒)であり、縦軸はレベル(dB)である。グラフg200~g250において、直線g201、g211、g221、g231、g241およびg251は閾値Δ(dB)を示し、割合g202、g212、g222、g232、g242およびg252は閾値Ω(%)を示す。
【0050】
なお、図10の各閾値は、実現場での測定データおよび現地調査結果の積み上げによるパラメータサーベイにより決定することが望ましい。また、図10に示した波形や閾値は一例であり、これに限らない。
【0051】
以上のように、本実施形態では、ローパスフィルタ後のデータに対してdB変換とdB最小値基準化を行ったデータに対し閾値を超える割合を求め、その割合により特徴量の変動成分の有無を判定するようにした。また、本実施形態では、時間領域のデータから特徴量を抽出して特徴量の変動成分の有無を判定するようにした。
【0052】
これにより、本実施形態によれば、漏水と誤判定されるノイズの一つである変動成分を精度良く検出し、ノイズを除去することができる。
【0053】
(第2の実施形態)
第2の実施形態では、ローパスフィルタ通過後の処理方法が第1の実施形態と異なり、ローパスフィルタ通過後に振幅補正処理を行い、データ平滑化する処理を行う。また、本実施形態では、dB変換を実施せず、判定部でdB(デシベル)ではなく振幅値で判定処理を行う。
【0054】
まず、本実施形態の変動成分有無を判定するデータ処理装置の構成例を説明する。
図11は、本実施形態に係るデータ処理装置の構成の一例を示す図である。図11のように、データ処理装置1Aは、取得部11と、特徴量抽出部12Aと、設定値設定部13Aと、判定部14Aと、出力部15とを備える。
【0055】
特徴量抽出部12Aは、サチレーション除去部121と、バンドパスフィルタ122と、振幅絶対値化部123と、ローパスフィルタ124と、データ平滑化部125と、振幅補正部128とを備える。
判定部14Aは、判定処理部141Aと、変動成分判定部142Aとを備える。
【0056】
振幅補正部128は、ローパスフィルタ124を通過後の振幅の最大値を、例えば1となるよう補正する。
【0057】
データ平滑化部125は、振幅補正部128によって振幅が補正されたデータに対して、設定値設定部13Aによって任意に設定された時間幅に含まれるサンプルの振幅を平均化することでスムージングを行う。
【0058】
判定処理部141Aは、振幅を検出する閾値Δ(第1閾値)が設定値設定部13Aによって例えば0~1までの範囲で設定され、特徴量抽出部12Aが出力するデータが設定された閾値以上であるか否かを判定する。
【0059】
変動成分判定部142Aは、全体のうち”1”となる区間が任意の閾値Ω(第2閾値)の割合で特徴量の変動成分ありか否かを判定する。変動成分判定部142Aは、例えば0%<割合≦40%の場合に変動音あり、割合が0%の場合に変動音なし、割合>40%の場合に変動音なしであると判定する。割合>40%を変動音なしと判定する理由は、一定の区間閾値を超えるような大きさの音量が入っている場合、自動車が通過するような交通騒音のような緩やかな時間変動とみなせないためである。なお、割合≧0%の場合は、時間平均化処理を施していることから、最低1秒区間は閾値を超える振幅変動を示していることを意味する。
【0060】
設定値設定部13Aは、特徴量抽出部12Aに関する設定値を特徴量抽出部12と同様に設定する。また、設定値設定部13Aは、判定処理部141A、変動成分判定部142の閾値Δと閾値Ωの値を、第1の実施形態で使用した数値と異なる値を設定する。
【0061】
次に、特徴量抽出部12Aと判定部14Aが行う処理例を説明する。図12は、本実施形態に係る特徴量検出部のローパスフィルタと振幅補正部とデータ平滑部、判定部が行う処理例を示す図である。図12の各グラフにおいて、横軸は時刻(秒)であり、縦軸はレベルである。なお、図12の例は、図5と同様に変動音のひとつである車の通過音のデータ処理例を示す。
【0062】
サチレーション除去部121と、バンドパスフィルタ122と、振幅絶対値化部123と、ローパスフィルタ124が行う処理の波形例は、図5のグラフg10~g40と同じである。
【0063】
グラフg300は、振幅絶対値化後の波形g301に対して、カットオフ周波数5Hz、3次フィルタの設定のローパスフィルタ124によってエンベロープ処理された後の波形g302を示す。
【0064】
グラフg310は、エンベロープ処理された後の波形g302に対して、振幅補正部128による振幅補正された後の波形を示す。
【0065】
グラフg320は、1秒間平均の設定のデータ平滑化部125によって平滑化された後の波形を示す。なお、図12の例では、閾値g221を0.7とする。なお、閾値の根拠は、仮にデータの振幅が一定の場合、振幅の最大値で割った振幅の大きさは、ほぼ1である。そして、振幅が1の実効値は、√(2)であるので、目安として0.7とした。
【0066】
グラフg330は、判定部14Aが全期間中の1の期間の割合を判定する波形を示す。判定部14Aは、特徴量抽出部12Aから取得したデータに対して、閾値g321を超えた振幅レベルの期間g331の割合を求める。グラフg230の例では、閾値g321を超えた振幅レベルの期間の割合が約11%であり、0%より多く40%以下であるため、判定部14Aは特徴量の変動成分が含まれていると判定する。
【0067】
次に、データ処理装置1Aが行う処理手順例を説明する。
図13は、本実施形態に係るデータ処理装置が行う処理手順例のフローチャートである。なお、データ処理装置1Aは、ステップS1~S5の処理を、第1の実施形態と同様に行う。
【0068】
振幅補正部128は、ローパスフィルタ124を通過後の振幅の最大値を正規化するように補正する(ステップS101)。データ平滑化部125は、振幅補正部128によって振幅が補正されたデータに対して、グラフスムージング処理を行う(ステップS102)。
【0069】
判定処理部141Aは、特徴量抽出部12Aから取得したデータに対して、設定値設定部13Aが設定した閾値Δを超えた振幅レベルの期間の割合を求める(ステップS103)。変動成分判定部142Aは、全データ区間中、閾値を超えた振幅レベルの割合と閾値Ωを比較して、比較した結果に基づいて、特徴量の変動成分が含まれているか否かの判定を行う(ステップS104)。
【0070】
次に、変動成分有無の判定の性能評価結果を説明する。
図14は、本実施形態による変動成分有無の判定の性能評価結果を示す図である。図14に示す例は、26個の実際の漏水調査現場において取得した変動成分を含んだテストデータを用いて、特徴量の変動成分の有無を判定した結果である。本実施形態によれば、76.9%の正解率であった。ただし、第2の実施形態では、第1の実施形態の評価結果では不正解であったテストデータのNo4、No10、No22で正解となっている。このため、用途や環境に応じて第1の実施形態の手法と第2の実施形態の手法とを使い分けることで、より判定精度を向上させることができる。
【0071】
以上のように、本実施形態では、ローパスフィルタ後のデータに対して振幅補正を行ったデータに対して閾値を超える割合を求め、その割合により特徴量の変動成分の有無を判定するようにした。
【0072】
これにより、本実施形態でも、漏水と誤判定されるノイズの一つである特徴量の変動成分を精度良く検出し、ノイズを除去することができる。
【0073】
なお、漏水の判定は、漏水検出器3を用いて行い、漏水検出器3が漏水を検出した際に、検出結果が漏水であるか特徴量の変動成分の影響を受けていて後検出であるかの判定に、各実施形態の判定結果を用いる。このため、データ処理装置1(または1A)は、判定した判定結果を漏水検出器3に出力するようにしてもよい。
【0074】
上述した各実施形態では、漏水検査における特徴量の変動成分の有無を判定する例を説明したが、これに限らない。上述した各実施例では、車が通過する際の変動成分を検出する例を説明したが、特徴量の変動成分は、これに限らない。判定する特徴量の変動成分に応じて、帯域周波数、カットオフ周波数、平均化の設定値、閾値等を設定するようにしてもよい。
【0075】
上述した各実施形態では、センサ2から取得する検出データがアナログ信号の例を説明したが、検出データはデジタル信号であってもよい。この場合、センサ2がアナログ信号をデジタル信号に変換してもよく、取得部11がアナログ信号をデジタル信号に変換してもよい。なお、取得した検出データがデジタル信号の場合、特徴量抽出部12(または12A)と判定部14(または14A)は、各処理をデジタル信号に対して行う。
【0076】
本実施形態の各手法は、振動センサやマイクロホン等で検出データを取得し、取得した検出データに基づいて異常の有無を判定する各種の装置に適用可能である。この場合、用いる対象や環境に合わせて、設定値や閾値を変更する。
【0077】
上記各実施形態では、データ処理装置1がLSI等のハードウェア機能部であるものとしたが、ソフトウェア機能部であってもよい。
【0078】
以上説明した少なくともひとつの実施形態によれば、検出データから特徴量を抽出する特徴量抽出部と特徴量に基づいて特徴量の変動成分の有無を判定する判定部を持つことにより、漏水音以外の変動成分を精度良く検出することができる。
【0079】
なお、本発明におけるデータ処理装置1の機能の全てまたは一部を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することによりデータ処理装置1の処理の全てまたは一部を行ってもよい。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。また、「コンピュータシステム」は、ホームページ提供環境(あるいは表示環境)を備えたWWWシステムも含むものとする。また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムが送信された場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリ(RAM)のように、一定時間プログラムを保持しているものも含むものとする。
【0080】
また、上記プログラムは、このプログラムを記憶装置等に格納したコンピュータシステムから、伝送媒体を介して、あるいは、伝送媒体中の伝送波により他のコンピュータシステムに伝送されてもよい。ここで、プログラムを伝送する「伝送媒体」は、インターネット等のネットワーク(通信網)や電話回線等の通信回線(通信線)のように情報を伝送する機能を有する媒体のことをいう。また、上記プログラムは、前述した機能の一部を実現するためのものであってもよい。さらに、前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるもの、いわゆる差分ファイル(差分プログラム)であってもよい。
【0081】
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
【符号の説明】
【0082】
1,1A…データ処理装置、11…取得部、12,12A…特徴量抽出部、13,13A…設定値設定部、14,14A…判定部、15…出力部、121…サチレーション除去部、122…バンドパスフィルタ、123…振幅絶対値化部、124…ローパスフィルタ、125…データ平滑化部、126…dB変換部、127…dB最小値基準化部、128…振幅補正部、141,141A…判定処理部、142,142A…変動成分判定部
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14