(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-03-11
(45)【発行日】2024-03-19
(54)【発明の名称】学習装置、学習方法、プログラム、及び、レーダ装置
(51)【国際特許分類】
G01S 7/10 20060101AFI20240312BHJP
G01S 13/42 20060101ALI20240312BHJP
G01S 13/72 20060101ALI20240312BHJP
【FI】
G01S7/10
G01S13/42
G01S13/72
(21)【出願番号】P 2022500182
(86)(22)【出願日】2020-02-14
(86)【国際出願番号】 JP2020005805
(87)【国際公開番号】W WO2021161512
(87)【国際公開日】2021-08-19
【審査請求日】2022-08-03
(73)【特許権者】
【識別番号】000004237
【氏名又は名称】日本電気株式会社
(74)【代理人】
【識別番号】100107331
【氏名又は名称】中村 聡延
(74)【代理人】
【識別番号】100104765
【氏名又は名称】江上 達夫
(74)【代理人】
【識別番号】100131015
【氏名又は名称】三輪 浩誉
(72)【発明者】
【氏名】柴田 剛志
(72)【発明者】
【氏名】真坂 元貴
(72)【発明者】
【氏名】阿部 祐一
(72)【発明者】
【氏名】工藤 健太郎
(72)【発明者】
【氏名】加藤 正徳
(72)【発明者】
【氏名】池田 昇平
【審査官】藤脇 昌也
(56)【参考文献】
【文献】特開平05-181508(JP,A)
【文献】米国特許出願公開第2018/0370502(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
G01S 7/00 - 7/42
13/00 - 13/95
(57)【特許請求の範囲】
【請求項1】
レーダ装置の
受信信号に基づいて生成された目標の航跡を含む動作データ、前記レーダ装置に対してオペレータが行った操作を示す操作履歴データ、及び、気象情報と地形情報と電波環境と空域の使用情報とを含む補助データを前記レーダ装置から取得する取得手段と、
前記動作データ
、前記操作履歴データ、及び、前記補助データを用いて、前記操作履歴データに含まれる1つの操作について、当該操作が行われた際に取得した動作データと補助データとを入力データとし、当該操作を教師ラベルとする学習データを生成する学習データ生成手段と、
前記学習データを用いて、前記動作データに基づいて前記レーダ装置に対して行うべき操作を決定する操作決定モデルを学習する学習処理手段と、
を備える学習装置。
【請求項2】
前記操作は、前記レーダ装置による受信信号におけるクラッタ領域を設定する操作である請求項1に記載の学習装置。
【請求項3】
前記操作は、前記レーダ装置による受信信号に基づいて目標を検出する際に使用するしきい値を調整する操作である請求項1に記載の学習装置。
【請求項4】
前記操作は、前記レーダ装置により検出された目標の航跡を作成し、追尾を指示する操作である請求項1に記載の学習装置。
【請求項5】
レーダ装置の受信信号に基づいて生成された目標の航跡を含む動作データ、前記レーダ装置に対してオペレータが行った操作を示す操作履歴データ、及び、気象情報と地形情報と電波環境と空域の使用情報とを含む補助データを前記レーダ装置から取得し、
前記動作データ、前記操作履歴データ、及び、前記補助データを用いて、前記操作履歴データに含まれる1つの操作について、当該操作が行われた際に取得した動作データと補助データとを入力データとし、当該操作を教師ラベルとする学習データを生成し、
前記学習データを用いて、前記動作データに基づいて前記レーダ装置に対して行うべき操作を決定する操作決定モデルを学習する学習方法。
【請求項6】
レーダ装置の受信信号に基づいて生成された目標の航跡を含む動作データ、前記レーダ装置に対してオペレータが行った操作を示す操作履歴データ、及び、気象情報と地形情報と電波環境と空域の使用情報とを含む補助データを前記レーダ装置から取得し、
前記動作データ、前記操作履歴データ、及び、前記補助データを用いて、前記操作履歴データに含まれる1つの操作について、当該操作が行われた際に取得した動作データと補助データとを入力データとし、当該操作を教師ラベルとする学習データを生成し、
前記学習データを用いて、前記動作データに基づいて前記レーダ装置に対して行うべき操作を決定する操作決定モデルを学習する処理をコンピュータに実行させるプログラム。
【請求項7】
レーダ装置であって、
前記レーダ装置の受信信号に基づいて生成された目標の航跡を含む動作データ、前記レーダ装置に対してオペレータが行った操作を示す操作履歴データ、及び、気象情報と地形情報と電波環境と空域の使用情報とを含む補助データを前記レーダ装置から取得する取得手段と、
前記動作データ、前記操作履歴データ、及び、前記補助データを用いて、前記操作履歴データに含まれる1つの操作について、当該操作が行われた際に取得した動作データと補助データとを入力データとし、当該操作を教師ラベルとする学習データを用いて学習済みの操作決定モデルを用いて、前記取得手段により取得された前記動作データに基づいて、前記レーダ装置に対して行うべき操作を決定する操作決定手段と、
を備えるレーダ装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、レーダを用いた監視技術に関する。
【背景技術】
【0002】
レーダを用いて航空機などの移動体を監視する手法が知られている。特許文献1は、レーダ装置により航空機や車両などの移動目標を監視する手法を開示している。
【先行技術文献】
【特許文献】
【0003】
【発明の概要】
【発明が解決しようとする課題】
【0004】
レーダ装置のオペレータは、状況に応じて様々な操作を実施している。しかし、同じ状況であっても、経験や判断能力の差により、各オペレータが行う操作が異なってくることもあり、オペレータによる操作の均一化、安定化が求められる。
【0005】
本発明の1つの目的は、機械学習を用いて、オペレータによる操作を均一化、安定化することにある。
【課題を解決するための手段】
【0006】
本発明の1つの観点では、学習装置は、
レーダ装置の受信信号に基づいて生成された目標の航跡を含む動作データ、前記レーダ装置に対してオペレータが行った操作を示す操作履歴データ、及び、気象情報と地形情報と電波環境と空域の使用情報とを含む補助データを前記レーダ装置から取得する取得手段と、
前記動作データ、前記操作履歴データ、及び、前記補助データを用いて、前記操作履歴データに含まれる1つの操作について、当該操作が行われた際に取得した動作データと補助データとを入力データとし、当該操作を教師ラベルとする学習データを生成する学習データ生成手段と、
前記学習データを用いて、前記動作データに基づいて前記レーダ装置に対して行うべき操作を決定する操作決定モデルを学習する学習処理手段と、
を備える。
【0007】
本発明の他の観点では、学習方法は、
レーダ装置の受信信号に基づいて生成された目標の航跡を含む動作データ、前記レーダ装置に対してオペレータが行った操作を示す操作履歴データ、及び、気象情報と地形情報と電波環境と空域の使用情報とを含む補助データを前記レーダ装置から取得し、
前記動作データ、前記操作履歴データ、及び、前記補助データを用いて、前記操作履歴データに含まれる1つの操作について、当該操作が行われた際に取得した動作データと補助データとを入力データとし、当該操作を教師ラベルとする学習データを生成し、
前記学習データを用いて、前記動作データに基づいて前記レーダ装置に対して行うべき操作を決定する操作決定モデルを学習する。
【0008】
本発明の他の観点では、プログラムは、
レーダ装置の受信信号に基づいて生成された目標の航跡を含む動作データ、前記レーダ装置に対してオペレータが行った操作を示す操作履歴データ、及び、気象情報と地形情報と電波環境と空域の使用情報とを含む補助データを前記レーダ装置から取得し、
前記動作データ、前記操作履歴データ、及び、前記補助データを用いて、前記操作履歴データに含まれる1つの操作について、当該操作が行われた際に取得した動作データと補助データとを入力データとし、当該操作を教師ラベルとする学習データを生成し、
前記学習データを用いて、前記動作データに基づいて前記レーダ装置に対して行うべき操作を決定する操作決定モデルを学習する処理をコンピュータに実行させる。
【0009】
本発明の他の観点では、レーダ装置は、
前記レーダ装置の受信信号に基づいて生成された目標の航跡を含む動作データ、前記レーダ装置に対してオペレータが行った操作を示す操作履歴データ、及び、気象情報と地形情報と電波環境と空域の使用情報とを含む補助データを前記レーダ装置から取得する取得手段と、
前記動作データ、前記操作履歴データ、及び、前記補助データを用いて、前記操作履歴データに含まれる1つの操作について、当該操作が行われた際に取得した動作データと補助データとを入力データとし、当該操作を教師ラベルとする学習データを用いて学習済みの操作決定モデルを用いて、前記取得手段により取得された前記動作データに基づいて、前記レーダ装置に対して行うべき操作を決定する操作決定手段と、
を備える。
【発明の効果】
【0010】
本発明によれば、機械学習を用いて、オペレータによる操作を均一化、安定化することが可能となる。
【図面の簡単な説明】
【0011】
【
図3】学習装置の機能構成を示すブロック図である。
【
図5】学習装置による学習処理のフローチャートである。
【
図6】学習済みモデルを適用したレーダ装置の構成を示す。
【
図7】レーダ装置による自動操作処理のフローチャートである。
【
図8】学習装置の変形例の機能構成を示すブロック図である。
【
図9】学習データの収集のためのビーム制御を行う場合の構成を示す。
【
図11】学習済みモデルの妥当性評価を行うための構成を示す。
【
図12】学習済みモデルによる動作変動を抑制するための構成を示す。
【
図13】第2実施形態に係る学習装置及びレーダ装置の構成を示す。
【発明を実施するための形態】
【0012】
以下、図面を参照して、本発明の好適な実施形態について説明する。本実施形態におけるレーダ装置は、周囲に存在する移動体などの監視システムに用いることができる。具体的に、レーダ装置は、周囲に送信波を出射し、その反射波を受光することにより移動体(以下、「目標」とも呼ぶ。)を検出し、必要に応じてその目標を追尾する。目標としては、例えば空中を飛行する航空機、地上を移動する車両、海上を移動する船舶などが挙げられる。以下の実施形態では、説明の便宜上、レーダ装置を航空管制に使用し、目標は主として航空機であるものとする。
【0013】
<レーダ装置の基本構成>
まず、レーダ装置の基本構成について説明する。
図1は、レーダ装置の基本構成を示すブロック図である。レーダ装置100は、アンテナ部101と、送受信部102と、信号処理部103と、ビーム制御部104と、目標検出部105と、追尾処理部106と、表示操作部107と、を備える。
【0014】
アンテナ部101は、送受信部102から入力された電気信号(以下、「送信信号」とも呼ぶ。)を増幅し、ビーム制御部104から指示された送信方向に送信波(「ビーム」と呼ぶ。)を出射する。また、アンテナ部101は、出射した送信波の目標による反射波を電気信号(以下、「受信信号」とも呼ぶ。)に変換し、合成して送受信部102へ出力する。
【0015】
本実施形態では、レーダ装置100は、定常的に全方位(周囲360°)をスキャンするビーム(「スキャンビーム」と呼ぶ。)を出射し、周囲における目標の存在を監視する。また、目標が検出された場合には、レーダ装置100は、その目標を追尾するためのビーム(「追尾ビーム」と呼ぶ。)を出射し、目標の軌道(「航跡」と呼ぶ。)を追跡する。この点から、アンテナ部101は、例えば複数のアンテナ素子を備えるアレイアンテナなど、瞬時に送信方向を変更可能なアンテナにより構成される。具体的には、全方位をカバーするように複数の平面状アレイアンテナを配置するか、円筒状のアレイアンテナを用いることができる。これにより、定常的に全方位にスキャンビームを出射しつつ、目標が検出された際に目標の方向へ追尾ビームを出射することができる。
【0016】
送受信部102は、ビーム制御部104から指示された送信波諸元(以下、「ビーム諸元」とも呼ぶ。)に基づき、電気信号を生成し、アンテナ部101へ出力する。ビーム諸元とは、送信波のパルス幅、送信タイミングなどである。また、送受信部102は、アンテナ部101から入力された受信信号をA/D変換し、不要な周波数帯域を除去した後、受信信号として信号処理部103へ出力する。
【0017】
信号処理部103は、送受信部102から入力された受信信号に対して、復調処理、積分処理などを行い、処理後の受信信号(以下、「処理後信号」とも呼ぶ。)を目標検出部105へ出力する。
図2は、信号処理部103の構成を示すブロック図である。信号処理部103は、復調処理部110と、コヒーレント積分部111とを備える。復調処理部110は、送受信部102から入力された受信信号を復調(パルス圧縮)する。基本的にレーダにより遠方の目標を検出するには、大電力で尖鋭な送信波(送信パルス)が要求されるが、ハードウェアなどの制約により電力の増強には限界がある。そのため、ビームの出射時には、送受信部102は所定のパルス幅の送信信号を周波数変調して継続時間の長い送信波を生成し、アンテナ部101から送信している。これに対応し、復調処理部110は、送受信部102から入力された受信信号を復調して尖鋭な受信パルスを生成し、コヒーレント積分部111へ出力する。
【0018】
コヒーレント積分部111は、復調処理部110から入力された複数のパルスをコヒーレント積分してノイズを除去し、SNRを改善する。レーダ装置100は、目標を高精度で検出するために、同一の方向(同一の方位及び仰角)に複数のパルスを出射している。同一の方向に出射するパルスの数を「ヒット数」と呼ぶ。コヒーレント積分部111は、同一の方向に出射した所定ヒット数分のビームの受信信号(受信パルス)を積分し、受信信号のSNRを改善する。なお、コヒーレント積分部111が積分する受信パルスの数を「積分パルス数」とも呼ぶ。積分パルス数は、基本的に出射したビームのヒット数と等しい。
【0019】
図1に戻り、目標検出部105は、信号処理部103から入力された処理後信号から、所定のしきい値を用いて目標を検出する。目標検出部105は、目標の距離、方位、仰角を測定し、これらを目標の検出結果(以下、「プロット」と呼ぶ。)として追尾処理部106へ出力する。プロットは、目標の距離、方位、仰角、SNRなどを含む。また、目標検出部105は、表示操作部107から入力されたしきい値設定値に基づいて、目標を検出するためのしきい値を設定する。
【0020】
追尾処理部106は、目標検出部105から入力された複数のプロットに対して追尾処理を行い、目標の航跡を算出する。具体的に、追尾処理部106は、複数のプロットに基づいて現時刻における目標の位置(「推定目標位置」と呼ぶ。)を推定し、表示操作部107に出力する。また、追尾処理部106は、複数のプロットに基づいて目標の予測位置(「予測目標位置」と呼ぶ。)を算出し、ビーム制御部104へ出力する。予測目標位置は、レーダ装置100が次に追尾ビームを打つ位置を示す。
【0021】
ビーム制御部104は、予め設定されたビームスケジュールに従ってスキャンビームの送信方向及びビーム諸元を決定する。また、ビーム制御部104は、追尾処理部106から入力された予測目標位置に基づいて、追尾ビームの送信方向及びビーム諸元を決定する。そして、ビーム制御部104は、スキャンビーム及び追尾ビームの送信方向をアンテナ部101に出力し、スキャンビーム及び追尾ビームのビーム諸元を送受信部102に出力する。
【0022】
表示操作部107は、ディスプレイなどの表示部と、キーボード、マウス、操作ボタンなどの操作部とを備える。表示操作部107は、目標検出部105から入力された複数のプロットの位置や、追尾処理部106から入力された推定目標位置を表示する。これにより、オペレータは、検出された目標の現在位置や航跡を見ることができる。また、オペレータは、必要に応じて、レーダ装置100を正しく動作させるために表示操作部107を自ら操作する(これを「マニュアル操作」とも呼ぶ)。具体的に、オペレータが行う操作としては以下のものが挙げられる。
【0023】
(1)しきい値調整
オペレータは、目標検出部105が目標検出に用いるしきい値を調整する。しきい値を高くすると、ノイズやクラッタの誤検出確率が下がるが、目標の検出確率も下がる。一方、しきい値を低くすると、ノイズやクラッタの誤検出確率が上がるが、目標の検出確率も上がる。よって、オペレータは状況に応じて、適切なしきい値を設定する。例えば、ノイズやクラッタが多い状況では、オペレータはしきい値を通常よりも高く設定し、誤検出の増加を防ぐ。なお、「クラッタ」とは、出射したレーダが目標以外の物体により反射されて発生する信号である。オペレータにより調整されたしきい値は、表示操作部107から目標検出部105に入力される。
【0024】
(2)クラッタ領域の設定
オペレータは、受信信号にクラッタが多い状況では、クラッタ領域を設定する。目標検出部105が検出したプロットは表示操作部107に表示される。オペレータは、表示操作部107に表示された複数のプロットを見て経験上クラッタと考えられる領域を判定し、表示操作部107を操作してその領域を指定する。これを「クラッタ領域の設定」と呼ぶ。オペレータにより設定されたクラッタ領域は、信号処理部103に入力される。信号処理部103は、入力されたクラッタ領域におけるクラッタを除去する信号処理を行う。
【0025】
(3)マニュアル追尾
追尾処理部106による目標の追尾が難しい場合や追尾の精度が低い場合などには、オペレータは表示操作部107を操作してマニュアル追尾を行う。「マニュアル追尾」とは、オペレータが手入力で航跡を作成し、追尾指示を行うことをいう。オペレータによるマニュアル追尾の指示は追尾処理部106に入力され、追尾処理部106はオペレータが作成した航跡に基づいて追尾処理を行う。
(4)その他の操作
上記に加えて、オペレータが行う操作としては、送受信部102による送信信号の変調周波数又は送信周波数の切替、ビーム制御部104によるアンテナ方位の切替、レーダ装置100の運用モードの変更、処理系の切替、ECM(Electronic Counter Measures)などの電子攻撃に対するEECM(Electronic Counter Counter Measures)モードの適用などが挙げられる。
【0026】
以上の構成により、レーダ装置100は、全方位にわたって定常的にスキャンビームを出射して目標を検出するとともに、目標が検出された場合には、予測目標位置に追尾ビームを出射して目標を追尾する。
【0027】
<第1実施形態>
オペレータは、様々な状況において、経験に基づく個々の判断基準によりレーダ装置に対する操作を行っている。しかし、同じ状況であっても、経験や判断能力の差により、各オペレータが行う操作が異なってくることもあり、オペレータによる操作の均一化、安定化が求められる。そこで、本実施形態では、機械学習により学習した操作決定モデルを表示操作部107に適用し、オペレータが行う操作の一部を自動化する。
【0028】
[学習時の構成]
(全体構成)
図3は、操作決定モデルを学習する際のレーダ装置の構成を示すブロック図である。学習時には、レーダ装置100から取得したデータに基づいて操作決定モデルを学習する学習装置200を設ける。レーダ装置100は、
図1に示すものと同様であるので、説明を省略する。学習装置200は、学習データ生成部201と、データ収集部202と、学習処理部204と、を備える。
【0029】
学習データ生成部201は、レーダ装置100から判断材料データD1を取得する。判断材料データD1は、オペレータが上記の操作を行う際に判断材料とするデータである。具体的には、判断材料データD1は、動作中にレーダ装置100の各部により生成される動作データであり、具体的には、信号処理部103が出力する受信信号、目標検出部105が出力するプロット、追尾処理部106が出力する航跡、レーダ装置100の状態などを含む。また、学習データ生成部201は、表示操作部107から、実際にオペレータが行った操作の履歴データ(以下、「操作履歴データ」と呼ぶ。)D2を取得する。
【0030】
そして、学習データ生成部201は、判断材料データD1と、操作履歴データD2とを用いて、学習データを生成する。具体的には、学習データ生成部201は、操作履歴データD2に含まれる操作を教師ラベル(正解ラベル)とし、そのときの判断材料データD1を入力データとする学習データを生成する。例えば、操作履歴データD2中に、オペレータが目標検出部105のしきい値調整を行った履歴がある場合、そのときの受信信号及びプロットを入力データとし、そのしきい値調整(設定されたしきい値を含む)を教師ラベルとする学習データを生成する。そして、学習データ生成部201は、作成した学習データをデータ収集部202に出力する。
【0031】
データ収集部202は、学習データ生成部201から入力された学習データを記憶する。データ収集部202には、操作履歴データD2に含まれるオペレータの操作毎に、そのときの判断材料データと、その操作を示す教師ラベルとをペアにした学習データが記憶される。学習処理部204は、データ収集部202から学習データを取得し、取得した学習データを用いて操作決定モデルを学習する。そして、学習処理部204は、学習済みの操作決定モデルを生成する。
【0032】
(学習装置のハードウェア構成)
図4は、
図3に示す学習装置200のハードウェア構成を示すブロック図である。図示のように、学習装置200は、入力IF(InterFace)21と、プロセッサ22と、メモリ23と、記録媒体24と、データベース(DB)25と、を備える。
【0033】
入力IF21は、レーダ装置100とのデータの入出力を行う。具体的に、入力IF21は、レーダ装置100から判断材料データD1及び操作履歴データD2を取得する。プロセッサ22は、CPU(Central Processing Unit)、GPU(Graphics Processing Unit)などを含むコンピュータであり、予め用意されたプログラムを実行することにより、学習装置200の全体を制御する。プロセッサ22は、
図3に示す学習データ生成部201、学習処理部204として機能する。
【0034】
メモリ23は、ROM(Read Only Memory)、RAM(Random Access Memory)などにより構成される。メモリ23は、プロセッサ22により実行される各種のプログラムを記憶する。また、メモリ23は、プロセッサ22による各種の処理の実行中に作業メモリとしても使用される。
【0035】
記録媒体24は、ディスク状記録媒体、半導体メモリなどの不揮発性で非一時的な記録媒体であり、学習装置200に対して着脱可能に構成される。記録媒体24は、プロセッサ22が実行する各種のプログラムを記録している。学習装置200が処理を実行する際には、記録媒体24に記録されているプログラムがメモリ23にロードされ、プロセッサ22により実行される。
【0036】
DB25は、入力IF21を通じて入力されるデータや、学習装置200が生成したデータを記憶する。具体的に、DB25には、レーダ装置100から入力された判断材料データD1及び操作履歴データD2、学習データ生成部201が生成した学習データが記憶される。
【0037】
(学習処理)
図5は、学習装置200による学習処理のフローチャートである。この処理は、
図5に示すプロセッサ22が、予め用意されたプログラムを実行し、
図3に示す各要素として動作することにより実現できる。
【0038】
まず、学習データ生成部201は、レーダ装置100の信号処理部103から判断材料データD1、及び、操作履歴データD2を取得する(ステップS11)。次に、学習データ生成部201は、判断材料データD1と操作履歴データD2を用いて学習データを生成し、データ収集部202に保存する(ステップS12)。次に、学習処理部204は、データ収集部202から学習データを取得し、学習データを用いて操作決定モデルを学習する(ステップS13)。
【0039】
次に、学習処理部204は、所定の学習終了条件が具備されたか否かを判定する(ステップ14)。学習終了条件の一例は、所定量の学習データを用いた学習又は所定回数の学習が行われたことである。学習処理部204は、学習終了条件が具備されるまで学習を繰り返し、学習終了条件が具備されると、処理を終了する。
【0040】
[操作決定モデルを適用したレーダ装置]
(構成)
図6は、学習済みの操作決定モデルを適用したレーダ装置100xの構成を示すブロック図である。
図1と比較するとわかるように、レーダ装置100xは、
図1における表示操作部107の代わりに、表示操作部114を備える。表示操作部110以外の構成は、
図1と同様である。
【0041】
表示操作部114には、上記の学習処理により生成された学習済みの操作決定モデルが設定される。また、表示操作部114には、判断材料データD1が入力される。
図6の例では、判断材料データD1として、信号処理部103から受信信号が入力され、目標検出部105からプロットが入力され、追尾処理部106から航跡が入力される。
【0042】
表示操作部114は、学習済みの操作決定モデルを用いて、入力された判断材料データD1に基づいて操作を決定する。具体的に、表示操作部114は、受信信号に基づいてクラッタ領域の設定が必要であると判断した場合、信号処理部103へクラッタ領域を設定する。表示操作部114は、受信信号及びプロットに基づいてしきい値の調整が必要と判断した場合、目標検出部105へしきい値を設定する。また、表示操作部114は、航跡に基づいてマニュアル追尾が必要であると判断した場合、追尾処理部106へ航跡を設定してマニュアル追尾を指示する。この場合、表示操作部114は自動操作部として機能する。
【0043】
(自動操作処理)
図7は、レーダ装置100xによる自動操作処理のフローチャートである。まず、表示操作部114は、レーダ装置100xの各部から判断材料データD1を取得する。そして、表示操作部114は、学習済みの操作決定モデルを用いて、判断材料データD1から、レーダ装置100に対して実行すべき操作を決定し、レーダ装置100x内の対応する構成部に指示を行う(ステップS22)。
【0044】
以上のように、本実施形態では、表示操作部114は、機械学習により学習された操作決定モデルを用いて、自動操作の指示を行うので、個々のオペレータの経験や判断基準のばらつきによる影響を低減し、レーダ装置に対する必要な操作を安定的に行うことが可能となる。
【0045】
(変形例)
上記の例では、学習済みの操作決定モデルを表示操作部114に適用して自動操作を行っているが、完全に自動操作に変更してしまうのが好ましくない場合もある。例えば、モードの変更等の動作が大きく変化する操作の場合、自動操作によって動作が大きく変化することにリスクが伴う場合がある。そのような場合には、オペレータによる操作を維持したまま、操作決定モデルが決定した操作をオペレータにレコメンドするようにしてもよい。具体的には、操作表示部114を、操作決定モデルが決定した操作を表示したり、音声メッセージを出力したりするレコメンド部として機能させる。これにより、オペレータは、操作決定モデルによるレコメンドを考慮して適切な操作を行うことが可能となる。
【0046】
[学習装置の変形例]
図8は、学習装置の変形例の構成を示すブロック図である。変形例に係る学習装置200xは、学習データ生成部201xと、データ収集部202と、学習処理部204とを備える。学習データ生成部201xは、レーダ装置100から判断材料データD1及び操作履歴データD2を取得するのに加えて、外部から補助データを取得する。そして、学習データ生成部201xは、補助データも用いて学習データを生成する。具体的に、学習データ生成部201xは、補助データを入力データに含めて学習データを生成する。例えば、学習データ生成部201xは、判断材料データD1としての受信信号及びプロットと、補助データとを入力データとし、目標検出部105へ入力するしきい値を教師ラベルとする学習データを生成する。
【0047】
補助データは、判断材料データD1と同様に、オペレータが各種の操作を行うか否かを判断する材料となるデータであり、以下のものが挙げられる。
(A)気象情報
天候、気圧などの気象情報は、クラッタやビームの軌道などに影響を与えることがある。また、雲などによるビームの反射により、受信信号のSNRレベルなどが影響を受けることがある。よって、気象情報を補助データとして使用することが有効である。
(B)地形情報
山などによるビームの反射はクラッタの一因となりうるため、地形情報を補助データとして使用することが有効である。
(C)電波環境
電波環境によって受信信号のSNRやクラッタが影響を受けるため、電波環境を補助データとして使用することが有効である。
(D)空域の使用情報
旅客機などが飛行する航空路の情報、所定の空域の使用予定情報、不明機の過去の飛行ルート情報などは、目標が味方機であるか身元不明機であるかを判断する上で有益な情報となる。
【0048】
なお、上記のように判断材料データD1に加えて補助データを使用して操作決定モデルを学習することは有効であるが、実際に操作決定モデルを用いて操作を行う際、学習時に使用した全ての補助データが得られるとは限らない。例えば、判断材料データD1に加えて、気象情報と電波環境を補助データとして用いて操作決定モデルを学習したとする。この場合、実際に操作決定モデルを用いて自動操作を行う際に、電波環境のデータが得られないとすると、学習した操作決定モデルをそのまま使用することはできない。このような場合には、蒸留学習により、異なる入力データの組み合わせに対応するモデルを作成して使用すればよい。上記の例では、判断材料データD1と、気象情報と、電波環境とを用いて学習した操作決定モデルを教師モデルとする蒸留学習により、判断材料データD1と、気象情報とを入力データとする生徒モデルを生成すればよい。これにより、機械学習により作成した操作決定モデルと同一の入力データが得られない状況においても、自動操作を行うことが可能となる。
【0049】
[レーダ装置によるデータ収集の効率化]
稀にしか発生しない状況に関しては操作決定モデルの学習のために必要な学習データを収集することが難しい。そこで、レーダ装置100は、ビームスケジュールの合間に、学習データの収集のためのビーム制御を実施する。特に、予め指定された条件に一致する場合、レーダ装置100は重点的にビーム制御を実施する。ビーム制御の内容は、収集したいデータに合わせて変更される。
【0050】
図9は、学習データの収集のためのビーム制御を行う場合の構成を示す。レーダ装置100は、
図3と同様の構成を有する。一方、学習装置200xは、
図3に示す構成に加えて、データ収集制御部215を備える。データ収集制御部215は、学習データが不足している条件を記憶しており、収集したいデータの条件を含むデータ収集要求D5をレーダ装置100のビーム制御部104に出力する。ビーム制御部104は、ビームスケジュールの合間に、アンテナ部101を制御し、データ収集要求D5に示される条件でビームを出射させる。レーダ装置100は、スキャンビームにより全方位を定常的に監視するとともに、目標を検出した場合には追尾ビームにより目標を追尾する。よって、ビーム制御部104は、例えば目標が検出されていない場合や、目標を追尾する必要が無い場合などに、学習データを収集するためのビームを出射することができる。出射したビームに対応する反射波はアンテナ部101により受信され、受信信号は送受信部102、信号処理部103を介して学習データ生成部201に出力される。こうして、学習装置200xは、不足している条件に対応するデータを収集することができる。
【0051】
[学習済みモデルの適用]
(オンライン学習)
学習装置200により生成された学習済みの操作決定モデル(以下、単に「学習済みモデル」とも呼ぶ。)を実際にレーダ装置100に適用する場合には、プログラムの書き換えなどが発生するため、レーダ装置100の運用を停止する必要がある。しかし、重要な監視を行っているレーダ装置は運用を停止できないため、学習済みモデルを適用することができず、オンライン学習が困難である。
【0052】
そこで、予めレーダ装置の制御/データ処理部を2重化しておく。
図10は、オンライン学習を行うためのレーダ装置及び学習装置の構成を示す。図示のように、レーダ装置100aは、アンテナ部101と、送受信部102と、切替部120と、2系統の制御/データ処理部121a、121bとを備える。制御/データ処理部121a、121bは、
図1に示すレーダ装置の信号処理部103、ビーム制御部104、目標検出部105、追尾処理部106及び表示操作部107を含むユニットである。切替部120は、制御/データ処理部121a、121bの一方を選択的にアンテナ部101及び送受信部102に接続する。また、切替部120は、動作中の制御/データ処理部121a又は121bから、受信信号、プロット、航跡などを含むデータD6を学習装置200aの学習データ生成部201に出力する。
【0053】
学習装置200aは、学習データ生成部201、データ収集部202、学習処理部204に加えて、学習結果評価部220及び学習結果適用部221を備える。学習結果評価部220は、学習処理部204が生成した学習済みモデルの評価を行い、レーダ装置100aに適用可と判定された学習済みモデルを学習結果適用部221に出力する。学習結果適用部221は、適用可と判定された学習済みモデルを制御/データ処理部121a、121bに適用する。
【0054】
いま、制御/データ処理部121aがアクティブ状態(実際の監視動作中)であり、制御/データ処理部121bがスタンバイ状態であるとする。即ち、切替部120は、制御/データ処理部121aをアンテナ部101及び送受信部102に接続している。この場合、学習装置200aは、アクティブ状態の制御/データ処理部121aから出力されたデータD6を用いて操作決定モデルを学習する。その間に、学習結果適用部221は、適用可と判定された学習済みモデルを、スタンバイ状態にある制御/データ処理部121bに適用し、プログラムの書き換えを行う。
【0055】
次に、切替部120は、制御/データ処理部121bをアクティブ状態とし、制御/データ処理部121aをスタンバイ状態とし、新たな学習済みモデルをスタンバイ状態にある制御/データ処理部121aに適用する。こうすることで、制御/データ処理部121の一方で監視動作を継続しつつ操作決定モデルの学習を行い、他方に学習済みモデルを適用することができる。即ち、学習済みモデルを適用し、オンライン学習を行うことが可能となる。
【0056】
(モデルの妥当性評価)
オンライン学習において、どの程度学習させたところで適切なレーダの機能を有しているか、即ち、妥当性の判断が難しい。また、学習済みモデルを適用した表示操作部は、例えば、従来処理ではオペレータが行わないような操作を行ってしまうなど、期待しない動作をする恐れがあり、その際のリカバリーが必要となる。そこで、学習済みモデルを適用した制御/データ処理部と、従来処理を行う制御/データ処理部とを並列に動作させ、それらの処理結果を比べることにより、学習済みモデルの妥当性を判断する。
【0057】
図11は、学習済みモデルの妥当性評価を行うためのレーダ装置及び学習装置の構成を示す。図示のように、レーダ装置100bは、アンテナ部101と、送受信部102と、妥当性評価部130と、2系統の制御/データ処理部131、132とを備える。制御/データ処理部131は従来処理を行い、制御/データ処理部132は学習済みモデルを用いて処理を行う。なお、制御/データ処理部131、132は、
図1に示すレーダ装置の信号処理部103、ビーム制御部104、目標検出部105、追尾処理部106及び表示操作部107を含むユニットである。学習装置200aは、
図10に示すものと同様である。
【0058】
妥当性評価部130は、制御/データ処理部131による従来処理の処理結果と、制御/データ処理部132による学習済みモデルの処理結果とを比較し、学習済みモデルの処理結果の妥当性を判定する。学習済みモデルの処理結果が妥当でないと判定した場合、妥当性評価部130は、従来処理の処理結果をアンテナ部101及び送受信部102に出力する。一方、学習済みモデルの処理結果が妥当であると判定した場合、妥当性評価部130は、学習済みモデルの処理結果をアンテナ部101及び送受信部102に出力する。なお、学習済みモデルの処理結果が妥当であると判定された場合でも、妥当性評価部130は、学習済みモデルの処理結果を従来処理の処理結果で補間し、期待しない動作が発生することを防止してもよい。また、妥当性評価部130を、機械学習などを利用して生成してもよい。さらに、妥当性評価部130の処理を全自動ではなく、オペレータが介在するようにしてもよい。例えば、オペレータが、表示操作部107に表示された情報に基づいて、学習済みモデルの処理結果の妥当性を判定することとしてもよい。
【0059】
(学習済みモデルを用いた場合の動作変動の抑制)
学習済みモデルを目標検出部に適用した際に、レーダ装置100の動作が大きく変わる場合がある。そこで、予めレーダ装置100の制御/データ処理部を2重化しておき、意図的に時間をずらして学習済みモデルを適用し、2つの制御/データ処理部の処理結果を統合したものを正式な処理結果として採用する。
【0060】
図12は、学習済みモデルによる動作変動を抑制するためのレーダ装置及び学習装置の構成を示す。図示のように、レーダ装置100cは、アンテナ部101と、送受信部102と、統合部140と、2系統の制御/データ処理部141a、141bとを備える。制御/データ処理部141aは旧モデルを使用し、制御/データ処理部141bは新モデルを使用して処理を行う。なお、制御/データ処理部141a、141bは、
図1に示すレーダ装置の信号処理部103、ビーム制御部104、目標検出部105、追尾処理部106及び表示操作部107を含むユニットである。学習装置200aは、
図10に示すものと同様である。
【0061】
統合部140は、制御/データ処理部141a、141bによる処理結果を統合したものを正式な処理結果として採用する。例えば、統合部140は、制御/データ処理部141a、141bからの処理結果を加算し、2で除したものを処理結果として採用する。これにより、新たな学習済みモデルを適用したときに、レーダ装置の動作が大きく変動することを抑制できる。
【0062】
<第2実施形態>
図13(A)は、第2実施形態に係る学習装置の機能構成を示すブロック図である。第2実施形態の学習装置50は、取得部51と、学習データ生成部52と、学習処理部53と、を備える。取得部51は、レーダ装置の動作中に生成される動作データ、及び、前記レーダ装置に対してオペレータが行った操作を示す操作履歴データを、レーダ装置から取得する。学習データ生成部52は、動作データ及び操作履歴データを用いて、学習データを生成する。学習処理部53は、学習データを用いて、動作データに基づいてレーダ装置に対して行うべき操作を決定する操作決定モデルを学習する。
【0063】
図13(B)は、第2実施形態に係るレーダ装置の機能構成を示すブロック図である。レーダ装置60は、取得部61と、操作決定部62と、を備える。取得部61は、動作中に生成される動作データを取得する。操作決定部62は、動作データ、及び、レーダ装置に対してオペレータが行った操作を示す操作履歴データを用いて学習済みの操作決定モデルを用いて、取得部により取得された動作データに基づいて、レーダ装置に対して行うべき操作を決定する。
【0064】
上記の実施形態の一部又は全部は、以下の付記のようにも記載されうるが、以下には限られない。
【0065】
(付記1)
レーダ装置の動作中に生成される動作データ、及び、前記レーダ装置に対してオペレータが行った操作を示す操作履歴データを前記レーダ装置から取得する取得部と、
前記動作データ及び前記操作履歴データを用いて、学習データを生成する学習データ生成部と、
前記学習データを用いて、前記動作データに基づいて前記レーダ装置に対して行うべき操作を決定する操作決定モデルを学習する学習処理部と、
を備える学習装置。
【0066】
(付記2)
前記学習データ生成部は、前記操作履歴データに含まれる1つの操作について、当該操作が行われた際に取得した動作データを入力データとし、当該操作を教師ラベルとする学習データを生成する付記1に記載の学習装置。
【0067】
(付記3)
前記動作データは、前記レーダ装置による受信信号、前記受信信号に基づいて検出された目標のプロット、及び、前記目標の航跡の少なくとも1つを含む付記1又は2に記載の学習装置。
【0068】
(付記4)
補助データを取得する補助データ取得部を備え、
前記学習データ生成部は、さらに前記補助データを用いて前記学習データを生成する付記1乃至3のいずれか一項に記載の学習装置。
【0069】
(付記5)
前記補助データは、気象情報、地形情報、電波環境の情報、空域の使用情報の少なくとも1つを含む付記4に記載の学習装置。
【0070】
(付記6)
前記操作は、前記レーダ装置による受信信号におけるクラッタ領域を設定する操作である付記1乃至5のいずれか一項に記載の学習装置。
【0071】
(付記7)
前記操作は、前記レーダ装置による受信信号に基づいて目標を検出する際に使用するしきい値を調整する操作である付記1乃至5のいずれか一項に記載の学習装置。
【0072】
(付記8)
前記操作は、前記レーダ装置により検出された目標の航跡を作成し、追尾を指示する操作である付記1乃至5のいずれか一項に記載の学習装置。
【0073】
(付記9)
レーダ装置の動作中に生成される動作データ、及び、前記レーダ装置に対してオペレータが行った操作を示す操作履歴データを前記レーダ装置から取得し、
前記動作データ及び前記操作履歴データを用いて、学習データを生成し、
前記学習データを用いて、前記動作データに基づいて前記レーダ装置に対して行うべき操作を決定する操作決定モデルを学習する学習方法。
【0074】
(付記10)
レーダ装置の動作中に生成される動作データ、及び、前記レーダ装置に対してオペレータが行った操作を示す操作履歴データを前記レーダ装置から取得し、
前記動作データ及び前記操作履歴データを用いて、学習データを生成し、
前記学習データを用いて、前記動作データに基づいて前記レーダ装置に対して行うべき操作を決定する操作決定モデルを学習する処理をコンピュータに実行させるプログラムを記録した記録媒体。
【0075】
(付記11)
レーダ装置であって、
動作中に生成される動作データを取得する取得部と、
前記動作データ、及び、前記レーダ装置に対してオペレータが行った操作を示す操作履歴データを用いて学習済みの操作決定モデルを用いて、前記取得部により取得された前記動作データに基づいて、前記レーダ装置に対して行うべき操作を決定する操作決定部と、
を備えるレーダ装置。
【0076】
(付記12)
前記操作決定部が決定した操作を自動的に実施する自動操作部を備える付記11に記載のレーダ装置。
【0077】
(付記13)
前記操作決定部が決定した操作をレコメンドするレコメンド部を備える付記11に記載のレーダ装置。
【0078】
以上、実施形態及び実施例を参照して本発明を説明したが、本発明は上記実施形態及び実施例に限定されるものではない。本発明の構成や詳細には、本発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
【符号の説明】
【0079】
100 レーダ装置
101 アンテナ部
102 送受信部
103 信号処理部
104 ビーム制御部
105 目標検出部
106 追尾処理部
107 表示操作部
110 復調処理部
111 コヒーレント積分部
114 表示操作部
200 学習装置
201 学習データ生成部
202 データ収集部
203 前処理部
204 学習処理部