(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-03-11
(45)【発行日】2024-03-19
(54)【発明の名称】アンテナ制御装置およびアンテナ制御システム
(51)【国際特許分類】
H04B 7/08 20060101AFI20240312BHJP
H04B 7/06 20060101ALI20240312BHJP
【FI】
H04B7/08 802
H04B7/08 422
H04B7/08 710
H04B7/06 952
H04B7/06 150
H04B7/06 890
(21)【出願番号】P 2020066580
(22)【出願日】2020-04-02
【審査請求日】2023-03-10
(73)【特許権者】
【識別番号】000006895
【氏名又は名称】矢崎総業株式会社
(74)【代理人】
【識別番号】100083806
【氏名又は名称】三好 秀和
(74)【代理人】
【識別番号】100101247
【氏名又は名称】高橋 俊一
(74)【代理人】
【識別番号】100095500
【氏名又は名称】伊藤 正和
(74)【代理人】
【識別番号】100098327
【氏名又は名称】高松 俊雄
(72)【発明者】
【氏名】松下 健治
(72)【発明者】
【氏名】木村 恒人
(72)【発明者】
【氏名】古橋 杏子
(72)【発明者】
【氏名】國方 翔太
(72)【発明者】
【氏名】國立 忠秀
(72)【発明者】
【氏名】金森 勝美
(72)【発明者】
【氏名】小林 健太郎
【審査官】大野 友輝
(56)【参考文献】
【文献】国際公開第2016/157727(WO,A1)
【文献】特開2004-193945(JP,A)
【文献】特開2015-207934(JP,A)
【文献】特開2018-011249(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H04B 7/08
H04B 7/06
(57)【特許請求の範囲】
【請求項1】
基地局と無線通信する移動局に取り付けられるアンテナ制御装置であって、
時刻t
nの移動局から基地局への位置ベクトルr
nを演算する位置ベクトル演算部と、
時刻t
nからあらかじめ定められた時間間隔である時間間隔Δtが経過した後の時刻t
n+1の前記移動局から前記基地局への位置ベクトルr
n+1を推定する位置ベクトル推定部と、
前記移動局を始点とした前記位置ベクトルr
nと前記位置ベクトルr
n+1によって形成される角度が、前記アンテナ制御装置が制御するアレイアンテナの半値角θの1/2を超える場合に、前記角度が前記アレイアンテナの半値角θの1/2を超えないように、前記アレイアンテナにおいて使用するアンテナ素子の数を減少させるビーム形状制御部とを含むアンテナ制御装置。
【請求項2】
前記位置ベクトルr
nの方向が前記位置ベクトルr
n+1の方向に向くように、各アンテナ素子の位相量および振幅量を変更させるビーム方向制御部を備える請求項1に記載のアンテナ制御装置。
【請求項3】
前記ビーム方向制御部の制御頻度は、前記移動局と前記基地局との間の相対位置および相対速度によっては変化しない請求項2に記載のアンテナ制御装置。
【請求項4】
前記ビーム形状制御部の制御、および、前記ビーム方向制御部の制御は、あらかじめ定められた一定の時間間隔である前記時間間隔Δtの間にそれぞれ一度ずつ実施される請求項2または3に記載のアンテナ制御装置。
【請求項5】
前記ビーム形状制御部は、前記移動局を始点とした前記位置ベクトルr
nと前記位置ベクトルr
n+1によって形成される角度が、前記アレイアンテナの半値角θの1/2を超えない場合には、前記角度が前記アレイアンテナの半値角θの1/2を超える手前の個数まで、前記アレイアンテナに使用される前記アンテナ素子の数を増加させる請求項1から請求項4のいずれか一項に記載のアンテナ制御装置。
【請求項6】
時刻t
nの移動局の速度ベクトルを演算する速度ベクトル演算部を含み、
前記位置ベクトル推定部は、前記速度ベクトル演算部によって演算された速度ベクトル、および、前記位置ベクトル演算部によって演算された位置ベクトルr
nから、位置ベクトルr
n+1を推定する請求項1から請求項5のいずれか一項に記載のアンテナ制御装置。
【請求項7】
時刻t
nの移動局の速度ベクトルを演算する速度ベクトル演算部を含み、
前記位置ベクトル推定部は、前記速度ベクトル演算部によって演算された速度ベクトルの絶対値である速度で、位置ベクトルr
nと直交する方向に等速直線運動をしたと推定して、位置ベクトルr
n+1を推定する請求項1から請求項5のいずれか一項に記載のアンテナ制御装置。
【請求項8】
未使用アンテナ素子によって、新たなアレイアンテナを構成できる場合には、前記新たなアレイアンテナをダイバーシティアンテナ、または、MIMO(Multiple Input Multiple Output)アンテナとして使用することを指示するモード切り替え部を含む請求項1から請求項7のいずれか一項に記載のアンテナ制御装置。
【請求項9】
未使用アンテナ素子によって、新たなアレイアンテナを構成できる場合には、前記新たなアレイアンテナをダイバーシティアンテナおよびMIMOアンテナとして使用することを指示するモード切り替え部を含む請求項1から請求項7のいずれか一項に記載のアンテナ制御装置。
【請求項10】
請求項1から9のいずれか一項に記載のアンテナ制御装置と、
前記移動局に取り付けられる、複数のアンテナ素子から形成される前記アレイアンテナを含むアンテナ制御システム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、アンテナ制御装置およびアンテナ制御システムに関する。
【背景技術】
【0002】
従来から、車両等の移動体にアンテナを設置した移動体通信において、基地局と移動局との通信品質を確保するために、移動体に設置されたアンテナの指向性を制御する技術が知られている。
【0003】
特許文献1では、指向性制御処理を実行するタイミングで、自車位置をナビゲーション装置から取得し、自車の移動速度と基地局位置を演算し、ビームを向けるべき方向を選択するという構成を有している。また、ビームの形状を変化させる機構を有し、受信電力によって、ビームの形状を広くし、または、狭くする構成を有している。
【0004】
また、特許文献2では、移動局としての自動車に搭載された通信アンテナについて、仰角切り替え装置を備える指向性制御装置が開示されている。指向性制御装置は、2つのアンテナによる受信信号を、切り替え器又は合成器により切り替え又は合成するとともに、仰角切り替え装置により、直接2つのアンテナの仰角を切り替える。建造物の高さの道路幅に対する比が第1の閾値よりも大きく、送信点位置が右領域又は左領域の場合、高仰角とし、道路垂直左又は右方向に指向性アンテナ部の指向性が制御される。その他の場合は低仰角とし、電波到来角により水平方向を切り替える。郊外地においては低仰角とし、送信点の方向に指向性を制御する。
【先行技術文献】
【特許文献】
【0005】
【文献】特開2004-193945号公報
【文献】特開2005-286918号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
特許文献1の構成によれば、ビーム形状を変化させるための条件に自車速度が入っていないために、移動局が基地局の近くを高速で移動する場合に、通信が不可能になる可能性があるという課題があった。また、特許文献2の構成によれば、移動局のビーム形状を変化させないために、常に、移動局のビームを基地局の方向に正確に制御させる必要があり、移動局が高速で移動する場合に、制御周期が短くなり、消費電力が増大するという課題があった。
【0007】
本発明は、このような従来技術が有する課題に鑑みてなされたものである。そして本発明の目的は、移動局と基地局との相対位置関係がどのような状態であっても、アンテナのビーム形状を変えることによって、アンテナの制御頻度を変化させることなく、安定した通信を維持し、消費電力を抑制させることにある。
【課題を解決するための手段】
【0008】
本発明の態様に係る基地局と無線通信する移動局に取り付けられるアンテナ制御装置は、時刻tnの移動局から基地局への位置ベクトルrnを演算する位置ベクトル演算部と、時刻tnからあらかじめ定められた時間間隔である時間間隔Δtが経過した後の時刻tn+1の前記移動局から前記基地局への位置ベクトルrn+1を推定する位置ベクトル推定部と、前記移動局を始点とした前記位置ベクトルrnと前記位置ベクトルrn+1によって形成される角度が、前記アンテナ制御装置が制御するアレイアンテナの半値角θの1/2を超える場合に、前記角度が前記アレイアンテナの半値角θの1/2を超えないように、前記アレイアンテナにおいて使用するアンテナ素子の数を減少させるビーム形状制御部と、を含むことが好ましい。
【0009】
前記位置ベクトルrnの方向が前記位置ベクトルrn+1の方向に向くように、各アンテナ素子の位相量および振幅量を変更させるビーム方向制御部を備えることが好ましい。
【0010】
前記ビーム方向制御部の制御頻度は、前記移動局と前記基地局との間の相対位置および相対速度によっては変化しないことが好ましい。
【0011】
前記ビーム形状制御部の制御、および、前記ビーム方向制御部の制御は、あらかじめ定められた一定の時間間隔である前記時間間隔Δtの間にそれぞれ一度ずつ実施されることが好ましい。
【0012】
前記ビーム形状制御部は、前記移動局を始点とした前記位置ベクトルrnと前記位置ベクトルrn+1によって形成される角度が、前記アレイアンテナの半値角θの1/2を超えない場合には、前記角度が前記アレイアンテナの半値角θの1/2を超える手前の個数まで、前記アレイアンテナに使用される前記アンテナ素子の数を増加させることが好ましい。
【0013】
時刻tnの移動局の速度ベクトルを演算する速度ベクトル演算部を含み、前記位置ベクトル推定部は、前記速度ベクトル演算部によって演算された速度ベクトル、および、前記位置ベクトル演算部によって演算された位置ベクトルrnから、位置ベクトルrn+1を推定することが好ましい。
【0014】
時刻tnの移動局の速度ベクトルを演算する速度ベクトル演算部を含み、前記位置ベクトル推定部は、前記速度ベクトル演算部によって演算された速度ベクトルの絶対値である速度で、位置ベクトルrnと直交する方向に等速直線運動をしたと推定して、位置ベクトルrn+1を推定することが好ましい。
【0015】
未使用アンテナ素子によって、新たなアレイアンテナを構成できる場合には、前記新たなアレイアンテナをダイバーシティアンテナ、または、MIMO(Multiple Input Multiple Output)アンテナとして使用することを指示するモード切り替え部を含むことが好ましい。
【0016】
未使用アンテナ素子によって、新たなアレイアンテナを構成できる場合には、前記新たなアレイアンテナをダイバーシティアンテナおよびMIMOアンテナとして使用することを指示するモード切り替え部を含むことが好ましい。
【0017】
本発明の他の態様に係るアンテナ制御システムは、アンテナ制御装置と、前記移動局に取り付けられる、複数のアンテナ素子から形成される前記アレイアンテナを含むことが好ましい。
【発明の効果】
【0018】
本発明によれば、移動局と基地局との相対位置関係がどのような状態であっても、アンテナのビーム形状を変えることによって、アンテナの制御頻度を変化させることなく、安定した通信を維持し、消費電力を抑制させることが可能になる。
【図面の簡単な説明】
【0019】
【
図1】本実施形態に係るアンテナ制御装置およびアンテナ制御システムの適用例を示す模式図である。
【
図2】本実施形態に係るアンテナ制御装置およびアンテナ制御システムの他の適用例を示す模式図である。
【
図3】本実施形態に係る選択されたアンテナ素子と半値角θの1/2との関係の一例を示す模式図である。
【
図4】本実施形態に係るアンテナ装置の一例を示すブロック図である。
【
図5】本実施形態に係るアンテナ制御システムの一例を示すブロック図である。
【
図6A】本実施形態に係るアンテナ制御システムの動作の一例を示すフローチャートである。
【
図6B】本実施形態に係るアンテナ制御システムの動作の一例を示すフローチャートである。
【
図7】本実施形態に係るアレイアンテナ、および、残余のアンテナ素子で構成されるアレイアンテナの構成の一例を示す模式図である。
【発明を実施するための形態】
【0020】
以下、本実施形態に係わるアンテナ制御装置およびアンテナ制御システムの一例について、図面を参照しながら詳細に説明する。なお、以下で説明する実施形態は、包括的または具体的な例を示すものである。以下の実施形態で示される数値、形状、材料、構成要素、構成要素の配置位置および接続形態、ステップ、ステップの順序などは、一例であり、本開示に限定する主旨ではない。また、以下の実施形態における構成要素のうち、最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。さらに、図面の寸法比率は説明の都合上誇張されており、実際の比率と異なる場合がある。
【0021】
本実施形態に係るアンテナ制御装置およびアンテナ制御システムを
図1~
図7を用いて説明する。
【0022】
(アンテナ制御装置およびアンテナ制御システムの適用例の概要)
図1では、位置が固定された基地局10に対して移動する移動局20である車両について、特定の時刻t
nにおける位置ベクトルr
nが示されている。位置ベクトルの始点は移動局20であり、終点は基地局10である。
【0023】
同様に、特定の時刻tnから一定の時間間隔Δtだけ前の時刻tn-1の位置ベクトルを位置ベクトルrn-1とする。また、特定の時刻tnから一定の時間間隔Δtだけ後の時刻tn+1の位置ベクトルを位置ベクトルrn+1とする。さらに、また、特定の時刻tnから一定の時間間隔Δt×2だけ後の時刻tn+2の位置ベクトルを位置ベクトルrn+2とする。
【0024】
これらの位置ベクトルの変化から速度ベクトルを演算によって取得することが可能になる。例えば、時刻tnにおける速度ベクトルVnは、時間間隔Δtが微小であれば時間間隔Δtの平均の速度ベクトルVn=(位置ベクトルrn-1)-(位置ベクトルrn)によって取得することが可能になる。
【0025】
なお、速度ベクトルの絶対値は、車両の車速パルスから演算することも可能である。したがって、位置ベクトルの演算から速度の方向を取得し、車速パルスの演算から速度の絶対値を取得し、速度の方向と絶対値から速度ベクトルを精度よく演算することも可能である。すなわち、時刻tn-1における速度ベクトルVn-1、時刻tnにおける速度ベクトルVn、時刻tn+1における速度ベクトルVn+1、時刻tn+2における速度ベクトルVn+2を精度よく演算することが可能である。
【0026】
移動局20には無線信号の送受信のためのアンテナが搭載されており、当該アンテナから放射される電力、または、当該アンテナが受信可能な電力は、アンテナ利得によって決定され、アンテナ利得が大きいほど遠距離までの送受信が可能になる。アンテナ利得は、指向性を持つ、すなわち、方向によって変化することが一般的である。
図1の一点鎖線は方向によって変化するアンテナ利得を示したものであり、アンテナの指向性、または、ビームと称する。アンテナ利得が最大値を示す方向をビーム方向とすると、時刻t
n-1におけるビーム方向をビーム方向d
n-1と称し、時刻t
nにおけるビーム方向をビーム方向d
nと称する。また、時刻t
n+1におけるビーム方向をビーム方向d
n+1と称し、時刻t
n+2におけるビーム方向をビーム方向d
n+2と称する。
【0027】
上述したビーム方向に関連して、ビーム形状を表現する指標の一つに半値角θがある。半値角とは、アンテナ利得が最大値の半値になる角度範囲を表現するものである。半値角は、通信可能範囲として一般的に認識されており、通信相手が位置する方向は半値角θ内に収まるようになることが好ましい。したがって、半値角θが大きいほど通信可能な範囲が広がるが、相対的に、アンテナ利得は低下するために遠距離通信が困難になってくる。また、半値角θが小さいほど通信可能な範囲が狭くなるが、相対的に、アンテナ利得が高くなるために遠距離通信が可能になってくる。
【0028】
図1において、移動局20が時刻t
nから時刻t
n+1の間に
図1に示すように移動すると、時刻t
n+1におけるビーム方向d
n+1は基地局10が配置されている方向からずれるが、ずれ量が半値角θ内に収まっているために、通信が可能である。しかし、移動局20が
図1に示すように移動し、時刻t
n+2になると、ビーム方向d
n+2の半値角θから、位置ベクトルr
n+2が外側に逸脱するために、移動局20と基地局10との通信ができなくなる。
【0029】
そこで、移動局20と基地局10との通信を持続可能にするためには、ビーム方向を変化させる指向性制御が必要になる。指向性制御は、機械的にアンテナを回転させて指向性を変える方法と、
図2に示すように、複数のアンテナ素子からなるアレイアンテナにおいて、それぞれの複数のアンテナ素子を電子的に制御する方法がある。本実施形態においては、
図2に示す複数のアンテナ素子からなるアレイアンテナについて説明する。
【0030】
図2に示すアレイアンテナは、複数のアンテナ素子AE_n(nは2以上の自然数)から構成され、各アンテナ素子AE_nの信号の振幅と位相を変化させることによって、各アンテナ素子AE_nからの電波が合成されて強め合う方向が制御される。当該振幅と位相を重み付けまたはウェイトと称する。アレイアンテナでは、各アンテナ素子AE_nのウェイトを一定の時間間隔で更新し、アンテナの指向性を制御し、ビーム方向が半値角θ内に収まるようにすることによって通信可能な状態を維持する必要がある。
【0031】
図1において、時刻t
nのビーム方向d
nと、基地局の方向を示す位置ベクトルr
nが平行である場合には、時刻t
n+1において、位置ベクトルr
n+1とビーム方向d
n+1との間には、角度差φ
n+1=∠(r
n+1、d
n+1)が発生する。移動局と基地局との間で通信可能な状態を維持するためには、角度差φ
n+1と半値角θの間に、θ/2>φ
n+1という不等式が成立する必要がある。
【0032】
ウェイトの更新は、ウェイトの更新間隔でもある一定の時間間隔Δtが経過した後の時刻t
n+1において、θ/2>φ
n+1という不等式が成立するように時刻t
nの時点で制御する必要がある。しかし、時刻t
nにおいては、時刻t
n+1の位置ベクトルr
n+1、速度ベクトルV
n+1およびビーム方向d
n+1は未知でもある。そこで
図3のように、時刻t
nにける速度ベクトルV
nを保持して移動局20が等速直線運動をしたと想定して、位置ベクトルr
n+1を推定する。移動局20の速度で一定の時間間隔Δtに移動する距離は充分に短い距離であることが想定される。
【0033】
この場合の,時刻t
n+1における角度差は、
図3から角度差φ
n+1=tan
-1(|V
n|Δt/|r
n|)で表現することが可能になる。
【0034】
上記式から分かるように、|rn|が小さい場合、|Vn|およびΔtが大きい場合には角度差φn+1は大きくなってしまうので、通信可能な状態を維持するために、半値角θと以下の関係にあることが好ましい。すなわち、θ/2<tan-1(|Vn|Δt/|rn|)であることが好ましい。
【0035】
基地局10に近い(|rn|が小さい)位置を移動局20が高速に移動している(|Vn|が大きい)場合には、上記式を常に満足させるためにはウェイト更新間隔でもある時間間隔Δtを短い時間にすることも一つの方法として有効な手段でもある。しかし、頻繁にウェイト更新をすると、膨大な信号処理が必要となるために、消費電力が著しく増大することが懸念される。そのために本実施形態では、ウェイト更新間隔でもある時間間隔Δtを変更させずに半値角θを制御することによって、上記不等式を満足させることを提案するものである。
【0036】
図4は、アレイアンテナを構成するアンテナ素子の数を増減することによって、半値角θを制御する方法の一例を示す模式図である。
図4において動作しているアンテナ素子数を増加させると、ビーム形状が狭い、すなわち半値角θが小さい狭ビームとなることが図示されている。また、
図4において動作しているアンテナ素子数を減少させると、ビーム形状が広い、すなわち半値角θが大きい広いビームとなることが図示されている。
図4におけるアンテナ素子数の制御は後述するアンテナ素子切り替え部240によって実行することが可能である。また、動作するアンテナ素子数およびアンテナ素子位置はアレイ構成番号i(iは1以上の自然数)として付番され、アレイアンテナの半値角θとの関係は後述する記憶部140にあらかじめ記憶されている。ただし、アレイ構成番号iには最小値、最大値が定められておりその範囲を超えることはない。
【0037】
(アンテナ制御装置およびアンテナ制御システムの構成例の概要)
図5は、アンテナ制御システム1000の一例を図示したブロック図である。アンテナ制御システム1000は、アンテナ制御装置100およびアンテナ装置200を含む。
【0038】
アンテナ装置200は、複数のアンテナ素子AE_n(nは2以上の自然数)、振幅制御部220、位相制御部230、および、アンテナ素子切り替え部240を含む。
【0039】
複数のアンテナ素子AE_n、振幅制御部220、位相制御部230、および、アンテナ素子切り替え部240の接続関係を
図2に示す。アンテナ素子AE_1は、振幅制御素子AC_1に接続され信号の振幅が制御され、位相制御素子PC_1に接続され、アンテナ素子切り替え素子SC_1でアンテナ制御装置100と接続されるか否かが切り替えられる。同様に、アンテナ素子AE_nは、振幅制御素子AC_nに接続され信号の振幅が制御され、位相制御素子PC_nに接続され、アンテナ素子切り替え素子SC_nでアンテナ制御装置100と接続されるか否かが切り替えられる。このように、各アンテナ素子は、個別に、振幅制御素子、位相制御素子およびアンテナ素子切り替え素子と接続されている。アンテナ素子切り替え素子SC_nに入出力する信号はアンテナ素子切り替え部240またはアンテナ制御装置100の送受信部110で1つの信号としてまとめられることが可能である。
【0040】
また、アンテナ素子切り替え部240に入力されるビーム形状制御信号は、
図5に示すビーム形状制御部137aから出力される信号である。さらに、位相制御部230に入力されるビーム位相制御信号は、
図5に示すビーム方向制御部137bから出力される信号である。さらに、振幅制御部220に入力されるビーム振幅制御信号は、
図5に示すビーム方向制御部137bから出力される信号である。
【0041】
次に、
図5に戻って、アンテナ制御装置100について説明する。
【0042】
アンテナ制御装置100は、送受信部110、信号処理部120、制御部130、記憶部140、および、モード切り替え部150を含む。なお、モード切り替え部150は必須の構成要素ではない場合がある。
【0043】
送受信部110は無線信号の送信または受信を切り替える機能を有する。また、送信信号または受信信号を増幅する機能を有する場合もある。
【0044】
信号処理部120は、データ信号を送信信号とするために変調し、受信信号をデータ信号とするために復調する機能を有する。
【0045】
制御部130は、位置情報取得部131、位置ベクトル演算部132、速度ベクトル演算部133、位置ベクトル推定部134、角度演算部135、角度比較部136、および、ビーム制御部137を含む。
【0046】
位置情報取得部131は、移動局である自車両の位置をGNSS(Global Navigation Satellite System)やジャイロスコープ等によって取得することが可能である。また、基地局10の位置は、あらあじめ記憶されているものとする。例えば、無線信号に含まれる基地局識別情報を取得し、記憶部140に記憶されている基地局識別情報に対応する基地局の位置情報を取得する。
【0047】
位置ベクトル演算部132は、位置情報取得部131において取得された移動局位置情報および基地局位置情報から、移動局位置から基地局位置に向かう位置ベクトルを演算し、生成する。位置ベクトルは前述した時間間隔Δt毎に順番に生成される。
【0048】
速度ベクトル演算部133は、位置ベクトル演算部132において生成された、時刻tn-1の位置ベクトルrn-1および時刻tnの位置ベクトルrnから、時刻tnの速度ベクトルVnを演算し、生成する。すなわち、速度ベクトルVn=(位置ベクトルrn-1)-(位置ベクトルrn)である。また、前述したように速度ベクトルVnの絶対値は、車速パルスから演算し、生成することによって、速度ベクトルVnの精度を向上させることも可能である。
【0049】
位置ベクトル推定部134は、速度ベクトル演算部133によって生成された速度ベクトルV
nに基づいて、時刻t
n+1における位置ベクトルr
n+1を推定する。速度ベクトル演算部133によって、速度ベクトルV
nが演算されているので、位置ベクトル推定部134は、
図3に示すように、速度ベクトルV
nを保ったまま時間間隔Δtだけ等速直線運動したと想定して、位置ベクトルr
n+1を推定することが可能である。なお、この場合に、速度ベクトルV
nと位置ベクトルr
nとのなす角度を垂直として位置ベクトルr
n+1を推定することが近似的に可能である。また、位置ベクトル推定部134は、図示しない、加速度センサおよびジャイロセンサ等によって、より正確に、位置ベクトルr
n+1を推定することも可能である。
【0050】
角度演算部135は、時刻t
nにおける位置ベクトルr
nと、時刻t
n+1における位置ベクトルr
n+1とによって形成される角度差φ
n+1(∠(r
n、r
n+1))を演算する。一例として、
図3に示すように、近似的に、角度差φ
n+1=tan
-1(|V
n|Δt/|r
n|)で演算することも可能である。
【0051】
角度比較部136は、時刻t
nにおける半値角θ
nを記憶部140から読み出し、角度差φ
n+1(∠(r
n、r
n+1))が(θ
n/2)の値よりも大きいか否かを判定する。角度差φ
n+1(∠(r
n、r
n+1))が(θ
n/2)の値よりも大きい場合には、通信が不可能になる可能性があるために、半値角θ
nが大きくなるようにビーム形状を変更する情報をビーム形状制御部137aに出力する。例えば、
図4に示すように動作させるアンテナ素子の数を減少させて半値角θ
nが大きくなるようにする。アンテナ素子の減少数および配置は、記憶部140に記憶されている、アンテナ素子数および配置と、半値角θ
nとの対応関係によって決定することが可能である。また、
図3に示されるように、時刻t
n+1における角度差は、角度差φ
n+1=tan
-1(|V
n|Δt/|r
n|)で近似的に演算することも可能になる。
【0052】
ビーム制御部137は、アンテナ素子切り替え部240を制御するビーム形状制御部137aと、振幅制御部220および位相制御部230を制御するビーム方向制御部137bを含む。
【0053】
ビーム形状制御部137aは、角度比較部136において演算された時刻t
nにおける角度差φ
n+1(∠(r
n、r
n+1))が(θ
n/2)よりも大きいか否かによって、アンテナ素子数を適切に選択するための情報をアンテナ素子切り替え部240に出力する。詳細については、
図6Bのフローチャートにおいて説明する。
【0054】
ビーム方向制御部137bは、ビーム方向を∠(rn、rn+1)だけずらすように、振幅制御部220にビーム振幅制御信号を出力し、位相制御部230にビーム位相制御信号を出力する。ビーム方向と、ビーム振幅制御信号およびビーム位相制御信号の関係は既知の技術であるために、本明細書では詳細を省略する。
【0055】
モード切り替え部150は、ビーム形状制御部137aによって、例えば、使用しないアンテナ素子が発生した場合に実行される機能を有する部分である。
【0056】
例えば、
図4に示したように、アンテナ素子AE_1、アンテナ素子AE_2、アンテナ素子AE_5およびアンテナ素子AE_6でアレイアンテナA1が構成され、動作している状態では、他のアンテナ素子が休止しており、アレイアンテナの利用効率が低下する。そこで、
図7に示すように、休止している他のアンテナ素子を新たなアレイアンテナとして動作させ、MIMOアンテナとして利用することによって、データを多重化して高速な信号伝送を実現することが可能になる。(MIMO(Multiple Input Multiple Output))また、休止している他のアンテナ素子を新たなアレイアンテナとして動作させ、ダイバーシティアンテナとして利用することによって、通信の安定性を向上させることが可能になる。また上述したように、個々のアレイアンテナに対して指向性を制御することも可能である。ただし、あくまで休止状態となったアンテナ素子を活用する手法であるために、すべてのアレイアンテナのビーム形状が同一の形状を取ることが可能ではない場合もある。
【0057】
図7においては、アンテナ素子AE_9、アンテナ素子AE_10、アンテナ素子AE_13およびアンテナ素子AE_14であらたにアレイアンテナA2を構成することが可能である。また、アンテナ素子AE_3、アンテナ素子AE_4、アンテナ素子AE_7およびアンテナ素子AE_8であらたにアレイアンテナA3を構成することが可能である。さらに、アンテナ素子AE_11、アンテナ素子AE_12、アンテナ素子AE_15およびアンテナ素子AE_16であらたにアレイアンテナA4を構成することが可能である。これらのあらたなアレイアンテナA2、アレイアンテナA3およびアレイアンテナA4は、MIMOアンテナまたはダイバーシティアンテナとして機能させることが可能である。また、MIMOアンテナおよびダイバーシティアンテナを混在させることも可能である。
【0058】
モード切り替え部150は、休止状態のアンテナ素子に関する情報を制御部130から受信し、休止状態となったアンテナ素子をMIMOアンテナまたはダイバーシティアンテナとして適用可能か否かを判断する。なお、休止状態となったアンテナ素子をMIMOアンテナおよびダイバーシティアンテナの両方に使用する形態も可能である。モード切り替え部150によって判断された、休止状態となったアンテナ素子の活用法は、信号処理部120に出力され、信号処理部120は各アンテナ素子に対応する信号処理を実行する。
【0059】
(アンテナ制御装置100およびアンテナ制御システム1000の動作例)
図6は、アンテナ制御装置100およびアンテナ制御システム1000の動作の一例を示すフローチャートである。
【0060】
ステップS601において、アンテナ装置200およびアンテナ制御装置100を搭載した移動局が時間間隔Δtの間、移動する。次に、アンテナ制御装置100はステップS602に進む。
【0061】
ステップS602において、位置情報取得部131は、移動局である自車両の位置をGNSSやジャイロスコープ等によって取得する。また、基地局10の位置は、無線信号に含まれる基地局識別情報を取得し、記憶部140に記憶されている基地局識別情報に対応する基地局の位置情報によって取得する。次に、アンテナ制御装置100はステップS603に進む。
【0062】
ステップS603において、位置ベクトル演算部132は、位置情報取得部131において取得された移動局位置情報および基地局位置情報から、移動局位置から基地局位置に向かう位置ベクトルを演算し、生成する。位置ベクトルは前述した時間間隔Δt毎に順番に生成される。位置ベクトル演算部132は、時刻tnにおける位置ベクトルを位置ベクトルrnとし、時刻tn-1の位置ベクトルを位置ベクトルrn-1とする。次に、アンテナ制御装置100はステップS604に進む。
【0063】
ステップS604において、速度ベクトル演算部133は、位置ベクトル演算部132において生成された、時刻tn-1の位置ベクトルrn-1および時刻tnの位置ベクトルrnから、時刻tnの速度ベクトルVnを演算し、生成する。すなわち、速度ベクトルVn=(位置ベクトルrn-1)-(位置ベクトルrn)である。また、前述したように速度ベクトルVnの絶対値は、車速パルスから演算し、生成することによって、速度ベクトルVnの精度を向上させることも可能である。次に、アンテナ制御装置100はステップS605に進む。
【0064】
ステップS605において、位置ベクトル推定部134は、速度ベクトル演算部133によって生成された速度ベクトルV
nに基づいて、時刻t
n+1における位置ベクトルr
n+1を推定する。速度ベクトル演算部133によって、速度ベクトルV
nが演算されているので、位置ベクトル推定部134は、
図3に示すように、速度ベクトルV
nを保ったまま時間間隔Δtだけ等速直線運動したと想定して、位置ベクトルr
n+1を推定することが可能である。次に、アンテナ制御装置100はステップS606に進む。
【0065】
ステップS606において、角度演算部135は、時刻tnにおける位置ベクトルrnと、時刻tn+1における位置ベクトルrn+1とによって形成される角度差φn+1(∠(rn、rn+1))を演算する。一例として、近似的に、角度差φn+1=tan-1(|Vn|Δt/|rn|)で演算することも可能である。次に、アンテナ制御装置100はステップS607に進む。
【0066】
ステップS607において、時刻tnよりもΔtだけ前の時刻tn-1におけるアレイ構成番号in-1をアレイ構成番号inとし、アレイ構成番号in-1における半値角θn-1をθnとする。時刻tnにおけるアレイ構成番号を示すアレイ構成番号in(iは1以上の自然数)は、使用されるアンテナ素子の組み合わせを示したものであり、あらかじめ定められており、記憶部140に記憶されている。したがって、アレイ構成番号iに対応する半値角θiは決まっており、アレイ構成番号iが大きくなるほど、半値角θiが広くなるように構成されている。次に、アンテナ制御装置100はステップS608に進む。
【0067】
ステップS608において、(∠(rn、rn+1)が(θn/2)よりも大きいか否かが判定される。(∠(rn、rn+1)が(θn/2)よりも大きい場合には、通信不可能となる可能性が高いので、(θn/2)を広くする必要性がある。(∠(rn、rn+1)が(θn/2)よりも大きい場合(ステップS608:YES)には、アンテナ制御装置100はステップS609に進む。(∠(rn、rn+1)が(θn/2)よりも大きくない場合(ステップS608:NO)には、アンテナ制御装置100はステップS612に進む。
【0068】
ステップS609において、通信不可能となる可能性が高いので、アンテナ制御装置100は半値角θが大きくなるように、アレイ構成番号をインクリメントする。すなわち、時刻tnのアレイ構成番号inはアレイ構成番号in=アレイ構成番号in+1へ変更し、半値角θnは半値角θn=半値角θin+1へ変更する。アレイ構成番号inとアレイ構成番号in+1で使用されるアンテナ素子の数の差は1つである場合もあるし、2つ以上である場合もある。いずれにしても、アレイ構成番号in+1で使用されるアンテナ素子の数は、アレイ構成番号inで使用されるアンテナ素子の数よりも少ない。半値角θin+1は、アレイ構成番号in+1によって使用されるアンテナ素子の数および配置によってあらかじめ定められている。次に、アンテナ制御装置100はステップS610に進む。
【0069】
ステップS610において、時刻tnにおける半値角θを広げた半値角θnが、位置ベクトルrnと位置ベクトルrn+1によって形成される角度以内に収まったか否かが判定される。すなわち、(∠(rn、rn+1)が(θn/2)よりも大きい場合には、まだ通信不可能となる可能性が高いので、(θn/2)をさらに広くする必要性がある。(∠(rn、rn+1)が(θn/2)よりも大きい場合(ステップS610:YES)には、アンテナ制御装置100はステップS609に進む。(∠(rn、rn+1)が(θn/2)よりも大きくない場合(ステップS610:NO)には、通信不可能となる可能性が低いので、アンテナ制御装置100はステップS611に進む。
【0070】
ステップS611において、時刻tn+1において、(θn/2)の角度範囲内に、位置ベクトルrn+1の方向が収まる確率が高くなったので、ステップS609で代入された、アレイ構成番号inおよび、半値角θnを記憶部140に記憶する。次に、アンテナ制御装置100はステップS615に進む。
【0071】
ステップS612において、時刻tn+1における半値角θの範囲内に、位置ベクトルrn+1が入る可能性が高いため、半値角θを狭めて、遠方通信が可能であるか否かを判定するために、アレイ構成番号および半値角θを変更する。すなわち、時刻tnのアレイ構成番号inはアレイ構成番号in=アレイ構成番号in-1へ変更し、半値角θnは半値角θn=半値角θin-1へ変更する。アレイ構成番号inとアレイ構成番号in-1で使用されるアンテナ素子の数の差は1つである場合もあるし、2つ以上である場合もある。いずれにしても、アレイ構成番号in-1で使用されるアンテナ素子の数は、アレイ構成番号inで使用されるアンテナ素子の数よりも多い。半値角θin-1は、アレイ構成番号in-1によって使用されるアンテナ素子の数および配置によってあらかじめ定められている。次に、アンテナ制御装置100はステップS613に進む。
【0072】
ステップS613において、時刻tnにおける半値角θを狭めた半値角θnが、位置ベクトルrnと位置ベクトルrn+1によって形成される角度以内に収まるか否かが判定される。すなわち、(∠(rn、rn+1)が(θn/2)よりも小さい場合には、(θn/2)をさらに狭くし、遠方通信が可能か否かを判定する。(∠(rn、rn+1)が(θn/2)よりも大きい場合(ステップS613:NO)には、アンテナ制御装置100はステップS614に進む。(∠(rn、rn+1)が(θn/2)よりも大きくない場合(ステップS613:NO)には、さらに、半値角θnを狭められる可能性があるので、アンテナ制御装置100はステップS612に進む。
【0073】
ステップS614において、ステップS609で代入されたアレイ構成番号inおよび半値角θnでは、時刻tn+1では(θn/2)の角度範囲内に、位置ベクトルrn+1の方向が収まる確率が小さいので、アレイ構成番号および半値角を元に戻す。すなわち、アレイ構成番号in=in+1および、半値角θn=θn+1を記憶部140に記憶する。次に、アンテナ制御装置100はステップS615に進む。
【0074】
ステップS615において、以前のステップにおいて、半値角θnに変更があれば、半値角θnに対応するアレイ構成番号のアレイ構成であるアンテナ素子をON状態にする。アンテナ素子のON/OFFの切り替えは、ビーム形状制御部137aがアンテナ素子切り替え部240を制御して実行する。また、ビーム方向を∠(rn、rn+1)だけずらすように、ビーム方向制御部137bが振幅制御部220および位相制御部230を制御する。アレイアンテナのビーム方向を振幅および位相によってずらす技術は既知の技術であるので、本明細書では詳述することを省略する。次に、アンテナ制御装置100はステップS601に戻る。
【0075】
上述してきた構成によれば、移動局と基地局との相対位置関係がどのような状態であっても、アンテナのビーム形状を変えることによって、アンテナの制御頻度を変化させることなく、安定した通信を維持し、消費電力を抑制させることが可能になる。
【0076】
以下に、本実施形態のアンテナ制御装置100およびアンテナ制御システム1000の特徴について記載する。
【0077】
本発明の第1の態様に係る基地局と無線通信する移動局に取り付けられるアンテナ制御装置100は、時刻tnの移動局から基地局への位置ベクトルrnを演算する位置ベクトル演算部132を含むことが好ましい。また、アンテナ制御装置100は、時刻tnからあらかじめ定められた時間間隔である時間間隔Δtが経過した後の時刻tn+1の移動局から基地局への位置ベクトルrn+1を推定する位置ベクトル推定部134を含むことが好ましい。さらに、アンテナ制御装置100は、ビーム形状制御部137aを含むことが好ましい。ビーム形状制御部137aは、移動局を始点とした位置ベクトルrnと位置ベクトルrn+1によって形成される角度がアレイアンテナの半値角θの1/2を超えないように、アレイアンテナにおいて使用するアンテナ素子の数を減少させることが好ましい。
【0078】
上記構成によれば、移動局と基地局との相対位置関係がどのような状態であっても、アンテナのビーム形状を変えることによって、アンテナの制御頻度を変化させることなく、安定した通信を維持し、消費電力を抑制させることが可能になる。
【0079】
本発明の第2の態様に係るアンテナ制御装置100は、位置ベクトルrnの方向が位置ベクトルrn+1の方向に向くように、各アンテナ素子の位相量および振幅量を変更させるビーム方向制御部137bを備えることが好ましい。
【0080】
上記構成によれば、ビーム方向制御を合わせて実行することによって、移動局の速度によらず、安定した通信を維持することが可能になる。
【0081】
本発明の第3の態様に係るアンテナ制御装置100において、ビーム方向制御部137bの制御頻度は、移動局と基地局との間の相対位置および相対速度によっては変化しないことが好ましい。
【0082】
上記構成によれば、移動局と基地局が近い場合であって、移動局の速度が速い場合にも、ビーム方向制御の制御頻度を変化させる必要が無いので、アンテナ制御装置100の消費電力を抑制させることが可能になる。
【0083】
本発明の第4の態様に係るアンテナ制御装置100において、ビーム形状制御部137aの制御、および、ビーム方向制御部137bの制御は、あらかじめ定められた一定の時間間隔である時間間隔Δtの間にそれぞれ一度ずつ実施されることが好ましい。
【0084】
上記構成によれば、ビーム形状制御およびビーム方向制御の頻度をあらかじめ定められた時間間隔でそれぞれ一度ずつ実施させることが可能になるので、安定した通信を維持しながら消費電力を抑制させることが可能になる。
【0085】
本発明の第5の態様に係るアンテナ制御装置100において、ビーム形状制御部137aは、移動局を始点とした位置ベクトルrnと位置ベクトルrn+1によって形成される角度が、アレイアンテナの半値角θの1/2を超えない場合には、以下の処理を実行する。当該処理は、角度がアレイアンテナの半値角θの1/2を超える手前の個数まで、アレイアンテナに使用される前記アンテナ素子の数を増加させることが好ましい。
【0086】
上記構成によれば、移動局と基地局が遠ざかる場合にも、速やかにアンテナ素子の数を増加させ、アンテナ利得を上げて遠距離通信できる構成とすることが可能になる。
【0087】
本発明の第6の態様に係るアンテナ制御装置100は、時刻tnの移動局の速度ベクトルを演算する速度ベクトル演算部133を含むことが好ましい。位置ベクトル推定部134は、速度ベクトル演算部133によって演算された速度ベクトル、および、位置ベクトル演算部132によって演算された位置ベクトルrnから、位置ベクトルrn+1を推定することが好ましい。
【0088】
上記構成によれば、速度ベクトル演算部133によって演算された速度ベクトルを使用して、位置ベクトルrn+1を推定することになるので、位置ベクトルrnと位置ベクトルrn+1とで形成される角度をより正確に演算することが可能になる。
【0089】
本発明の第7の態様に係るアンテナ制御装置100は、時刻tnの移動局の速度ベクトルを演算する速度ベクトル演算部133を含むことが好ましい。位置ベクトル推定部134は、速度ベクトル演算部133によって演算された速度ベクトルの絶対値である速度で、位置ベクトルrnと直交する方向に等速直線運動をしたと推定して、位置ベクトルrn+1を推定することが好ましい。
【0090】
上記構成によれば、速度ベクトルによる演算が簡素化されるので、アンテナ制御装置100における演算待ち時間を低減し、省電力化を図ることが可能になる。また、移動局の移動速度に比較して、ビーム制御頻度が高い場合には、効率的に位置ベクトルrn+1を推定することが可能になる。
【0091】
本発明の第8の態様に係るアンテナ制御装置100は、モード切り替え部150を含むことが好ましい。モード切り替え部150は、未使用アンテナ素子によって、新たなアレイアンテナを構成できる場合には、新たなアレイアンテナをダイバーシティアンテナ、または、MIMOアンテナとして使用することを指示することが好ましい。
【0092】
上記構成によれば、未使用のアレイアンテナをダイバーシティアンテナとして使用すれば、通信の安定性を向上させることが可能になる。また、未使用のアレイアンテナをMIMOアンテナとして使用すれば、通信データを多重化して高速な通信を達成することが可能になる。
【0093】
本発明の第9の態様に係るアンテナ制御装置100は、モード切り替え部150を含むことが好ましい。モード切り替え部150は、未使用アンテナ素子によって、新たなアレイアンテナを構成できる場合には、前記新たなアレイアンテナをダイバーシティアンテナおよびMIMOアンテナとして使用することを指示することが好ましい。
【0094】
上記構成によれば、通信の安定性を向上させるとともに、通信データを多重化して高速な通信を達成することが可能になる。
【0095】
本発明の第10の態様に係るアンテナ制御システム1000は、第1の態様から第9の態様のいずれかに記載のアンテナ制御装置100と、移動局に取り付けられる、複数のアンテナ素子AE_nから形成されるアレイアンテナ210を含むことが好ましい。
【0096】
上記構成によれば、移動局と基地局との相対位置関係がどのような状態であっても、アンテナのビーム形状を変えることによって、アンテナの制御頻度を変化させることなく、安定した通信を維持し、消費電力を抑制させることが可能になる。
【0097】
以上、本実施形態を説明したが、本実施形態はこれらに限定されるものではなく、本実施形態の要旨の範囲内で種々の変形が可能である。また、さまざまな実施形態の一部または全部を組み合わせて新たな実施形態とすることも可能である。
【符号の説明】
【0098】
100 アンテナ制御装置
110 送受信部
120 信号処理部
130 制御部
131 位置情報取得部
132 位置ベクトル演算部
133 速度ベクトル演算部
134 位置ベクトル推定部
135 角度演算部
136 角度比較部
137 ビーム制御部
137a ビーム形状制御部
137b ビーム方向制御部
140 記憶部
150 モード切り替え部
200 アンテナ装置
210 アレイアンテナ
AE_n アンテナ素子
1000 アンテナ制御システム