IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 新日鐵住金株式会社の特許一覧

特許7453600スポット溶接継手及びスポット溶接継手の製造方法
<>
  • 特許-スポット溶接継手及びスポット溶接継手の製造方法 図1
  • 特許-スポット溶接継手及びスポット溶接継手の製造方法 図2
  • 特許-スポット溶接継手及びスポット溶接継手の製造方法 図3
  • 特許-スポット溶接継手及びスポット溶接継手の製造方法 図4
  • 特許-スポット溶接継手及びスポット溶接継手の製造方法 図5
  • 特許-スポット溶接継手及びスポット溶接継手の製造方法 図6
  • 特許-スポット溶接継手及びスポット溶接継手の製造方法 図7
  • 特許-スポット溶接継手及びスポット溶接継手の製造方法 図8
  • 特許-スポット溶接継手及びスポット溶接継手の製造方法 図9
  • 特許-スポット溶接継手及びスポット溶接継手の製造方法 図10
  • 特許-スポット溶接継手及びスポット溶接継手の製造方法 図11
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-03-12
(45)【発行日】2024-03-21
(54)【発明の名称】スポット溶接継手及びスポット溶接継手の製造方法
(51)【国際特許分類】
   B23K 11/16 20060101AFI20240313BHJP
   B23K 11/24 20060101ALI20240313BHJP
   B23K 31/00 20060101ALI20240313BHJP
   C22C 38/60 20060101ALI20240313BHJP
   C22C 38/00 20060101ALI20240313BHJP
【FI】
B23K11/16
B23K11/24 315
B23K31/00 B
C22C38/60
C22C38/00 301Z
【請求項の数】 12
(21)【出願番号】P 2023511402
(86)(22)【出願日】2022-03-29
(86)【国際出願番号】 JP2022015612
(87)【国際公開番号】W WO2022210749
(87)【国際公開日】2022-10-06
【審査請求日】2023-08-23
(31)【優先権主張番号】P 2021058351
(32)【優先日】2021-03-30
(33)【優先権主張国・地域又は機関】JP
(31)【優先権主張番号】P 2021058352
(32)【優先日】2021-03-30
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】000006655
【氏名又は名称】日本製鉄株式会社
(74)【代理人】
【識別番号】110001519
【氏名又は名称】弁理士法人太陽国際特許事務所
(72)【発明者】
【氏名】吉永 千智
(72)【発明者】
【氏名】泰山 正則
(72)【発明者】
【氏名】川合 蒼紫
(72)【発明者】
【氏名】茅野 松男
【審査官】山下 浩平
(56)【参考文献】
【文献】国際公開第2011/025015(WO,A1)
【文献】特開2018-162477(JP,A)
【文献】特開2013-86125(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
B23K 11/00 - 11/36
B23K 31/00
C22C 38/60
C22C 38/00
(57)【特許請求の範囲】
【請求項1】
C含有量が、0.280質量%以上、0.700質量%以下である少なくとも1枚の鋼板を含む2枚以上の鋼板を重ね合わせた板組のスポット溶接継手であって、
ナゲットの中心部を通る前記板組の板厚方向の断面において、板界面であった箇所に相当するナゲット端部の溶融境界から内側1mmまでの溶融境界領域における旧オーステナイト粒の短径に対する長径の比率(長径/短径)の平均が1.0~1.5の範囲であり、前記板組を構成する鋼板のC含有量(質量%)をCとした場合に、前記溶融境界領域における円相当径が30nm以上である鉄系炭化物の個数密度が1mm当り3.0×10×C個以上である、スポット溶接継手。
但し、前記鉄系炭化物の個数密度の下限値を算出するための前記Cは、前記板組を構成する全ての鋼板のC含有量が同じでない場合は、前記板組を構成する各鋼板のC含有量に、それぞれ前記板組の総厚に対する各鋼板の板厚比を乗じた値の加重平均とする。
【請求項2】
前記板組を構成する全ての鋼板のC含有量が、0.300質量%超である請求項1に記載のスポット溶接継手。
【請求項3】
前記板組においてC含有量が最も高い鋼板におけるC含有量(質量%)を[C]とした場合に、前記C含有量が最も高い鋼板の引張強さ(MPa)が、1800×[C]+250以上である請求項1又は請求項2に記載のスポット溶接継手。
【請求項4】
前記ナゲット端部の周辺に存在する熱影響部の前記ナゲット端部から500μm以内の領域における前記円相当径が30nm以上である鉄系炭化物の個数密度が、1mm当り1.0×10×C個以上である請求項1~請求項3のいずれか1項に記載のスポット溶接継手。
【請求項5】
前記ナゲットの中心部における残留応力が90MPa未満である請求項1~請求項4のいずれか1項に記載のスポット溶接継手。
【請求項6】
C含有量が、0.280%以上、0.700質量%以下である少なくとも1枚の鋼板を含む2枚以上の鋼板を重ね合わせた板組を、一対の電極で板厚方向に挟み込んで加圧しながら電流値I(kA)で通電する第1通電工程と、
前記第1通電工程後、20ms以上200ms以下の時間tc1を無通電とする第1無通電工程と、
前記第1無通電工程後、下記式(1)を満たす電流値I(kA)及び下記式(2)を満たす時間t(ms)で通電する第2通電工程と、
0.60≦I/I≦1.10 ・・・(1)
50≦t≦1000 ・・・(2)
前記第2通電工程後、下記式(3)を満たす時間tc2(ms)が経過してから、前記通電した位置において、焼き戻し温度が350℃以上であり、かつ下記式(A)によって算出される焼き戻しパラメータHが8000以上18000以下となる条件で焼き戻しを行う焼き戻し工程と、
c2>3.5×10-3×Ms-3.3×Ms+1100 ・・・(3)
H=T×(logtHT+(17.7-5.8×[C])) ・・・(A)
を含む、スポット溶接継手の製造方法。
前記式(3)におけるMsは、下記式(4)において元素記号に前記板組を構成する鋼板に含まれる各元素の質量%を代入して算出されるMs点を意味する。但し、前記板組を構成する全ての鋼板が同じ組成でない場合は、前記板組を構成する全ての鋼板について前記式(4)により鋼板ごとに算出したMs点に、それぞれ前記板組の総厚に対する各鋼板の板厚比を乗じた値の加重平均のMs点を式(3)に代入する。
Ms(℃)=561-474×C-33×Mn-17×Ni-17×Cr-21×Mo ・・・(4)
前記式(A)におけるTは前記通電によって形成されたナゲット端部近傍における焼き戻し温度(K)、tHTは焼き戻し時間(s)をそれぞれ意味し、[C]は前記板組においてC含有量が最も高い鋼板におけるC含有量(質量%)を意味する。
【請求項7】
前記焼き戻し工程において、炉、レーザー、焼きゴテ、ホットプレート、及び高周波誘導加熱からなる群より選ばれる加熱手段を用いて前記焼き戻しを行う請求項6に記載のスポット溶接継手の製造方法。
【請求項8】
下記式(B)によって算出される値をAc1(℃)とした場合に、前記焼き戻し工程において、前記焼き戻し温度Tが(Ac1-30)℃以下となるように前記焼き戻しを行う請求項6又は請求項7に記載のスポット溶接継手の製造方法。
c1(℃)=750.8-26.6C+17.6Si-11.6Mn-22.9Cu-23Ni+24.1Cr+22.5Mo-39.7V-5.7Ti+232.4Nb-169.4Al-894.7B ・・・(B)
前記式(B)における元素記号には前記板組を構成する鋼板に含まれる各元素の質量%が代入される。但し、前記板組を構成する全ての鋼板が同じ組成でない場合は、前記板組を構成する全ての鋼板について鋼板ごとに前記式(B)によって算出したAc1に、それぞれ前記板組の総厚に対する各鋼板の板厚比を乗じた値の加重平均のAc1に基づいて前記(Ac1-30)を定める。
【請求項9】
前記板組を構成する全ての鋼板のC含有量が、0.300質量%超である請求項6~請求項8のいずれか1項に記載のスポット溶接継手の製造方法。
【請求項10】
前記板組においてC含有量が最も高い鋼板におけるC含有量(質量%)を[C]とした場合に、前記C含有量が最も高い鋼板の引張強さ(MPa)が、1800×[C]+250以上であるスポット溶接継手を製造する請求項6~請求項9のいずれか1項に記載のスポット溶接継手の製造方法。
【請求項11】
前記tc2が9000msec以下である請求項6~請求項10のいずれか1項に記載のスポット溶接継手の製造方法。
【請求項12】
前記第1通電工程、前記第1無通電工程及び前記第2通電工程において、前記板組に対する前記一対の電極による加圧力が一定である請求項6~請求項11のいずれか1項に記載のスポット溶接継手の製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、スポット溶接継手及びスポット溶接継手の製造方法に関する。
【背景技術】
【0002】
車体の組立や部品の取付け等の工程においては主としてスポット溶接が使われている。
近年、自動車分野では、低燃費化やCO排出量削減を達成するための車体の軽量化や、衝突安全性を向上させるための車体の高剛性化がより求められており、その要求を満たすために、車体や部品等に高強度鋼板を使用するニーズが高まっている。
一方、高強度鋼板はその強度を達成するために母材の炭素当量(Ceq)が大きくなっており、スポット溶接では溶接部は加熱後直ちに急冷されるために、溶接部はマルテンサイト組織となり、溶接部及び熱影響部において硬度が上昇し、靭性が低下するようになる。
【0003】
スポット溶接部の靭性を改善して継手強度を確保する方法として、本通電の後にさらに後加熱通電を行う方法が提案されている。
例えば、特許文献1には、3段通電によるスポット溶接方法として、2枚以上の鋼板を重ね合わせた板組を、一対の電極で狭持し、加圧しながら通電して接合する抵抗スポット溶接方法であって、電流値I(kA)で通電する主通電工程を行い、その後、焼き戻し後熱処理工程として、式(1)に示す冷却時間tct(ms)で冷却した後、式(2)に示す電流値I(kA)で、式(3)に示す通電時間t(ms)の間通電を行い、
800≦tct ・・・式(1)
0.5×I≦I≦I ・・・式(2)
500≦t ・・・式(3)
前記板組のうち少なくとも1枚の鋼板は、
0.08≦C≦0.3(質量%)、
0.1≦Si≦0.8(質量%)、
2.5≦Mn≦10.0(質量%)、
P≦0.1(質量%)
を含有し、残部Feおよび不可避的不純物からなる成分を有する抵抗スポット溶接方法が開示されている。
【0004】
また、特許文献2には、炭素を0.15質量%以上含み、引張強さが980MPa以上である高強度鋼板を重ね合わせスポット溶接する方法であって、スポット溶接工程を、ナゲットを形成する第1通電工程、第1通電工程に続いて無通電とする冷却工程、冷却工程に続いてナゲットを軟化させる第2通電工程の3工程に分けて行い、その際、第1通電工程の電流をI、第2通電工程の電流をIとするとき、I/Iを0.5~0.8とし、さらに冷却工程の時間tc(sec)を、鋼板板厚H(mm)に応じて、次の(1)式で計算される0.8×tmin以上、2.5×tmin以下の範囲とし、また第2通電工程の通電時間t2(sec)を、0.7×tmin以上、2.5×tmin以下の範囲とし、前記第1通電工程までの電極の加圧力よりも、前記冷却工程以降における電極の加圧力を大きくして溶接してスポット溶接継手を得るスポット溶接方法が開示されている。
tmin=0.2×H ・・・(1)
【0005】
また、特許文献3には、互いにスポット溶接された2枚以上の薄鋼板と、
前記薄鋼板の接合面に形成されたナゲットと、
を有し、
前記2枚以上の薄鋼板のうちの少なくとも1枚の引張強さが750MPa~1850MPaの高強度鋼板であり、下記(1)式で表される炭素当量Ceqが0.22質量%~0.55質量%であり、
前記ナゲット内の当該ナゲットの外形の90%の相似形領域を除いたナゲット外層域では、
ミクロ組織が、アーム間隔の平均値が12μm以下のデンドライト組織からなり、
前記ミクロ組織に含まれる炭化物の平均粒径が5nm~100nmであり、個数密度が2×10個/mm以上であることを特徴とする高強度鋼板のスポット溶接継手が開示されている。
Ceq=[C]+[Si]/30+[Mn]/20+2[P]+4[S] ・・・(1)
([C]、[Si]、[Mn]、[P]および[S]は、それぞれC、Si、Mn、PおよびSの各含有量(質量%)を示す。)
【0006】
特許文献1:国際公開第2019/156073号
特許文献2:国際公開第2014/171495号
特許文献3:国際公開第2011/025015号
【発明の概要】
【発明が解決しようとする課題】
【0007】
スポット溶接に用いる鋼板の炭素量を高くすることで継手母材(鋼板)の高強度化を図ることができる。しかし、高Ceq材ではスポット溶接継手の強度は低下する。
例えば、特許文献1では、C含有量が0.08~0.3%の鋼板を用いることを必須としており、比較例として、C含有量が0.3%を超える鋼板を用いて3段通電を行った場合には継手強度が低下することが記載されている。しかし、特許文献1の実施例ではC含有量が0.2%以下の鋼板を用いており、C含有量が0.28%のものは比較例となっている。
スポット溶接した部材の衝突性能の向上を図るには、継手強度も高い溶接継手及び継手強度も高い溶接継手を製造することが望ましい。
【0008】
本開示は、炭素量が比較的高い鋼板を含む板組に対して単通電による抵抗スポット溶接を行った場合に比べ、継手強度が大きく向上したスポット溶接継手を提供することを目的とする。
【0009】
本開示は、炭素量が比較的高い鋼板を含む板組を用いる場合でも、単通電による抵抗スポット溶接を行う場合に比べ、継手強度を大きく向上させることができるスポット溶接継手の製造方法を提供することを目的とする。
【課題を解決するための手段】
【0010】
上記目的を達成するための本開示の要旨は次の通りである。
<1> C含有量が、0.280質量%以上、0.700質量%以下である少なくとも1枚の鋼板を含む2枚以上の鋼板を重ね合わせた板組のスポット溶接継手であって、
ナゲットの中心部を通る前記板組の板厚方向の断面において、板界面であった箇所に相当するナゲット端部の溶融境界から内側1mmまでの溶融境界領域における旧オーステナイト粒の短径に対する長径の比率(長径/短径)の平均が1.0~1.5の範囲であり、前記板組を構成する鋼板のC含有量(質量%)をCとした場合に、前記溶融境界領域における円相当径が30nm以上である鉄系炭化物の個数密度が1mm当り3.0×10×C個以上である、スポット溶接継手。
但し、前記鉄系炭化物の個数密度の下限値を算出するための前記Cは、前記板組を構成する全ての鋼板のC含有量が同じでない場合は、前記板組を構成する各鋼板のC含有量に、それぞれ前記板組の総厚に対する各鋼板の板厚比を乗じた値の加重平均とする。
<2> 前記板組を構成する全ての鋼板のC含有量が、0.300質量%超である<1>に記載のスポット溶接継手。
<3> 前記板組においてC含有量が最も高い鋼板におけるC含有量(質量%)を[C]とした場合に、前記C含有量が最も高い鋼板の引張強さ(MPa)が、1800×[C]+250以上である<1>又は<2>に記載のスポット溶接継手。
<4> 前記ナゲット端部の周辺に存在する熱影響部の前記ナゲット端部から500μm以内の領域における前記円相当径が30nm以上である鉄系炭化物の個数密度が、1mm当り1.0×10×C個以上である<1>~<3>のいずれか1つに記載のスポット溶接継手。
<5> 前記ナゲットの中心部における残留応力が90MPa未満である<1>~<4>のいずれか1つに記載のスポット溶接継手。
<6> C含有量が、0.280%以上、0.700質量%以下である少なくとも1枚の鋼板を含む2枚以上の鋼板を重ね合わせた板組を、一対の電極で板厚方向に挟み込んで加圧しながら電流値I(kA)で通電する第1通電工程と、
前記第1通電工程後、20ms以上200ms以下の時間tc1を無通電とする第1無通電工程と、
前記第1無通電工程後、下記式(1)を満たす電流値I(kA)及び下記式(2)を満たす時間t(ms)で通電する第2通電工程と、
0.60≦I/I≦1.10 ・・・(1)
50≦t≦1000 ・・・(2)
前記第2通電工程後、下記式(3)を満たす時間tc2(ms)が経過してから、前記通電した位置において、焼き戻し温度が350℃以上であり、かつ下記式(A)によって算出される焼き戻しパラメータHが8000以上18000以下となる条件で焼き戻しを行う焼き戻し工程と、
c2>3.5×10-3×Ms-3.3×Ms+1100 ・・・(3)
H=T×(logtHT+(17.7-5.8×[C])) ・・・(A)
を含む、スポット溶接継手の製造方法。
前記式(3)におけるMsは、下記式(4)において元素記号に前記板組を構成する鋼板に含まれる各元素の質量%を代入して算出されるMs点を意味する。但し、前記板組を構成する全ての鋼板が同じ組成でない場合は、前記板組を構成する全ての鋼板について前記式(4)により鋼板ごとに算出したMs点に、それぞれ前記板組の総厚に対する各鋼板の板厚比を乗じた値の加重平均のMs点を式(3)に代入する。
Ms(℃)=561-474×C-33×Mn-17×Ni-17×Cr-21×Mo ・・・(4)
前記式(A)におけるTは前記通電によって形成されたナゲット端部近傍における焼き戻し温度(K)、tHTは焼き戻し時間(s)をそれぞれ意味し、[C]は前記板組においてC含有量が最も高い鋼板におけるC含有量(質量%)を意味する。
<7> 前記焼き戻し工程において、炉、レーザー、焼きゴテ、ホットプレート、及び高周波誘導加熱からなる群より選ばれる加熱手段を用いて前記焼き戻しを行う<6>に記載のスポット溶接継手の製造方法。
<8> 下記式(B)によって算出される値をAc1(℃)とした場合に、前記焼き戻し工程において、前記焼き戻し温度Tが(Ac1-30)℃以下となるように前記焼き戻しを行う<6>又は<7>に記載のスポット溶接継手の製造方法。
c1(℃)=750.8-26.6C+17.6Si-11.6Mn-22.9Cu-23Ni+24.1Cr+22.5Mo-39.7V-5.7Ti+232.4Nb-169.4Al-894.7B ・・・(B)
前記式(B)における元素記号には前記板組を構成する鋼板に含まれる各元素の質量%が代入される。但し、前記板組を構成する全ての鋼板が同じ組成でない場合は、前記板組を構成する全ての鋼板について鋼板ごとに前記式(B)によって算出したAc1に、それぞれ前記板組の総厚に対する各鋼板の板厚比を乗じた値の加重平均のAc1に基づいて前記(Ac1-30)を定める。
<9> 前記板組を構成する全ての鋼板のC含有量が、0.300質量%超である<6>~<8>のいずれか1つに記載のスポット溶接継手の製造方法。
<10> 前記板組においてC含有量が最も高い鋼板におけるC含有量(質量%)を[C]とした場合に、前記C含有量が最も高い鋼板の引張強さ(MPa)が、1800×[C]+250以上であるスポット溶接継手を製造する<6>~<9>のいずれか1つに記載のスポット溶接継手の製造方法。
<11> 前記tc2が9000msec以下である<6>~<10>のいずれか1つに記載のスポット溶接継手の製造方法。
<12> 前記第1通電工程、前記第1無通電工程及び前記第2通電工程において、前記板組に対する前記一対の電極による加圧力が一定である<6>~<11>のいずれか1つに記載のスポット溶接継手の製造方法。
【発明の効果】
【0011】
本開示によれば、炭素量が比較的高い鋼板を含む板組に対して単通電による抵抗スポット溶接を行った場合に比べ、継手強度が大きく向上したスポット溶接継手が提供される。
【0012】
本開示によれば、炭素量が比較的高い鋼板を含む板組を用いる場合でも、単通電による抵抗スポット溶接を行う場合に比べ、継手強度を大きく向上させることができるスポット溶接継手の製造方法が提供される。
【図面の簡単な説明】
【0013】
図1】重ね合わせた鋼板に行ったスポット溶接と継手のCTS(十字引張強さ)との関係を示す図である。
図2】スポット溶接後のナゲット付近のSEM―EBSD解析画像であり、(A)は単通電のみ、(B)は単通電の後に第2通電を行った場合である。
図3】ナゲット周囲の板厚方向の断面を示す図である。
図4】単通電によってスポット溶接継手を製造した場合のナゲット端部の組織の一例であり、(A)SEM―EBSD解析画像及び(B)旧オーステナイト粒界を示す図である。
図5】本開示に係るスポット溶接継手のナゲット端部の組織の一例であり、(A)SEM―EBSD解析画像及び(B)旧オーステナイト粒界を示す図である。
図6】スポット溶接継手のナゲット端部の組織の一例であり、鉄系炭化物(白い部分)を示す図である。
図7】本開示に係るスポット溶接継手の製造方法におけるスポット溶接と焼き戻しとの組み合わせを概略的に示す図である。
図8】2枚の鋼板を重ね合わせた板組に対して抵抗スポット溶接を行った場合に形成されるナゲット及び熱影響部(HAZ)の一例を概略的に示す図である。
図9】Ms点と偏析緩和後にMs点まで冷却に必要な時間との関係を示す図である。
図10】スポット溶接機を用いて焼き戻しを行った場合のナゲット端部近傍について熱伝導解析した温度履歴の一例を示す図である。
図11図10に示す温度履歴について50℃を超えない範囲で区切った場合の平均温度変化を示す図である。
【発明を実施するための形態】
【0014】
以下、本開示の一例である実施形態について説明する。
なお、本開示において、各元素の含有量の「%」表示は「質量%」を意味する。また、本開示において、「~」を用いて表される数値範囲は、特に断りの無い限り、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。また、「~」の前後に記載される数値に「超」又は「未満」が付されている場合の数値範囲は、これら数値を下限値又は上限値として含まない範囲を意味する。
本開示に段階的に記載されている数値範囲において、ある段階的な数値範囲の上限値は、他の段階的な記載の数値範囲の上限値又は実施例に示されている値に置き換えてもよい。また、本開示に段階的に記載されている数値範囲において、ある段階的な数値範囲の下限値は、他の段階的な記載の数値範囲の下限値又は実施例に示されている値に置き換えてもよい。
また、「工程」との用語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の目的が達成されれば、本用語に含まれる。
【0015】
本発明者らは、鋼板のC量が0.150質量%超、特に0.280%以上であっても抵抗スポット溶接を行った場合の継手強度(十字引張強さ:CTS)を向上できる方法を鋭意研究した。図1は、鋼板のC量が0.34%で、P量が0.015%(通常P材)と0.0007%(極低P材)の2種類の鋼板を同じ種類の鋼板同士を2枚重ね合わせて、抵抗スポット溶接した継手のCTSとの関係を示している。なお、C量、P量以外の成分は、S:0.0008%、Si:0.25%、Mn:1.25%)で共通である。また、「単通電」は板組にナゲットを形成する1回の通電による抵抗スポット溶接を行ったこと、「テンパー通電」は板組に対してナゲットを形成する単通電を行った後、ナゲットを軟化させる焼き鈍し処理に相当する後通電(テンパー通電)を行ったことを意味する。「3段通電」は、ナゲットを形成する単通電の後に、テンパー通電よりも多い電流値の通電を行い、次いで、テンパー通電を行ったことを意味する。「2段通電+炉焼戻し」は、ナゲットを形成する単通電の後に、テンパー通電よりも多い電流値の通電を行った後、焼き戻し炉を用いて焼き戻しを行ったことを意味する。
【0016】
成分を変化させた鋼板を用いて継手強度の調査を実施した際に、極低Pと通常P量ではテンパー通電をしたときに達成される継手強度が極低Pの方が高いことが分かった。よって、通常Pのものをテンパー通電や炉での焼き戻しをした場合に、併せて偏析緩和を目的とした通電を追加すればさらに高い強度が得られるが、この偏析緩和のみの効果では説明できないほどに継手強度が上昇することが分かった。
この原因としてナゲットを形成した後に再度行う通電において、偏析が緩和されるだけの効果ではなくて旧オーステナイト粒の形状変化による効果があると考えられる。図2は、スポット溶接した場合のナゲットおよびその付近についてSEM―EBSD解析をした画像である。(A)は単通電のみ行ったもの、(B)は単通電の後に2段目の通電を0.1秒行ったものである(テンパー通電はしない)。15度以上の大角粒界をみると、(B)では、ナゲット内でナゲット端部付近(溶融境界付近)において、(A)においてはあまり見られない整粒が見られる。一旦凝固したのちに再度加熱されδ変態し、再び冷却されγ変態をしたことによる粒径形状の変化と考えられるが、この整粒化によって靭性が向上したものと考えられる。Cが0.150%超、特に0.280%以上の高C材では、この整粒化が偏析緩和よりも重要と考えられる。
【0017】
このような2回の通電の後に、さまざまな熱源を使用して溶接部の焼き戻しを行い、検討した結果、T:焼き戻し温度(K)、tHT:焼き戻し時間(s)、[C]:鋼板のC含有量(質量%)とした場合に、ナゲット端部の温度履歴から計算できる焼き戻しパラメータHが特定の範囲内となるように焼き戻しを行うことで、単通電による継手に比べてCTSが顕著に向上した。
一般的に、C含有量を高くするほど鋼板の引張強度が高くなる反面、溶接部の靭性は低下して継手強度が低下するが、本発明者らは、C含有量が0.280%以上の鋼板では、偏析緩和だけではなく、整粒化も重要と考えた。そして、C含有量が0.280%以上、0.700%以下である鋼板を含む板組であっても、特定の条件でナゲットを形成する通電工程と、整粒化通電工程とを組み合わせたスポット溶接を行い、特定の時間が経過してから焼き戻しパラメータHの値が特定の範囲内となる焼き戻しを行えば、CTS試験において、最も剥離方向の応力が負荷される部位(ナゲット内でナゲット境界付近)の靭性が向上し、継手強度を大幅に向上させることができることを見出した。
【0018】
さらに、炭素量が比較的高い鋼板を用いたスポット溶接継手について、図3に示すようなナゲットの断面観察、CTS試験などによって精査した。図4は、単通電によってスポット溶接継手を製造した場合のナゲット端部の組織であり、図5は、特定の条件で3段通電を行ったスポット溶接継手のナゲット端部の組織である。それぞれ(A)はSEM―EBSD解析をした画像であり、(B)は旧オーステナイト粒の粒界を示している。図4(B)に示す旧オーステナイト粒に比べ、図5(B)に示す旧オーステナイト粒はアスペクト比が小さい整粒となっている。また、図6は、ナゲット端部における鉄系炭化物(白色部分)を示している。
このような分析結果により、C含有量が0.280%以上、0.700質量%以下である鋼板を用いたスポット溶接継手では、板界面であった箇所に相当するナゲット端部の溶融境界から内側1mmまでの溶融境界領域において、以下の(I)及び(II)を満たす場合に、単通電によってスポット溶接を行った溶接継手に比べてCTSが顕著に向上していることが分かった。
(I)旧オーステナイト粒の短径に対する長径の比率(長径/短径)の平均が1.0~1.5である。
(II)鋼板のC含有量(質量%)をCとした場合に円相当径が30nm以上である鉄系炭化物の個数密度が1mm当り3.0×10×C個以上である。
【0019】
[スポット溶接継手]
以下、本開示に係るスポット溶接継手について詳細に説明する。なお、本開示において、「スポット溶接継手」を「溶接継手」又は単に「継手」、
「板界面であった箇所に相当するナゲット端部」を「ナゲット端部」、
「溶融境界から内側1mmまでの領域」を「溶融境界領域」、
「旧オーステナイト粒の短径に対する長径の比率(長径/短径)の平均」を「旧オーステナイト粒の平均アスペクト比」、
「円相当径が30nm以上である鉄系炭化物」を「粗大鉄系炭化物」、
とそれぞれ称する場合がある。
例えば、「板組の板厚方向の断面において、板界面であった箇所に相当するナゲット端部の溶融境界から内側1mmまでの領域における旧オーステナイト粒の短径に対する長径の比率(長径/短径)の平均」は「ナゲット端部における旧オーステナイト粒の平均アスペクト比」と称し、「板組の板厚方向の断面において、板界面であった箇所に相当するナゲット端部の溶融境界から内側1mmまでの領域における円相当径が30nm以上である鉄系炭化物の個数密度」は「ナゲット端部における粗大鉄系炭化物の個数密度」と称する場合がある。
【0020】
(ナゲット端部における旧オーステナイト粒の平均アスペクト比)
本開示に係る溶接継手は、ナゲット端部における旧オーステナイト粒の平均アスペクト比が1.0~1.5の範囲である。後述する本開示に係るスポット溶接継手の製造方法の条件を満たさない場合には、凝固方向に伸長したオーステナイト粒となる傾向があり、重ね合わせた板を剥離する方向の力に弱く、継手強度が劣化する。そのため、ナゲット端部における旧オーステナイト粒の平均アスペクト比は1.0~1.5とし、好ましくは1.3以下であり、さらに好ましくは1.2以下である。
【0021】
本開示においてナゲット端部における旧オーステナイト粒の平均アスペクト比は以下のように特定する。
例えば、図4(B)及び図5(B)に示すような旧オーステナイト粒界を示す画像において、各々の旧オーステナイト粒の形状を最小二乗法により楕円近似する。楕円近似の方法は、各々のオーステナイト粒の長径と、面積を用いてその長径を有する楕円の短径を算出する。この楕円形状において、長軸の寸法を短軸の寸法で除することにより、旧オーステナイト粒のアスペクト比を算出することとする。
具体的には、ナゲットの中心部を通るように板厚方向に切断し、断面におけるナゲット端部の溶融境界領域についてSEM―EBSDで観察倍率50倍、観察面積0.25mmとして旧オーステナイト粒界のアスペクト比を測定する。ナゲット端部の溶融境界領域おいて測定し、それらの平均値を平均アスペクト比とする。平均アスペクト比を算出するためのナゲット端部の溶融境界領域における旧オーステナイト粒の数は15個以上とする。なお、旧オーステナイト粒界のアスペクト比の測定は、ナゲットのいずれか一方の端部の溶融境界領域において測定すればよいが、もし、旧オーステナイト粒径が大きく15個以上の計測ができない場合には、ナゲット両端部でそれぞれ測定して合計観察面積を0.25mm以上とし、その中に含まれる旧オーステナイト粒の形状を用いることとする。このとき、その中に含まれる粒が0.25mmの範囲外にかかっている粒であっても、算出に用いるものとする。
また、鋼板を3枚以上重ねてスポット溶接した接合部の場合には、炭素量が最も高い鋼板の界面のナゲット端部での測定とし、さらにその鋼板の上下に鋼板が存在する場合には、その上下で炭素量が高い側の板界面のナゲット端部での測定とする。
【0022】
(ナゲット端部における鉄系炭化物の個数密度)
本開示に係る溶接継手は、ナゲット端部における円相当径が30nm以上の鉄系炭化物(粗大鉄系炭化物)の個数密度は、1mm当り3.0×10×C個以上である。ナゲット端部における粗大鉄系炭化物の個数密度が3.0×10×C個/mm以上であれば十分な焼戻しが進んでおり、高い継手強度を得られる。ナゲット端部における粗大鉄系炭化物の個数密度は好ましくは3.3×10×C個/mm以上であり、より好ましくは4.0×10×C個/mm以上である。
一方、ナゲット端部における粗大鉄系炭化物の個数密度が大き過ぎると靭性を落としてしまう場合があるため、好ましくは5.0×10×C個/mm以下であり、より好ましくは3.0×10×C個/mm以下である。
なお、Cは板組を構成する鋼板のC含有量(質量%)を代入するが、板組を構成する鋼板のC含有量が異なる場合は、板組を構成する各鋼板のC含有量に、それぞれ板組の総厚に対する各鋼板の板厚比を乗じた値の加重平均を代入する。
【0023】
本開示においてナゲット端部における粗大鉄系炭化物の個数密度は以下のように特定する。
ナゲットの中心部を通るように板厚方向に切断した断面において、ナゲット端部の該当する位置を含む溶融境界領域を鏡面研磨した後にナイタールによってエッチングをし、その後SEM観察(倍率:20000倍)を行い、鉄系炭化物とみられる析出物にEDS(Energy dispersive X-ray spectrometry)によりその組成を特定する。ここで言う鉄系炭化物とは、主として、鉄と炭素の化合物であるセメンタイト(FeC)、及び、ε系炭化物(Fe2-3C)等である。また、これらの鉄系炭化物に加えて、セメンタイト中のFe原子をMn、Cr等で置換した化合物や、合金炭化物(M23、MC、MC等であり、Mは、Fe及びその他の金属元素)を含んでもよい。これら鉄系炭化物の内、円相当径が30nmを超えるものの個数密度を、視野として、前記旧オーステナイト粒界のアスペクト比の測定を行うナゲット端部の50μm角以上において測定すればよい。
【0024】
(鋼板)
本開示に係る溶接継手及び溶接継手の製造方法において板組を構成する鋼板は、少なくとも1枚の鋼板が、質量%で、C含有量が0.280%以上0.700%以下であればよい。板組を構成する鋼板の枚数は2枚以上であれば特に限定されず、製造される溶接継手の用途に応じて選択すればよい。以下、本開示に係る溶接継手及び溶接継手の製造方法における鋼板について説明する。
【0025】
C:0.280%以上0.700%以下
Cは、鋼の焼入れ性を高め、強度向上に寄与する元素である。C含有量が0.280%未満の鋼板のみを重ねてスポット溶接を行う場合は、本開示に係る溶接継手を適用せずとも継手強度の確保が可能なため、本開示に係る溶接継手では、少なくとも1枚の鋼板のC含有量は0.280%以上とする。好ましくは、本開示に係る溶接継手を構成する全ての鋼板のC含有量が0.280%以上であり、より好ましくは0.300%超、さらに好ましくは0.310%以上、さらに好ましくは0.330%以上、さらに好ましくは0.350%以上である。
ただし、C含有量が0.700%を超えると靱性が低下しすぎ、本開示に係る溶接継手を適用しても依然低いCTSしか得られないため、C含有量は0.700%以下とする。C含有量は、好ましくは0.550%以下、さらに好ましくは0.480%以下である。
【0026】
C以外の残部は、Fe及び不純物であってもよいし、Feの一部に代えて任意成分を含んでもよい。なお、不純物とは、鉱石、スクラップ等の原材料に含まれる成分、又は、製造の過程で混入する成分が例示され、意図的に鋼板に含有させたものではない成分を指す。以下、C及びFe以外の好ましい含有量について説明する。なお、以下に説明する成分は不純物又は任意成分であり、下限値は0%であってもよいし、0%超であってもよい。
【0027】
P:0.010%以下
Pは、不純物であり、脆化を起こす元素である。P含有量が0.010%を超えると、継手強度を得ることが難しいので、上限を0.010%とすることが好ましい。より好ましくは0.009%以下である。
なお、P含有量は少ないほど好ましいが、P含有量を下げるほど脱Pコストが上昇する。また、本開示に係る溶接継手によれば、図1に示したように、通常のP含有量である鋼板を用いた場合でも、P含有量を極めて低くした鋼板を用いて通電によってナゲットを形成した後、テンパー通電を行った場合と同等以上にCTSを向上させることができる。そのため、鋼板のP含有量を大きく下げる必要はなく、P含有量の下限値は、0.0005%であってもよい。
【0028】
S:0.050%以下
Sは、Pと同様に、不純物であり脆化を起こす元素である。また、Sは、鋼中で粗大なMnSを形成し、鋼の加工性を低下させるとともに継手強度も低下させる元素である。S含有量が0.050%を超えると、所要の継手強度を得ることが難しく、また、鋼の加工性が低下するので、0.050%以下とすることが望ましい。
なお、S含有量は少ないほど好ましいが、Pと同様の観点から、鋼板のS含有量の下限値は、0.0003%であってもよい。
【0029】
Si:0.10%超
Siは、固溶強化及び組織強化により、鋼の強度を高める元素である。Si含有量が0.10%以下であると継手強度が低下してしまうため下限を0.10%超とすることが好ましい。より好ましくは0.80%超である。
一方、Si含有量が高過ぎると、加工性が低下するとともに継手強度も低下するので、上限を3.5%又は3.0%としてもよい。
【0030】
Mn:15.00%以下
Mnは、鋼の強度を高める元素である。Mn含有量が15.00%を超えると、加工性が劣化するとともに継手強度も低下するので、上限を15.00%とすることが好ましい。鋼板の強度と加工性および継手強度をバランスよく確保するには、0.5~7.5%がより好ましい。さらに好ましくは、1.0~3.5%である。
【0031】
Al:3.00%以下
Alは、脱酸作用をなす元素であり、また、フェライトを安定化し、セメンタイトの析出を抑制する元素である。Alは、脱酸、及び、鋼組織の制御のため含有させるが、Alは酸化し易く、Al含有量が3.00%を超えると、介在物が増加して加工性が低下するとともに継手強度も低下するので、3.00%以下とすることが好ましい。加工性を確保する点で、より好ましい上限は1.2%である。
【0032】
N:0.0100%以下
Nは、鋼板の強度を高める元素であるが、鋼中で粗大な窒化物を形成し、鋼の成形性を劣化させる作用をなす元素である。N含有量が0.0100%を超えると、鋼の成形性の劣化、継手強度の低下が顕著となるので、0.0100%以下とすることが望ましい。
なお、鋼板の清浄度を高める観点から、Nは、0%であってもよい。Nを低減する生産コストの観点から下限値は、0.0001%であってもよい。
【0033】
Ti:0.70%以下
Tiは、析出物を形成し、鋼板組織を細粒とする元素であり、含有してもよい。含有効果を得るため、0.001%以上含有することが好ましい。より好ましくは0.01%以上である。一方、過剰に含有すると、製造性が低下し、加工時に割れが生じるだけでなく継手強度の低下も起こすので、0.70%を上限とすることが好ましく、より好ましくは0.50%以下である。
【0034】
Nb:0.70%以下
Nbは、微細な炭窒化物を形成し結晶粒の粗大化を抑制する元素であり、含有してもよい。含有効果を得るため、0.001%以上含有することが好ましい。より好ましくは0.01%以上である。過剰に含有すると、靭性を阻害し製造困難になるだけでなく継手強度低下を引き起こすため、上限を0.70%とすることが好ましく、より好ましくは0.50%以下、または0.30%以下である。
【0035】
V:0.30%以下
Vは、微細な炭窒化物を形成し結晶粒の粗大化を抑制する元素であり、含有してもよい。含有効果を得るため、0.001%以上含有することが好ましい。より好ましくは0.03%以上である。過剰に含有すると、靭性を阻害し製造困難になるだけでなく継手強度低下を引き起こすため、上限を0.30%とすることが好ましく、より好ましくは0.25%以下である。
【0036】
Cr:5.00%以下
Mo:2.00%以下
Cr及びMoは、鋼の強度の向上に寄与する元素であり、含有してもよい。含有効果を得るため、それぞれ0.001%以上含有することが好ましい。より好ましくは0.05%以上である。ただし、Cr含有量が5.00%を超え、又はMo含有量が2.00%を超えると、酸洗時や熱間加工時に支障が生じることがあるだけでなく継手強度の低下を招くので、Cr含有量の上限は5.00%とすることが好ましく、Mo含有量の上限は2.00%とすることが好ましい。
【0037】
Cu:2.00%以下
Ni:10.00%以下
Cu及びNiは、鋼の強度の向上に寄与する元素であり、含有してもよい。含有効果を得るため、それぞれ0.001%以上含有することが好ましい。より好ましくは 0.10%以上である。ただし、Cu含有量が2.00%を超え、Ni含有量が10.00%を超えると、酸洗時や熱間加工時に支障が生じることがあるだけでなく継手強度の低下を招くことがあるので、Cu含有量の上限は2.00%とすることが好ましく、Ni含有量の上限は10.00%とすることが好ましい。
【0038】
Ca:0.0030%以下
REM:0.050%以下
Mg:0.05%以下
Zr:0.05%以下
Ca、REM(rare earth metal)、Mg、及びZrは、脱酸後の酸化物や、熱間圧延鋼板中に存在する硫化物を微細化し、成形性の向上に寄与する元素であり、含有してもよい。ただし、Caの含有量が0.0030%を超え、REMの含有量が0.050%を超え、Mg、又はZrの各含有量が0.05%を超えると、鋼の加工性が低下する。そのため、Ca含有量の上限を0.0030%とし、REM含有量の上限を0.050%とし、Mg、及びZrの各含有量の上限を0.05%とすることが好ましい。
なお、含有効果を得るため、Ca含有量は0.0005%以上、REMは0.001%以上、Mgは0.001%以上、Zrは0.001%以上とすることが好ましい。
【0039】
なお、「REM」とはSc、Y、及びランタノイドの合計17元素の総称であり、REMの含有量はREMのうちの1種又は2種以上の元素の合計含有量を指す。また、REMについては一般的にミッシュメタルに含有される。このため、例えば、REMは、REMの合計含有量が上記の範囲となるように、ミッシュメタルの形で含有させてもよい。
【0040】
B:0.0200%以下
Bは、粒界に偏析して粒界強度を高める元素であり、含有してもよい。含有効果を得るため、0.0001%以上含有することが好ましく、より好ましくは0.0008%以上である。一方、過剰に含有すると靭性を阻害し製造困難になるだけでなく継手強度の低下を引き起こすため、上限を0.0200%とすることが好ましく、より好ましくは0.010%以下である。
【0041】
本開示に係る溶接継手では、2枚以上の鋼板を重ね合わせた板組のうち、少なくとも1枚の鋼板は、質量%で、C含有量が、0.280%以上、0.700%以下であり、さらに、上述した元素から所望の元素を選択し、上述した範囲内の組成を有する鋼板を用いる。
鋼板は、
C:0.280%~0.700%、
Si:0.10%超、
Mn:15.00%以下、
P:0.010%未満、
S:0.0100%以下、
Al:3.00%以下、及び
N:0.0100%以下、を含み、
残部が鉄(Fe)および不純物からなる鋼板であってもよい。
上記組成の鋼板が、上記鉄(Fe)の一部に代えて、
Ti:0.70%以下、
Nb:0.70%以下、
V:0.30%以下、
Cr:5.00%以下、
Mo:2.00%以下、
Cu:2.00%以下、
Ni:10.00%以下、
Ca:0.0030%以下、
REM:0.050%以下、
Mg:0.05%以下、
Zr:0.05%以下、及び
B:0.0200%以下
の群から選ばれる1種または2種以上の元素を含有してもよい。
板組を構成する全ての鋼板のC含有量が0.280%以上、0.700%以下でもよいし、板組のうち一部の鋼板は、C含有量が0.280%未満又は0.700%超でもよい。
【0042】
板組を構成する各鋼板の板厚は特に限定されないが、例えば、0.5~3.5mmの板厚が挙げられる。
また、板組の総厚tも特に限定されないが、例えば、1.5~8.0mmが挙げられる。
【0043】
本開示に係る溶接継手の用途も特に限定されないが、例えば、車体部品に特に有効と考えられる。
【0044】
[スポット溶接継手の製造方法]
本開示に係るスポット溶接継手を製造する方法は特に限定されないが、C含有量が、0.280%以上、0.700%以下である少なくとも1枚の鋼板を含む2枚以上の鋼板を重ね合わせた板組に対し、特定の電流値及び時間で第1通電、第1無通電、及び第2通電した後、所定の時間tc2(ms)が経過してから、前記通電した位置において特定の条件で焼き戻しを行う方法が挙げられる。このような方法によれば、単通電で抵抗スポット溶接を行った場合に比べてCTSを大幅に向上させることができ、本開示に係るスポット溶接継手を好適に製造することができる。以下、本開示に係るスポット溶接継手の好ましい製造方法(「本開示に係るスポット溶接継手の製造方法」と称する場合がある。)の一例について詳述する。
【0045】
すなわち、本開示に係るスポット溶接継手の製造方法(本開示において単に「溶接継手の製造方法」と称する場合がある。)は、質量%で、C含有量が、0.280%以上、0.700質量%以下である少なくとも1枚の鋼板を含む2枚以上の鋼板を重ね合わせた板組を、一対の電極で板厚方向に挟み込んで加圧しながら電流値I(kA)で通電する第1通電工程と、
前記第1通電工程後、20ms以上200ms以下の時間tc1を無通電とする第1無通電工程と、
前記第1無通電工程後、下記式(1)を満たす電流値I(kA)及び下記式(2)を満たす時間t(ms)で通電する第2通電工程と、
0.60≦I/I≦1.10 ・・・(1)
50≦t≦1000 ・・・(2)
前記第2通電工程後、下記式(3)を満たす時間tc2(ms)が経過してから、前記通電した位置において、焼き戻し温度が350℃以上であり、かつ下記式(A)によって算出される焼き戻しパラメータHが8000以上18000以下となる条件で焼き戻しを行う焼き戻し工程と、
c2>3.5×10-3×Ms-3.3×Ms+1100 ・・・(3)
H=T×(logtHT+(17.7-5.8×[C])) ・・・(A)
を含む。
前記式(3)におけるMsは、下記式(4)において元素記号に前記板組を構成する鋼板に含まれる各元素の質量%を代入して算出されるMs点を意味する。但し、前記板組を構成する全ての鋼板が同じ組成でない場合は、前記板組を構成する全ての鋼板について前記式(4)により鋼板ごとに算出したMs点に、それぞれ前記板組の総厚に対する各鋼板の板厚比を乗じた値の加重平均のMs点を式(3)に代入する。
Ms(℃)=561-474×C-33×Mn-17×Ni-17×Cr-21×Mo ・・・(4)
前記式(A)におけるTは前記通電によって形成されたナゲット端部近傍における焼き戻し温度(K)、tHTは焼き戻し時間(s)をそれぞれ意味し、[C]は前記板組においてC含有量が最も高い鋼板におけるC含有量(質量%)を意味する。
【0046】
図7は、本開示に係るスポット溶接継手の製造方法におけるスポット溶接(電流及び時間)と焼き戻しを概略的に示す図である。本開示に係る溶接継手の製造方法は、質量%で、C含有量が、0.280%以上、0.700%以下である少なくとも1枚の鋼板を含む2枚以上の鋼板を重ね合わせた板組を用い、図7に示すように、第1通電工程、第1無通電工程、第2通電工程を行った後、焼き戻し温度が350℃以上であり、かつ焼き戻しパラメータHが8000~18000の範囲内となるように焼き戻し工程を行うことで、継手強度を顕著に向上させるものである。以下、各工程について具体的に説明する。なお、使用する鋼板の成分については後述する。
【0047】
[第1通電工程]
まず、第1通電工程として、質量%で、C含有量が、0.280%以上、0.700%以下である少なくとも1枚の鋼板を含む2枚以上の鋼板を重ね合わせた板組を、一対の電極で板厚方向に挟み込んで加圧しながら電流値I(kA)で通電する。
【0048】
第1通電工程ではスポット溶接によって板組を構成する全ての鋼板を接合するナゲットが形成されるように電流値I(kA)及び通電時間t(ms)を設定することが好ましい。図8は、2枚の鋼板を重ねた板組に対して第1通電工程を行った場合に形成されるナゲットの一例を概略的に示している。図8に示すように、鋼板1A、1Bを重ね合わせた板組を板厚方向に挟み込むように電極2A、2Bを押し当てた状態のまま、電極2Aと電極2Bの間で通電を行う。これにより鋼板1Aと鋼板1Bとの通電部にはナゲット13及び熱影響部(いわゆるHAZ)14が形成され、両鋼板がスポット溶接される。
第1通電工程における電流値Iは所望のナゲット径が得られる電流値を用い、総板厚の半分の厚みをt(mm)とした場合、通電時間tは10t-5から10t+5cycle(50Hz)などとすればよい。ナゲット径は4√t以上を狙うのが継手強度、散り発生回避の観点からよい。さらに望ましくは5√t以上である。このような5√t以上のナゲット径を、散りを発生させずに形成するためには、第1通電工程の前にアップスロープを設定することが望ましい。また、第1通電工程の前に、第1通電工程より低い電流値でプレ通電を行っても良い。
また、板組に対する電極2A、2Bの加圧力は、散り発生を抑え、かつ安定してナゲットが得られるように、例えば2000~8000Nが挙げられる。加圧力は一定であっても途中で変化させてもかまわない。なお、二段通電までに加圧力の変動があると粒成長が妨げられて整粒化の効果代が減少しうるため、第1通電工程、第1無通電工程及び第2通電工程において、板組に対する両電極2A、2Bによる加圧力の変動は小さいことが好ましい。第1通電工程の加圧力Pに対して、第1無通電工程の加圧力は0.8P~1.2Pであることが好ましく、第2通電工程の加圧力は0.8P~1.2Pであることが好ましい。第1通電工程、第1無通電工程及び第2通電工程において、板組に対する両電極2A、2Bによる加圧力は一定とすることがより好ましい。
【0049】
なお、アップスロープやナゲット形成前に予備通電をしてもよい。ダウンスロープなどが入っていてもよい。パルス通電によるナゲット形成を行ってもよい。
【0050】
[第1無通電工程]
第1通電工程後、20ms以上200ms以下の時間tc1を無通電とする。
無通電時間tc1が20ms未満では第2通電工程の前にナゲット端部が凝固しないおそれがある。一方、無通電時間tc1が200msを超えると、第2通電工程の前にナゲット端部が固まり過ぎるおそれがある。
ナゲット端部の凝固が不足した状態又は過度に凝固した状態での後通電(第2通電工程)を避け、ナゲット端部の凝固を適切に進めるために(ナゲット端部が固まらないうちに又は固まり過ぎてから第2通電を行うことを避けるために)、第1通電工程後の無通電時間tc1は、20ms以上200ms以下とし、25ms以上160ms以下とすることが好ましく、30ms以上150ms以下とすることがより好ましい。
【0051】
[第2通電工程]
第2通電工程は、本発明者らが、鋼板のC量が0.280%以上であっても、CTSを向上させることができることを発見した、重要な工程である。ナゲット内の溶融境界付近の結晶粒を整粒化し、CTS試験において、剥離方向に負荷される応力が最も高くなる部位の靭性を向上させる効果がある。
第1無通電工程後、下記式(1)を満たす電流値I(kA)及び下記式(2)を満たす時間t(ms)で通電する。
0.60≦I/I≦1.10 ・・・(1)
50≦t≦1000 ・・・(2)
第2通電工程では第1通電工程でできた溶融境界を越えずにナゲット中央部を溶融させてナゲット端部付近に適切な熱を入れるために、第1通電工程の電流値(I)に対する比(I/I)及び通電時間(t)がそれぞれ上記の式(1)及び式(2)を満たす条件で通電を行う。
第2通電工程は、結晶粒制御熱処理に相当し、上記の式(1)及び式(2)を満たす電流値I(kA)及び時間t(ms)で通電を行うことでナゲットの結晶粒が変化し、継手強度を向上させることができる。
/Iは0.75~1.05、tは200~600が好ましい。
【0052】
[焼き戻し工程]
第2通電工程後、前記通電した位置において焼き戻しを行う。
【0053】
時間:tc2
焼き戻し工程では、第1通電及び第2通電によって形成されたナゲットの焼き戻しをするために、第2通電工程後、焼き戻しを行う前に、溶接部(ナゲット)全体の温度がMs点以下になる必要がある。よって、鋼の成分によって必要な時間が変わる。図9は計算で求めたMsまで冷却するのに必要な時間を示している。Ms点を上記式(4)で求めて溶接部全体の温度がMs点以下となるのに必要な時間(冷却時間)tc2を計算したところ、下記式(3)を満たす必要がある。
c2>3.5×10-3×Ms-3.3×Ms+1100 ・・・(3)
式(3)におけるMsは、下記式(4)において元素記号に板組を構成する鋼板に含まれる各元素の質量%を代入して算出されるMs点を意味する。
Ms(℃)=561-474×C-33×Mn-17×Ni-17×Cr-21×Mo ・・・(4)
なお、式(4)における元素のうち、鋼板に含まれない元素については該当する元素記号にゼロを代入する。また、板組を構成する全ての鋼板が同じ組成でない場合は、板厚を考慮し、板組を構成する全ての鋼板について式(4)により鋼板ごとに算出したMs点に、それぞれ板組の総厚(全体の厚み)に対する各鋼板の板厚比を乗じた値の加重平均のMs点を式(3)に代入する。
【0054】
例えば、互いに組成が異なる3枚の鋼板α、β、γを重ね合わせた板組の場合、各鋼板の組成から式(4)によって算出されるMs点(℃)をそれぞれMsα、Msβ、Msγ、各鋼板の板厚(mm)をそれぞれtα、tβ、tγ、板組の総厚をtとすると、この板組における各鋼板の板厚を考慮した加重平均のMs点(Msave)は以下のように算出される。
Msave=Msα×(tα/t)+Msβ×(tβ/t)+Msγ×(tγ/t)
【0055】
なお、冷却時間tc2が長過ぎると、焼き戻しを行っても十字引張における疲労強度が低下する場合がある。この理由として、冷却後に焼き戻しを行っても、溶接部に残留応力が強く残ってしまうことが考えられる。そのため、冷却時間tc2は9000ms以下であることが好ましい。
【0056】
焼き戻しパラメータ:H
第1通電及び第2通電によってスポット溶接を行った位置において、第2通電が終了してから前述した時間tc2(ms)が経過した後、焼き戻し温度が350℃以上であり、かつ下記式(A)によって算出される焼き戻しパラメータHが8000以上18000以下となる条件で焼き戻しを行う。
【0057】
H=T×(logtHT+(17.7-5.8×[C])) ・・・(A)
式(A)におけるTは通電によって形成されたナゲット端部近傍における焼き戻し温度(K)、tHTは焼き戻し時間(s)をそれぞれ意味し、[C]は鋼板のC含有量(質量%)をそれぞれ意味する。なお、C含有量が異なる鋼板を組み合わせた板組とする場合は、C含有量が最も高い鋼板におけるC含有量(質量%)とする。
【0058】
焼き戻しを十分に進めるために焼き戻しパラメータHは8000以上とし、好ましくは9000以上、さらに好ましくは10000以上とする。また、焼き戻しが進み過ぎても、炭化物が大きくなり過ぎ、靭性が低下してしまうため、焼き戻しパラメータHは18000以下とし、好ましくは17000以下である。
【0059】
焼き戻し温度Tが高すぎるとオーステナイトが晶出してしまい、再度焼き入れされてしまう。そのため、変態点以下での焼き戻しとなるようにする。そのために、焼き戻し温度は下記式(B)で計算されるAc1(℃)以下とすることが好ましく、より好ましくは(Ac1-30)℃以下である。
c1=750.8-26.6C+17.6Si-11.6Mn-22.9Cu-23Ni+24.1Cr+22.5Mo-39.7V-5.7Ti+232.4Nb-169.4Al-894.7B ・・・(B)
上記式における元素記号には鋼板に含まれる各元素の含有量(質量%)を代入し、鋼板に含まれない元素についてはゼロを代入する。
なお、同鋼種(鋼組成が同じ鋼種)の組み合わせでない板組の場合には板厚による加重平均のAc1、すなわち、板組を構成する全ての鋼板について鋼板ごとに式(B)によって算出したAc1に、それぞれ板組の総厚に対する各鋼板の板厚比を乗じた値の加重平均のAc1に基づいて焼き戻し温度を設定することができる。
【0060】
また、焼き戻しパラメータHを算出する式(A)における焼き戻し温度Tは絶対温度(K)であるのに対し、式(B)で算出されるAc1は摂氏温度(℃)である。そのため、例えば、焼き戻し工程において式(B)によって算出されるAc1(℃)に基づいて焼き戻し温度を設定する場合、式(A)における焼き戻し温度T(K)として絶対温度に換算し、焼き戻しパラメータHが所定の範囲内となるように焼き戻し時間tHT(s)を設定することができる。
【0061】
本開示では、焼き戻し温度T(K)は、第2通電工程後のナゲット端部から内側0.5mmにおける位置(本開示において「ナゲット端部近傍」と称する場合がある。)の温度を基準とする。ここで「ナゲット端部」とは、ナゲットの溶融境界において板組の板界面であった箇所である。ナゲット端部近傍温度は、スポット溶接機による焼き戻しの場合には、直接測定することは困難なため熱伝導解析によるシミュレーションを行い推定した温度を用いる。熱伝導解析によるシミュレーションを行うソフトとして、例えば、QuickSpot(株式会社計算力学研究センター)を用いることができる。後述の実施例では、スポット溶接機による焼き戻しの場合、上記ソフトを使ったシミュレーションによりナゲット端部近傍温度を算出した。炉やその他の熱源を用いる場合には、測温部近傍の温度を代用するもしくは炉温などを用いてもよい。
なお、焼き戻し温度Tは、焼き戻し手段によって変化する場合がある。本開示では、焼き戻しパラメータHを以下のようにして算出する。
【0062】
(1)温度が一定である場合
焼き戻し工程における焼き戻し温度が一定であれば、各パラメータを式(A)に代入して焼き戻しパラメータHを算出する。
【0063】
(2)温度が段階的に変化する場合
時間:温度
HT0~tHT1:T[K]
HT1~tHT2:T[K]

HTk-1~tHTk:T[K]
であった場合、tHT0~tHT1の間の焼き戻しパラメータHは、
=T×(log(tHT1-tHT2)+(17.7-5.8×[C]))
と計算される。
このHを次の区間の温度Tで得られる時間をtHT2’とすると、
=T×(log(tHT2’)+(17.7-5.8×[C]))
となり、二つ目の区間までtHT0~tHT2での焼き戻しパラメータH1+2は、
1+2=T×(log(tHT2-tHT1+tHT2’)+(17.7-5.8×[C]))
となる。
これを繰り返し、全区間でのHは、
H=T×(log(tHTk-tHTk-1+tHTk’)+(17.7-5.8×[C]))
となる。
焼き戻し温度が段階的に変化する場合は、このように計算して、焼き戻し工程における焼き戻しパラメータHを算出する。
また、全区間で等温であったことを仮定して得られるHが同じとなる温度を代表温度と呼称することとする。
【0064】
(3)温度が連続的に変化する場合
温度変化が50℃以内となるような区間を設定し、その間の温度の平均をTaveとし、その区間の代表温度とする。この方法によって、区間tからtを分け、「(2)温度が段階的に変化する場合」の方法を適用して、Hを算出する。
【0065】
【数1】
【0066】
Ha=Tave×(log(t-t)+(17.7-5.8×[C]))
とし、その次の区間tからtを求め、(2)と同様の方法で全区間でのHを算出することとする。また、(2)と同様に全区間で等温であったことを仮定して得られるHが同じとなる温度を代表温度と呼称することとする。
【0067】
焼き戻し工程における焼き戻し方法は、焼き戻し温度が350℃以上であり、かつ式(A)で算出される焼き戻しパラメータHが8000~18000の範囲内になれば特に限定されない。第2通電工程後、そのままスポット溶接機によって焼き戻しを行う方法と、スポット溶接機以外の熱源を用いて焼き戻しを行う方法が挙げられる。
【0068】
<スポット溶接機による焼き戻し>
第2通電後、電極で加圧したまま無通電とした後、再度通電して焼き戻しを行う。
すなわち、第2通電工程後、前述した式(3)を満たす時間tc2(ms)を無通電として冷却した後、第3通電工程として、好ましくは下記式(5)を満たす電流値I(kA)及び下記式(6)を満たす時間t(ms)で通電する。
0.4≦I/I≦1.0 ・・・(5)
450≦t ・・・(6)
第3通電工程は、テンパー熱処理に相当し、電流値I及び通電時間tはMs点以下までに冷やされたナゲットを焼き戻しパラメータHが8000~18000の範囲内となるように再加熱する。実験の結果、第3通電工程の電流値(I)では、第1通電工程の電流値(I)に対する比(I/I)及び通電時間(t)が、それぞれ式(5)及び式(6)を満たす条件で通電することで、靭性を効果的に向上させることができる。
なお、第3通電工程における通電時間が長過ぎると生産性を落としてしまうため、5000ms以下とすることが好ましい。
第3通電工程の後は、加圧だけで通電しない、いわゆる保持時間を設けることが好ましい。
このように、第2通電工程に続いて電極を板組に加圧したまま無通電と通電を行って焼き戻しを行えば、第1通電工程から焼き戻し工程までを連続して行うことができ、作業効率及び生産性の向上を図ることができる。
なお、第2通電後、板組から一旦電極を離して時間tc2が経過してから、再度スポット溶接機を用いて前記第3通電工程と同様の条件で通電を行って焼き戻しを行ってもよい。
【0069】
<スポット溶接機以外の熱源による焼き戻し>
スポット溶接機以外の熱源による焼き戻しを行ってもよい。すなわち、第2通電後、板組から電極を離し、式(3)を満たす時間tc2が経過してから、スポット溶接機以外の熱源を用いてナゲットを加熱する。スポット溶接機以外の熱源(加熱手段)は特に限定されず、炉、レーザー、焼きゴテ、ホットプレート、高周波誘導加熱などが挙げられる。なお、いずれの加熱手段を用いる場合でも焼き戻しパラメータHが8000~18000の範囲内となるように加熱を行う。
焼き戻しの熱源としてスポット溶接機以外の上記のような加熱手段を用いれば、スポット溶接機を用いた通電による焼き戻しに比べ、焼き戻し温度のばらつきが小さくなることが利点としてあげられる。スポット溶接機を用いた場合には、近傍に存在する鋼材への熱の流れや、他の打点への分流などもありそれを織り込んだ電流値設定が必要となる。一方、上記のような加熱手段では影響因子は少なく、狙いの温度を得やすいため、ロバスト性が高く、かつ高い継手強度を得るための手間が少ないという利点がある。
【0070】
本開示に係る溶接継手の製造方法では、板組を構成する鋼板は、少なくとも1枚の鋼板が、質量%で、C含有量が0.280%以上0.700%以下であればよい。板組を構成する鋼板の枚数は2枚以上であれば特に限定されず、製造される溶接継手の用途に応じて選択すればよい。C以外の任意元素、板厚、板組の総厚tなどについても溶接継手に関して前述したとおりであり、ここでの説明は省略する。
【0071】
C含有量が、0.280%以上、0.700%以下である少なくとも1枚の鋼板を含む2枚以上の鋼板を重ね合わせた板組に対し、上述した各工程からなる抵抗スポット溶接及び焼き戻しを行うことで、単通電で抵抗スポット溶接を行った場合に比べてCTSを大幅に向上させることができる。
このような本開示に係る溶接継手の製造方法を適用する分野は特に限定されないが、例えば、車体の組立や部品の取付け等の工程に特に有効と考えられる。
【0072】
そして、上記各工程を経て、本開示に係る溶接継手、すなわち、ナゲット部の板界面であった箇所に相当するナゲット端部の溶融境界から内側1mmまでの溶融境界領域における旧オーステナイト粒の短径に対する長径の比率(長径/短径)の平均が1.0~1.5の範囲であり、溶融境界領域における円相当径が30nm以上である鉄系炭化物の個数密度が1mm当り3.0×10×C個以上であるスポット溶接継手を製造することができる。
なお、特許文献3では、比較的低い温度(220℃以下)で焼き戻しを行っており、5nm以上の炭化物の個数密度は2×10個/mm以上であっても、30nm以上の炭化物の個数密度は十分でないと考えられ、また、炭化物の微細析出により硬くなってしまい継手強度が上がりにくい。
【0073】
また、後述の実施例で示すように、以下の(A)~(D)のことが判明した。
(A)炭素量に対して引張強さTS(MPa)が、1800×[C]+250以上である高強度鋼板であってもCTSを向上させられる上、炭素量に対して引張強さTS(MPa)が、1800×[C]+250以上である鋼板を用いることで、CTS向上効果に加えて靭性の向上効果も期待できる。
(B)保持時間tc2が9000msec以下である場合に残留応力が小さくなり、CTS向上率が高くなる。
(C)HAZのうち、ナゲット端部から500μm以内の炭化物析出密度が1mm当り1.0×10×C個以上である場合にCTSのばらつきが低減される。
(D)C含有量が0.30%超の鋼板を用いた場合にCTSの向上効果が高くなる。
【実施例
【0074】
以下、実施例によって本開示に係る溶接継手及び溶接継手の製造方法について説明する。尚、本開示に係る溶接継手及び溶接継手の製造方法はこれらの実施例に限定されるものではない。
【0075】
表1に示す組成を有する鋼板を用意し、表2に示す条件(板組、加圧力、通電条件など)で抵抗スポット溶接及び表3に示す条件で焼き戻しを行った。
【0076】
【表1】
【0077】
表1において、P、S、Nは意図的に添加しなくても、成分分析は実施し、それぞれP:0.010%未満、S:0.0100%以下、N:0.0100%以下であった。残部は、Fe及び不純物である。また、表1において、鋼板のC含有量が0.280%未満又は0.700%を超える値には下線を付した。表2における下線は、本開示の要件を満たさないことを意味する。但し、鋼板k及び鋼板lは、C含有量が0.280%未満であるが、鋼板のC含有量が0.280%以上、0.700%以下の鋼板と組み合わせる発明例の板組に用いるために用意したものであり、表2の「鋼板組合せ」において鋼板k、lには下線は付していない。
【0078】
表3における下線は、本開示の要件を満たさないことを意味する。「第1通電工程のみCTS」は、通電条件のうち第1通電(I,t)のみでサンプルを作製した場合のCTSを意味し、以下「単通電CTS]と記載する場合がある。
【0079】
焼き戻し温度が時間変化する場合の焼き戻しパラメータHの算出について、スポット溶接によって焼き戻しを行った表3の9番を例に説明する。スポット溶接による焼き戻し工程としてナゲット端部近傍における温度履歴を熱伝導解析によって推定したところ、図10に示す温度履歴が得られた。温度変化が50℃を超えない範囲において平均温度を算出した。図11は、50℃を超えない範囲で区切った場合の平均温度変化を示している。その区間において、前述した「(3)温度が連続的に変化する場合」の方法によって焼き戻しパラメータHを求めた。
【0080】
単通電CTSと比較して下記式によって算出される上昇率を求め、15%を超えるものを継手強度の向上効果があるものと判断した。
上昇率[%]=[(本開示の通電条件でのCTS-単通電のCTS)/単通電のCTS]×100
【0081】
【表2】

【0082】
【表3】
【0083】
発明例では、少なくとも1枚の鋼板のC含有量が質量%で0.280%以上0.700%以下である板組に対し、本開示の条件を満たす抵抗スポット溶接を行っており、いずれも単通電による抵抗スポット溶接を行った場合に比べ、CTSの上昇率が15%を超えていた。なお、表2に示すように、例えば番号21~30は、鋼板aを2枚重ね合わせた板組を用い、第1通電工程における加圧力、電流、時間はいずれも同じであるが、表3に示すように「第1通電工程のみCTS」に多少のばらつきがある。これは電極保持時間(ホールド時間)の違いなどが影響している。
一方、比較例では、全ての鋼板のC含有量、スポット溶接、及び焼き戻しのいずれかが本開示の条件を満たさないため、単通電による抵抗スポット溶接を行った場合に比べ、CTSの上昇率が15%に満たず、むしろCTSが低下したものもあった。
なお、番号6、16(参考例)は、焼き戻し工程におけるナゲット端部近傍温度が350℃未満であるが、比較的長い時間焼き戻しを行うことで焼き戻しパラメータHが8000以上18000以下の範囲内となり、CTS上昇率が15%を超える継手が得られた。
【0084】
表4に示す組成を有する鋼板を用意し、表5に示す条件(板組、加圧力、通電条件など)で抵抗スポット溶接及び焼き戻しを行った。
【0085】
【表4】

【0086】
表4において、P、S、Nは意図的に添加しなくても、成分分析は実施し、それぞれP:0.010%未満、S:0.0100%以下、N:0.0100%以下であった。残部は、Fe及び不純物である。また、表1において、鋼板のC含有量が0.280%未満又は0.700%を超える値には下線を付した。表5における下線は、本開示の要件を満たさないことを意味する。但し、鋼板Hは、C含有量が0.280%未満であるが、鋼板のC含有量が0.280%以上、0.700%以下の鋼板と組み合わせる発明例の板組に用いるために用意したものであり、表5の「鋼板組合せ」において鋼板Hには下線は付していない。
【0087】
表5における下線は、本開示の要件を満たさないことを意味する。「第1通電工程のみCTS」は、通電条件のうち第1通電(I,t)のみでサンプルを作製した場合のCTSを意味し、以下「単通電CTS]と記載する場合がある。
なお、CTSは、JIS Z3137:1999に準じて測定した。
【0088】
単通電CTSと比較して下記式によって算出される上昇率を求め、15%を超えるものを継手強度の向上効果があるものと判断した。
上昇率[%]=[(本開示の通電条件でのCTS-単通電のCTS)/単通電のCTS]×100
【0089】
【表5】

【0090】
【表6】
【0091】
「ナゲット端部の旧オーステナイト粒の短径に対する長径の比率の平均」及び「ナゲット端部の1mmあたりの30nm以上の鉄系炭化物の個数」は前述した方法によって測定した。
なお、表6の「3.0×10×C」の欄における「E+」は10の階乗を意味し、例えば「8.4E+05」は「8.4×10」を意味する。
【0092】
発明例では、少なくとも1枚の鋼板のC含有量が質量%で0.280%以上0.700%以下である板組を用い、ナゲット端部における旧オーステナイト粒の長径/短径の比(アスペクト比)及び鉄系炭化物の個数密度がいずれも本開示の範囲内となる条件で抵抗スポット溶接と焼き戻しを行っており、いずれも単通電による抵抗スポット溶接を行った場合に比べ、CTSの上昇率が15%を超えていた。
一方、比較例では、鋼板のC含有量、ナゲット端部における旧オーステナイト粒の長径/短径の比(アスペクト比)、及び鉄系炭化物の個数密度のいずれかが本開示の範囲外であり、単通電による抵抗スポット溶接を行った場合に比べ、CTSの上昇率が15%に満たず、むしろCTSが低下したものもあった。
【0093】
<実施例A1、A2>
鋼板Qの板厚は1.6mmである。鋼板Qを2枚重ねた板組に対してスポット溶接を行い、続けて焼鈍条件を変化させて引張強さ(TS)が異なる鋼板Q1、Q2を得た。
スポット溶接における加圧力は、400kgfで一定として、第一通電工程は、電流値7.5kA、通電時間は360ms、第一無通電時間は80ms、第二通電工程は、電流値7.0kA、通電時間は500ms、第二通電後通電休止600msの後に加圧保持したまま通電時間1500ms、電流値は4.3kAとしてテンパー通電を行った。
【0094】
このようにして得られた継手をCTS試験をするとともに、溶接部の破壊靭性値を測定した。測定には、「自動車ボディの接合技術における最近の課題とその対策技術-前編」新日鉄技報 第393号(2012)及び「スポット溶接継手十字引張試験の破壊力学的考察 (第2報)スポット溶接部の破壊靭性評価法の開発」(新日本製鐵、渡辺史徳ほか)に記載された方法を用いた。具体的には、ナゲット端部からミニチュアCTS試験片(W=2mm、B=1mm)を切り出し、予めき裂を導入し、き裂開口負荷をワイヤーを使うことによって与えた。そして破壊したときの荷重をもとに靭性値を見積もった。結果を表7に示す。なお、基準TSとは、1800×[C]+250で算出される値である。
【0095】
A2(比較例)では、炭素量に対するTSが低くなっている。これは、粗大な炭化物が形成されてしまっているためと考えられる。この粗大な炭化物形成によって、溶接継手の靭性を落としてしまったと考えられ、A1(発明例)と比較して、第一通電のみのCTSが低くなっている。
さらに、CTS向上のために付与した2、3段目の通電の効果はあるものの、A1と比較するとその幅は狭いものとなっている。粗大な炭化物が第二通電後も残ってしまい、その後のテンパーによってさらに粗大になってしまったことが原因であると考えられ、靭性値がA1に比較して低くなっている。
このように、炭素量に対して適切なTSではない鋼板では、CTS向上効果が十分得られないことがわかる。
【0096】
【表7】

【0097】
<実施例B1、B2>
表4の鋼板Cを2枚重ねた板組に対してスポット溶接を行った。加圧力は3000N一定として、第一通電工程は、電流値7.0kA、通電時間は300ms、第一無通電時間は40ms、第二通電工程は、電流値6.20kA、通電時間は100ms、第二通電後通電休止600ms(B1)後又は9500ms(B2)後に加圧保持したまま通電時間1000ms、電流値は4.0kAとしてテンパー通電を行った。
【0098】
このようにして得られた継手B1、B2についてCTS試験を行った。さらに残留応力を測定した。測定方法は「Simulation of welding residual stresses in resistance spot welding, FE modeling and X-ray verification」JOURNAL OF MATERIALS PROCESSING TECHNOLOGY 205 (2008)60‐69に記載の方法を用いた。具体的には、2mm径(ナゲット径の中心部)に対して、X線にて回折角度2θが95度~105度の間の値を用い、ヤング率を200GPa、ポアソン比0.3として算出した。結果を表8に示す。残留応力の閾値:90MPa未満が好ましいと判断できる。
B1,B2を比較すると、残留応力がB1の方が小さくなっておりCTS向上代(向上率)は大きかった。
【0099】
【表8】

【0100】
<実施例C1~C7>
HAZのうち、ナゲット端部から500μm以内の炭化物析出密度が1mm当り1.0×10×C個以上である場合にCTSのばらつきが低減される。具体的には、ナゲットの中心部を通るように板厚方向に切断し、断面におけるナゲット端部から500μm以内のHAZ部について観察面積0.25mmを観察した。HAZ部での粗大鉄系炭化物の個数密度の測定方法は、ナゲット端部における粗大鉄系炭化物の個数密度の測定方法と同様である。
評価は30体のCTSの値を正規分布を仮定した場合の標準偏差で評価した。その値が0.20kN以下の場合にばらつきが小さいと判断した。結果を表9、表10に示す。
【0101】
【表9】
【0102】
【表10】

【0103】
<実施例D1~D6>
表11に示す同じ番号の鋼板を2枚重ねた板組に対してスポット溶接を行った。各鋼板の炭素量は表11に示すとおりであり、その他の添加元素は、Si:0.3%、Mn:0.9%である。板厚は1.6mmである。
加圧力は400kgfで一定として、第一通電工程は、電流値7.5kA、通電時間は400ms、第一無通電時間は100ms、第二通電工程は、電流値7.0kA、通電時間は400ms、第二通電後通電休止1000msの後に加圧保持したまま 通電時間2000ms、電流値は4.0kAとしてテンパー通電を行った。このようにして得られた継手についてCTS試験をした。結果を表11に示す。
【0104】
【表11】
【0105】
上記結果から、C含有量が0.30%超の場合、CTSをより一層向上させることができる。
【0106】
2021年3月30日に出願された特願2021-058351及び特願2021-058352の開示はその全体が参照により本明細書に取り込まれる。本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
【符号の説明】
【0107】
1A、1B 鋼板
2A、2B 電極
13 ナゲット
14 熱影響部(HAZ)
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11