(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-03-12
(45)【発行日】2024-03-21
(54)【発明の名称】半導体装置
(51)【国際特許分類】
H01L 29/12 20060101AFI20240313BHJP
H01L 29/78 20060101ALI20240313BHJP
H01L 21/336 20060101ALI20240313BHJP
H01L 29/872 20060101ALI20240313BHJP
H01L 29/739 20060101ALI20240313BHJP
H01L 29/47 20060101ALI20240313BHJP
H01L 21/8234 20060101ALI20240313BHJP
H01L 27/06 20060101ALI20240313BHJP
H01L 27/088 20060101ALI20240313BHJP
【FI】
H01L29/78 652T
H01L29/78 653A
H01L29/78 652C
H01L29/78 658E
H01L29/78 652B
H01L29/78 657D
H01L29/78 652M
H01L29/86 301F
H01L29/86 301D
H01L29/78 658F
H01L29/78 655A
H01L29/48 F
H01L29/48 D
H01L27/06 102A
H01L27/088 E
(21)【出願番号】P 2019554290
(86)(22)【出願日】2018-11-15
(86)【国際出願番号】 JP2018042347
(87)【国際公開番号】W WO2019098296
(87)【国際公開日】2019-05-23
【審査請求日】2021-11-12
(31)【優先権主張番号】P 2017219761
(32)【優先日】2017-11-15
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】511187214
【氏名又は名称】株式会社FLOSFIA
(72)【発明者】
【氏名】松田 時宜
(72)【発明者】
【氏名】杉本 雅裕
(72)【発明者】
【氏名】四戸 孝
【審査官】恩田 和彦
(56)【参考文献】
【文献】特開2016-025256(JP,A)
【文献】国際公開第2016/075927(WO,A1)
【文献】国際公開第2016/035696(WO,A1)
【文献】特開2015-097275(JP,A)
【文献】特開2017-005091(JP,A)
【文献】金子健太郎,韓欣一,人羅俊実,藤田静雄,p型伝導を示す9番目のコランダム構造酸化物α-Ir2O3の結晶成長とその電気特性,第64回応用物理学会春季学術講演会講演予稿集,日本,応用物理学会,2017年03月14日,16p-P8-19,16-072
(58)【調査した分野】(Int.Cl.,DB名)
H01L 29/12
H01L 29/78
H01L 21/336
H01L 29/872
H01L 29/739
H01L 29/47
H01L 21/8234
(57)【特許請求の範囲】
【請求項1】
ゲート電極と、p型半導体層と、
前記p型半導体層に接するp+型半導体層とを少なくとも備える半導体装置であって、前記ゲート電極の側壁に直接または他の層を介して、チャネルの形成されるチャネル層を備え、前記チャネル層の一部または全部が
前記p型半導体層であってp型酸化物半導体を含み、且つガリウムを含有する金属酸化物の結晶または混晶を含み、前記p+型半導体層が、イリジウムを含有することを特徴とする半導体装置。
【請求項2】
前記p型酸化物半導体が、イリジウムを含有する金属酸化物の結晶または混晶を含む請求項
1に記載の半導体装置。
【請求項3】
さらにn型半導体層を備えており、該n型半導体層は酸化物半導体を主成分として含
み、前記n型半導体層は前記p型半導体層に接している請求項1
または2に記載の半導体装置。
【請求項4】
前記n型半導体層は、周期律表の第13族金属を含む酸化物半導体を主成分とする請求項
3に記載の半導体装置。
【請求項5】
前記ゲート電極は、前記n型半導体層に埋め込まれており、
前記チャネル層は、前記ゲート電極よりも深く前記n型半導体層に埋め込まれている請求項
3又は
4に記載の半導体装置。
【請求項6】
絶縁ゲート型半導体装置またはショットキーゲートを有する半導体装置である請求項1~
5のいずれかに記載の半導体装置。
【請求項7】
パワーデバイスである請求項1~
6のいずれかに記載の半導体装置。
【請求項8】
パワーモジュール、インバータまたはコンバータである請求項1~
7のいずれかに記載の半導体装置。
【請求項9】
半導体装置を備える半導体システムであって、前記半導体装置が、請求項1~
8のいずれかに記載の半導体装置である半導体システム。
【請求項10】
ゲート電極と、該ゲート電極の側壁に直接または他の層を介して、チャネルの形成されるチャネル層とを少なくとも備え、且つ、ショットキーバリア構造を含む半導体装置であって、前記チャネル層の一部または全部が、p型酸化物半導体を含むことを特徴とする半導体装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、p型酸化物半導体を用いた半導体装置及びシステムに関する。
【背景技術】
【0002】
高耐圧、低損失および高耐熱を実現できる次世代のスイッチング素子として、バンドギャップの大きな酸化ガリウム(Ga2O3)を用いた半導体装置が注目されており、インバータなどの電力用半導体装置への適用が期待されている。しかも、広いバンドギャップからLEDやセンサー等の受発光装置としての応用も期待されている。当該酸化ガリウムは非特許文献1によると、インジウムやアルミニウムをそれぞれ、あるいは組み合わせて混晶することによりバンドギャップ制御することが可能であり、InAlGaO系半導体として極めて魅力的な材料系統を構成している。ここでInAlGaO系半導体とはInXAlYGaZO3(0≦X≦2、0≦Y≦2、0≦Z≦2、X+Y+Z=1.5~2.5)を示し、酸化ガリウムを内包する同一材料系統として俯瞰することができる。
【0003】
そして、近年においては、酸化ガリウム系のp型半導体が検討されており、例えば、特許文献1には、β-Ga2O3系結晶を、MgO(p型ドーパント源)を用いてFZ法により形成したりすると、p型導電性を示す基板が得られることが記載されている。また、特許文献2には、MBE法により形成したα-(AlxGa1-x)2O3単結晶膜にp型ドーパントをイオン注入してp型半導体を形成することが記載されている。しかしながら、これらの方法では、p型半導体の作製は実現困難であり(非特許文献2)、実際に、これらの方法でp型半導体の作製に成功したとの報告はなされていない。そのため、実現可能なp型酸化物半導体及びその製造方法が待ち望まれていた。
【0004】
また、非特許文献3や非特許文献4に記載されているように、例えばRh2O3やZnRh2O4等をp型半導体に用いることも検討されているが、Rh2O3は、成膜時に特に原料濃度が薄くなってしまい、成膜に影響する問題があり、有機溶媒を用いても、Rh2O3単結晶が作製困難であった。また、ホール効果測定を実施してもp型とは判定されることがなく、測定自体もできていない問題もあり、また、測定値についても、例えばホール係数が測定限界(0.2cm3/C)以下しかなく、使いものには到底ならなかった。また、ZnRh2O4は移動度が低く、バンドギャップも狭いため、LEDやパワーデバイスに用いることができない問題があり、これらは必ずしも満足のいくものではなかった。
【0005】
ワイドバンドギャップ半導体として、Rh2O3やZnRh2O4等以外にも、p型の酸化物半導体が種々検討されている。特許文献3には、デラフォサイトやオキシカルコゲナイド等をp型半導体として用いることが記載されている。しかしながら、これらの半導体は、移動度が1cm2/V・s程度かまたはそれ以下であり、電気特性が悪く、α-Ga2O3等のn型の次世代酸化物半導体とのpn接合がうまくできない問題もあった。
【0006】
なお、従来より、Ir2O3は知られている。例えば、特許文献4には、イリジウム触媒としてIr2O3を用いることが記載されている。また、特許文献5には、Ir2O3を誘電体に用いることが記載されている。また、特許文献6には、電極にIr2O3を用いることが記載されている。しかしながら、Ir2O3をp型半導体に用いることは知られていなかったが、最近、本出願人らにより、p型半導体として、Ir2O3を用いることが検討され、研究開発が進められている。
【先行技術文献】
【特許文献】
【0007】
【文献】特開2005-340308号公報
【文献】特開2013-58637号公報
【文献】特開2016-25256号公報
【文献】特開平9-25255号公報
【文献】特開平8-227793号公報
【文献】特開平11-21687号公報
【非特許文献】
【0008】
【文献】金子健太郎、「コランダム構造酸化ガリウム系混晶薄膜の成長と物性」、京都大学博士論文、平成25年3月
【文献】竹本達哉、EE Times Japan“パワー半導体 酸化ガリウム”熱伝導率、P型……課題を克服して実用化へ、[online]、2014年2月27日、アイティメディア株式会社、[平成28年6月21日検索]、インターネット〈URL:http://eetimes.jp/ee/articles/1402/27/news028_2.html〉
【文献】F.P.KOFFYBERG et al., "optical bandgaps and electron affinities of semiconducting Rh2O3(I) and Rh2O3(III)", J. Phys. Chem. Solids Vol.53, No.10, pp.1285-1288, 1992
【文献】細野秀雄、”酸化物半導体の機能開拓”、物性研究・電子版 Vol.3、No.1、031211(2013年11月・2014年2月合併号)
【発明の概要】
【発明が解決しようとする課題】
【0009】
本発明は、例えば、SiCよりはるかに絶縁破壊電界強度が高い高電圧で低損失のn型半導体(例えば、酸化ガリウム等)等を用いた場合でも、半導体特性を損うことなく、優れた半導体特性を実現できる半導体装置を提供することを目的とする。
【課題を解決するための手段】
【0010】
本発明者らは、上記目的を達成すべく鋭意検討した結果、結晶性のp型酸化物半導体膜の創製に成功し、さらに検討を重ねたところ、ゲート電極の側壁にチャネルが形成されるように構成し、さらにチャネル層の一部にp型酸化物半導体膜を用いることによって、イオン注入等をしなくても、例えば、SiCよりはるかに絶縁破壊電界強度が高い高電圧で低損失のn型半導体(例えば、酸化ガリウム等)の半導体特性を損うことなく、優れた半導体装置が得られることを見出し、さらに、独特の構造が半導体装置に多大な好影響を与えていることを知見し、このような構造を有する半導体装置が、上記した従来の問題を一挙に解決できるものであることを見出した。
【0011】
また、本発明者らは、上記知見を得たのち、さらに検討を重ね、本発明を完成させた。すなわち、本発明は以下の発明に関する。
[1] ゲート電極と該ゲート電極の側壁に直接または他の層を介して、チャネルの形成されるチャネル層とを少なくとも備える半導体装置であって、前記チャネル層の一部または全部が、p型酸化物半導体を含むことを特徴とする半導体装置。
[2] p型酸化物半導体が、周期律表のdブロック金属または周期律表第13族金属を含有する金属酸化物を主成分として含む前記[1]記載の半導体装置。
[3] p型酸化物半導体が、周期律表第9族金属または第13族金属を含有する金属酸化物を主成分として含む前記[1]または[2]に記載の半導体装置。
[4] p型酸化物半導体が、イリジウムを含有する金属酸化物の結晶または混晶を含む前記[1]~[3]のいずれかに記載の半導体装置。
[5] さらにn型半導体層を備えており、該n型半導体層は酸化物半導体を主成分として含む前記[1]~[4]のいずれかに記載の半導体装置。
[6] 前記n型半導体層は、周期律表の第13族金属を含む酸化物半導体を主成分とする前記[5]に記載の半導体装置。
[7] 絶縁ゲート型半導体装置またはショットキーゲートを有する半導体装置である前記[1]~[6]のいずれかに記載の半導体装置。
[8] ショットキーバリア構造をさらに含む前記[1]~[7]のいずれかに記載の半導体装置。
[9] パワーデバイスである前記[1]~[8]のいずれかに記載の半導体装置。
[10] パワーモジュール、インバータまたはコンバータである前記[1]~[9]のいずれかに記載の半導体装置。
[11] 半導体装置を備える半導体システムであって、前記半導体装置が、前記[1]~[10]のいずれかに記載の半導体装置である半導体システム。
【発明の効果】
【0012】
本発明の半導体装置は、例えば、SiCよりはるかに絶縁破壊電界強度が高い高電圧で低損失のn型半導体(例えば、酸化ガリウム等)等を用いた場合でも、半導体特性を損うことなく、優れた半導体特性を実現できる。
【図面の簡単な説明】
【0013】
【
図1】参考例において用いられる成膜装置の概略構成図である。
【
図2】比較参考例において用いられる成膜装置(ミストCVD装置)の概略構成図である。
【
図3】参考例および比較参考例におけるXRD測定結果を示す図である。横軸が回析角(deg.)、縦軸が回析強度(arb.unit)を示す。
【
図4】参考例におけるAFM表面観察結果を示す図である。
【
図5】比較参考例におけるAFM表面観察結果を示す図である。
【
図6】断面SEMの観察結果を示す図であり、(a)は参考例の断面SEMの観察結果を示し、(b)は比較参考例の断面SEMの観察結果を示す。
【
図7】電源システムの好適な一例を模式的に示す図である。
【
図8】システム装置の好適な一例を模式的に示す図である。
【
図9】電源装置の電源回路図の好適な一例を模式的に示す図である。
【
図10】金属酸化膜半導体電界効果トランジスタ(MOSFET)の好適な一例を模式的に示す図である。
【
図11】金属酸化膜半導体電界効果トランジスタ(MOSFET)にSBDを内蔵する半導体装置の好適な一例を模式的に示す図である。
【
図12】
図10の金属酸化膜半導体電界効果トランジスタ(MOSFET)の好適な製造方法を説明する図である。
【
図13】
図10の金属酸化膜半導体電界効果トランジスタ(MOSFET)の好適な製造方法を説明する図である。
【
図14】
図11の半導体装置の好適な製造方法を説明する図である。
【
図15】絶縁ゲート型バイポーラトランジスタ(IGBT)の好適な一例を模式的に示す図である。
【
図16】参考例におけるI-V測定の結果を示す図である。
【
図17】参考例におけるI-V測定の結果を示す図である。
【発明を実施するための形態】
【0014】
以下、本発明の好適な実施形態について説明する。
【0015】
本発明の半導体装置は、ゲート電極と該ゲート電極の側壁に直接または他の層を介して、チャネルの形成されるチャネル層とを少なくとも備える半導体装置であって、前記チャネル層の一部または全部が、p型酸化物半導体を含むことを特長とする。
【0016】
前記ゲート電極の材料は、ゲート電極として用いることができるものであれば、特に限定されず、導電性無機材料であってもよいし、導電性有機材料であってもよい。本発明においては、前記ゲート電極の材料が、金属であるのが好ましい。前記金属としては、好適には例えば、周期律表第4族~第11族から選ばれる少なくとも1種の金属などが挙げられる。周期律表第4族の金属としては、例えば、チタン(Ti)、ジルコニウム(Zr)、ハフニウム(Hf)などが挙げられるが、中でもTiが好ましい。周期律表第5族の金属としては、例えば、バナジウム(V)、ニオブ(Nb)、タンタル(Ta)などが挙げられる。周期律表第6族の金属としては、例えば、クロム(Cr)、モリブデン(Mo)およびタングステン(W)等から選ばれる1種または2種以上の金属などが挙げられるが、本発明においては、よりスイッチング特性等の半導体特性がより良好なものとなるのでCrが好ましい。周期律表第7族の金属としては、例えば、マンガン(Mn)、テクネチウム(Tc)、レニウム(Re)などが挙げられる。周期律表第8族の金属としては、例えば、鉄(Fe)、ルテニウム(Ru)、オスミウム(Os)などが挙げられる。周期律表第9族の金属としては、例えば、コバルト(Co)、ロジウム(Rh)、イリジウム(Ir)などが挙げられる。周期律表第10族の金属としては、例えば、ニッケル(Ni)、パラジウム(Pd)、白金(Pt)などが挙げられるが、中でもPtが好ましい。周期律表第11族の金属としては、例えば、銅(Cu)、銀(Ag)、金(Au)などが挙げられる。
【0017】
前記ゲート電極の形成手段としては、例えば公知の手段などが挙げられ、より具体的には例えば、ドライ法やウェット法などが挙げられる。ドライ法としては、例えば、スパッタ、真空蒸着、CVD等の公知の手段が挙げられる。ウェット法としては、例えば、スクリーン印刷やダイコート等が挙げられる。
【0018】
前記チャネル層は、前記ゲート電極の側壁に直接または他の層を介して、チャネルの形成されるものであって、前記チャネル層の一部または全部がp型酸化物半導体を含んでいるものであれば、特に限定されない。前記p型酸化物半導体は、通常、金属酸化物を主成分として含んでおり、前記金属酸化物は、周期律表のdブロック金属または周期律表第13族金属を含むのが好ましく、周期律表第9族金属または第13族金属を含むのがより好ましい。「主成分」とは、前記金属酸化物が、原子比で、p型酸化物半導体の全成分に対し、好ましくは50%以上、より好ましくは70%以上、更に好ましくは90%以上含まれることを意味し、100%であってもよいことを意味する。本発明においては、前記p型酸化物半導体が、イリジウムを含有する金属酸化物の結晶又は混晶を含有するのが好ましい。「イリジウムを含有する金属酸化物」は、イリジウム元素と酸素とを含むものをいうが、本発明においては、Ir2O3であるのが好ましく、α-Ir2O3であるのがより好ましい。なお、前記p型酸化物半導体が混晶を含有する場合には、イリジウムと、周期律表の第2族金属、イリジウム以外の第9族金属又は第13族金属とを含有する混晶であるのも好ましい。上記したような好ましいものによれば、バンドギャップが2.4eV以上のものが得られたりするので、より広いバンドギャップやより優れた電気特性をp型酸化物半導体において発揮することができる。本発明においては、前記p型酸化物半導体のバンドギャップが、2.0eV以上であるのが好ましい。また、本発明においては、前記p型酸化物半導体が、単結晶であってもよいし、多結晶等であってもよい。
【0019】
また、本発明においては、前記p型酸化物半導体が、ガリウムを含有する金属酸化物の結晶又は混晶を含有するのも好ましい。この場合、前記p型酸化物半導体は、通常、p型ドーパントを含有する。前記p型ドーパントとしては、特に限定されないが、例えば、Mg、Zn、Ca、H、Li、Na、L、Rb、Cs、Fr、Be、Sr、Ba、Ra、Mn、Fe、Co、Ni、Pd、Cu、Ag、Au、Cd、Hg、Tl、Pb、N、P等およびこれらの2種以上などの元素等が挙げられる。また、前記ドーパントの濃度は、通常、約1×1016/cm3~1×1022/cm3であってもよいし、また、ドーパントの濃度を例えば約1×1017/cm3以下の低濃度にしてもよいし。また、さらに、本発明においては、ドーパントを約1×1020/cm3以上の高濃度で含有させてもよい。
【0020】
なお、「周期律表」は、国際純正応用化学連合(International Union of Pure and Applied Chemistry)(IUPAC)にて定められた周期律表を意味する。「dブロック」は、3d、4d、5d、および6d軌道を満たす電子を有する元素をいう。 前記dブロック金属としては、例えば、スカンジウム(Sc)、チタン(Ti)、バナジウム(V)、クロム(Cr)、マンガン(Mn)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、銅(Cu)、亜鉛(Zn)、イットリウム(Y)、ジルコニウム(Zr)、ニオブ(Nb)、モリブデン(Mo)、テクネチウム(Tc)、ルテニウム(Ru)、ロジウム(Rh)、パラジウム(Pd)、銀(Ag)、カドミウム(Cd)、ルテチウム(Lu)、ハフニウム(Hf)、タンタル(Ta)、タングステン(W)、レニウム(Re)、オスミウム(Os)、イリジウム(Ir)、白金(Pt)、金(Au)、水銀(Hg)、ローレンシウム(Lr)、ラザホージウム(Rf)、ドブニウム(Db)、シーボーギウム(Sg)、ボーリウム(Bh)、ハッシウム(Hs)、マイトネリウム(Mt)、ダームスタチウム(Ds)、レントゲニウム(Rg)、コペルニシウム(Cn)及びこれらの2種以上の金属などが挙げられる。
【0021】
また、「第2族金属」は、周期律表の第2族金属であればそれでよく、第2族金属としては、例えば、ベリリウム(Be)、マグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)、バリウム(Ba)又はこれらの2種以上の金属等が挙げられる。「第9族金属」は、周期律表の第9族金属であればそれでよく、このような第9族金属としては、例えば、イリジウム(Ir)、コバルト(Co)、ロジウム(Rh)又はこれらの2種以上の金属等が挙げられる。また、「第13族金属」は、周期律表の第13族金属であれば特に限定されず、第13族金属としては、例えば、アルミニウム(Al)、ガリウム(Ga)、インジウム(In)、タリウム(Tl)又はこれらの2種以上の金属等が挙げられるが、本発明においては、アルミニウム(Al)、ガリウム(Ga)及びインジウム(In)から選ばれる1種又は2種以上が好ましい。
【0022】
前記p型酸化物半導体は、結晶性を有するものであっても、非晶質であってもよいが、本発明においては、結晶性酸化物半導体であるのが好ましい。また、前記結晶性酸化物半導体は単結晶であっても、多結晶であってもよいが、単結晶であるのが好ましい。前記結晶性酸化物半導体の結晶構造としては、例えば、コランダム構造、βガリア構造、ε型の結晶構造等が挙げられるが、本発明においては、コランダム構造であるのが好ましい。
【0023】
前記チャネル層は、通常、前記ゲート電極の側壁に沿って、深さ方向に伸びるように形成される。本発明においては、前記チャネル層と前記ゲート電極との間に、1種または2種以上の絶縁膜や導電性膜からなる他の層が設けられていてもよい。
また、前記チャネル層は、単層からなるものであってもよいし、多層からなるものであってもよい。前記チャネル層の厚さは、特に限定されないが、0.1μm~5.0μmであるのが好ましく、0.2μm~2.0μmであるのがより好ましい。
【0024】
また、本発明においては、前記チャネル層が、さらに、n型酸化物半導体を含んでいてもよい。前記n型酸化物半導体は、特に限定されないが、本発明においては、周期律表の第13族金属(例えばAl、Ga、In、Tl等)を含有するのが好ましく、Gaを含むのがより好ましい。また、前記n型半導体層は、結晶性酸化物半導体を主成分とするのも好ましく、コランダム構造または六方晶構造を有する結晶性酸化物半導体を主成分とするのがより好ましく、コランダム構造を有する結晶性酸化物半導体を主成分とするのが最も好ましい。なお、「主成分」とは、前記結晶性酸化物半導体が、原子比で、n型半導体層の全成分に対し、好ましくは50%以上、より好ましくは70%以上、更に好ましくは90%以上含まれることを意味し、100%であってもよいことを意味する。
【0025】
前記チャネル層の一部または全部に含まれるp型酸化物半導体の好ましい形成方法を説明する。前記p型酸化物半導体の形成手段としては、金属酸化物ガスを原料として用いて、基板上で熱反応による結晶成長を行う手段などが挙げられ、より具体的には例えば、
図1に示す成膜装置を用いて、前記金属酸化物ガスの固体状物(例えば粉末等)を昇華させ(昇華工程)、ついで基体上で結晶成長させる(結晶成長工程)ことなどが挙げられる。
【0026】
以下、チャネル層の一部または全部に含まれるp型酸化物半導体を成膜する例を挙げて、本発明をより詳細に説明する。
【0027】
(昇華工程)
昇華工程は、前記金属酸化物ガスの固体状物(例えば粉末等)を昇華させ、ガス状とすることにより、金属酸化物ガスを得る。前記金属酸化物ガスとしては、ガス状のp型酸化物半導体膜に含まれる金属の金属酸化物などが挙げられるが、前記金属酸化物の価数などは、本発明の目的を阻害しない限り、特に限定されず、1価であってもよいし、2価であってもよい。3価であってもよいし、4価であってもよい。本発明においては、前記p型酸化物半導体膜がイリジウムを含む金属酸化物を主成分として含む場合には、前記金属酸化物ガスとして、IrO2ガスを用いるのが好ましい。昇華手段としては、加熱手段が挙げられる。加熱温度は特に限定されないが、好ましくは、600℃~1200℃であり、より好ましくは800℃~1000℃である。本発明においては、昇華により得られた金属酸化物ガスがキャリアガスで基体まで搬送されるのが好ましい。キャリアガスの種類としては、本発明の目的を阻害しない限り特に限定されず、例えば、酸素、オゾン、窒素やアルゴン等の不活性ガス、または水素ガスやフォーミングガス等の還元ガスなどが挙げられるが、本発明においては、キャリアガスとして酸素を用いるのが好ましい。酸素が用いられているキャリアガスとしては、例えば空気、酸素ガス、オゾンガス等が挙げられるが、とりわけ酸素ガス及び/又はオゾンガスが好ましい。また、キャリアガスの種類は1種類であってよいが、2種類以上であってもよく、キャリアガス濃度を変化させた希釈ガス(例えば10倍希釈ガス等)などを、第2のキャリアガスとしてさらに用いてもよい。また、キャリアガスの供給箇所も1箇所だけでなく、2箇所以上あってもよい。また、キャリアガスの流量は、特に限定されないが、0.01~20L/分であるのが好ましく、0.1~10L/分であるのがより好ましい。
【0028】
前記基体は、前記p型酸化物半導体を支持できるものであれば特に限定されない。前記基体の材料も、本発明の目的を阻害しない限り特に限定されず、公知の基体であってよく、有機化合物であってもよいし、無機化合物であってもよい。前記基体の形状としては、どのような形状のものであってもよく、あらゆる形状に対して有効であり、例えば、平板や円板等の板状、繊維状、棒状、円柱状、角柱状、筒状、螺旋状、球状、リング状などが挙げられるが、本発明においては、基板が好ましい。基板の厚さは、本発明においては特に限定されない。
【0029】
前記基板は、板状であって、前記p型酸化物半導体の支持体となるものであれば特に限定されない。絶縁体基板であってもよいし、半導体基板であってもよいし、導電性基板であってもよいが、前記基板が、絶縁体基板であるのが好ましく、また、表面に金属膜を有する基板であるのも好ましい。前記基板としては、好適には例えば、コランダム構造を有する基板などが挙げられる。基板材料は、本発明の目的を阻害しない限り、特に限定されず、公知のものであってよい。前記のコランダム構造を有する基板としては、例えば、コランダム構造を有する基板材料を主成分とする下地基板などが挙げられ、より具体的には例えば、サファイア基板(好ましくはc面サファイア基板)やα型酸化ガリウム基板などが挙げられる。ここで、「主成分」とは、前記特定の結晶構造を有する基板材料が、原子比で、基板材料の全成分に対し、好ましくは50%以上、より好ましくは70%以上、更に好ましくは90%以上含まれることを意味し、100%であってもよいことを意味する。
【0030】
(結晶成長工程)
結晶成長工程では、前記金属酸化物ガスを前記基体表面近傍で結晶成長させて、前記基体表面の一部または全部に成膜する。結晶成長温度は、昇華工程の加熱温度よりも低い温度であるのが好ましく、900℃以下がより好ましく、500℃~900℃が最も好ましい。また、結晶成長は、本発明の目的を阻害しない限り、真空下、非酸素雰囲気下、還元ガス雰囲気下および酸化雰囲気下のいずれの雰囲気下で行われてもよく、また、大気圧下、加圧下および減圧下のいずれの条件下で行われてもよいが、本発明においては、酸化雰囲気下で行われるのが好ましく、大気圧下で行われるのも好ましく、酸化雰囲気下でかつ大気圧下で行われるのがより好ましい。なお、「酸化雰囲気」は、金属酸化物の結晶又は混晶が形成できる雰囲気であれば特に限定されない。例えば、酸素を含むキャリアガスを用いたり、酸化剤を用いたりして酸化雰囲気とすること等が挙げられる。また、膜厚は、成膜時間を調整することにより、設定することができ、本発明においては、膜厚が1nm~1mmであるのが好ましく、1nm~100μmであるのが、半導体特性がより向上するのでより好ましく、1nm~10μmであるのが最も好ましい。
【0031】
本発明においては、前記基体上にそのまま成膜してもよいが、前記基体上に、前記p型半導体層とは異なる半導体層(例えば、n型半導体層、n+型半導体層、n-型半導体層等)や絶縁体層(半絶縁体層も含む)、バッファ層等の他の層を積層したのち、前記基体上に他の層を介して成膜してもよい。半導体層や絶縁体層としては、例えば、前記第13族金属を含む半導体層や絶縁体層等が挙げられる。バッファ層としては、例えば、コランダム構造を含む半導体層、絶縁体層または導電体層などが好適な例として挙げられる。前記のコランダム構造を含む半導体層としては、例えば、α―Fe2O3、α―Ga2O3、α―Al2O3などが挙げられる。前記バッファ層の積層手段は特に限定されず、前記p型酸化物半導体の形成手段と同様であってよい。
【0032】
なお、本発明においては、前記p型半導体層の成膜前又は成膜後に、n型半導体層を形成するのが好ましい。より具体的には、前記半導体装置の製造方法において、少なくともp型半導体層とn型半導体層とを積層する工程を含むのが好ましい。n型半導体層の形成手段は特に限定されず、公知の手段であってよいが、本発明においては、ミストCVD法が好ましい。前記n型半導体層は、酸化物半導体を主成分とするのが好ましく、周期律表の第13族金属(例えばAl、Ga、In、Tl等)を含む酸化物半導体を主成分とするのがより好ましく、Gaを含む結晶性酸化物半導体を主成分とするのがより好ましい。また、前記n型半導体層は、結晶性酸化物半導体を主成分とするのも好ましく、コランダム構造を有する結晶性酸化物半導体を主成分とするのがより好ましい。また、本発明においては、前記n型半導体層の主成分である酸化物半導体と、前記p型酸化物半導体との格子定数差が、1.0%以下であるのも、良好なpn接合を形成することができるため、好ましく、0.3%以下であるのがより好ましい。ここで、「格子定数差」とは、前記n型半導体の主成分である酸化物半導体の格子定数から、前記p型酸化物半導体の格子定数を差し引いた値を、前記p型酸化物半導体の格子定数で除した数値の絶対値を100倍した数値(%)と定義される。前記格子定数差が1.0%以下である場合の例としては、p型酸化物半導体がコランダム構造を有する場合であって、n型半導体の主成分である酸化物半導体もコランダム構造を有する場合等が挙げられ、より好適には、p型酸化物半導体が、Ir2O3の単結晶又は混晶であって、n型半導体の主成分である酸化物半導体が、Ga2O3の単結晶又は混晶である場合等が挙げられる。なお、「主成分」とは、前記酸化物半導体が、原子比で、n型半導体層の全成分に対し、好ましくは50%以上、より好ましくは70%以上、更に好ましくは90%以上含まれることを意味し、100%であってもよいことを意味する。
【0033】
前記チャネル層の一部または全部に含まれるp型酸化物半導体の他の好ましい形成方法を説明する。前記p型酸化物半導体の他の好適な形成手段としては、例えば、金属、p型ドーパントおよび臭化水素酸を含む原料溶液を用いたミストCVD法により成膜する手段などが挙げられ、より具体的には例えば、金属、p型ドーパントおよび臭化水素酸を含む原料溶液を霧化または液滴化し(霧化・液滴化工程)、得られたミストまたは液滴をキャリアガスでもって基体上まで搬送し(搬送工程)、ついで、成膜室内で前記ミストまたは前記液滴を熱反応させることによって、基体上に結晶性酸化物半導体を主成分として含む半導体膜を積層する(成膜工程)ことにより好適に形成される。
【0034】
以下、チャネル層の一部または全部に含まれるp型酸化物半導体を成膜する他の好適な例を挙げて、本発明をより詳細に説明する。
【0035】
(霧化・液滴化工程)
霧化・液滴化工程は、前記原料溶液を霧化または液滴化する。前記原料溶液の霧化手段または液滴化手段は、前記原料溶液を霧化または液滴化できさえすれば特に限定されず、公知の手段であってよいが、本発明においては、超音波を用いる霧化手段または液滴化手段が好ましい。超音波を用いて得られたミストまたは液滴は、初速度がゼロであり、空中に浮遊するので好ましく、例えば、スプレーのように吹き付けるのではなく、空間に浮遊してガスとして搬送することが可能なミストであるので衝突エネルギーによる損傷がないため、非常に好適である。液滴サイズは、特に限定されず、数mm程度の液滴であってもよいが、好ましくは50μm以下であり、より好ましくは100nm~10μmである。
【0036】
(原料溶液)
前記原料溶液は、霧化または液滴化が可能であり、金属、p型ドーパントおよび臭化水素酸を含んでいれば特に限定されず、無機材料であっても、有機材料であってもよいが、本発明においては、前記原料が、金属または金属化合物であるのが好ましく、ガリウム、鉄、インジウム、アルミニウム、バナジウム、チタン、クロム、ロジウム、ニッケル、コバルト、亜鉛、マグネシウム、カルシウム、シリコン、イットリウム、ストロンチウムよびバリウムから選ばれる1種または2種以上の金属を含むのがより好ましい。
【0037】
本発明においては、前記原料溶液として、前記金属を錯体または塩の形態で有機溶媒または水に溶解または分散させたものを好適に用いることができる。錯体の形態としては、例えば、アセチルアセトナート錯体、カルボニル錯体、アンミン錯体、ヒドリド錯体などが挙げられる。塩の形態としては、例えば、有機金属塩(例えば、金属酢酸塩、金属シュウ酸塩、金属クエン酸塩等)、硫化金属塩、硝化金属塩、リン酸化金属塩、ハロゲン化金属塩(例えば塩化金属塩、臭化金属塩、ヨウ化金属塩等)などが挙げられる。
【0038】
前記p型ドーパントは、本発明の目的を阻害しない限り、特に限定されない。前記p型ドーパントとしては、例えば、Mg、Zn、Ca、H、Li、Na、L、Rb、Cs、Fr、Be、Sr、Ba、Ra、Mn、Fe、Co、Ni、Pd、Cu、Ag、Au、Cd、Hg,Tl、Pb、N、P等およびこれらの2種以上などの元素等が挙げられる。
【0039】
原料溶液の溶媒は、特に限定されず、水等の無機溶媒であってもよいし、アルコール等の有機溶媒であってもよいし、無機溶媒と有機溶媒との混合溶媒であってもよい。本発明においては、前記溶媒が水を含むのが好ましく、水または水とアルコールとの混合溶媒であるのがより好ましい。
【0040】
また、前記原料溶液には、さらに、酸化剤等の添加剤を混合してもよい。前記酸化剤としては、例えば、過酸化水素(H2O2)、過酸化ナトリウム(Na2O2)、過酸化バリウム(BaO2)、過酸化ベンゾイル(C6H5CO)2O2等の過酸化物、次亜塩素酸(HClO)、過塩素酸、硝酸、オゾン水、過酢酸やニトロベンゼン等の有機化酸化物などが挙げられる。
【0041】
(搬送工程)
搬送工程では、キャリアガスでもって前記ミストまたは前記液滴を成膜室内に搬送する。前記キャリアガスとしては、本発明の目的を阻害しない限り、特に限定されず、例えば、酸素、オゾン、窒素やアルゴン等の不活性ガス、または水素ガスやフォーミングガス等の還元ガスなどが好適な例として挙げられる。また、キャリアガスの種類は1種類であってもよいが2種類以上であってもよく、流量を下げた希釈ガス(例えば10倍希釈ガス等)などを、第2のキャリアガスとしてさらに用いてもよい。また、キャリアガスの供給箇所も1箇所だけでなく、2箇所以上であってもよい。キャリアガスの流量は特に限定されないが、0.01~20L/分であるのが好ましく、1~10L/分であるのがより好ましい。希釈ガスの場合には、希釈ガスの流量が、0.001~2L/分であるのが好ましく、0.1~1L/分であるのがより好ましい。
【0042】
(成膜工程)
成膜工程では、成膜室内で前記ミストまたは前記液滴を熱反応させることによって、基体上に前記半導体膜を成膜する。熱反応は、熱でもって前記ミストまたは前記基体が反応すればそれでよく、反応条件等も本発明の目的を阻害しない限り特に限定されない。本工程においては、前記熱反応を、通常、溶媒の蒸発温度以上の温度で行うが、高すぎない温度(例えば1000℃)以下が好ましく、650℃以下がより好ましく、300℃~650℃が最も好ましい。また、熱反応は、本発明の目的を阻害しない限り、真空下、非酸素雰囲気下、還元ガス雰囲気下および酸素雰囲気下のいずれの雰囲気下で行われてもよいが、非酸素雰囲気下または酸素雰囲気下で行われるのが好ましい。また、大気圧下、加圧下または減圧下のいずれの条件下で行われてもよいが、本発明においては、大気圧下で行われるのが好ましい。なお、膜厚は、成膜時間を調整することにより、設定することができる。
【0043】
上記した、ミストCVDを用いた前記p型酸化物半導体の成膜において用いられる前記基体としては、上記した金属酸化物ガスを用いた前記p型酸化物半導体の成膜において用いられる前記基体と同様であってよい。
【0044】
また、本発明の半導体装置は、通常、ソース電極(ショットキー電極)およびドレイン電極を備える。前記ソース電極(ショットキー電極)およびドレイン電極は、公知の電極材料が用いられてもよく、本発明の目的を阻害しない限り特に限定されないが、周期律表第4族または第11族の金属を含むのが好ましい。ソース電極(ショットキー電極)およびドレイン電極に用いられる好適な周期律表第4族または第11族の金属は、前記ゲート電極に含まれる金属と同様であってよい。また、ソース電極(ショットキー電極)およびドレイン電極は単層の金属層であってもよいし、2以上の金属層を含んでいてもよい。ソース電極(ショットキー電極)およびドレイン電極の形成手段としては、特に限定されず、例えば、真空蒸着法、スパッタリング法などの公知の手段などが挙げられる。また、ソース電極およびドレイン電極を構成する金属は、合金であってもよい。
【0045】
以下、図面等を用いて本発明の好適な実施の態様をより詳細に説明するが、本発明はこれら実施の態様に限定されるものではない。
【0046】
本発明において好適な半導体装置を
図10に示す。
図10の半導体装置は、金属酸化膜半導体電界効果トランジスタ(MOSFET)であり、第1のn+型半導体層11a、n-型半導体層12、p型半導体層13、第2のn+型半導体層11b、p+型半導体層16、ゲート電極14a、ゲート絶縁膜15、ショットキー電極14bおよびドレイン電極14cを備えている。
図10の半導体装置のオン状態では、前記ソース電極14bと前記ドレイン電極14cとの間に電圧を印加し、前記ゲート電極14aに前記ソース電極14bに対して正の電荷を与えると、前記p型半導体層13とゲート絶縁膜14aとの界面にチャネルが形成され、ターンオンする。オフ状態は、前記ゲート電極14aの電圧を0Vにすることにより、チャネルができなくなり、ターンオフする。また、
図10の半導体装置は、p型半導体層13が、ゲート電極14aよりも深くn-型半導体層12に埋め込まれている。このような構成とすることにより、逆方向のリーク電流を低減し、耐圧を向上させることができる。本発明においては、p型半導体層13が、ガリウムを含有する金属酸化物の結晶または混晶を含有し、p+型半導体層
16が、イリジウムを含有する金属酸化物の結晶または混晶を含有するのが、上記した半導体装置の半導体特性をより良好に発現させることができるので、好ましい。またさらに、前記p型半導体層13のうち、少なくともチャネルが形成される領域に、ガリウムを含有する金属酸化物の結晶または混晶を含有するp型酸化物半導体を用い、前記n-型半導体層12と接触する領域に、イリジウムを含有する金属酸化物の結晶または混晶を含有するp型酸化物半導体を用いるのも、n-型半導体層側に空乏層が伸びやすくなり、より耐圧に優れた構造とすることができるので、好ましい。
【0047】
図10の半導体装置の各層の形成手段は、本発明の目的を阻害しない限り特に限定されず、公知の手段であってよい。例えば、真空蒸着法やCVD法、スパッタ法、各種コーティング技術等により成膜した後、フォトリソグラフィー法によりパターニングする手段、または印刷技術などを用いて直接パターニングを行う手段などが挙げられる。
【0048】
図12および
図13を用いて、
図10の半導体装置の好ましい製造工程等を説明する。
図12(a)は、第1のn+型半導体層11aおよびn-型半導体層12からなる積層体上に、ドレイン電極14cが積層されており、さらにソーストレンチが形成された積層体を示している。
図12(a)の積層体のn-型半導体層12上に、p型半導体層13を形成し、さらにp型半導体層13上にp+型半導体層16をパターン形成して、
図12(b)の積層体を得る。ついで、
図12(b)のp型半導体層13上に第2のn+型半導体層11bをパターン形成することにより、
図12(c)の積層体を得る。
【0049】
図12(c)の積層体を形成した後、フォトリソグラフィー法を用いたエッチングを行って、第2のn+型半導体層11b、p型半導体層13およびn-型半導体層12の一部を取り除いて
図13(d)のとおり、ゲートトレンチを形成する。その後、ゲート電極および該ゲート電極を覆うゲート絶縁膜をパターン形成することにより、
図13(e)の積層体を得る。
図13(e)の積層体上に、ソース電極14bを、前記ドライ法(好ましくは真空蒸着法またはスパッタ)または前記ウェット法等により形成して
図13(f)の積層体を得る。
なお、
図10の半導体装置において、第2のn+型半導体層11bとp+型半導体層16とが前記ソース電極14bを介して連設されているが、前記ソース電極14bを介さずに直接第2のn+型半導体層11bとp+型半導体層16とが連設されていてもよい。図示しないが、第2のn+型半導体層11bとp+型半導体層16とが直接連設されている場合、第2のn+型半導体層11bよりもp+型半導体層16を広くすると、ホール抜けが良くなるという効果を奏する。また、p+型半導体層16よりも第2のn+型半導体層11bを広くすると、オン抵抗を下げるという効果を奏する。また、
図10の半導体装置において、ソース電極14bが、p型半導体層13中に埋め込み形成されているのも、アバランジェ降伏時のホール抜けがしやすく、より絶縁破壊特性に優れた構造とすることができるので、好ましい。
【0050】
また、本発明においては、前記半導体装置が、ショットキーバリア構造をさらに含むのが、この機能は、オン電圧を低減し、フリーホイール電流を流しやすくすることができるため、好ましい。また、この場合、前記ショットキーバリア構造におけるショットキー接合面は、前記ゲート電極の底面と面一であってもよいし、前記ゲート電極の底面よりも上方に設けられていてもよいし、下方に設けられていてもよい。ショットキーバリア構造をさらに含む半導体装置の好適な例を、
図11に示す。
図11の半導体装置は、第1のn+型半導体層11a、n-型半導体層12、p型半導体層13、第2のn+型半導体層11b、ゲート電極14a、ゲート絶縁膜15、ショットキー電極14bおよびドレイン電極14cを備えており、フリーホイール電流を流しやすいように構成されている。また、
図11の半導体装置において、前記ショットキーバリア構造におけるショットキー接合面が前記ゲート電極の底面よりも上方に設けられている場合にはアバランジェ降伏時のホール抜けがしやすくなり、より絶縁破壊特性に優れた構造とすることができるので、好ましい。また、前記ショットキーバリア構造におけるショットキー接合面が前記ゲート電極の底面よりも下方に設けられている場合には、逆バイアス時の電気特性をより優れたものとすることができるので、好ましい。
【0051】
図14を用いて、
図11の半導体装置の好ましい製造工程等を説明する。
図14(a)は、第1のn+型半導体層11a、n-型半導体層12、p型半導体層13および第2のn+型半導体層11bからなる積層体上に、ドレイン電極14cが積層されている積層体を示している。ドレイン電極の形成は、本発明の目的を阻害しない限り特に限定されず、ドライ法、ウェット法のいずれでもよい。ドライ法としては、例えば、スパッタ、真空蒸着、CVD等の公知の手段が挙げられる。ウェット法としては、例えば、スクリーン印刷やダイコート等が挙げられる。
図14(a)の積層体に、フォトリソグラフィー法を用いたエッチングを行い、p型半導体層13および第2のn+型半導体層11bの一部を除去した後、ゲート絶縁膜15およびゲート電極14aを形成し、
図14(b)の積層体を得る。なお、ゲート絶縁膜の形成手段は、公知の形成手段であってよく、例えば、真空蒸着法、CVD法またはミストCVD法等が挙げられる。ついで、ゲート電極4aの不要な部分を、フォトリソグラフィー法を用いたエッチングを行って取り除き、ゲート電極を覆って保護するようにゲート絶縁膜15を形成して、
図14(c)に示す積層体を得る。
図14(c)の積層体のゲート絶縁膜15、第2のn+半導体層11bおよびp型半導体層13の一部を、エッチングによって取り除いた後、ショットキー電極14bを、前記ドライ法(好ましくは真空蒸着法またはスパッタ)または前記ウェット法等により形成して
図14(d)の積層体を得る。
【0052】
ショットキーバリア構造をさらに含む半導体装置の好適な他の例を
図15に示す。
図15の半導体装置は、絶縁ゲート型バイポーラトランジスタ(IGBT)であり、p+型半導体層17、第1のn+型半導体層11a、n-型半導体層12、p型半導体層13、第2のn+型半導体層11b、ゲート電極14a、ゲート絶縁膜15、ショットキー電極14bおよびドレイン電極14cを備えている。
【0053】
図15の半導体装置の各層の形成手段は、本発明の目的を阻害しない限り特に限定されず、公知の手段であってよい。例えば、真空蒸着法やCVD法、スパッタ法、各種コーティング技術等により成膜した後、フォトリソグラフィー法によりパターニングする手段、または印刷技術などを用いて直接パターニングを行う手段などが挙げられる。
【0054】
前記半導体装置は、とりわけ、パワーデバイスに有用である。前記半導体装置としては、例えば、トランジスタ(例えば、MOSFETまたはJFET等)などが挙げられるが、中でも絶縁ゲート型半導体装置(例えば、MOSFETまたはIGBTなど)またはショットキーゲートを有する半導体装置(例えば、MESFETなど)が好ましく、MOSFETまたはIGBTがより好ましい。
【0055】
本発明の半導体装置は、上記した事項に加え、さらに公知の手段を用いて、パワーモジュール、インバータまたはコンバータとして好適に用いられ、さらには、例えば電源装置を用いた半導体システム等に好適に用いられる。前記電源装置は、公知の手段を用いて、前記半導体装置を配線パターン等に接続するなどして作製することができる。
図7に電源システムの例を示す。
図7は、複数の前記電源装置と制御回路を用いて電源システムを構成している。前記電源システムは、
図8に示すように、電子回路と組み合わせてシステム装置に用いることができる。なお、電源装置の電源回路図の一例を
図9に示す。
図9は、パワー回路と制御回路からなる電源装置の電源回路を示しており、インバータ(MOSFETA~Dで構成)によりDC電圧を高周波でスイッチングしACへ変換後、トランスで絶縁及び変圧を実施し、整流MOSFET(A~B’)で整流後、DCL(平滑用コイルL1,L2)とコンデンサにて平滑し、直流電圧を出力する。この時に電圧比較器で出力電圧を基準電圧と比較し、所望の出力電圧となるようPWM制御回路でインバータ及び整流MOSFETを制御する。
【0056】
(参考例1)
以下、本発明において好適に用いられるp型酸化物半導体膜の作製例について説明する。
【0057】
1.成膜装置
図1を用いて、本参考例で用いた成膜装置を説明する。
図1の成膜装置1は、キャリアガス供給源と連結されている石英筒2と、石英筒2内に石英製の原料用設置台4とが設けられており、原料用設置台4上に原料5が載置されている。原料用設置台周辺の石英筒2の筒外にはヒーター3が円筒状に設けられており、原料5を加熱できるように構成されている。また、石英筒2の奥には石英基板台がサセプタ7として設置されており、サセプタ7が結晶成長温度内になるように設置位置が調整されている。
【0058】
2.成膜準備
原料用設置台4上に、原料5としてIrO2粉末を載置し、基板6として、サファイア基板をサセプタ7上に設置した。次に、ヒーター3の温度を850℃にまで昇温し、原料用設置台4上に載置されたIrO2粉末を加熱することにより、IrO2粉末を昇華させて、ガス状の酸化イリジウムを生成した。
【0059】
3.膜形成
次に、ヒーター3の温度を850℃に保持したまま、キャリアガス供給源からキャリアガスを石英筒2内に供給し、上記2.にて生成した金属酸化物ガス(ガス状の酸化イリジウム)を、石英筒2を通して基板6に供給した。なお、キャリアガスの流量は1.0L/分であり、キャリアガスとして酸素を用いた。この金属酸化物ガスが、大気圧下で、基板6の表面近傍にて反応することにより、基板上に膜が形成された。なお、成膜時間は60分であり、膜厚は220nmであった。また、成膜時の基板温度は600℃であった。
【0060】
4.評価
上記3.にて得られた膜について、X線回析装置を用いて膜の同定をしたところ、得られた膜は、α-Ir
2O
3膜であった。なお、XRDの結果を
図3に示す。また、得られたα-Ir
2O
3膜についてホール効果測定を行ったところ、F値が0.998であり、キャリアタイプは「p」であり、p型半導体であることがわかった。また、キャリア濃度は1.05×10
22(/cm
3)であり、移動度は3.12(cm
2/V・s)であった。なお、ドーパントの種類や量または混晶の材料やその含有率を調節することで、キャリア密度を1.0×10
16/cm
3~1.0×10
20/cm
3の範囲で容易に制御することができる。
さらに、上記3.にて得られた膜について、原子間力顕微鏡(AFM)を用いて膜表面を観察したところ、
図4の通り、表面粗さ(Ra)が3.5nmであり、表面平滑性に非常に優れていることがわかる。なお、表面粗さ(Ra)は、原子間力顕微鏡(AFM)による90μm角の領域についての表面形状測定結果を用い、JIS B0601に基づき算出した。
【0061】
(比較参考例1)
1.成膜装置
図2を用いて、本比較参考例で用いたミストCVD装置を説明する。ミストCVD装置19は、基板20を載置するサセプタ21と、キャリアガスを供給するキャリアガス供給手段22aと、キャリアガス供給手段22aから送り出されるキャリアガスの流量を調節するための流量調節弁23aと、キャリアガス(希釈)を供給するキャリアガス(希釈)供給手段22bと、キャリアガス(希釈)供給手段22bから送り出されるキャリアガスの流量を調節するための流量調節弁23bと、原料溶液24aが収容されるミスト発生源24と、水25aが入れられる容器25と、容器25の底面に取り付けられた超音波振動子26と、内径40mmの石英管からなる供給管27と、供給管27の周辺部に設置されたヒーター28とを備えている。サセプタ21は、石英からなり、基板20を載置する面が水平面から傾斜している。成膜室となる供給管27とサセプタ21をどちらも石英で作製することにより、基板20上に形成される膜内に装置由来の不純物が混入することを抑制している。
【0062】
2.原料溶液の作製
塩化イリジウム(イリジウム濃度0.1mol/L)と臭化ガリウム(ガリウム濃度0.1mol/L)とを、超純水に混合し、塩酸を体積比20%となるように加えて水溶液を調整し、これを原料溶液とした。なお、塩化イリジウムと臭化ガリウムの体積比は19:1とした。
【0063】
3.成膜準備
上記2.で得られた原料溶液24aミスト発生源24内に収容した。次に、基板20として、c面サファイア基板をサセプタ21上に設置し、ヒーター28の温度を750℃にまで昇温させた。次に、流量調節弁23a、23bを開いて、キャリアガス源であるキャリアガス供給手段22a、22bからキャリアガスを供給管27内に供給し、供給管27内の雰囲気をキャリアガスで十分に置換した後、キャリアガスの流量を1.0L/分に、キャリアガス(希釈)の流量を0.5L/分にそれぞれ調節した。なお、キャリアガスとして酸素を用いた。
【0064】
4.膜形成
次に、超音波振動子を振動させ、その振動を、水25を通じて原料溶液24aに伝播させることによって、原料溶液24aを霧化させてミストを生成させた。このミストが、キャリアガスによって、供給管27に搬送され、大気圧下、750℃にて、基板20表面近傍でミストが熱反応して基板20上に膜が形成された。なお、膜厚は280nmであった。
【0065】
上記4.にて得られた膜について、X線回析装置を用いて膜の同定をしたところ、得られた膜は、α-Ir
2O
3膜であった。なお、XRDの結果を
図3に示す。また、得られたα-Ir
2O
3膜についてホール効果測定を行ったところ、F値が0.998であり、キャリアタイプは「p」であり、p型半導体であることがわかった。また、キャリア濃度は2.97×10
21(/cm
3)であり、移動度は0.38(cm
2/V・s)であった。また、原子間力顕微鏡(AFM)を用いて膜表面を観察したところ、
図5の通り、表面粗さ(Ra)が302nmであった。なお、表面粗さ(Ra)は、原子間力顕微鏡(AFM)による90μm角の領域についての表面形状測定結果を用い、JIS B0601に基づき算出した。
【0066】
(参考例2および比較参考例2)
成膜時間を長くしたこと以外は、参考例1および比較参考例1とそれぞれ同様にして膜を得て、それぞれ参考例2および比較参考例2とした。そして、得られた膜について、SEMを用いて断面を観察した。結果を
図6に示す。
図6から明らかなように、参考例2で得られた膜は膜状であるのに対し、比較参考例2で得られた膜は、針状に成長しており、均質な膜状となっていないことがわかる。
【0067】
参考例および比較参考例の結果から、本発明において好適に用いられるp型酸化物半導体膜は、表面平滑性や結晶性等の膜質に優れているため、工業的に有用であり、また、移動度等の電気特性にも優れていることが分かる。
【0068】
(参考例3)
成膜時間を2時間としたこと以外、参考例1と同様にしてp型酸化物半導体膜を得た。次に、p型酸化物半導体膜上にn-型半導体層を積層した。n-型半導体層の積層は、臭化ガリウム(ガリウム濃度0.1mol/L)を、超純水に混合し、臭化水素酸を体積比20%となるように加えて水溶液を調整し、これを原料溶液としたこと、ヒーターの温度を420℃としたこと、および成膜時間を30分間としたこと以外は、比較参考例1と同様にして、膜を形成することにより行われた。膜は、α-Ga
2O
3膜であった。
また、得られたn-型半導体層上にn+型半導体層を積層した。n+型半導体層の積層は、臭化ガリウム(ガリウム濃度0.1mol/L)を、超純水に混合し、臭化水素酸を体積比10%となるように加えて水溶液を調整し、さらに酸化ゲルマニウム1%を加えて、これを原料溶液としたこと、ヒーターの温度を390℃としたこと、および成膜時間を30分間としたこと以外は、比較参考例1と同様にして、膜を形成することにより行われた。
得られた積層体のn+型半導体層上にスパッタでTiを成膜し、ついでフォトリソグラフィとエッチングを実施することにより、pnダイオードを作製した。得られたpnダイオードにつき、I-V測定を行った。結果を
図16に示す。
図16から明らかなように、参考例のp型酸化物半導体膜は、良好なPN接合を実現できることがわかる。
【0069】
(参考例4)
1.成膜装置
図2を用いて、参考例4で用いたミストCVD装置19を説明する。基板20を載置するサセプタ21と、キャリアガスを供給するキャリアガス供給手段22aと、キャリアガス供給手段22aから送り出されるキャリアガスの流量を調節するための流量調節弁23aと、キャリアガス(希釈)を供給するキャリアガス(希釈)供給手段22bと、キャリアガス(希釈)供給手段22bから送り出されるキャリアガスの流量を調節するための流量調節弁23bと、原料溶液24aが収容されるミスト発生源24と、水25aが入れられる容器25と、容器25の底面に取り付けられた超音波振動子26と、内径40mmの石英管からなる供給管27と、供給管27の周辺部に設置されたヒーター28とを備えている。サセプタ21は、石英からなり、基板20を載置する面が水平面から傾斜している。成膜室となる供給管27とサセプタ21とをどちらも石英で作製することにより、基板20上に形成される膜内に装置由来の不純物が混入することを抑制している。
【0070】
2.原料溶液の調整
臭化ガリウムと臭化マグネシウムとを超純水に混合し、ガリウムに対するマグネシウムの原子比が1:0.01および臭化ガリウム0.1モル/Lとなるように水溶液を調整し、この際、ハロゲン化水素酸を体積比で20%含有させ、これを原料溶液とした。
【0071】
3.成膜準備
上記2.で得られた原料溶液24aをミスト発生源24内に収容した。次に、基板20として、ミストCVDを用いて形成されたn+型半導体層(α―Ga2O3)を表面に有するサファイア基板をサセプタ上に設置し、ヒーター28を作動させて成膜室27内の温度を520℃までに昇温させた。次に、流量調節弁23a、23bを開いて、キャリアガス源であるキャリアガス供給手段22a、22bからキャリアガスを成膜室内に供給し、成膜室27の雰囲気をキャリアガスで十分に置換した後、キャリアガスの流量を1L/分に、キャリアガス(希釈)の流量を1L/分にそれぞれ調節した。なお、キャリアガスとして窒素を用いた。
【0072】
4.半導体膜形成
次に、超音波振動子26を2.4MHzで振動させ、その振動を、水25aを通じて原料溶液24aに伝播させることによって、原料溶液24aを霧化させてミストを生成した。このミストが、キャリアガスによって成膜室27内に導入され、大気圧下、520℃において、成膜室27内でミストが反応して、基板20上に半導体膜が形成された。なお、成膜時間は60分間であった。
【0073】
5.評価
XRD回折装置を用いて、上記4.にて得られた膜の相の同定を行ったところ、ハロゲン化水素酸として臭化水素酸を用いて得られた膜はα―Ga
2O
3であった。
また、p型半導体層においてマグネシウムがp型ドーパントとして正常に機能しているかどうか確かめるために、上記4.にて得られたα―Ga
2O
3膜につき、IV測定を実施した。IV測定の結果を
図17に示す。
図17から明らかなように、優れた整流性を示し、n+型半導体層とp型半導体層とが良好なPN接合を形成しており、マグネシウムがp型ドーパントとして正常に機能していることがわかった。
【産業上の利用可能性】
【0074】
本発明の半導体装置は、半導体(例えば化合物半導体電子デバイス等)、電子部品・電気機器部品、光学・電子写真関連装置、工業部材などあらゆる分野に用いることができるが、p型の半導体特性に優れているため、特に、パワーデバイス等に有用である。
【符号の説明】
【0075】
1 成膜装置
2 石英筒
3 ヒーター
4 原料設置台
5 原料
6 基板
7 サセプタ
11a 第1のn+型半導体層
11b 第2のn+型半導体層
12 n-型半導体層
13 p型半導体層
14a ゲート電極
14b ソース電極
14c ドレイン電極
15 ゲート絶縁膜
16 p+型半導体層
17 p+型半導体層
19 ミストCVD装置
20 基板
21 サセプタ
22a キャリアガス供給手段
22b キャリアガス(希釈)供給手段
23a 流量調節弁
23b 流量調節弁
24 ミスト発生源
24a 原料溶液
25 容器
25a 水
26 超音波振動子
27 供給管
28 ヒーター
29 排気口