(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-03-12
(45)【発行日】2024-03-21
(54)【発明の名称】情報処理装置、情報処理方法及びコンピュータプログラム
(51)【国際特許分類】
F16D 66/02 20060101AFI20240313BHJP
B60L 5/18 20060101ALI20240313BHJP
B61L 25/02 20060101ALI20240313BHJP
G01M 17/08 20060101ALI20240313BHJP
【FI】
F16D66/02 Z
B60L5/18 Z
B61L25/02 Z
G01M17/08
(21)【出願番号】P 2023109671
(22)【出願日】2023-07-03
(62)【分割の表示】P 2019086732の分割
【原出願日】2019-04-26
【審査請求日】2023-07-03
(73)【特許権者】
【識別番号】000003078
【氏名又は名称】株式会社東芝
(73)【特許権者】
【識別番号】598076591
【氏名又は名称】東芝インフラシステムズ株式会社
(74)【代理人】
【識別番号】100120031
【氏名又は名称】宮嶋 学
(74)【代理人】
【識別番号】100107582
【氏名又は名称】関根 毅
(74)【代理人】
【識別番号】100118843
【氏名又は名称】赤岡 明
(74)【代理人】
【識別番号】100118876
【氏名又は名称】鈴木 順生
(72)【発明者】
【氏名】丸地 康平
(72)【発明者】
【氏名】佐藤 誠
【審査官】後藤 健志
(56)【参考文献】
【文献】特開2015-121251(JP,A)
【文献】特表2016-540474(JP,A)
【文献】特開2004-218837(JP,A)
【文献】特開2002-031176(JP,A)
【文献】特表2014-526656(JP,A)
【文献】米国特許出願公開第2008/0236269(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
F16D 66/00-66/02
B60L 5/00- 5/42
B61L 25/02
G01M 17/08
(57)【特許請求の範囲】
【請求項1】
車両に設けられた摩耗部品を対象物に押圧して前記車両に作用を与える機構による前記摩耗部品に対する押圧力の測定値の履歴と、前記摩耗部品の摩耗状態を表す点検値の履歴とに基づいて、前記摩耗状態の推定モデルを構築し、
前記車両の運行計画データに基づき、前記車両の前記機構による前記摩耗部品に対する押圧力の予測値を取得し、前記押圧力の予測値と、前記推定モデルとに基づき、前記車両に設けられた摩耗部品の摩耗状態を予測する、処理部
を備えた情報処理装置。
【請求項2】
前記処理部は、前記車両の運行計画データに基づき、少なくとも1台の車両の複数の運行実績データの中から、少なくとも1つの対象運行実績データを選択し、前記少なくとも1つの対象運行実績データが示す運行期間における前記押圧力の測定値を、前記押圧力の予測値とする
請求項1に記載の情報処理装置。
【請求項3】
前記複数の運行実績データは、前記車両の運行環境を示した環境データを含み、
前記処理部は、前記運行計画データに基づき前記車両の運行環境を算出し、算出した運行環境に基づいて、前記対象運行実績データを特定する
請求項2に記載の情報処理装置。
【請求項4】
前記処理部は、前記運行計画データと同じ出発地点及び同じ終着地点を有する運行実績データを前記対象運行実績データとする
請求項2又は3に記載の情報処理装置。
【請求項5】
前記処理部は、前記運行計画データが示す運行時間との差が最小又は閾値以下の運行実績データを前記対象運行実績データとする
請求項4に記載の情報処理装置。
【請求項6】
前記処理部は、前記車両の運行環境を表した環境データの履歴に基づいて、前記推定モデルを構築し、
前記処理部は、前記運行計画データに基づき前記車両の運行環境を算出し、算出した前記運行環境に基づいて、前記摩耗状態を予測する
請求項1~5のいずれか一項に記載の情報処理装置。
【請求項7】
前記推定モデルは、前記車両の運行計画データが示す運行期間における前記押圧力の予測値を累積加算し、累積値を前記推定モデルの入力として、前記推定モデルの出力値を算出する
請求項1~6のいずれか一項に記載の情報処理装置。
【請求項8】
前記摩耗部品は、ブレーキシューであり、
前記機構は、ブレーキ用のシリンダであり、
前記対象物は、前記車両の車輪であり、
前記作用は、前記車両の減速であり、
前記点検値は、前記ブレーキシューの摩耗量又は交換の有無を表す
請求項1~7のいずれか一項に記載の情報処理装置。
【請求項9】
前記押圧力は、前記シリンダの圧力である
請求項8に記載の情報処理装置。
【請求項10】
前記機構は、パンタグラフであり、
前記摩耗部品は、前記パンタグラフのすり板であり、
前記対象物は、架線であり、
前記作用は、前記車両への集電であり、
前記点検値は、前記パンタグラフの摩耗量又は交換の有無を表す
請求項1~7のいずれか一項に記載の情報処理装置。
【請求項11】
前記処理部は、前記測定値の履歴と、前記点検値の履歴とに基づいて、前記摩耗状態の推定モデルを構築するモデル構築部と、
前記車両の運行計画データに基づき、前記車両の前記機構による前記摩耗部品に対する前記押圧力の予測値を取得し、前記押圧力の予測値と、前記推定モデルとに基づき、前記車両に設けられた前記摩耗部品の摩耗状態を予測する、予測部と
を備えた請求項1~10のいずれか一項に記載の情報処理装置。
【請求項12】
車両に設けられた摩耗部品を対象物に押圧して前記車両に作用を与える機構による前記摩耗部品に対する押圧力の測定値の履歴と、前記摩耗部品の摩耗状態を表す点検値の履歴とに基づいて、前記摩耗状態の推定モデルを構築するステップと、
前記車両の運行計画データに基づき、前記車両の前記機構による前記摩耗部品に対する押圧力の予測値を取得し、前記押圧力の予測値と、前記推定モデルとに基づき、前記車両に設けられた摩耗部品の摩耗状態を予測するステップと、
を備えた情報処理方法。
【請求項13】
車両に設けられた摩耗部品を対象物に押圧して前記車両に作用を与える機構による前記摩耗部品に対する押圧力の測定値の履歴と、前記摩耗部品の摩耗状態を表す点検値の履歴とに基づいて、前記摩耗状態の推定モデルを構築するステップと、
前記車両の運行計画データに基づき、前記車両の前記機構による前記摩耗部品に対する押圧力の予測値を取得し、前記押圧力の予測値と、前記推定モデルとに基づき、前記車両に設けられた摩耗部品の摩耗状態を予測するステップと、
をコンピュータに実行させるためのコンピュータプログラム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明の実施形態は、情報処理装置、情報処理方法及びコンピュータプログラムに関する。
【背景技術】
【0002】
鉄道システムの安全かつ安定な運行を継続するには、点検により、鉄道システムの健全性を確認し、必用に応じ修繕を施すことが不可欠である。特に、ブレーキシュー又はパンタグラフのすり板といった、使われるたびに摩耗していく部品の点検は重要である。点検時に規定以上の摩耗が確認された場合、摩耗した部品の交換を行うことで、鉄道システムの安全を担保できる。
【0003】
従来、ブレーキシュー又はすり板の摩耗量を推定する手法として、走行距離に基づきブレーキパッドの摩耗量を推定するものがある。また、積算走行距離とブレーキ時の温度とに基づき摩耗量を推定するものもある。また、ビデオカメラを用いてパンタグラフの摩耗量を検知するものがある。
【0004】
しかしながら、これらの手法は、推定に必要なセンサ(例えば特定の箇所の温度センサ、ビデオカメラなど)を搭載していない車両に適用する際には、当該センサを新たに追加する必要がある。
【先行技術文献】
【特許文献】
【0005】
【文献】特開2016-117357号公報
【文献】国際公開第2017/188282号
【文献】国際公開第2016/181280号
【発明の概要】
【発明が解決しようとする課題】
【0006】
本発明の実施形態は、車両で運行制御上測定されているデータを用いて摩耗部品の摩耗状態を予測する。
【課題を解決するための手段】
【0007】
本実施形態に係る情報処理装置は、車両に設けられた摩耗部品を対象物に押圧して前記車両に作用を与える機構による前記摩耗部品に対する押圧力の測定値の履歴と、前記摩耗部品の摩耗状態を表す点検値の履歴とに基づいて、前記摩耗状態の推定モデルを構築し、前記車両の運行計画データに基づき、前記車両の前記機構による前記摩耗部品に対する押圧力の予測値を取得し、前記押圧力の予測値と、前記推定モデルとに基づき、前記車両に設けられた摩耗部品の摩耗状態を予測する、処理部を備える。
【図面の簡単な説明】
【0008】
【
図1】第1の実施形態に係る摩耗予測装置のブロック図。
【
図4】ブレーキシュー、ブレーキシリンダ圧及びエアスプリング圧の説明図。
【
図8】学習データ及び教師データの他の例を示す図。
【
図9】運行データ(運行実績及び運行計画)の例を示す図。
【
図11】予測結果に基づく他のデータ表示例を示す図。
【
図12】予測結果に基づくさらに他のデータ表示例を示す図。
【
図15】第2の実施形態に係る摩耗予測装置のブロック図。
【
図16】第1~第3の実施形態のいずれかに係る摩耗予測装置のハードウェア構成を示す図。
【発明を実施するための形態】
【0009】
以下、図面を参照しながら、本発明の実施形態について説明する。
【0010】
図1は、本発明の実施形態に係る摩耗予測装置のブロック図である。
図1の摩耗予測装置は、点検データ記憶部11、車両データ記憶部12、モデル構築部13、モデル記憶部14、運行データ記憶部15、摩耗予測部(以下、予測部)16、予測結果記憶部17、及び予測結果出力部18を備える。
図1の摩耗予測装置は、本装置の操作者又は管理者であるユーザが指示又はデータを入力するための入力装置をさらに備えていてもよい。この場合、入力装置は、例えばキーボード、マウス、タッチパッド又はスマートフォンなどである。
【0011】
図1の摩耗予測装置は、鉄道車両等の車両に関するデータを収集及び解析することで、車両に用いられている摩耗部品の摩耗状態(摩耗量、又は交換必要の有無など)を推定するモデルを構築する。そして、当該モデルを用いて対象となる車両の摩耗部品の将来の摩耗状況を予測する。これにより摩耗部品の在庫管理や点検時期の適正化を行うことができる。本実施形態では車両として鉄道車両を扱うが、自動車など、他の種類の車両でも同様の実施形態が実現可能である。鉄道車両は、単一の車両でもよいし、複数の車両を連結した車両編成でもよい。
【0012】
[学習フェーズ]
点検データ記憶部11は、各車両編成の各車両の摩耗部品のうち監視対象となる摩耗部品の点検値の履歴(点検データ)を記憶している。摩耗部品は、摩耗により交換の対象となり得る部品である。点検データは、摩耗部品の測定履歴、又は摩耗部品の交換履歴を含む。摩耗部品の例として、車両の車輪を制動するためのブレーキシュー(制輪子)がある。また、トロリー線(架線)から集電するパンタグラフのすり板などもある。他の部品でもかまわない。
【0013】
摩耗部品は、車両の運行中に車両が備える機構によって対象物に押圧されて車両に作用を与える。摩耗部品がブレーキシューで、対象物が車両の車輪で、機構がブレーキ用のシリンダ(BC:ブレーキシリンダ)であれば、ブレーキシリンダによりブレーキシューが車輪に押圧されて、車両が減速される(ブレーキがかけられる)。また、摩耗部品がパンタグラフのすり板であり、対象物が架線であり、機構がパンタグラフであれば、パンタグラフによりすり板が架線に押圧され、架線から車両に集電される。
【0014】
各摩耗部品には摩耗部品IDが付与されている。例えば、ある車両編成の車両数が10であり、車両ごとに摩耗部品としてブレーキシューが4箇所に設置されているとする。全てのブレーキシューが監視対象の場合、当該車両編成について合計で40個の摩耗部品分の点検データが記憶されている。他の車両編成についても、同様に点検データが記憶されている。各摩耗部品がどの車両編成のどの車両のどの位置に設置されているかの情報が点検データ記憶部11又は図示しない他の記憶部に格納されていてもよい。なお、ある箇所に設置された摩耗部品が新しい摩耗部品に交換された場合、交換後の摩耗部品の摩耗部品IDは交換前の摩耗部品と同じIDを用いるとする。但し、交換前後でIDが変更されてもよい。
【0015】
図2(A)は、点検データとして各摩耗部品(ここではブレーキシュー)の摩耗量の測定履歴の例を示す。
図2(B)は、点検データとして各摩耗部品の摩耗部品(ここではブレーキシュー)の交換履歴の例を示す。
図2(A)又は
図2(B)では、ID001の摩耗部品の測定履歴又は交換履歴が表示されている。
【0016】
図2(A)の測定履歴は、点検した時期(点検時期)と摩耗量の測定値とを含む。この例では概ね3ヶ月ごとに点検(測定)が行われている。摩耗量の代わりに、残存厚み量を測定してもよい。
【0017】
図2(B)の交換履歴の場合は、点検した時期(点検時期)と交換の有無との情報を含む。この例では点検時期ごとに交換の有無の情報が記憶されている。但し、交換履歴の形式はこれに限定されない。例えば、摩耗部品を交換した時期のみを記憶するようにしてもよい。
【0018】
車両データ記憶部12は、車両編成の車両に搭載されているセンサ(車上センサ)の測定値の履歴、及び車両編成における運転指令値の履歴を、車両データとして記憶している。
【0019】
図3は、車両データ記憶部12に記憶されている車両データの一例(第1の例)を示す。この例では、ある車両編成について、力行指令と、ブレーキ指令と、車両ごとのエアスプリング(AS:Air spring)圧、及びブレーキシリンダ(BC:Brake Cylinder)圧等のデータが時系列に記憶されている。この例ではデータは1秒ごとの時系列データである。他の車両編成についても同様の車両データが記憶されている。各車両編成に車両編成IDを付与し、同じデータベース内にこれらの車両編成の車両データを格納してもよい。ブレーキ指令の値は、運転室に設けられているブレーキレバーに表示されている複数のブレーキノッチに対応したブレーキの制御指令値である。ブレーキ指令の値が大きいほど制動力が大きいことを意味する。力行指令の値は、運転室に設けられた力行レバーに表示されている複数の力行ノッチに対応した加減速を行うための制御指令値である。力行指令の値が大きいほど、大きい速度まで加速されることを意味する。なお、ブレーキレバー及び力行レバーはブレーキ指令及び力行指令を与えるための手段の一例であり、他の手段、例えばハンドルでこれらの指令を与えてもよい。
【0020】
ここで
図4を用いて、ブレーキシュー、BC圧及びAS圧について説明する。
図4は、レール21の上を走行する車両の車輪及びその周辺構成が模式的に示されている。レール21上に車輪22が載っている。車両には、空気ブレーキの一種である踏面ブレーキ23が設けられている。踏面ブレーキ23により車輪22の制動を行う。ここでは車輪22を1つのみ示しているが、実際には、左右一対の車輪が複数組1つの車両に設けられている。空気ブレーキは、一例として、車両毎に4つ設けられる。ただし、空気ブレーキが設けられない車両が存在してもよい。また1つの車両に複数の空気ブレーキが設けられてもよい。
【0021】
踏面ブレーキ23はエアシリンダ24を動力としている。エアシリンダ24内の圧力であるブレーキシリンダ圧(BC圧)を高めることによって、ブレーキシュー25が車輪22の踏面(レール21に接する面)に押圧される。BC圧は、ブレーキシュー25を車輪の踏面に押圧する力であり、ブレーキシュー25が車輪22に押圧される力は、BC圧に比例する。車輪22とブレーキシュー25との間の摩擦力が、踏面ブレーキ23の制動力となる。
【0022】
車輪22とブレーキシュー25間の摩擦力のため、使用によりブレーキシュー25が摩耗していく。ブレーキシュー25が摩耗すると、制動力が低下する可能性があるため、摩耗量に応じてブレーキシュー25を交換する必要がある。そのため、点検ではブレーキシュー25の摩耗量を測定し、摩耗量が規定値以上であれば、新品に交換するなどの作業を行う。測定した摩耗量は点検日時と共に、点検値として点検データ記憶部11に格納される。
【0023】
図4ではブレーキシュー25に圧力を加えるシリンダは作動流体が空気のエアシリンダであったが、油圧シリンダなど空気以外の作動流体を利用するシリンダであってもよい。
【0024】
踏面ブレーキ23の制動力は、ブレーキシュー25の摩耗以外に、車両への荷重によっても変動する。
図4に示すように車両には、応荷重装置26が搭載されている。応荷重装置26は空気ばね27を備えており、空気ばね27のエアスプリング圧(AS圧)を検知することにより、車両にかかっている荷重を測定することができる。AS(Air spring)圧は、車両の乗車数に依存する。乗車数が多いほど、AS圧は大きくなる。応荷重装置26で検出されたAS圧に応じて、ブレーキの制動力を調整する。例えばAS圧が大きいほど、ブレーキの制動力を強くする。ブレーキの制動力が強いほど、ブレーキシュー25の摩耗量は多くなるため、AS圧はブレーキシュー25の摩耗量に影響を与える。
【0025】
前述したように、摩耗部品は、ブレーキシュー以外に、パンタグラフのすり板など他の部品でもよい。
【0026】
図5は、パンタグラフの斜視図である。パンタグラフ31は、車両の屋根に設けられ、トロリー線(架線)32から電気を受け取るための装置である。パンタグラフのすり板33は、パンタグラフ31の上部に設置された摩擦部材である。すり板33は、トロリー線と接触した状態で移動しながら(トロリー線にこすりつけられながら)電気を受け取る部材である。したがって、すり板33は、トロリー線との摩擦により摩耗していく。摩耗量が規定値以上なった場合は、新品に交換するなどの作業を行う。
【0027】
摩耗部品がパンタグラフのすり板の場合、すり板を押圧する圧力、パンタグラフの上下方向の変位、速度、架線に流れる電流、電圧などのうち少なくとも1つを車両データに含めてもよい。すり板を押圧する圧力は、一例としてすり板を架線にバネで押し付ける構成の場合、バネ圧力を用いることができる。
図3の示した項目の全部又は一部を当該車両データに含めてもよい。
【0028】
車両データは、
図3のような時系列データではなく、車両編成の運行毎に車上センサの測定値及び運行指令を積算したデータでもよい。この場合の車両データの例を、
図6を用いて説明する。
【0029】
図6は、車両データの他の例(第2の例)を示す。ある車両編成について、各運行に運行IDが設定されている。そして、運行毎に、出発時刻、終了時刻、力行指令の値ごとの積算時間、ブレーキ指令の値ごとの積算時間、車両の各号車ごとのAS圧積算値及びBC圧積算値が記憶されている。他の車両編成についても同様のデータが記憶されている。ここで、運行とは、所定のダイヤ(運行計画)に従って車両編成が出発地点から終了地点まで走行することである。ここでは運行毎に積算値を記憶したが、駅の区間ごとなど、他の単位で積算値を記憶してもよい。
【0030】
モデル構築部13は、車両データ(測定値の履歴及び運行指令の履歴)を学習データとし、点検データ(摩耗量の測定履歴又は摩耗部品の交換履歴)を教師データとして、摩耗状態(摩耗量又は交換必要の有無など)の推定モデルを構築する。
【0031】
教師データとして摩耗部品の測定履歴(
図2(A)参照)を用いる場合、及び交換履歴(
図2(B)参照)を用いる場合のそれぞれについて、推定モデルを構築する例を示す。
【0032】
[教師データとして摩耗部品の測定履歴を用いる場合]
交換直後の時点(摩耗量が0の時点)を基準として、点検データの測定期間(点検時期)毎に、複数の説明変数に対応する学習データ、目的変数に対応する教師データを作成する。学習データ及び教師データは摩耗部品ごとに作成される。
【0033】
図7に、作成した学習データ及び教師データの一例を示す。この例では
図2(A)に示した摩耗量の測定履歴を教師データとして用いている。
【0034】
例えば、
図2(A)における点検時期2018/3/10 10:00から次の点検時期2018/6/8 17:00までの期間(点検間隔)の摩耗量が0.1増えている。2018/6/8 17:00の点検時期に対応して、
図7の一行目では、教師データとして、摩耗量0.1が設定されている。
【0035】
また、上記の期間における説明変数の値を、車両データから算出し、算出された説明変数の値を累積加算して、学習データとして設定する。説明変数としては、摩耗部品の摩耗に影響を与えるデータを用いるのが望ましい。図の例では、力行指令値1の累積値、力行指令値2の累積値、力行指令値3の累積値・・・力行指令値6の累積値、AS圧の累積値、BC圧の累積値等を、学習データとして設定している。力行指令値0の累積値がさらに設定されてもよい。
【0036】
図7におけるBC圧の累積値は、摩耗部品が設けられている車両について測定されたBC圧の累積値である。但し、当該車両を含む複数の車両(例えば前後1車両)について測定されたBC圧の累積値の平均でもよいし、全車両について測定されたBC圧の累積値の平均でもよい。ここで記載したことはAS圧についても同様に適用される。
【0037】
説明変数の項目は、
図7の例に限定されない。例えば、急ブレーキの累積回数でもよいし、速度の累積値でもよい(速度は、車輪の回転スピードに関連する値である)。速度は、車輪径に基づいて補正されてもよい。また、車両が停止中であるか、動作中であるかに応じて、それぞれ別々の説明変数を用いてもよい。また、ブレーキ中のデータのみに基づき、説明変数の値を算出してもよい。
【0038】
なお、学習データの作成に用いる車両データの形式は問わず、
図3及び
図6のいずれの車両データを用いてもよい。
【0039】
点検データにおける他の点検時期についても同様にして、教師データ及び学習データを作成する。
【0040】
以上のように、
図7のような学習データと教師データを用意したら、機械学習により、説明変数から目的変数(
図7の例では摩耗量)を算出する推定モデルを構築する。学習に使うアルゴリズムは、線形回帰、ロジスティック回帰、決定木、ランダムフォレスト、ニューラルネットなど、どれを用いても構わない。複数種類のモデルを構築し、モデル誤差(後述)が最も少ないモデルを選択しても構わない。または、アンサンブル学習のように、複数モデルの結果を統合して1つの解を出すようなモデルでも構わない。
【0041】
以下、推定モデルの構築方法について説明する。線形回帰モデルを用いる場合を想定する。推定モデルの関数(モデル関数)の例を式(1)に示す。
【数1】
【0042】
yは目的変数、x1~xnは説明変数、b0~bnは回帰係数である。なお、各説明変数の測定単位の差を吸収するために、目的変数とすべての説明変数を平均値0、分散1に正規化してもよい。
【0043】
説明変数及び回帰係数の算出(パラメータ算出)は、一例として、関数の出力値と、教師データとの差(すなわちモデル誤差)を定義した目的関数を最小化することで行う。例えば、下記の自乗誤差を最小化にする問題を解くことで、説明変数及び回帰係数を算出する。iは学習データの個数(教師データの個数)を表す。
【数2】
【0044】
[教師データとして摩耗部品の交換履歴を用いる場合]
点検データとして摩耗部品の交換履歴を用いる場合、交換直後の時点を基準として、点検時期毎に、教師データ(目的変数の値)として、交換したか、交換していないかの2値の目的変数を設定する。また、前回の点検時期から今回の点検時期までの期間における説明変数の値を、車両データから算出し、学習データとして設定する。学習データの作成方法は前述した方法と同様である。
【0045】
図8に、作成した学習データ及び教師データの一例を示す。目的変数の値(教師データ)が交換有無を表す2値情報に変わったこと以外は、
図7と同じである。目的変数の値に関して、1は交換有り、0は交換無しを意味する。
【0046】
この場合も学習に使うアルゴリズムは、SVM、ロジスティック回帰、決定木、ランダムフォレスト、ニューラルネットなど、どれを用いても構わない。一例として教師データが交換の有無であれば、目的変数は一例として交換必要の有無である。
【0047】
例えばロジスティック回帰の場合は、モデル関数としてロジスティック関数(シグモイド関数)を用いることができる。ロジスティック関数の例を式(3)に示す。式中の各記号の定義は式(1)と同様である。回帰係数b
0~b
nの算出は、所定の目的関数を最適化(最小化又は最大化)することにより一般的な方法で行うことができる。ロジスティック関数の出力値は0より大きく1より小さい範囲である。ロジスティック関数の出力値は、摩耗部品の交換必要有りの確率に対応する。
【数3】
【0048】
複数種類のモデルを構築し、モデル誤差の平均、最小値、最大値等の統計値が、最小又は閾値以下のモデルを選択しても構わない。モデル誤差とは、モデルの出力(目的変数の値)と、テスト用の点検データの値との差のことである。テスト用の点検データとして、学習時に使用した教師データ用いる場合、モデルの入力として学習に使用した車両データから算出した説明変数を用いる。テスト用の点検データとして、学習に使用していない点検データを用いる場合、モデルの入力として学習に使用していない車両データから算出した説明変数を用いる。
【0049】
また、生存時間解析を用いて推定モデルを構築してもよい。この場合、説明変数を一つ選択し、選択した説明変数の値を時間と見なして、生存時間解析を行うことで、推定モデルを構築できる。アルゴリズムは、カプランマイヤー法、ワイブル法など、どれを用いてもよい。一例として説明変数としてBC圧を用いた場合、車両データ及び点検データに基づき、横軸をBC圧の累積値、縦軸を生存確率としたグラフを推定モデルとして作成する。教師データは交換したか否かの2値情報を用いる。テスト用の車両データに基づきBC圧の累積値を計算し、計算した値に対応する生存確率をグラフから特定する。特定した生存確率が未満以上であれば、摩耗部品を交換する必要性があることを決定する。
【0050】
モデル記憶部14は、モデル構築部13により構築された推定モデルを記憶する。推定モデルは監視対象となる摩耗部品ごとに生成されるため、モデル記憶部14には、監視対象となる摩耗部品ごとに推定モデルが記憶される。また、編成の種類や、すり板やブレーキシューの材質や種類毎に構築するモデルの種類を変えてもよい。
【0051】
[予測フェーズ]
運行データ記憶部15は、各車両編成の運行実績と運行計画(ダイヤデータ)とを、運行データとして記憶している。
【0052】
図9(A)及び
図9(B)に運行データの一例を示す。
図9(A)は、各車両編成の過去の運行について、出発時刻、執着時刻、出発駅、執着駅等を含む運行実績データを示す。
図9(B)は、各車両編成の計画されている運行について、出発時刻、執着時刻、出発駅、執着駅等を含む運行計画データを示す。各運行には運行IDが付与されている。運行IDと車両編成のIDとを対応づけたデータが、運行データ記憶部15又は図示しない記憶部に格納されていてもよい。
図9(A)の運行実績データ及び
図9(B)の運行計画データに、他の項目の情報がさらに追加してもよい。例えば、途中で停車又は通過する駅の情報が追加されてもよい。
【0053】
予測部16は、モデル記憶部14に記憶されている推定モデルと、対象車両の運行計画データと、少なくとも1台の車両(対象車両を含んでいても、いなくてもよい)の運行実績データと、車両データ記憶部12内の車両データ(測定値の履歴及び運転指令の履歴)とを用いて、対象車両に用いられている摩耗部品の摩耗状態を予測する。具体的には、予測部16は、対象車両の当該運行計画データが示す運行計画を実行したときの説明変数の値を予測し、説明変数の予測値を推定モデルの説明変数に割り当てて(推定モデルの入力変数として用いて)、推定モデルの出力値(目的変数)を計算する。推定モデルの出力値が、摩耗部品の摩耗状態の予測値である。
【0054】
説明変数の予測値を算出するため、過去の運行実績データから対象車両の運行計画に類似する事例(対象運行実績データ)を抽出する。例えば、ある車両編成について、現在日の1日後の運行計画として、〇〇駅から△△駅まで2時間かけて運行する計画(対象車両の運行計画)があるとする。この場合、過去の運行実績において、当該運行計画に最も類似する事例を検索する。例えば、〇〇駅から△△駅までの同じ区間を運行している事例を特定し、特定した事例の中から、当該対象車両の運行時間(2時間)との差に基づき、事例を選択する。例えば、当該運行時間の差が最も小さい事例を、類似する事例として検索する。見つけた事例に対応する車両データから説明変数の値を算出する。算出した説明変数の値を、対象車両の上記運行計画に対する説明変数の予測値として用いる。ここでは類似する事例として1つの事例を選択したが、複数の事例を選択してもよい。この場合、例えば、選択した事例に対応する車両データの値を平均し、平均した車両データに基づき、説明変数の値を算出してもよい。
【0055】
過去の類似する事例を検索する際は、例えば車両又は車両に用いられている機器(摩耗部品又はその他の部品など)の類似性を考慮してもよい。例えば、同一種類の摩耗部品(例えば各車両に用いられているブレーキシューの種類が同じなど)の車両編成のデータに絞って検索を行ってもよい。これにより、説明変数の予測値の算出精度を向上させることができる。
【0056】
説明変数の予測値を算出したら、予測部16は、算出した予測値を推定モデルの入力とし、推定モデルの出力値(目的変数の値)を計算する。計算された値は、摩耗状態の予測値である。予測値は、モデル構築時に用いた教師データが摩耗量の測定値の場合は、摩耗量である。モデル構築時に用いた教師データが交換の有無の場合は、予測値は、交換必要の有無又は確率となる。予測値が交換必要の有無又はその確率のどちらであるかは、モデル構築に使用するアルゴリズムに依存する。一例としてロジスティック回帰であれば、予測値は交換必要有りの確率であり、決定木であれば、予測値は交換必要の有無である。但し、決定木を用いて、当該確率を予測するモデルを構成することも可能である。なお、交換必要有りの確率の代わりに、交換必要無しの確率を用いてもよい。
【0057】
予測部16は、対象車両の当該摩耗部品について、予測対象の日を1営業日ずつ進めて、同様の予測処理を繰り返し行うことで、摩耗状態の予測値の時系列データを得ることができる。
【0058】
予測結果記憶部17は、予測部16で算出された摩耗状態の予測値を記憶する。予測部16で予測処理を繰り返し行うことで、予測結果記憶部17には摩耗情報の予測値の時系列データが格納される。対象車両の他の摩耗部品についても同様に予測処理を行うことで、予測結果記憶部17には、他の摩耗部品の摩耗状態の予測値又はその時系列データが格納される。
【0059】
予測結果出力部18は、データ又は情報を画面に表示する表示装置を含む。予測結果出力部18は、予測結果記憶部17に記憶されている予測値に基づき、表示用のデータを生成し、生成したデータを画面に表示する。例えば、予測結果記憶部17に記憶されている予測値に基づき、予測値の時系列データを画面に表示する。
【0060】
図10は、予測結果出力部18のデータ表示例を示す。摩耗量の予測値の推移が表示されている。横軸が時間、縦軸が摩耗量の予測値を表す。交換の目安となる摩耗量の規定値(閾値)、及び点検日も表示されている。規定値は、摩耗部品を交換する基準であり、摩耗量が規定値以上になった場合、摩耗部品を交換する目安となる。図示の例では、次回点検日の時点では摩耗量の予測値は規定値未満であるが、次々回点検日では摩耗量の予測値が規定値以上である。よって、次々回の点検日で摩耗部品を交換するもしくは交換する可能性が高いことが一目で分かる。
【0061】
図11は、監視対象の摩耗部品のうち摩耗量の予測値が規定値以上となった摩耗部品のIDを格納した表である。規定値以上になった日が近い順に、データがソートされている。IDが122の摩耗部品は次回の点検予定日より前に、摩耗量が規定値以上になることが予測されている。このため、ID122のデータの背景には、注意喚起のための色が塗られている。
【0062】
図12は、摩耗部品の交換予測数を時系列で示したグラフである。横軸が時間、縦軸が、摩耗部品の累積交換予測数を表す。累積交換予測数は、同じ機種の摩耗部品(例えば同じ型番の摩耗部品)を用いる全ての車両編成(又は特定の編成)を対象に、摩耗量の予測値が規定値以上となった当該摩耗部品の個数の合計である。各月の1日ごとに、前月までの累積交換数がプロットされている。図の例では、摩耗部品として、ブレーキシューと、パンタグラフのすり板の例が示されている。
【0063】
図12のようなグラフを表示することで、摩耗部品がいつに何個必要なのか容易に把握できる。摩耗部品の在庫数をデータベースで管理してもよい。この場合、在庫が足りなくなる時期を特定し、注意マークを表示してもよい。
図12には5月中にブレーキシューの累積交換予測数が12となり、在庫の10を超えるため、注意マークMが表示されている。
【0064】
図10~
図12では、推定モデルの出力値が摩耗量の推定値であったが、摩耗部品の交換必要有りの確率又は交換必要の有無である場合も同様にデータ表示できる。摩耗部品の交換必要有りの確率の場合、確率が閾値以上の場合に、交換必要有りと判断し、閾値未満の場合に、交換必要無しと判断すればよい。
【0065】
図13は、本実施形態に係る学習フェーズのフローチャートである。本処理は、学習フェーズの開始トリガーにより開始される(S100)。開始トリガーは、例えば、本装置のユーザの指示を入力装置から受信したことでよいし、予め定めた時刻になったことでもよいし、その他の任意のイベントが成立したことでもよい。
【0066】
学習フェーズが開始すると、モデル構築部13は、点検データ記憶部11から点検データを読み出し、車両データ記憶部12から車両データを読み出す(S101)。
【0067】
読み出した点検データに基づき、目的変数に対応する教師データを生成し、車両データに基づき、1つ又は複数の説明変数に対応する学習データを生成する(S102)。
【0068】
生成した教師データと学習データとに基づき、任意の回帰アルゴリズム(線形回帰、決定木、ランダムフォレスト、ニューラルネットなど)を用いた機械学習により、1つ又は複数の説明変数から目的変数(例えば摩耗量)を推定するモデルである推定モデルを構築する(S103)。
【0069】
モデル記憶部14は、モデル構築部13により構築された推定モデルを、モデルIDに関連づけて、内部に記憶する(S104)。モデルIDは、推定モデルごとに異なる。
【0070】
このような推定モデルを監視対象となる摩耗部品ごとに構築する(S105)。監視対象となる摩耗部品は、一例として、各車両編成の各車両に設けられた全てのブレーキシューである。但し、複数の車両ごとに1つのブレーキシューをグループの代表として選択し、選択したブレーキシューを監視対象としてもよい。この場合、監視対象のブレーキシューを交換するときに、同じグループに属する他のブレーキシューも同時に交換すると判断してもよい。ここ記載した以外の方法で、監視対象の摩耗部品を決定してもよい。
【0071】
図14は、本実施形態に係る予測フェーズのフローチャートである。本処理は、予測フェーズの開始トリガーにより開始される(S200)。開始トリガーは、例えば、本装置のユーザの指示を受信することでよいし、予め定めた時刻になったことでもよいし、その他の任意のイベントが成立したことでもよい。本処理は、対象車両について、監視対象となる摩耗部品ごとに行う。
【0072】
予測部16が、運行データ記憶部15から対象車両の運行計画データを読み出す(S201)。一例として、対象車両において監視対象となる摩耗部品を交換した日の次の営業日の当該対象車両の運行計画データを読み出す。
【0073】
対象車両の運行計画データに類似する事例を、運行データ記憶部15における1台以上の車両の運行実績データから特定する(S202)。
【0074】
特定した事例に対応する車両データを車両データ記憶部12から読み出し、監視対象の摩耗部品(対象車両に搭載されている摩耗部品)について、説明変数の予測値を算出する(S203)。
【0075】
算出した説明変数の予測値と、当該摩耗部品に対応する推定モデルとに基づき、摩耗状態(例えば摩耗量)を予測する(S204)。
【0076】
予測結果記憶部17は、摩耗状態の予測値を摩耗部品IDに関連づけて内部に記憶する(S205)。
【0077】
予測結果出力部18は、予測結果記憶部17に記憶されている予測値に基づき、表示用のデータ(例えば予測値の推移グラフ)を生成し、生成したデータを表示する(S206)。
【0078】
以上の処理を、例えば1日ずつ運行日(営業日)を進めながら行う。2日目以降の各日(予測対象日)について説明変数の値(例えばBC圧の累積値)を算出する際は、予測対象日までの各日について特定した事例に対する車両データに基づき、予測対象日の説明変数の値を算出すればよい。なお、摩耗部品の交換直後から1日ずつ本処理を進めるのでは無く、複数日後の日の予測を行うことも当然可能である。その場合も同様に、摩耗部品の交換直後から予測対象日までの各日ごとに運行計画に基づき類似する過去の事例を特定し、特定した事例に対応する車両データに基づき、予測対象日の説明変数の値を算出すればよい。
【0079】
以上、本実施形態によれば、将来の時点における摩耗部品の摩耗状態(摩耗量又は交換必要の有無など)を高精度に予測できる。関連技術の手法は現状の摩耗量を推定するのみであり、将来の時点における摩耗量を見積もることはできない。これに対して、本実施形態では将来の各時点の摩耗状態を現時点で高精度に予測できる。これにより、摩耗部品の検査時期を適正化できるとともに、摩耗部品の在庫管理を適正化できる。また、本実施形態によれば、車両で運行制御上測定されているデータ(BC圧、AS圧、力行指令、ブレーキ指令等)を用いて学習するため、新たにセンサなどを車両に追加することは必ずしも必要ではない。
【0080】
(変形例)
上述した第1の実施形態では、予測部16は、対象車両の運行計画データに基づき将来の摩耗状態を予測したが、対象車両の運行実績データに基づき、現在又は過去の摩耗状態を推定してもよい。例えば前回の点検時期より後の任意の日における摩耗状態を運行実績データから推定することがある。
【0081】
(第2の実施形態)
図15は、本発明の第2の実施形態に係る摩耗予測装置のブロック図である。
図1の摩耗予測装置に対して、環境データ記憶部19が追加されている。環境データ記憶部19には、車両編成の運行時の運行環境に関わるデータ(環境データ)が格納されている。
【0082】
環境データの一例として、路線勾配及び路線カーブといった路線情報がある。路線情報は、地図上の位置情報と関連付けられている。また、本実施形態では車両データ(
図3参照)にも位置情報が関連づけられている。位置情報の具体例として、キロ程(出発地点から距離)又はGPS(Global Positioning System)の位置情報が挙げられる。
【0083】
環境データの他の例として、気温及び降水量といった天候情報がある。天候情報は、位置情報及び時間情報と関連づけられている。天候情報として気象庁などの公開データを用いてもよい。天候情報を利用する際は、車両データの位置情報から最も近い観測位置の天候情報を用いる。
【0084】
本実施形態において、モデル構築部13は環境データの履歴を用いて推定モデルを構築する。例えば、モデル構築部13が学習データを作成する際、勾配区間のBC圧累積値、非勾配区間のBC圧累積値、カーブ区間のBC圧累積値、非カーブ区間のBC圧累積値、雨天時のBC圧累積値などのように、環境条件に応じた説明変数を追加する。ここで勾配区間とは勾配値が一定値以上の区間、非勾配区間とは勾配値が一定値未満の区間、カーブ区間は曲率半径が一定値以下の区間、非カーブ区間は曲率半径が一定値以上の区間であるとする。ここでは勾配に関して2つの区間、カーブに関して2つの区間に分けたが、それぞれ3つ以上の区間に分け、各区間に応じた説明変数を追加してもよい。勾配の程度及びカーブの程度、又は雨や雪といった天候に起因して、摩耗量が変わる可能性があるため、このように、環境条件ごとに説明変数を増やすことで推定精度を高めることができる。
【0085】
推定モデルに基づき推定を行う際は、対象車両の運行計画データの運行期間における運行環境を算出し、算出した運行環境を表す環境データに基づき、当該追加した説明変数の値を算出すればよい。
【0086】
また、本実施形態において、運行実績データから対象車両の運行計画データに類似する事例を検索する際は、環境データの類似性を用いてもよい。例えば、対象車両の運行計画データの運行期間における運行環境(ここでは季節)を算出し、運行実績データにおける検索範囲を、算出した季節と同じ季節に絞る。また、別の例として、過去の天候情報から降水量などの値を各事例について特定し、天気予報値と近い値の事例を選択する。これにより、説明変数の予測値の算出精度を向上させることができる。本手法による事例の選択を、上述の本実施形態の学習データの作成と組み合わせてもよいし、組み合わせなくてもよい。
【0087】
(第3の実施形態)
上述した第1又は第2の実施形態において、車両又は車両に搭載された機器の構成に応じた補正項(説明変数)をモデル関数に追加してもよい。例えば、ブレーキシューが何号車のものであるのかに応じた補正項、M車(モーター等の動力を有する車両)なのかT車(モーター等の動力を有さない車両。すなわち付随車)なのかに応じた補正項、ブレーキシューが前輪側のものなか後輪側のものなのかに応じた補正項、ブレーキシューが進行方向に向かって左側の車輪及び右側の車輪のいずれ側に設けられているのかに応じた補正項、ブレーキシューの種類に応じた補正項が挙げられる。更に、車両編成の種類に応じた補正項、又はブレーキ構造の種類に応じた補正項が挙げられる。摩耗部品がパンタグラフの場合、パンタグラフ構造の種類に応じた補正項、又はすり板の種類に応じた補正項などもある。
【0088】
例えば、号車による補正項であれば、号車ごとに変数を用意し、1号車を表す変数G1には、1号車に位置するブレーキシューの場合は値g1(g1は0以外の任意の実数)を、それ以外の号車であれば0を与える。同様に、2号車に位置するブレーキシューの場合はg2(g2は0以外の任意の実数)を、それ以外の号車であれば0を与える。3号車以降についても同様にして補正項を定義する。この場合のモデル関数の例を、以下の式(4)に示す。この例では車両は1~10号車まである。上述した他の種類の補正項も同様にして追加できる。
【数4】
【0089】
モデル関数に補正項を追加せず、各条件に応じて別々に学習して、異なる推定モデルを構築してもよい。例えば、1号車用のモデル及び2号車用のモデルのように、別々のモデルを構築してもよい。
【0090】
モデル構築部13は、車両データを分析して、モデル関数に用いる説明変数を学習により選択してもよい。例えば、車両データの全変数について、目的変数との相関を算出し、相関の高い順に所定個数の変数を選択してもよい。例えば、車両データの全変数のそれぞれの統計量(最大値、最小値又は累積値など)を算出し、統計量について各変数の目的関数との相関を算出し、相関の高い順に所定個数の変数を選択してもよい。この際、前述した条件ごとに本処理を行って、条件ごとにモデルを構築してもよい。
【0091】
摩耗部品がパンタグラフのすり板の場合、車両が停止中又は移動中であるか否かで説明変数を別々に定義してもよいし、いずれか一方の説明変数のみを採用してもよい。同様に、パンタグラフを上げているか否かで説明変数を別々に定義してもよいし、いずれか一方の説明変数のみを採用してもよい。また、車両編成がエアセクション区間内であるか否かの補正項(例えばエアセクション区間内の場合は値a、区間外の場合は値bなど。a、bは任意の実数)、又は車両編成の変電所からの距離が近いか否の補正項(例えば距離が一定値以下の場合は値c、一定値以上の場合は値dなど。a、bは任意の実数)をモデル関数に追加してもよい。
【0092】
(第4の実施形態)
図16に、本実施形態に係る摩耗予測装置のハードウェア構成を示す。本実施形態に係る摩耗予測装置として、第1~第3の実施形態のいずれかの摩耗予測装置を用いることができる。本実施形態に係る摩耗予測装置は、コンピュータ装置100により構成される。コンピュータ装置100は、CPU101と、入力インターフェース102と、表示装置103と、通信装置104と、主記憶装置105と、外部記憶装置106とを備え、これらはバス107により相互に接続されている。
【0093】
CPU(中央演算装置)101は、主記憶装置105上で、コンピュータプログラムである摩耗予測プログラムを実行する。摩耗予測プログラムは、摩耗予測装置の上述の各機能構成を実現するプログラムのことである。CPU101が、摩耗予測プログラムを実行することにより、各機能構成は実現される。
【0094】
入力インターフェース102は、キーボード、マウス、及びタッチパネルなどの入力装置からの操作信号を、摩耗予測装置に入力するための回路である。
【0095】
表示装置103は、摩耗予測装置から出力されるデータまたは情報を表示する。表示装置103は、例えば、LCD(液晶ディスプレイ)、CRT(ブラウン管)、及びPDP(プラズマディスプレイ)であるが、これに限られない。予測結果出力部18により生成されたデータまたは情報は、この表示装置103により表示することができる。
【0096】
通信装置104は、摩耗予測装置が外部装置と無線又は有線で通信するための回路である。点検データ、車両データ、運行データ及び環境データは、通信装置104を介して外部装置から入力することができる。外部装置から入力した点検データ、車両データ、運行データ及び環境データを、点検データ記憶部11、車両データ記憶部12、運行データ記憶部15及び環境データ記憶部19に格納することができる。一例として、通信装置104は、車両に搭載された通信装置と通信することで、車両データを取得し、取得した車両データを車両データ記憶部12に格納してもよい。
【0097】
主記憶装置105は、摩耗予測プログラム、摩耗予測プログラムの実行に必要なデータ、及び摩耗予測プログラムの実行により生成されたデータなどを記憶する。摩耗予測プログラムは、主記憶装置105上で展開され、実行される。主記憶装置105は、例えば、RAM、DRAM、SRAMであるが、これに限られない。点検データ記憶部11、車両データ記憶部12、運行データ記憶部15及び環境データ記憶部19は、主記憶装置105上に構築されてもよい。
【0098】
外部記憶装置106は、摩耗予測プログラム、摩耗予測プログラムの実行に必要なデータ、及び摩耗予測プログラムの実行により生成されたデータなどを記憶する。これらのプログラムやデータは、摩耗予測プログラムの実行の際に、主記憶装置105に読み出される。外部記憶装置106は、例えば、ハードディスク、光ディスク、フラッシュメモリ、及び磁気テープであるが、これに限られない。点検データ記憶部11、車両データ記憶部12、運行データ記憶部15及び環境データ記憶部19は、外部記憶装置106上に構築されてもよい。
【0099】
なお、摩耗予測プログラムは、コンピュータ装置100に予めインストールされていてもよいし、CD-ROMなどの記憶媒体に記憶されていてもよい。また、摩耗予測プログラムは、インターネット上にアップロードされていてもよい。
【0100】
また、摩耗予測装置は、単一のコンピュータ装置100により構成されてもよいし、ネットワークを介して相互に接続された複数のコンピュータ装置100からなるシステムとして構成されてもよい。摩耗予測装置はクラウド上に配置され、ユーザからインターネットを介して操作入力を受け付けてもよい。
【0101】
なお、本発明は上記各実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記各実施形態に開示されている複数の構成要素を適宜組み合わせることによって種々の発明を形成できる。また例えば、各実施形態に示される全構成要素からいくつかの構成要素を削除した構成も考えられる。さらに、異なる実施形態に記載した構成要素を適宜組み合わせてもよい。
【0102】
[項目1]
車両に設けられた摩耗部品を対象物に押圧して前記車両に作用を与える機構による前記摩耗部品に対する押圧力の測定値の履歴と、前記摩耗部品の摩耗状態を表す点検値の履歴とに基づいて、前記摩耗状態の推定モデルを構築するモデル構築部と、
対象車両の運行計画データに基づき、前記対象車両の前記機構による前記摩耗部品に対する押圧力の予測値を取得し、前記押圧力の予測値と、前記推定モデルとに基づき、対象車両に設けられた摩耗部品の摩耗状態を予測する予測部と、
を備えた情報処理装置。
[項目2]
前記予測部は、前記対象車両の運行計画データに基づき、少なくとも1台の車両の複数の運行実績データの中から、少なくとも1つの対象運行実績データを選択し、前記少なくとも1つの対象運行実績データが示す運行期間における前記押圧力の測定値を、前記押圧力の予測値とする
項目1に記載の情報処理装置。
[項目3]
前記複数の運行実績データは、前記車両の運行環境を示した環境データを含み、
前記予測部は、前記運行計画データに基づき前記対象車両の運行環境を算出し、算出した運行環境に基づいて、前記対象運行実績データを特定する
項目2に記載の情報処理装置。
[項目4]
前記予測部は、前記運行計画データと同じ出発地点及び同じ終着地点を有する運行実績データを前記対象運行実績データとする
項目2又は3に記載の情報処理装置。
[項目5]
前記予測部は、前記運行計画データが示す運行時間との差が最小又は閾値以下の運行実績データを前記対象運行実績データとする
項目4に記載の情報処理装置。
[項目6]
前記モデル構築部は、前記車両の運行環境を表した環境データの履歴に基づいて、前記推定モデルを構築し、
前記予測部は、前記運行計画データに基づき前記対象車両の運行環境を算出し、算出した前記運行環境に基づいて、前記摩耗状態を予測する
項目1~5のいずれか一項に記載の情報処理装置。
[項目7]
前記推定モデルは、前記対象車両の運行計画データが示す運行期間における前記押圧力の予測値を累積加算し、累積値を前記推定モデルの入力として、前記推定モデルの出力値を算出する
項目1~6のいずれか一項に記載の情報処理装置。
[項目8]
前記摩耗部品は、ブレーキシューであり、
前記機構は、ブレーキ用のシリンダであり、
前記対象物は、前記車両の車輪であり、
前記作用は、前記車両の減速であり、
前記点検値は、前記ブレーキシューの摩耗量又は交換の有無を表す
項目1~7のいずれか一項に記載の情報処理装置。
[項目9]
前記押圧力は、前記シリンダの圧力である
項目8に記載の情報処理装置。
[項目10]
前記機構は、パンタグラフであり、
前記摩耗部品は、前記パンタグラフのすり板であり、
前記対象物は、架線であり、
前記作用は、前記車両への集電であり、
前記点検値は、前記パンタグラフの摩耗量又は交換の有無を表す
項目1~7のいずれか一項に記載の情報処理装置。
[項目11]
車両に設けられた摩耗部品を対象物に押圧して前記車両に作用を与える機構による前記摩耗部品に対する押圧力の測定値の履歴と、前記摩耗部品の摩耗状態を表す点検値の履歴とに基づいて、前記摩耗状態の推定モデルを構築するモデル構築ステップと、
対象車両の運行計画データに基づき、前記対象車両の前記機構による前記摩耗部品に対する押圧力の予測値を取得し、前記押圧力の予測値と、前記推定モデルとに基づき、対象車両に設けられた摩耗部品の摩耗状態を予測する予測ステップと、
を備えた情報処理方法。
[項目12]
車両に設けられた摩耗部品を対象物に押圧して前記車両に作用を与える機構による前記摩耗部品に対する押圧力の測定値の履歴と、前記摩耗部品の摩耗状態を表す点検値の履歴とに基づいて、前記摩耗状態の推定モデルを構築するモデル構築ステップと、
対象車両の運行計画データに基づき、前記対象車両の前記機構による前記摩耗部品に対する押圧力の予測値を取得し、前記押圧力の予測値と、前記推定モデルとに基づき、対象車両に設けられた摩耗部品の摩耗状態を予測する予測ステップと、
をコンピュータに実行させるためのコンピュータプログラム。
【符号の説明】
【0103】
11:点検データ記憶部
12:車両データ記憶部
13:モデル構築部
14:モデル記憶部
15:運行データ記憶部
16:摩耗予測部(予測部)
17:予測結果記憶部
18:予測結果出力部
19:環境データ記憶部