IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ オルガノ株式会社の特許一覧

特許7454330被処理水中のホウ素除去方法、ホウ素除去システム、超純水製造システム及びホウ素濃度の測定方法
<>
  • 特許-被処理水中のホウ素除去方法、ホウ素除去システム、超純水製造システム及びホウ素濃度の測定方法 図1
  • 特許-被処理水中のホウ素除去方法、ホウ素除去システム、超純水製造システム及びホウ素濃度の測定方法 図2
  • 特許-被処理水中のホウ素除去方法、ホウ素除去システム、超純水製造システム及びホウ素濃度の測定方法 図3
  • 特許-被処理水中のホウ素除去方法、ホウ素除去システム、超純水製造システム及びホウ素濃度の測定方法 図4
  • 特許-被処理水中のホウ素除去方法、ホウ素除去システム、超純水製造システム及びホウ素濃度の測定方法 図5
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-03-13
(45)【発行日】2024-03-22
(54)【発明の名称】被処理水中のホウ素除去方法、ホウ素除去システム、超純水製造システム及びホウ素濃度の測定方法
(51)【国際特許分類】
   C02F 1/44 20230101AFI20240314BHJP
   B01D 61/02 20060101ALI20240314BHJP
   B01D 61/12 20060101ALI20240314BHJP
   B01D 61/44 20060101ALI20240314BHJP
   B01D 61/58 20060101ALI20240314BHJP
   B01J 39/05 20170101ALI20240314BHJP
   B01J 39/18 20170101ALI20240314BHJP
   B01J 41/05 20170101ALI20240314BHJP
   B01J 41/12 20170101ALI20240314BHJP
   B01J 47/022 20170101ALI20240314BHJP
   B01J 47/04 20060101ALI20240314BHJP
   B01J 47/127 20170101ALI20240314BHJP
   B01J 49/53 20170101ALI20240314BHJP
   C02F 1/20 20230101ALI20240314BHJP
   C02F 1/42 20230101ALI20240314BHJP
   C02F 1/469 20230101ALI20240314BHJP
【FI】
C02F1/44 D
B01D61/02 500
B01D61/12
B01D61/44 500
B01D61/58
B01J39/05
B01J39/18
B01J41/05
B01J41/12
B01J47/022
B01J47/04
B01J47/127
B01J49/53
C02F1/20 A
C02F1/42 E
C02F1/469
【請求項の数】 8
(21)【出願番号】P 2018117270
(22)【出願日】2018-06-20
(65)【公開番号】P2019217463
(43)【公開日】2019-12-26
【審査請求日】2021-02-22
【審判番号】
【審判請求日】2023-02-20
(73)【特許権者】
【識別番号】000004400
【氏名又は名称】オルガノ株式会社
(74)【代理人】
【識別番号】110002631
【氏名又は名称】弁理士法人イイダアンドパートナーズ
(74)【代理人】
【識別番号】100076439
【弁理士】
【氏名又は名称】飯田 敏三
(74)【代理人】
【識別番号】100161469
【弁理士】
【氏名又は名称】赤羽 修一
(72)【発明者】
【氏名】中村 勇規
(72)【発明者】
【氏名】建持 千佳
【合議体】
【審判長】原 賢一
【審判官】増山 淳子
【審判官】松井 裕典
(56)【参考文献】
【文献】特開平11-128921(JP,A)
【文献】特開平8-117744(JP,A)
【文献】特開2014-100706(JP,A)
【文献】特開平9-290275(JP,A)
【文献】特開2005-342587(JP,A)
【文献】特開2018-58018(JP,A)
【文献】特開2010-216823(JP,A)
【文献】特開2013-250278(JP,A)
【文献】特開2006-167568(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
C02F 1/44
C02F 1/20-1/26
C02F 1/30-1/38
C02F 1/42
B01D 61/00-71/82
B01J 39/00-49/90
(57)【特許請求の範囲】
【請求項1】
被処理水中のホウ素除去方法であって、
該ホウ素除去方法は、アルカリ性とすることでホウ素をホウ酸イオン(B(OH) )にした前記被処理水を逆浸透膜処理に付す工程と、該逆浸透膜処理の透過水の少なくとも一部を陽イオン除去処理に付す工程と、該陽イオン除去処理後の前記透過水中のホウ素濃度を測定する工程とを含み、
前記陽イオン除去処理を電気再生式脱陽イオン装置により行い、
前記ホウ素濃度の測定を、導電率を指標とするオンラインホウ素モニター及び誘導結合プラズマ発光分光分析装置の少なくともいずれかにより行い、
前記のホウ素濃度測定値に基づき下記(a)~(e)の少なくとも一つを制御する、被処理水中のホウ素除去方法:
(a)前記逆浸透膜処理における前記被処理水の回収率、
(b)前記被処理水の温度、
(c)前記被処理水のpH、
(d)前記逆浸透膜処理の逆浸透膜にかかる前記被処理水の供給圧力、及び
(e)前記逆浸透膜処理に用いる逆浸透膜の交換時期。
【請求項2】
前記逆浸透膜処理に付す前記被処理水のpHを9以上に制御する、請求項1に記載の被処理水中のホウ素の除去方法。
【請求項3】
前記逆浸透膜処理が複数段の逆浸透膜装置による処理であり、少なくとも一段の逆浸透膜装置に給水される被処理水のpHを9以上に制御する、請求項1又は2に記載の被処理水中のホウ素の除去方法。
【請求項4】
前記複数段の逆浸透膜装置のうち少なくとも一段の逆浸透膜装置が高圧逆浸透膜装置である、請求項3に記載の被処理水中のホウ素の除去方法。
【請求項5】
前記複数段の逆浸透膜装置を構成する第1段目の逆浸透膜装置の有効圧力1MPaあたりの透過流束が、第2段目の逆浸透膜装置の有効圧力1MPaあたりの透過流束よりも大きい、請求項3又は4に記載の被処理水中のホウ素の除去方法。
【請求項6】
前記被処理水を前記逆浸透膜処理に付す前に、該被処理水を陽イオン交換処理に付し、次いで脱炭酸処理に付す、請求項1~5のいずれか1項に記載の被処理水中のホウ素の除去方法。
【請求項7】
被処理水中からホウ素を除去するホウ素除去システムであって、
前記ホウ素除去システムは、アルカリ性とすることでホウ素をホウ酸イオン(B(OH) )にした被処理水を処理する逆浸透膜装置と、該逆浸透膜装置の透過水の少なくとも一部を処理する電気再生式脱陽イオン装置と、該電気再生式脱陽イオン装置による処理水中のホウ素濃度を測定するホウ素分析装置とを有し、
前記ホウ素分析装置が、導電率を指標とするオンラインホウ素モニター及び誘導結合プラズマ発光分光分析装置の少なくともいずれかであり、
前記ホウ素分析装置により測定されたホウ素濃度に基づき下記(a)~(e)の少なくとも一つを制御する、ホウ素除去システム:
(a)前記逆浸透膜装置における被処理水の回収率、
(b)前記被処理水の温度、
(c)前記被処理水のpH、
(d)前記逆浸透膜装置の逆浸透膜にかかる被処理水の供給圧力、及び
(e)前記逆浸透膜装置における逆浸透膜の交換時期。
【請求項8】
前処理システムと1次純水システムとサブシステムとを有する超純水製造システムであって、該1次純水システムが請求項7に記載のホウ素除去システムを有する超純水製造システム。
【発明の詳細な説明】
【技術分野】
【0001】
被処理水中のホウ素除去方法、ホウ素除去システム、超純水製造システム及びホウ素濃度の測定方法に関する。
【背景技術】
【0002】
半導体デバイス製造や医薬品製造等においては、高度に精製された純水が使用される。純水製造用原水(被処理水)としては、上水、井水、河川水、工業用水のほか、工場の各工程から排出される洗浄排水やスクラバー排水といった工場排水、海水を逆浸透法や蒸発法によって脱塩した海水淡水化処理水などが挙げられる。
この原水を吸着除去、ろ過処理等を組み合わせた前処理システムに付し、次いで、逆浸透膜処理、脱気処理、イオン交換処理等を組み合わせた1次純水システムによりイオン成分や全有機炭素(TOC)を除去して一次純水が製造される。得られた1次純水は必要により紫外線酸化処理、限外濾過処理等を組み合わせた2次純水システム(サブシステム)によりさらに純度が高められ、超純水として用いられる。
上記の1次純水システムによりイオン成分ないしTOCのほとんどを除去することができる。しかし、水中で非解離物質として振る舞うホウ素は、逆浸透膜やイオン交換処理によっては十分に除去することが難しい。一方、昨今、純水の高純度化に対する要求は高く、ホウ素濃度の低減に対する要求レベルも高まっている。
水のpHをアルカリ側に制御することにより、逆浸透膜(RO膜)によるホウ素の除去効率が高められることが知られている。これは、水をアルカリ性とすることにより、ホウ素がホウ酸イオン(B(OH) )になるためである。例えば特許文献1には、被処理水中の2価以上の陽イオンを除去し、pHを9以上に調整した後、逆浸透膜によりホウ素を除去する技術が記載されている。
【先行技術文献】
【特許文献】
【0003】
【文献】特開平9-290275号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
純水ないし超純水の製造においては、被処理水中のホウ素濃度の増減や、RO膜の経年的な劣化により、透過水中のホウ素濃度は変動する。そのような状況でRO膜処理によりホウ素の除去効率を高めるために、上記のように、被処理水にpH調整剤(典型的にはアルカリ剤)を添加し、被処理水のpHをアルカリ側へと高めることが行われる。必要なpH調整剤の添加量は、RO膜の透過水中のホウ素濃度に対応して増減させることができる。すなわち、透過水中のホウ素濃度が目的の濃度よりも高ければ、ホウ素の除去率をより高めるためにpH調整剤の添加量も多くする必要がある。一方、透過水中のホウ素濃度が十分に低減できていれば、pH調整剤の添加量を少なくしてもホウ素濃度を目的のレベルまで低減できる。したがって、RO膜の透過水中のホウ素濃度を測定できれば、その測定値によって、pH調整剤の添加量を調整することができる。具体的には、測定値が高ければpH調整剤の添加量を増やし、測定値が低ければpH調整剤の添加量を減らすことによって、pH調整剤を無駄なく使用することができ、運転コストの低減に繋がる。
また、RO膜透過水のホウ素濃度の制御は、ホウ素濃度の低減が求められる純水ないし超純水製造システムの運転管理の観点からも重要度が増している。
【0005】
ホウ素測定手段として一般に使用されるオンラインホウ素モニターは、導電率を指標にした測定であるため、給水の比抵抗が15MΩ・cm以上でないとノイズが高く(バックグラウンド信号値が高く)ppbレベルのホウ素濃度を正確に測定することができない。誘導結合プラズマ(ICP)発光分光分析法を用いて低濃度のホウ素を測定する際も同様に、測定水の比抵抗を十分に高めて測定する必要がある。しかし、一般的なRO膜を透過した透過水の比抵抗は1MΩ・cm程度であり、RO膜の透過水のホウ素濃度を高感度に測定し、純水製造の運転管理を行うことは困難である。
【0006】
そこで本発明は、被処理水をRO膜処理に付して不純物成分を除去するに当たり、RO膜透過水中のホウ素濃度を高感度測定し、この測定値に基づき被処理水のRO膜処理を制御することにより、RO膜透過水中のホウ素濃度を所望の低いレベルへと安定的に、効率的に、かつ低運転コストで制御することができる、被処理水中のホウ素除去方法を提供することを課題とする。また本発明は、この方法の実施に好適なホウ素除去システムを提供することを課題とする。また本発明は、前記ホウ素除去システムを有する超純水製造システムを提供することを課題とする。また本発明は、被処理水のホウ素濃度の測定機として一般に使用されるオンラインホウ素モニター等を用いてppbレベルのホウ素濃度をより正確に測定することを可能とするホウ素濃度の測定方法を提供することを課題とする。
【課題を解決するための手段】
【0007】
本発明者らは上記課題に鑑み鋭意検討を重ねた結果、被処理水をRO膜処理に付して得られる透過水を陽イオン除去装置で処理することで、当該透過水の比抵抗を十分に高めることができることを見出した。その結果、透過水のホウ素を高感度に検出することができ、半導体デバイス製造や医薬品製造等の、純水中のホウ素除去の要求レベルの高い分野にも適用可能な純水を、安定して、効率的に、かつ低運転コストで供給することが可能となることを見出した。
本発明は、上記知見に基づきさらに検討を重ね、完成されるに至ったものである。
【0008】
すなわち、本発明の上記課題は、以下の手段によって解決された。
[1]
被処理水中のホウ素除去方法であって、
該ホウ素除去方法は、アルカリ性とすることでホウ素をホウ酸イオン(B(OH) )にした前記被処理水を逆浸透膜処理に付す工程と、該逆浸透膜処理の透過水の少なくとも一部を陽イオン除去処理に付す工程と、該陽イオン除去処理後の前記透過水中のホウ素濃度を測定する工程とを含み、
前記陽イオン除去処理を電気再生式脱陽イオン装置により行い、
前記ホウ素濃度の測定を、導電率を指標とするオンラインホウ素モニター及び誘導結合プラズマ発光分光分析装置の少なくともいずれかにより行い、
前記のホウ素濃度測定値に基づき下記(a)~(e)の少なくとも一つを制御する、被処理水中のホウ素除去方法:
(a)前記逆浸透膜処理における前記被処理水の回収率、
(b)前記被処理水の温度、
(c)前記被処理水のpH、
(d)前記逆浸透膜処理の逆浸透膜にかかる前記被処理水の供給圧力、及び
(e)前記逆浸透膜処理に用いる逆浸透膜の交換時期。
[2]
前記逆浸透膜処理に付す前記被処理水のpHを9以上に制御する、[1]に記載の被処理水中のホウ素の除去方法。
[3]
前記逆浸透膜処理が複数段の逆浸透膜装置による処理であり、少なくとも一段の逆浸透膜装置に給水される被処理水のpHを9以上に制御する、[1]又は[2]に記載の被処理水中のホウ素の除去方法。
[4]
前記複数段の逆浸透膜装置のうち少なくとも一段の逆浸透膜装置が高圧逆浸透膜装置である、[3]に記載の被処理水中のホウ素の除去方法。
[5]
前記複数段の逆浸透膜装置を構成する第1段目の逆浸透膜装置の透過流束が、第2段目の逆浸透膜装置の透過流束よりも大きい、[3]又は[4]に記載の被処理水中のホウ素の除去方法。
[6]
前記被処理水を前記逆浸透膜処理に付す前に、該被処理水を陽イオン交換処理に付し、次いで脱炭酸処理に付す、[1]~[5]のいずれかに記載の被処理水中のホウ素の除去方法。
[7]
被処理水中からホウ素を除去するホウ素除去システムであって、
前記ホウ素除去システムは、アルカリ性とすることでホウ素をホウ酸イオン(B(OH) )にした被処理水を処理する逆浸透膜装置と、該逆浸透膜装置の透過水の少なくとも一部を処理する電気再生式脱陽イオン装置と、該電気再生式脱陽イオン装置による処理水中のホウ素濃度を測定するホウ素分析装置とを有し、
前記ホウ素分析装置が、導電率を指標とするオンラインホウ素モニター及び誘導結合プラズマ発光分光分析装置の少なくともいずれかであり、
前記ホウ素分析装置により測定されたホウ素濃度に基づき下記(a)~(e)の少なくとも一つを制御する、ホウ素除去システム:
(a)前記逆浸透膜装置における前記被処理水の回収率、
(b)前記被処理水の温度、
(c)前記被処理水のpH、
(d)前記逆浸透膜装置の逆浸透膜にかかる被処理水の供給圧力、及び
(e)前記逆浸透膜装置における逆浸透膜の交換時期。
[8]
前処理システムと1次純水システムとサブシステムとを有する超純水製造システムであって、該1次純水システムが[7]に記載のホウ素除去システムを有する超純水製造システム。
【発明の効果】
【0009】
本発明のホウ素除去方法及びホウ素除去システムによれば、被処理水をRO膜処理に付して不純物成分を除去するに当たり、RO膜透過水中のホウ素濃度を高感度測定し、この測定値に基づき被処理水のRO膜処理を制御することができる。これにより、RO膜透過水中のホウ素濃度を所望の低いレベルへと安定的に、効率的に、かつ低運転コストで制御することができる。本発明の超純水システムは、ホウ素が十分に除去された超純水を、安定して、効率的に、かつ低運転コストで得ることを可能とする。
本発明のホウ素濃度の測定方法によれば、被処理水のホウ素濃度の測定機として一般に使用されるオンラインホウ素モニター等を用いてppbレベルのホウ素濃度をより正確に測定することが可能になる。
【図面の簡単な説明】
【0010】
図1】本発明に係るホウ素除去システムの好ましい一実施形態(第1実施形態)を示した概略構成図である。
図2】本発明に係るホウ素除去システムの好ましい一実施形態(第2実施形態)を示した概略構成図である。
図3】本発明に係るホウ素除去システムの好ましい一実施形態(第3実施形態)を示した概略構成図である。
図4】本発明に係るホウ素除去システムの好ましい一実施形態(第4実施形態)を示した概略構成図である。
図5】本発明のホウ素除去システムが適用される超純水製造装置の好ましい一例を示した概略構成図である。
【発明を実施するための形態】
【0011】
本発明に係るホウ素除去システムの好ましい一実施形態(第1実施形態)を、図1を参照して説明する。
図1に示すように、ホウ素除去システム1(1A)には、主配管11が配される。この主配管11には、被処理水(原水)中のホウ素を除去するRO膜装置12が配される。
また、RO膜装置12の入口側12inの主配管11には、RO膜装置12に対して遠い側から、熱交換器31、アルカリ性の薬液(アルカリ剤)を供給する薬液配管32の合流部32A、ポンプ41を備える。薬液配管32端部にはアルカリ剤供給源34が接続されている。また、薬液配管32には薬注ポンプ35が配され、薬注ポンプ35によってアルカリ供給源34に貯蔵されているアルカリ剤を主配管11側に送る。
RO膜装置の出口側12outの主配管11には、ホウ素分析装置21が接続された分岐配管22の分岐部22Aが配される。この分岐配管22には陽イオン除去装置23が配される。
【0012】
上記RO膜装置12は特に制限されず、超低圧型、低圧型、中圧型、高圧型のいずれのRO膜装置であってもよい。RO膜装置に用いるRO膜の一例として、ダウケミカル社製BWシリーズ(BW30HR-440、BW30XFR-400/34i)(商品名)、東レ社製TMGシリーズ(TMG20、TMG-20D)、TMLシリーズ(TML20、TML-20D)(商品名)、日東電工社製ESシリーズ(ES20‐D8、ES15-D8)(商品名)HYDRANAUTICS製LFCシリーズ(LFC3-LD)、CPAシリーズ(CPA5-LD)、等が挙げられる。
RO膜装置12は、塩類や不純物が濃縮された水(濃縮水)を排出する機構を有し、これによって加圧側塩濃度の過度の上昇や、膜表面において難溶解性物質(スケール)の生成を抑制しつつ連続的に透過水を得ることができる。濃縮水はRO膜装置12に接続された濃縮水配管25を介して排出される。濃縮水配管25には圧力調節弁26が配されることが好ましい。圧力調節弁26によって、濃縮水配管25内の圧力を調節することができ、RO膜12の透過水量や濃縮水量を調整することができる。
【0013】
上記熱交換器31は、主配管11を流れる水の温度を調整するために用いる。熱交換器の2次側には、加温用蒸気や冷却水を流すことができる。
【0014】
上記ポンプ41には、被処理水を圧送する通常の加圧ポンプを用いることができる。加圧ポンプはポンプインバータ42を備えることが好ましい。ポンプインバータ42は、加圧ポンプの駆動モータ(図示せず)の回転数を制御するものであり、駆動モータの回転数を徐々に変えるものである。ポンプの回転数を徐々に変化させる(例えば、高める)ことによって、水圧の急激な変化(例えば、上昇)を防止できる。これによって、水圧の急激な変化によるRO膜装置12の損傷を防止することができる。また、駆動モータの回転数を上げることによって、RO膜装置12に供給する被処理水の流量及び圧力を高めることができる。
【0015】
アルカリ剤供給源34は、被処理水のpHを上昇させるための薬剤の供給源であり、このアルカリ剤は水酸化ナトリウム(NaOH:苛性ソーダ)を含むことが好ましい。アルカリ剤は通常はNaOHを溶解してなる水溶液である。NaOH水溶液中のNaOH濃度は目的のpH調整が可能な範囲にて適宜設定される。アルカリ剤としては、NaOH水溶液の他に水酸化カリウム(KOH)水溶液、等を用いることもできる。
【0016】
薬注ポンプ35は、アルカリ剤供給源34から主配管11にアルカリ剤を圧送するものであり、例えば定量式ポンプを用いることができる。すなわち、指定された注入量だけが主配管11に送られるように、薬注ポンプ35が稼働するものである。薬注ポンプ35は、ポンプのストローク又は回転数の制御により注入量を変化させるため、薬注ポンプ35の排出口は、主配管11に近い位置の配されることが好ましい。
なお、図示はしないが、薬注ポンプ35と主配管11との間の薬液配管32に、図示はしないが、制御弁を備え、この制御弁の開閉度合によりアルカリ剤の注入量を変化させることもできる。
【0017】
陽イオン除去装置23は、被処理水中の陽イオン(Na、Ca2+、Mg2+、NH 、K等)を取り除くものである。陽イオン除去装置23の具体例として、陽イオン交換樹脂(好ましくは強酸性陽イオン交換樹脂)を充填してなる陽イオン交換装置を挙げることができる。陽イオン除去装置23によって陽イオンを除去することにより、透過水の比抵抗を十分に高めることができる。これは、透過水中に存在するイオン成分に占めるアニオン成分はわずかであり、カチオン成分が多く含まれていることによる。すなわち、一般的に用いられるポリアミド系RO膜、酢酸セルロース系RO膜の表面はマイナスに帯電しているため、アニオン成分は静電気的な反発によりRO膜を通過しにくい一方、カチオン成分はRO膜を透過しやすい。したがって、RO膜装置の透過水からカチオン成分を除くだけで、後述するように透過水の比抵抗を、ホウ素の高感度測定に必要なレベルにまで高めることができる。
【0018】
ホウ素分析装置21は、RO膜装置12を透過した透過水中のホウ素濃度を測定する装置である。このホウ素分析装置21は、リアルタイムにてオンライン測定可能な機器であることが好ましい。ホウ素分析装置21として、例えば、GE社製 Sieversオンライン・ホウ素計が挙げられる。また、リアルタイム測定でないが、ICP発光分光分析装置を用いることもできる。
上記ホウ素除去システム1Aでは、被処理水を、主配管11を通してポンプ41によってRO膜装置12に圧送される。RO膜装置12では、被処理水中のホウ素を除去する。RO膜装置12を透過してホウ素が除去された透過水は、主配管11を通して次工程に搬送される。その一部の透過水は分岐配管22によって分岐され、陽イオン除去装置23に供給される。この陽イオン除去装置23によって透過水中の陽イオンを除去する。透過水から陽イオンを除去するだけで、透過水の比抵抗を、例えば15MΩ・cm以上へと高めることができる。このように透過水の比抵抗を高めてからホウ素分析装置21に供給することにより、極微量のホウ素濃度であっても正確に測定できるようになる。ホウ素分析装置にもよるが、例えば、pptレベルのホウ素濃度を検出することが可能となる。
本発明のホウ素除去システムでは、ホウ素分析装置21により測定したホウ素濃度の測定値(ホウ素濃度の変動状態)に基づいて、下記(a)~(e)の少なくとも一つを制御する。これにより、ホウ素除去をより効率的に行うことが可能となる。
(a)前記逆浸透膜における被処理水の回収率、
(b)前記被処理水の温度、
(c)前記被処理水のpH、
(d)前記逆浸透膜処理の逆浸透膜にかかる被処理水の供給圧力、及び
(e)前記逆浸透膜処理に用いる逆浸透膜の交換時期。
通常は、ホウ素濃度の測定値に基準値を設け、基準値からの変動量を計算し、計算結果を基に上記(a)~(e)の少なくとも一つを制御する。
【0019】
上記(a)~(e)についてより詳細に説明する。
【0020】
<(a)逆浸透膜における被処理水の回収率>
被処理水の回収率(流量%)=透過水量(流量)/被処理水量(流量)である。以下、回収率の「%」は「流量%」を示す。RO膜装置12の透過水のホウ素濃度が規定値より高くなった場合には、RO膜装置12に供給する被処理水量(流量)に対するRO膜装置12を透過した透過水量(流量)の割合(被処理水の回収率)を低減することにより、透過水のホウ素濃度を低減することができる。RO膜装置12の透過水のホウ素濃度が規定値より十分に低い場合には、RO膜装置12における被処理水の回収率を高めて、より効率的な運転をすることもできる。
回収率は、ポンプインバータ42の出力調整、圧力調整弁26の開度調整、又はこれら両方を実施することによって調整することができる。たとえばポンプインバータ42によってポンプ41の出力を制御することにより、RO透過水、RO濃縮水の流量を制御して回収率を調整することができる。また、たとえば、信号線S3を通じて圧力調整弁26の開度を小さくして濃縮水量を増加させて回収率を低下させると、RO膜装置12の加圧側のホウ素濃度が低減するため、それに伴い透過側のホウ素濃度も低減することができる。
上記被処理水の回収率は、RO膜装置が1段の場合には、RO膜装置12に入る被処理水量に対するRO膜装置12を出る透過水量の割合で求める。また、RO膜が多段(例えば、後述する第1、第2RO膜14、16)の場合には、第1、第2RO膜14、16それぞれに供給される被処理水量と透過水量から、それぞれのRO膜の回収率を求める。ここでの第2RO膜16の被処理水は、第1RO膜14の透過水と同義である。
【0021】
<(b)被処理水の温度>
RO膜装置12の透過水のホウ素濃度が規定値より高い場合には、被処理水の水温を低下させることによって、RO膜装置12によるホウ素の除去率(阻止率)を高めることができ、透過水のホウ素濃度を低減することができる。例えば、信号線S4を通じて、熱交換器31を制御して、被処理水を冷却することにより、RO膜装置12を透過した透過水のホウ素濃度を低下させることができる。
【0022】
<(c)被処理水のpH>
RO膜装置12の透過水のホウ素濃度が規定値より高い場合には、被処理水のpHを上げることによって、RO膜装置12のホウ素阻止率を高めることができる。すなわち、被処理水のpHを上昇させるように、被処理水にアルカリ剤を導入することによって、RO膜装置12の透過水のホウ素濃度を低下させることができる。例えば、ホウ素濃度の変化量に対応させて、アルカリ剤の導入量を決定し、信号線S1を通じて、決定したアルカリ剤量に対応して薬注ポンプ35を連続的に稼働させることができる。
例えば、RO膜装置12の透過水のホウ素濃度が規定値より高い場合には、被処理水のpHが例えば9.0以上になるように薬注ポンプ35を稼働し、アルカリ剤供給源34からアルカリ剤(例えばNaOH水溶液)を主配管11の被処理水に導入する。また、RO膜装置12の透過水のホウ素濃度が規定値より十分に低い場合には、アルカリ剤の導入量を低減することもでき、過剰なアルカリ剤の使用を防ぐことができる。なお、被処理水のpHの上限は、RO膜の耐薬品性という観点から、12以下とすることが好ましく、11以下とすることがより好ましい。
【0023】
<(d)逆浸透膜にかかる被処理水の供給圧力>
RO膜装置12の透過水のホウ素濃度が規定値より高くなった場合には、RO膜装置12にかかる被処理水の供給圧力を高めて、RO膜装置12の透過水のホウ素濃度を低下させることができる。すなわち、RO膜装置12にかかる被処理水の供給圧力が上昇するように、流量制御装置として機能するポンプインバータ42を介して、ポンプ41を動作させる。その際、信号線S2を通じて、急激な圧力変化が生じないように、ポンプインバータ42によって、ポンプを駆動する電動機の出力(例えば、回転数)を制御して被処理水の流量を多くして水圧を高めることができる。さらに信号線S3を通じて、圧力調整弁26の開度を閉方向に調整することによって、RO膜12に背圧がかかるため、圧力が上昇する。このような手段で圧力を上昇させることにより、RO膜装置12を透過した透過水中のホウ素濃度を低下させることができる。また、RO膜装置12の透過水のホウ素濃度が規定値より十分に低い場合には、被処理水の供給圧力を低下させて、RO膜装置12の透過水のホウ素濃度を高めることができる。
なお、被処理水の供給圧力の制御により、(a)の回収率も変動し得るが、本発明においては、この供給圧力の制御を目的とした操作は、上述した(a)の制御ではなく、(d)の制御に該当するものとする。
【0024】
<(e)逆浸透膜の交換時期>
RO膜は、使用に伴う経年的な劣化、酸化剤接触による酸化劣化、アルカリ雰囲気によって起こる加水分解などにより、ホウ素阻止率が低下する。RO膜装置12の透過水のホウ素濃度が規定値より高くなった場合には、RO膜装置12が劣化していることが原因である場合がある。このような場合には、新品のRO膜装置に交換することによって、RO膜装置12の透過水のホウ素濃度を低下させることができる。
【0025】
次に、ホウ素除去方法の一実施形態について、前記図1に示したホウ素除去システム1Aを参照して以下に説明する。
図1に示すように、主配管11中を通して被処理水をRO膜装置12に導入する。RO膜装置12によって被処理水中の各種成分とともに、ホウ素が除去される。
RO膜装置12を透過して得た透過水の少なくとも一部は、分岐配管22を通して陽イオン除去装置23によって陽イオンが除去される。続いてホウ素分析装置21によって、陽イオンが除去された透過水のホウ素濃度を測定する。
そして、ホウ素分析装置21によって測定したホウ素濃度に基づいて、上記(a)~(e)を制御する。これらの制御は、ホウ素分析装置21とは別の、図示はしていない制御装置、例えばコンピュータによって行うこともできる。
【0026】
上記ホウ素除去システム1Aでは、RO膜装置12の入口側12inにおける被処理水のpHをアルカリ側とすることが好ましく、より好ましくはpH9以上となるよう制御する。このように被処理水のpHを制御することにより、RO膜12によるホウ素阻止率を高めることができる。透過水のホウ素濃度が高い場合には、より多くのアルカリ剤を添加してpHをより高めることにより、RO膜装置によるホウ素の除去率を高めることができる。逆に、透過水のホウ素濃度が十分に低い場合には、被処理水に添加するアルカリ剤の量を少なくしても目的のホウ素除去を実現することができる。すなわち、アルカリ剤の過剰な使用を防ぐことができ、運転コストを低減することができる。
【0027】
上記陽イオン除去装置は、陽イオン交換能を有する限り特に制限はない。例えば、電気再生式脱陽イオン装置を好適に用いることができる。
電気再生式脱陽イオン装置に用いられるイオン交換体は、多孔質イオン交換体としては、互いにつながっているマクロポアとマクロポアの壁内に平均径が1~1000μm、好ましくは10~100μmのメソポアを有する連続気泡構造であることが好ましい。かつ、全細孔容積が1~50ml/g、好ましくは4~20ml/gであり、イオン交換基が均一に分布され、イオン交換容量が0.5mg当量/g乾燥多孔質体以上のものが好ましい。多孔質イオン交換体のその他の物性及びその製造方法は、例えば特開2003-334560号公報に開示されている。
陽イオン交換体として多孔質イオン交換体を用いれば、細孔容積や比表面積を格段に大きくすることができる。このため、電気再生式脱陽イオン装置の脱イオン効率が著しく向上し非常に有利である。また、多孔質イオン交換体の全細孔容積が1ml/g未満であると、単位断面積当りの通水量が小さくなってしまい、処理能力が低下してしまうため好ましくない。一方、全細孔容積が50ml/gを超えると、骨格部分の占める割合が低下し、多孔質体の強度が著しく低下してしまうため好ましくない。全細孔容積が1~50ml/gである多孔質イオン交換体を電気再生式脱陽イオン装置のイオン交換体として使用した場合、多孔質体の強度と脱イオン効率を共に満足したものとすることができる点で好ましい。また、多孔質イオン交換体のイオン交換容量が0.5mg当量/g乾燥多孔質体未満であると、イオン吸着容量が不足して好ましくない。また、イオン交換基の分布が不均一であると、多孔質陽イオン交換体内のイオン移動が不均一となり、吸着されたイオンの迅速な排除が阻害されるので好ましくない。
繊維状多孔質イオン交換体としては、例えば特開平5-64726号公報に記載の単繊維や単繊維の集合体である織布及び不織布、さらにこれらの加工品に放射線グラフト重合を利用してイオン交換基を導入し、加工成形したものが挙げられる。また、粒子凝集型多孔質イオン交換体としては、例えば特開平10-192716号公報、特開平10-192717号公報に記載の熱可塑性ポリマーと熱硬化性ポリマーの混合ポリマー、もしくは架橋性ポリマーを用いてイオン交換樹脂粒子を結合し、加工成形したものが挙げられる。
陽イオン除去装置23として上記の電気再生式脱陽イオン装置を適用することにより、通常のイオン交換装置で必要な薬液を用いた再生工程を省略することができ、連続的な陽イオン除去が可能となる。多孔質イオン交換体の平均直径は、水銀圧入法によって求めることができる。また、多孔質イオン交換体の全細孔容積は、例えばマイクロメリティックス社製の細孔分布測定装置:AutoPoreIII9420(商品名)によって測定することができる。
【0028】
RO膜装置12には、高圧RO膜装置を用いることが好ましい。高圧RO膜装置は、従来、海水淡水化用として開発されたものであり、塩濃度の低い原水に対しては、より低い運転圧力によって、効率的なイオンやTOC等の除去が可能となる。例えば、低圧RO膜装置2段分のろ過能を、高圧RO膜装置であれば一段で実現することも可能であるし、低圧RO膜装置と高圧RO膜装置とを組み合わせた多段RO膜装置、又は高圧RO膜装置を用いた多段RO膜装置を用いることも可能である。このようなRO膜装置を用いることによって、ホウ素、シリカ、尿素、エタノール、イソプロピルアルコールといった非解離物質の除去率を飛躍的に上昇させることが可能となる。高圧RO膜装置として、例えば、HYDEANAUTICS社製SWCシリーズ(SWC4、SWC5、SWC6)(商品名)、東レ社製TM800シリーズ(TM820V、TM820M)(商品名)、ダウケミカル社製SWシリーズ(SW30HRLE、SW30ULE)(商品名)、等をあげることができる。
【0029】
RO膜装置12における被処理水の回収率は、純水製造コスト低減の観点から、80%以上が好ましく、85%以上がより好ましく、90%以上がさらに好ましい。回収率を「80%以上」とすることによって被処理水に対してより多くの透過水量を得られるという利点がある。
【0030】
次に、本発明に係るホウ素除去システムの好ましい一実施形態(第2実施形態)を、図2を参照して説明する。
図2に示すように、ホウ素除去システム1(1B)は、前述のホウ素除去システム1Aにおいて、RO膜装置12に代えて、第1RO膜装置14及び第2RO膜装置16を主配管11に直列に配した形態である。さらに、薬液配管36の合流部36Aが第1RO膜装置14の入口側14in又は第2RO膜装置16の入口側16inのいずれか一方の主配管11に配されることが好ましい。その他の構成は、ホウ素除去システム1Aと同様である。なお、図2では、主配管11、第1RO膜装置14、第2RO膜装置16、ホウ素分析装置21、分岐配管22、陽イオン除去装置23の主要構成要素のみを示し、その他の構成要素の図示は省略したが、その他の構成要素は図1によって説明したのと同様である。
【0031】
上記ホウ素除去システム1Bを用いたホウ素除去方法では、被処理水を2段のRO膜装置(第1RO膜装置14、第2RO膜装置16)に連続して通すことから、ホウ素を含む不純物成分の除去効率をより高めることができる。また、第1RO膜装置14の入口側14inに薬液配管36の合流部36Aが配されている場合、第1RO膜装置14に供給する被処理水にアルカリ剤を供給できるため、被処理水のpHを高める(好ましくはpH9以上に高める)ことができる。この場合、第1RO膜装置14のホウ素除去能力が高められる。また、第2RO膜装置16の入口側16inに薬液配管36の合流部36Aが配されている場合には、第2RO膜装置16の被処理水のpHを高める(好ましくはpH9以上に高める)ことができるため、第2RO膜装置16のホウ素除去能力が高められる。なお、第2RO膜装置16から排出される濃縮水は、第1RO膜12に被処理水を送るポンプ(図示せず)より上流において、第1RO膜装置14の被処理水と混合してもよい。第2RO膜装置16の被処理水は第1RO膜装置14によって処理されているため、たとえ濃縮水であっても第1RO膜装置14の被処理水よりも水質的には良好であることがある。このような場合においては、第2RO膜装置16の濃縮水を第1RO膜装置14の被処理水と混合することによって、第1RO膜装置14の被処理水に対して希釈効果がはたらき、第1RO膜装置12に供給されるホウ素濃度を低減することができる。
【0032】
図2の形態において、上記のような複数のRO膜装置(例えば第1RO膜装置14、第2RO膜装置16)のうち、少なくとも一つが高圧RO膜装置であることが好ましい。より好ましくは、複数のRO膜装置のうち少なくとも一段の逆浸透膜装置に給水される被処理水のpHが9以上に制御され、その逆浸透膜装置が高圧逆浸透膜装置であることが好ましい。
【0033】
RO膜装置は、1段目の第1RO膜装置14の有効圧力1MPaあたりの透過流束が、2段目の第2RO膜装置16の有効圧力1MPaあたりの透過流束よりも大きいことが好ましい。透過流束は、透過水量をRO膜面積で割ったものである。「有効圧力」とは、JIS K3802:2015「膜用語」に記載の、平均操作圧から浸透圧差及び2次側圧を差し引いた、膜に働く有効な圧である。なお、平均操作圧は、RO膜の1次側における膜供給水の圧力(運転圧力)と濃縮水の圧力(濃縮水出口圧力)の平均値であり、以下の式により表される。
平均操作圧=(運転圧力+濃縮水出口圧力)/2
【0034】
有効圧力1MPaあたりの透過流束は、膜メーカーのカタログに記載の情報、例えば、透過水量、膜面積、評価時の回収率、NaCl濃度等から計算することができる。また、1つ又は複数の圧力容器に同一の透過流束であるRO膜が複数本装填されている場合、圧力容器の平均操作圧/2次側圧力、原水水質、透過水量、膜本数等の情報より、装填された膜の透過流束を計算することができる。具体的には、第1RO膜装置14のRO膜の有効圧力1MPaあたりの透過流束と第2RO膜装置16のRO膜の有効圧力1MPaあたりの透過流束との差は、得られる透過水質という観点から、0.3m/(m・d)以上が好ましく、0.5m/(m・d)以上がより好ましく、0.7m/(m・d)以上がさらに好ましい。そして第2RO膜装置16のポンプ動力という観点から、1m/(m・d)以下が好ましい。
【0035】
上記RO膜は2段構成であるが、多段構成であってもよい。この場合、RO膜を直列に多段に配することが好ましい。多段のRO膜装置のうち少なくとも一段が高圧RO膜装置であることが好ましい。また、少なくとも一段のRO膜装置に導入する被処理水のpHを高める(好ましくはpH9以上とする)ことが好ましい。
【0036】
次に、本発明に係るホウ素除去システムの好ましい一実施形態(第3実施形態)を、図3を参照して説明する。
図3に示すように、ホウ素除去システム1(1C)は、前述のホウ素除去システム1Bにおいて、RO膜装置によるホウ素除去処理の前に前処理を行うものである。前処理は、陽イオン交換樹脂を充填した陽イオン交換装置51に通して陽イオン交換処理を行い、続いて脱炭酸装置53を通す脱炭酸処理を行うことが好ましい。具体的には、第1RO膜14の前段の主配管11に、前処理システムとして、第1RO膜14から遠い側から、陽イオン交換装置51、脱炭酸装置53の順に配され、これらは図1に示した熱交換機31の前段に配されることが好ましい。なお、「前段」とは、対象となる主配管11の位置から被処理水又は透過水の流れの上流側を意味する。
【0037】
陽イオン交換装置51における陽イオン交換処理では、好ましくは強酸性陽イオン交換樹脂が用いられる。強酸性陽イオンであるR-SO・HのHが、水中のNa、Ca2+、Mg2+などと入れ替わって取り除かれる(Rはイオン交換樹脂の母体を示す)。陽イオン交換装置51による処理ではイオン交換樹脂からはHが解離するため、被処理水は酸性となる。この被処理水を脱炭酸装置53に送る。
なお、本陽イオン交換樹脂は、R-SO・Naであるナトリウム型樹脂を用いてもよい。この場合、イオン交換樹脂による処理前後のpHは変化しないが、イオン交換樹脂処理水に酸を添加することにいって、pHを下げることも可能である。
【0038】
脱炭酸装置53では、酸性になった水を気液接触させることによって、水中に含まれる炭酸成分をガス化し、除去する。すなわち、陰イオン中のHCO は、HCO +H→HCOと変化する。ここに空気を吹き込むことによって、HCO→HO+COの反応が生じ、CO(二酸化炭素)は、被処理水中から大気中に大部分が放出される。したがって、陽イオン交換装置51を通した被処理水を脱炭酸装置53に送り込み、脱炭酸装置53によって空気を送り込み、炭酸成分を除去することができる。
【0039】
また、被処理水のpHを制御するアルカリ剤を供給する薬液配管36の合流部36Aが、第1RO膜装置14の入口側14in又は第2RO膜装置16の入口側16inの主配管11に配されることが好ましい。この薬液配管36は、図1によって説明した薬液配管32と同様のものである。
【0040】
さらに、第1RO膜装置14と第2RO膜装置16との間の主配管11には、被処理水pHを制御する酸性薬液を供給する酸性薬液配管37の合流部37Aを配し、第2RO膜装置16の被処理水に酸を添加し、被処理水pHを7~8程度の中性に調整してもよい。アルカリ性になった第2RO膜装置16の被処理水を中性ないし中性付近に調整することによって、第2RO膜装置16のカチオン除去率を上げることができる。結果として、陽イオン除去装置23で除去すべきカチオン量が低減するため、陽イオン除去装置23の再生強度を低減できる。たとえば陽イオン除去装置23が電気再生式である場合、再生に必要な電圧を低下させることが可能である。酸性薬液としては、硫酸(HSO)、塩酸(HCl)、硝酸(NHO)等が挙げられる。酸性薬液の濃度は適宜設定される。その他の構成は、ホウ素除去システム1Bと同様である。なお、図3では、主配管11、第1RO膜装置14、第2RO膜装置16、ホウ素分析装置21、分岐配管22、陽イオン除去装置23、陽イオン交換装置51、脱炭酸装置53の主要構成要素のみを示し、その他の構成要素の図示は省略した。その他の構成要素は図1によって説明したのと同様である。
【0041】
上記ホウ素除去システム1Cによるホウ素除去方法では、陽イオン交換装置51により、被処理水中のNa、Ca2+、Mg2+などの陽イオンを取り除くことができる。さらに、脱炭酸装置53によって、酸性液中にて生じた被処理水中の炭酸を分解除去できる。これによって、被処理水のpHは略中性となる。さらに、主配管11内には、薬液配管36を介してアルカリ剤(NaOH水溶液)が供給され、被処理水のpHが高められる(好ましくは、pH9.0以上に制御される)。陽イオン交換装置51及び脱炭酸装置53によって、Ca2+、Mg2+などの硬度成分及び炭酸が除去されるため、pHをアルカリ側に調整しても、難溶解物質(スケール)の生成が起こらない。この被処理水に対して、第1RO膜装置14によってホウ素除去を行う。第1RO膜装置14を透過した透過水に対して、必要に応じてアルカリ薬液もしくは酸性薬液を供給し、透過水のpHを調整することもできる。その後は、第1実施形態と同様にして、第2RO膜装置16の透過水のホウ素濃度を測定し、測定値に基づいてRO膜の管理を行う。
【0042】
次に、本発明に係るホウ素除去システムの好ましい一実施形態(第4実施形態)を、図4を参照して説明する。
図4に示すように、ホウ素除去システム1(1D)は、前述のホウ素除去システム1Cにおいて、陽イオン除去装置23を第2RO膜装置16と分岐配管22の分岐部22Aとの間の主配管11に配したものである。その他の構成要素は前述のホウ素除去システム1Cと同様である。
【0043】
上記ホウ素除去システム1Dでは、透過水の全量を陽イオン除去装置23に通すため、透過水中の陽イオンが除去できる。このため、ホウ素除去システム1Dは、超純水製造の1次純水系システムに用いることができる。
【0044】
以下に本発明のホウ素除去システムを有する超純水製造システムの好ましい一例について、図5を参照して、説明する。
図5に示すように、超純水製造システム101は、1次純水系システム110と2次純水系システム(サブシステム)120とによって構成される。また、1次純水系システム110の前段に前処理システム130を配することが好ましい。この前処理システム130では、凝集、ろ過、膜分離等により、被処理水(原水)に含まれる微粒子(懸濁物質やコロイダル物質等)を取り除く。具体的には、凝集沈殿、加圧浮上、砂ろ過、MF/UF膜を使用した除濁、脱炭酸、軟化、などが挙げられる。
【0045】
そして1次純水系システム110では、イオン類、TOC、溶存ガス(酸素、CO)、SiOのほぼ大部分、等を除去できる。その結果、1次純水系システム110の水質は、比抵抗が17.5MΩ・cm以上にもなる。
1次純水系システム110では、前処理システム130によって前処理した被処理水をタンク111に流入させる。タンク111からは、常時、被処理水が1次主配管141を介して下流側に流れることが好ましい。タンク111の下流側の1次主配管141には、熱交換器112、RO膜113、イオン交換装置114、脱気装置115が配されて順に直列に接続されていることが好ましい。
【0046】
イオン交換装置としては、2床2塔式再生型イオン交換装置、2床1塔式再生型イオン交換装置、混床型再生式イオン交換装置、再生型イオン交換装置、などを好適に用いる。2床2塔式再生型イオン交換装置は、強酸性カチオン交換樹脂が充填されたカチオン交換塔と、強塩基性アニオン交換樹脂が充填されたアニオン交換塔とを直列に接続してある。2床1塔式再生型イオン交換装置は、強酸性カチオン交換樹脂と強塩基性アニオン交換樹脂とを別々の異なる層となるように1つの塔内に、任意の順番で選択された該強酸性カチオン交換樹脂と強塩基性アニオン交換樹脂とを充填してある。混床型再生式イオン交換装置は、強酸性カチオン交換樹脂と強塩基性アニオン交換樹脂とを均一に混合して1つの塔内に充填してある。再生型イオン交換装置は、電気再生式脱イオン装置を1段又は複数段直列に接続してある。
また、1次純水システムに紫外線酸化装置、紫外線殺菌装置を設置してもよく、さらには上記配列にこだわらず、最適な配置にすることができる。たとえばRO膜113の被処理水及び処理水の殺菌目的として紫外線殺菌装置を設置することができる。またRO膜113の透過水を脱気処理して無機炭素を除去したのちに紫外線酸化、イオン交換装置の順番で通水することもでき、又はRO透過水を直接紫外線酸化し、イオン交換樹脂装置に導入することもできる。さらには、RO膜113の前段に、2床3塔式のイオン交換装置を設置してもよい。2床3塔式のイオン交換装置は、カチオン交換塔、アニオン交換塔及び脱炭酸塔からなる。カチオン交換塔は、強酸性カチオン交換樹脂と弱酸性カチオン樹脂を別々の異なる層となるように1つの塔内に設置してある。アニオン交換塔は、強塩基性アニオン交換樹脂と弱塩基性アニオン交換樹脂を別々の異なる層となるように1つの塔内に設置してある。脱炭酸塔は、被処理水中のCOを除去する。これら1次純水システムの構成は、被処理水の性状、求める1次純水の性状を鑑みて、任意に選択することができる。このような処理により得られる1次純水の水質としては、比抵抗18MΩ・cm以上、TOC20ppb以下、ナトリウム1ppb以下、塩化物イオン1ppb以下、金属(鉄、マンガン、アルミニウム、亜鉛)1ppb以下、イオン状シリカ10ppb以下、ホウ素0.05ppb以下とすることができる。
【0047】
この1次純水系システム110では、RO膜113に代えて、本発明のホウ素除去システム1のRO膜装置を組み込み、このホウ素除去システム1を適用することが好ましい。
熱交換器112は前述の熱交換器31(図1参照)と同様のものを用いることができ、RO膜113も前述のRO膜装置12のRO膜(図1参照)と同様のものを用いることができる。
イオン交換装置114は、主に、イオン、TOC、溶存酸素や炭酸ガスを除去するものである。例えば、陽イオン交換樹脂と陰イオン交換樹脂を同一塔内に充填した混床式を用いてもよい。陽イオン交換樹脂はCa2+、Mg2+、Na、などの陽イオン成分を除去でき、陰イオン交換樹脂はSO 2-、NO などの陰イオン成分を除去できる。
脱気装置115は、例えば、気液分離膜を使用して効率的に、主に水中の溶存酸素や炭酸ガスを除去するものである。
【0048】
脱気して得た純水は、2次純水系システム120のタンク121に流入される。2次純水系システム120では、1次純水系システム110で除去しきれなかった微量のイオン類、TOCを取り除くとともに、1次純水系システム110以降にシステム構成部材から溶出したイオン類、TOCを取り除くことができる。
2次純水系システム120は、タンク121の下流側に2次主配管142が接続される。2次主配管142には、熱交換器122、紫外線(UV)酸化装置123、イオン交換装置124、UF膜(限外ろ過膜:Ultrafiltration Membrane)装置125が配されて順に直列接続されることが好ましい。さらに2次主配管142の端部には、ユースポイント150が接続されることが好ましい。ユースポイント150で使用されなかった超純水は、戻し配管143を介して、タンク121に戻されることが好ましい。したがって、超純水は、途中で滞留することなく、ユースポイント150で使用されるか、又はタンク121から2次主配管142、戻し配管143を通って、再びタンク121に戻される循環系内を流れ続けることができる。このような循環系をとることによって、超純水は循環系の途中で汚染されるリスクが少なくなる。
【0049】
熱交換器122は、前述の熱交換器31(図1参照)と同様のものを用いることができる。
UV酸化装置123は、TOCを除去することができる。主に波長185nmの紫外線を用いた処理で、紫外線を水に直接照射することで酸化力の強いヒドロキシラジカル(OHラジカル)を発生させ、この酸化作用によって低分子有機物を炭酸ガスと有機酸に分解することができる。
イオン交換装置124は、2次純水系システム120まで残留するイオンを除去するものであり、一般には、イオン交換樹脂を概ね数百リットル以下の容器に入れたデミナーと呼ばれるものが使用されることが好ましい。UV酸化装置123によって発生した炭酸ガスと有機酸なども通常は陰イオン交換樹脂で吸着及び/又は除去することが好ましい。
UF装置125は、孔径が0.01~0.001μmの膜であり、超純水製造の仕上げ処理(微粒子除去)として用いる機能材である。UF膜は孔の大きさが小さいため阻止された微粒子や不純物により短時間で膜が閉塞する。このため、通常は膜の表面に沿って一定方向に原液を流し続け、微粒子や不純物が濃縮された濃縮水を連続的に排出、又は送液側に戻しながら使用することで微粒子や不純物の膜表面への付着を減らすクロスフロー方式が採用されることが好ましい。
【0050】
上記各実施形態において、被処理水の水質は特に限定されない。被処理水には、工業用水、表層水、水道水、地下水、海水、海水を逆浸透法もしくは蒸発法によって脱塩した海水淡水化処理水、各種排水、例えば半導体製造工程で排出される排水に対しても好適に用いることができる。対象となるほう素濃度は特に限定されないが、ほう素濃度1ppb~5ppm、好ましくは5ppb~1ppm、より好ましくは5ppb~100ppbであるとよい。
【0051】
本発明のホウ素の測定方法は、液中のホウ素濃度を測定する方法であって、上記の被処理水をイオン除去処理に付す工程と、イオン除去処理した処理水中のホウ素濃度を測定する工程とを含む。被処理水は、逆浸透膜処理後の透過水であることが好ましく、イオン除去処理は、上記したような陽イオン除去処理であることが好ましい。
このホウ素の測定方法は、透過水のイオン除去によって比抵抗を十分に高く(例えば15MΩ・cm以上)して、ホウ素濃度の測定ができる。したがって、一般に使用されるオンラインホウ素モニター等を用いてppbレベルのホウ素濃度を正確に測定することができる。本発明のホウ素の測定方法は、例えば、本発明の被処理水中のホウ素の除去方法ないし除去システムにおけるホウ素濃度の測定に好適に適用することができる。
【実施例
【0052】
(実施例1)
実施例1は、図2に示すホウ素除去システム1Bを用い、被処理水に工業用水を用いて、その被処理水に、第1RO膜装置14の入口側の薬液配管36からNaOH水溶液を添加しpHを10.5とし、2段RO膜装置(第1RO膜装置14及び第2RO膜装置16)に通水した。第1RO膜装置14と第2RO膜装置16の間の薬液配管36からは薬液を添加しなかった。2段RO膜装置を通った透過水を陽イオン除去装置23(電気再生式脱陽イオン装置)に通した後のホウ素濃度を、ホウ素分析装置21によって測定した。ホウ素分析装置21には、ICP発光分光分析装置(エスアイアイ・ナノテクノロジー株式会社製SPS3100を用いた。TDS(Total Dissolved Solids:総溶解固形物)の測定は蒸発乾固法(JIS:K0102)に準拠した。導電率(比抵抗)の測定には、堀場アドバンスドテクノ社製 導電率測定装置HE-200H(商品名)を用いた。Na濃度の測定には、ダイオネクス社製イオンクロマトグラフシステムICS-1600(商品名)を用いた。第1RO膜装置14、第2RO膜装置16として、ES20-D8(日東電工社製、有効圧力1MPaあたりの透過流束:1.14m/m/d)を用いた。第1RO膜装置14の回収率80%、第2RO膜装置16の回収率90%で運転した。図示はしていないが、第2RO膜装置16の濃縮水は、第1RO膜装置14の被処理水に合流させた。
アルカリ添加後の第1RO膜装置14入口において、TDSが150ppm、導電率が340μS/cm(比抵抗が2.9kΩ・cm)、Na濃度が54ppm、ホウ素濃度が10ppbであった。
【0053】
その結果、被処理水からホウ素が十分に除去できていることがわかった。
【0054】
(実施例2)
実施例2は、図3に示すホウ素除去システム1Cを用い、被処理水に工業用水を用いて、その被処理水を陽イオン交換装置51、脱炭酸装置53、薬液配管36からのアルカリ添加、2段高圧RO膜装置(第1RO膜装置14及び第2RO膜装置16)の順番に通した。なお、酸性薬液配管37からは酸性薬液を添加しなかった。さらに、2段RO膜装置を通った透過水を陽イオン除去装置23に通した後、透過水中のホウ素濃度を、ホウ素分析装置21によって測定した。ホウ素分析装置21には、上記ICP発光分光分析装置を用いて測定した。TDS、導電率(比抵抗)及びNa濃度の測定は、実施例1と同様にした。第1RO膜装置14、第2RO膜装置16として、「SWC5MAX」(Hydranautics社製、有効圧力1MPaあたりの透過流束:0.32m/m/d)を用いた。その他条件は実施例1と同様にした。
アルカリ添加後の第1RO膜装置14入口において、pHが10、TDSが140ppm、導電率が320μS/cm(比抵抗が3.1kΩ・cm)、Na濃度が45ppm、ホウ素濃度が10ppbであった。
【0055】
(比較例1)
比較例1は、実施例1において、陽イオン除去装置23を通さないで透過水のホウ素濃度を測定した。それ以外は実施例1と同様にした。
(比較例2)
比較例2は、実施例1において、陽イオン除去装置23に代えて混床樹脂を用いたイオン除去装置(商品名:アンバージェット、EG4-HG、オルガノ社製)を使用した。それ以外は実施例1と同様にした。
【0056】
ホウ素濃度測定前(2段RO膜装置を通った透過水を陽イオン除去装置23に通した後)の透過水の比抵抗、Na濃度及びホウ素分析装置21によるホウ素濃度の測定結果を表1に示す。
【0057】
【表1】
【0058】
比較例1で測定されたホウ素濃度は、実施例1よりも低下した。これは、ナトリウムイオンの濃度が高すぎるため、給水の比抵抗が小さく、結果、ノイズが大きくなりホウ素濃度を正確に測定できなかったためである。
比較例2では、実施例1に比べてホウ素濃度が10分の1になった。これは、混床樹脂によりホウ素が取れてしまったことが原因である。これでは、RO膜の透過水の正確なホウ素濃度が測定できない。よって、比較例1、2では、RO膜処理直後の透過水のホウ素濃度が正確に測定できず、ホウ素濃度を指標にしたRO膜の運転管理を正確に行うことができない。
【0059】
(実施例3)
実施例3は、実施例2において、ホウ素分析装置21にGE社製オンラインホウ素測定器を使用してホウ素濃度の連続監視を実施した。
【0060】
(比較例3)
比較例3は、比較例1において、実施例3と同様のオンラインホウ素測定器を使用してホウ素濃度の連続監視を実施した。
【0061】
その結果を表2に示す。
【0062】
【表2】
【0063】
比較例3では、オンラインホウ素測定器の給水水質を満たさず、ノイズが大きく正確なホウ素濃度の測定ができなかった。
【符号の説明】
【0064】
1、1A、1B、1C、1D ホウ素除去システム
11 主配管
12 逆浸透膜装置(RO膜装置)
12in、14in、16in 入口側
12out 出口側
14 第1RO膜装置
16 第2RO膜装置
21 ホウ素分析装置
22 分岐配管
22A 分岐部
23 陽イオン除去装置
25 濃縮水配管
26 圧力調節弁
31 熱交換器
32、36 薬液配管
32A、36A 合流部
34 アルカリ剤供給源
35 薬注ポンプ
37 酸性薬液配管
37A 合流部
41 ポンプ
42 ポンプインバータ
51 陽イオン交換装置
53 脱炭酸装置
101 超純水製造システム
110 1次純水系システム
111 タンク
112 熱交換器
113 RO膜
114 イオン交換装置
115 脱気装置
120 2次純水系システム(サブシステム)
121 タンク
122 熱交換器
123 紫外線(UV)酸化装置
124 イオン交換装置
125 UF装置
130 前処理システム
141 1次主配管
142 2次主配管
143 戻し配管
S1、S2、S3、S4 信号線
図1
図2
図3
図4
図5