(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-03-14
(45)【発行日】2024-03-25
(54)【発明の名称】水中通信システム
(51)【国際特許分類】
H04B 11/00 20060101AFI20240315BHJP
【FI】
H04B11/00 D
(21)【出願番号】P 2019239492
(22)【出願日】2019-12-27
【審査請求日】2022-08-04
(73)【特許権者】
【識別番号】598003955
【氏名又は名称】海洋電子株式会社
(74)【代理人】
【識別番号】100148518
【氏名又は名称】松田 純一
(74)【代理人】
【識別番号】100160314
【氏名又は名称】西村 公芳
(74)【代理人】
【識別番号】100134038
【氏名又は名称】野田 薫央
(72)【発明者】
【氏名】川上 太一
(72)【発明者】
【氏名】大橋 徹
【審査官】対馬 英明
(56)【参考文献】
【文献】特開2003-194921(JP,A)
【文献】特開2012-042449(JP,A)
【文献】特開昭63-265186(JP,A)
【文献】特開2006-217267(JP,A)
【文献】特開2012-244413(JP,A)
【文献】特開2010-252331(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H04B 1/00
H04B 1/30
H04B 1/59
H04B 1/72
H04B 11/00-13/02
(57)【特許請求の範囲】
【請求項1】
基準信号を発生する基準信号発生部と、
前記基準信号発生部が発生した基準信号をデジタル変調してデータを含む物理信号に変換し、水中に送信するデータ送信部と、
前記データ送信部が送信した物理信号を受信するデータ受信部と、
前記データ送信部がデジタル変調した基準信号又は前記データ受信部が受信した物理信号を補正するイコライザー部と、
前記データ受信部が受信した物理信号と前記イコライザー部が補正した基準信号との相関、又は、前記データ受信部が受信し前記イコライザー部が補正した物理信号と前記データ送信部がデジタル変調した基準信号との相関をPOCにより計算する相関計算部とを備え
、
前記デジタル変調は、PSK変調であることを特徴とする水中通信システム。
【請求項2】
基準信号を発生する基準信号発生部と、
前記基準信号発生部が発生した基準信号をデジタル変調してデータを含む物理信号に変換し、水中に送信するデータ送信部と、
前記データ送信部が送信した物理信号を受信するデータ受信部と、
前記データ送信部がデジタル変調した基準信号又は前記データ受信部が受信した物理信号を補正するイコライザー部と、
前記データ受信部が受信した物理信号と前記イコライザー部が補正した基準信号との相関、又は、前記データ受信部が受信し前記イコライザー部が補正した物理信号と前記データ送信部がデジタル変調した基準信号との相関をPOCにより計算する相関計算部とを備え、
前記イコライザー部は、前記基準信号又は前記データ受信部が受信した物理信号を前記データ送信部及び前記データ受信部の伝達特性
のみに基づいて補正することを特徴とする
水中通信システム。
【請求項3】
前記基準信号発生部は、前記相関計算部の計算結果に基づいて、発生する基準信号を複数の基準信号の中から選択可能であることを特徴とする請求項1
又は請求項
2に記載の水中通信システム。
【請求項4】
前記データ受信部は、前記データ送信部による物理信号の送信時に動作を停止することを特徴とする請求項1乃至請求項
3のいずれか1項に記載の水中通信システム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、データ送信部が基準信号に基づいて水中に送信したデータを含む物理信号をデータ受信部が受信し、このデータ受信部が受信した物理信号について基準信号との相関を計算する水中通信システムに関する。
【背景技術】
【0002】
データ送信部が基準信号に基づいて水中に送信したデータを含む物理信号をデータ受信部が受信し、このデータ受信部が受信した物理信号について基準信号との相関を計算する水中通信システムとして、例えば特許文献1に記載の水中通信システムが知られている。
【0003】
図5に示すように、このような従来の水中通信システム1では、基準信号発生器2が発生した電気信号である基準信号について、データ送信部3が変調部4においてPSK(Phase Shift Keying:位相偏移変調)等のデジタル変調を行うとともに、変換器(トランスデューサー)5においてデータを含む超音波信号、光信号等の物理信号に変換し、水中に送信する。そして、被測定物における反射等により物理信号が戻ってくると、その物理信号をデータ受信部6が受信し、バンドパスフィルタリング及び増幅して相関計算器7に出力する。相関計算器7には、データ受信部6が受信した物理信号とともに、データ送信部3でデジタル変調された基準信号(特許文献1においては、同期信号)が入力され、相関計算器7では、
図6(a)に示すように、それらの信号がフーリエ変換された後に、振幅及び位相が合成されて逆フーリエ変換されることにより、データ受信部6が受信した物理信号について基準信号との相関が計算される。
【先行技術文献】
【特許文献】
【0004】
【発明の概要】
【発明が解決しようとする課題】
【0005】
ところで、従来の水中通信システムでは、伝送系が遅延波やドップラー効果で歪むことにより相関結果が分散し、相関を正確に計算できないことが多かった。そこで、相関結果を分散させずに相関のピークを検出しやすくするために、POC(Phase Only Correlation:位相限定相関法)のアルゴリズムを使用することが考えられる。前述のとおり、相関の計算には、通常は振幅及び位相を用いるが、POCでは、
図6(b)に示すように、位相だけを用いて相関を計算することにより、相関のピークが出やすくなる。
【0006】
しかしながら、POCでは、相関計算に用いられる基準信号や物理信号の精度が高くなければならず、たとえ従来の水中通信システムでは問題にならない精度であったとしても、POCによる計算時には誤差が増大して実用的ではないという問題がある。例えば、従来の計算では、
図7(a)に示すような波形(横軸は位相又は時間、縦軸は振幅又は相関値)がPOCによる計算では同図(b)に示すような波形になるはずであっても、実際には同図(a)に類する同図(c)に示すような波形にしかならないことが多々生じる。
【0007】
本発明は、上記の事情に鑑みてなされたもので、POCにも好適で相関を正確性高く計算することができる水中通信システムを提供することを課題としている。
【課題を解決するための手段】
【0008】
上記課題を解決するために、本発明に係る水中通信システムは、基準信号を発生する基準信号発生部と、前記基準信号発生部が発生した基準信号をデジタル変調してデータを含む物理信号に変換し、水中に送信するデータ送信部と、前記データ送信部が送信した物理信号を受信するデータ受信部と、前記基準信号又は前記データ受信部が受信した物理信号を補正するイコライザー部と、前記データ受信部が受信した物理信号と前記イコライザー部が補正した基準信号との相関、又は、前記データ受信部が受信し前記イコライザー部が補正した物理信号と前記基準信号との相関を計算する相関計算部とを備えることを特徴とする。
【0009】
前記イコライザー部は、前記基準信号又は前記データ受信部が受信した物理信号を前記データ送信部及び前記データ受信部の伝達特性に基づいて補正してもよく、前記相関計算部は、POCにより相関を計算してもよい。
【0010】
また、前記基準信号発生部は、前記相関計算部の計算結果に基づいて、発生する基準信号を複数の基準信号の中から選択可能であってもよく、前記データ受信部は、前記データ送信部による物理信号の送信時に動作を停止してもよい。
【発明の効果】
【0011】
本発明に係る水中通信システムによれば、POCにも好適で相関を正確性高く計算することができる。
【図面の簡単な説明】
【0012】
【
図1】発明を実施するための形態に係る水中音響通信システムを示す説明図である。
【
図2】発明を実施するための他の形態に係る水中音響通信システムを示す説明図である。
【
図3】発明を実施するためのさらに他の形態に係る水中音響通信システムを示す説明図である。
【
図4】(a)は1シンボルが8波の基本波に対して反射波が遅延した場合を示す説明図、(b)は(a)の遅延が4波分でS/Nが0dBになる場合を示す説明図、(c)は遅延が4波分の際にシンボル長を2倍にした場合を示す説明図である。
【
図5】従来の水中音響通信システムを示す説明図である。
【
図6】(a)は従来の相関の計算方法を示す説明図、(b)はPOCによる相関の計算方法を示す説明図である。
【
図7】(a)は従来の相関の計算方法によるピークの出現例を示す説明図、(b)はPOCによる相関の計算方法による理想的なピークの出現例を示す説明図、(c)はPOCによる相関の計算方法による実際のピークの出現例を示す説明図である。
【発明を実施するための形態】
【0013】
本発明を実施するための形態について、図面に基づいて説明する。
【0014】
図1に示すように、本実施の形態に係る水中音響通信システム10は、基準信号発生器11と、データ送信部12と、データ受信部13と、イコライザー部14と、相関計算器15とを備える。
【0015】
基準信号発生器11は、デジタル信号であるM系列等の基準信号を発生し、データ送信部12に出力する。
【0016】
データ送信部12は、変調部16及び変換器(トランスデューサー)17を有し、基準信号発生器11が発生した基準信号が入力されると、その基準信号を変調部16においてデジタル変調し、変換器17においてアナログ信号に変換した後にデータを含む超音波信号として水中に送信する。
【0017】
データ受信部13は、データ送信部12が送信した超音波信号が被測定物における反射等により戻ってくると、その超音波信号を受信し、バンドパスフィルタリング及び増幅して相関計算器15に出力する。
【0018】
イコライザー部14には、変調部16においてデジタル変調された基準信号がデータ送信部12から入力され、イコライザー部14は、その基準信号をデータ送信部12及びデータ受信部13の伝達特性に基づいて補正し、補正した基準信号を相関計算器15に出力する。すなわち、データ送信部12及びデータ受信部13は、S/Nや妨害特性の改善を目的として帯域制限をするため、データ受信部13が相関計算器15に出力する超音波信号には歪みが生じるが、イコライザー部14は、データ送信部12及びデータ受信部13の伝達関数を再現し、その超音波信号との相関をとる基準信号を超音波信号と同様に歪ませる補正を行う。
【0019】
相関計算器15は、データ受信部13が受信した超音波信号及びイコライザー部14が補正した基準信号が入力されると、両信号をフーリエ変換した後に位相を合成して逆フーリエ変換し(
図6(b)参照)、両信号の相関をPOCにより計算する。この計算結果により、水中音響通信システム10又は外部の演算装置では、データ受信部13が受信した超音波信号についてのデータ復調のタイミングや伝達時間(超音波信号を発信してから受信するまでの伝達時間)が求められる。
【0020】
水中音響通信システム10は、
図2に示すように、イコライザー部14がデータ送信部12と相関計算器15との間に設けられるのではなく、データ受信部13と相関計算器15との間に設けられてもよい。この場合、イコライザー部14は、データ送信部12及びデータ受信部13の
逆伝達関数を再現し、データ受信部13が受信した超音波信号をデータ送信部12及びデータ受信部13による伝送系歪みをキャンセルするように補正して、補正した超音波信号を相関計算器15に出力する。相関計算器15には、変調部16においてデジタル変調された基準信号がデータ送信部12から入力され、相関計算器15は、その基準信号とともにイコライザー部14が補正した超音波信号が入力されると、両信号をフーリエ変換した後に位相を合成して逆フーリエ変換し、両信号の相関をPOCにより計算する。
【0021】
また、水中音響通信システム10は、
図3に示すように、複数が組み合わせられてもよく、同図においては、2つの水中音響通信システム10が組み合わせられ、各水中音響通信システム10を区別するために符号の末尾にA,Bを付している。例えば水中音響通信システム10Aは海上(船上)に設置可能であり、水中音響通信システム10Bは海底に設置可能である。
【0022】
水中音響通信システム10Aのデータ送信部12Aから送信された超音波信号は、水中音響通信システム10Bのデータ受信部13Bで受信された後、相関計算器15Bに入力される。相関計算器15Bには、基準信号発生器11Bで発生してデータ送信部12Bの変調部16Bでデジタル変調され、さらにイコライザー部14Bで補正された基準信号も入力され、この補正された基準信号とデータ受信部13Bが受信した超音波信号との相関が計算される。
【0023】
一方、水中音響通信システム10Bは、水中音響通信システム10Aから超音波信号を受信すると、データ送信部12Bから水中音響通信システム10Aに向けて超音波信号を送信する。データ送信部12Bから送信された超音波信号は、水中音響通信システム10Aのデータ受信部13Aで受信された後、相関計算器15Aに入力される。相関計算器15Aには、基準信号発生器11Aで発生してデータ送信部12Aの変調部16Aでデジタル変調され、さらにイコライザー部14Aで補正された基準信号も入力され、この補正された基準信号とデータ受信部13Aが受信した超音波信号との相関が計算される。
【0024】
本実施の形態において、基準信号発生器11は、相関計算器15の計算結果に基づいて発生する基準信号を複数の基準信号の中から選択可能であり、伝送系の歪みに適した基準信号を発生させることもできる。
【0025】
例えば、遅延波が想定遅延より長い伝送系について説明すると、
図4(a)に示すように、変調部16においてPSKで1シンボルごとに位相を変更して基準信号を変調し(
図4は6シンボル(6ビット)で基準信号を構成し、1シンボル区間に8波のsin波が入った例を表す。)、基本波に対して反射波が時間t
Iだけ遅れて到達する場合、基本波のうち、そのt
Iに相当する部分が干渉を受け、シンボルのS/Nはt
S/t
Iとなる(t
Iに相当する部分+t
Sに相当する部分=1シンボル)。
【0026】
したがって、同図(b)に示すように、tIに相当する部分及びtSに相当する部分がいずれも4波だとすると、S/Nは0dBになって基準信号としては使えなくなるが、基準信号発生器11は、同図(c)に示すように、シンボル長を2倍とする基準信号を選択して発生することができ、これにより、S/Nは10dBになって基準信号として利用可能になる。
【0027】
本実施の形態に係る水中音響通信システム10は、基準信号を発生する基準信号発生器11と、基準信号発生器11が発生した基準信号をデジタル変調してデータを含む超音波信号に変換し、水中に送信するデータ送信部12と、データ送信部12が送信した超音波信号を受信するデータ受信部13と、基準信号又はデータ受信部13が受信した超音波信号を補正するイコライザー部14と、データ受信部13が受信した超音波信号とイコライザー部14が補正した基準信号との相関、又は、データ受信部13が受信しイコライザー部14が補正した超音波信号と基準信号との相関を計算する相関計算器15とを備えるので、相関計算に用いられる基準信号や超音波信号がイコライザー部14により補正され、相関計算時の水中伝送系以外の送受信機内(データ送信部12及びデータ受信部13の内部の)伝送系歪みの影響が除かれることにより、相関を正確性高く計算することができる。
【0028】
ここでは、イコライザー部14が基準信号又はデータ受信部13が受信した超音波信号をデータ送信部12及びデータ受信部13の伝達特性に基づいて補正することによって、POCにより相関を計算しても
図7(b)に示すような波形が得られるので、相関計算器15は、POCにより相関を計算し、相関のピークが正確に検出される。
【0029】
また、基準信号発生器11は、相関計算器15の計算結果に基づいて、発生する基準信号を複数の基準信号の中から選択可能であるので、1つの基準信号では相関の計算が難しいような場合にも相関の計算が可能となり(
図4(b),(c)参照)、相関を利用した様々な分析等が可能になる。
【0030】
以上、本発明を実施するための形態について例示したが、本発明の実施形態は上述したものに限られず、発明の趣旨を逸脱しない範囲で適宜変更等してもよい。
【0031】
例えば、水中通信システムが送受信する物理信号は超音波信号に限られず、光信号等であってもよく、基準信号発生器が発生する複数の基準信号は、シンボル長を異ならせたものではなく波の数等を異ならせたものでもよい(
図4(c)においては、シンボル長を2倍にしたが、シンボル数は6個のまま、1シンボルを16波とすることもできる。)。
【0032】
さらに、データ受信部は、データ送信部による物理信号の送信時に動作を停止し、物理信号を受信しないように構成してもよく、これにより、データ送信部が送信していない物理信号をデータ受信部が誤って受信し、相関計算に悪影響が生じる事態を防止することができる。
【符号の説明】
【0033】
10 水中音響通信システム(水中通信システム)
11 基準信号発生器(基準信号発生部)
12 データ送信部
13 データ受信部
14 イコライザー部
15 相関計算器(相関計算部)