(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-03-14
(45)【発行日】2024-03-25
(54)【発明の名称】ナノカーボン材料を用いた光デバイス
(51)【国際特許分類】
G02F 1/313 20060101AFI20240315BHJP
G02F 1/295 20060101ALI20240315BHJP
G01S 7/481 20060101ALI20240315BHJP
【FI】
G02F1/313
G02F1/295
G01S7/481 A
(21)【出願番号】P 2020521184
(86)(22)【出願日】2019-05-15
(86)【国際出願番号】 JP2019019366
(87)【国際公開番号】W WO2019225445
(87)【国際公開日】2019-11-28
【審査請求日】2022-05-09
(31)【優先権主張番号】P 2018097462
(32)【優先日】2018-05-21
(33)【優先権主張国・地域又は機関】JP
【国等の委託研究の成果に係る記載事項】(出願人による申告)平成27年度、国立研究開発法人科学技術振興機構、戦略的創造研究推進事業(さきがけ)「素材・デバイス・システム融合による革新的ナノエレクトロニクスの創成」に係る委託研究、産業技術力強化法第17条の適用を受ける特許出願
(73)【特許権者】
【識別番号】598121341
【氏名又は名称】慶應義塾
(74)【代理人】
【識別番号】100107766
【氏名又は名称】伊東 忠重
(74)【代理人】
【識別番号】100070150
【氏名又は名称】伊東 忠彦
(72)【発明者】
【氏名】牧 英之
【審査官】佐藤 宙子
(56)【参考文献】
【文献】特開2017-161591(JP,A)
【文献】国際公開第2017/126386(WO,A1)
【文献】中国特許出願公開第102662254(CN,A)
【文献】中国特許出願公開第105044929(CN,A)
【文献】WANG,Y. et al.,Improved performance of optical phased arrays assisted by transparent graphene nanoheaters and air trenches,RSC Adv. 2018,2018年02月23日,8,pp.8442-8449,http://doi.org/10.1039/c7ra13154b
【文献】YAN,Siqi,Slow-light-enhanced energy efficiency for graphene microheaters on silicon photonic crystal waveguides,nature communications,2017年02月09日,14411,pp.1-8,http://doi.org/10.1038/ncomms14411
【文献】TATOLI,T. et al.,Graphene-based fine-tunable optical delay line for optical beamforming in phased-array antennas,Applied Optics,2016年06月,Vol.55,No.16,pp.4342-4349,http://dx.doi.org/10.1364/AO.55.004342
(58)【調査した分野】(Int.Cl.,DB名)
G02F 1/00-1/125
G02F 1/21-7/00
G02B 6/12-6/14
G01S 7/48-7/51
Optica
(57)【特許請求の範囲】
【請求項1】
入射光ポートに接続される第1の光導波路と、
第1の出射光ポートに接続される第2の光導波路と、
第2の出射光ポートに接続される第3の光導波路と、
前記第1の光導波路を伝搬する入射光を、前記第2の光導波路と前記第3の光導波路の少なくとも一方に光学的に結合する光部品と、
少なくとも前記光部品が設けられるエリアに配置されるナノカーボン材料と、
前記ナノカーボン材料に通電加熱する電極対と、
を有し、前記ナノカーボン材料への前記通電加熱によって、前記第1の出射光ポートと前記第2の出射光ポートの間で光路が切り替えられることを特徴とする光デバイス。
【請求項2】
前記第1の光導波路と前記第2の光導波路は連続する一本の導波路であり、
前記光部品は、前記一本の導波路と前記第3の光導波路の間に配置される光共振器であり、
少なくとも前記光共振器を覆う前記ナノカーボン材料への前記通電加熱によって、前記第1の出射光ポートと前記第2の出射光ポートの間で光路が切り替えられることを特徴とする請求項1に記載の光デバイス。
【請求項3】
前記光部品はマッハツェンダ干渉計であり、
前記入射光ポートは前記マッハツェンダ干渉計の一端に光学的に結合されており、
前記第1の出射光ポートと前記第2の出射光ポートは、前記マッハツェンダ干渉計の他端に光学的に結合されており、
前記マッハツェンダ干渉計の一方のアームに配置される第1のナノカーボン材料と、
前記マッハツェンダ干渉計の他方のアームに配置される第2のナノカーボン材料と、
を有し、
前記第1のナノカーボン材料の通電状態と、前記第2のナノカーボン材料の通電状態が個別に制御されて、前記第1の出射光ポートと前記第2の出射光ポートの間で前記光路が切り替えられることを特徴とする請求項1に記載の光デバイス。
【請求項4】
前記光部品は方向性カプラ、マルチモードカプラ、またはYスプリッタであり、
前記入射光ポートは、前記光部品の結合部の入力端に光学的に結合され、
前記第1の出射光ポートと前記第2の出射光ポートは、前記結合部の出力端にそれぞれ光学的に結合され、
少なくとも前記結合部を覆う前記ナノカーボン材料への前記通電加熱によって、前記結合部での干渉状態が変化して、前記第1の出射光ポートと前記第2の出射光ポートの間で前記光路が切り替えられることを特徴とする請求項1に記載の光デバイス。
【請求項5】
前記電極対の一方は、前記光部品の一方の側に配置され、前記電極対の他方は、前記光部品の他方の側に配置され、
前記結合部を覆う前記ナノカーボン材料は、前記電極対の前記一方と前記他方の間で、前記光部品の光軸に対して非対称な平面形状を有することを特徴とする請求項4に記載の光デバイス。
【請求項6】
入射光を複数のチャンネルに分岐する光結合器と、
前記複数のチャンネルにそれぞれ設けられる複数の位相変調器と、
前記複数の位相変調器の出力に結合される複数の出射光ポートと、
を有し、
前記複数の位相変調器はナノカーボン材料で覆われる被覆領域を有し、前記ナノカーボン材料への通電加熱によって前記複数の位相変調器
のそれぞれを通過する光に異なる位相変化
量が与えられ、
前記複数の位相変調器で与えられる位相差によって、前記複数の出射光ポートから出射される出射光の方向が
決まり、
前記複数の位相変調器は、並列またはアレイ状に配置され、
各位相変調器は、前記ナノカーボン材料によって個別に覆われた前記被覆領域を有し、前記被覆領域ごとに前記ナノカーボン材料への通電加熱による前記位相変化量が個別に制御され、前記各位相変調器での前記通電加熱による前記位相変化量の連続的な変化によって前記出射光が位相変調器アレイの面内方向に所定の角度で掃引されることを特徴とする光デバイス。
【請求項7】
入射光を複数のチャンネルに分岐する光結合器と、
前記複数のチャンネルにそれぞれ設けられる複数の位相変調器と、
前記複数の位相変調器の出力に結合される複数の出射光ポートと、
を有し、
前記複数の位相変調器はナノカーボン材料で覆われる被覆領域を有し、前記ナノカーボン材料への通電加熱によって前記複数の位相変調器のそれぞれを通過する光に異なる位相変化量が与えられ、
前記複数の位相変調器で与えられる位相差によって、前記複数の出射光ポートから出射される出射光の方向が決まり、
前記複数の位相変調器は、並列またはアレイ状に配置され、
前記ナノカーボン材料は、
アレイ全体を覆って前記複数の位相変調器に共通に設けられており、
各位相変調器が前記ナノカーボン材料で覆われ
ている部分の前記被覆領域の形状またはサイズは、前記複数のチャンネルの間で異なり、前記複数のチャンネルの間で前記
ナノカーボン材料と前記光との相互作用長、または前記通電加熱による発熱量を変えることで前記異なる位相変化量が
与えられることを特徴とす
る光デバイス。
【請求項8】
前記並列またはアレイ状に配置された前記複数の位相変調器
の前段に配置され、直列または多段接続されて、同じ位相変化量を有
する複数の第2の位相変調器、
をさらに有し、
前記複数の位相変調器の後段で前記入射光の一部が取り出されて前記複数の出射光ポートに結合されることを特徴とする請求項6
または7に記載の光デバイス。
【請求項9】
前記複数の位相変調器の各々は、光導波路、1以上の光共振器、前記光導波路と前記光共振器の組み合わせ、または周期的な屈折率分布を有するナノ構造体で形成される位相変調部を有し、
前記位相変調部が前記ナノカーボン材料で被覆されていることを特徴とする請求項6~
8のいずれか1項に記載の光デバイス。
【請求項10】
入射光を複数のチャンネルに分岐する光結合器と、前記複数のチャンネルにそれぞれ設けられる複数の位相変調器と、外部からの電気信号による通電加熱によって各チャンネルを通過する光の位相を変化させるナノカーボン材料とを有するアレイ位相変調器と、
前記アレイ位相変調器の出力に接続される複数のアレイ導波路と、
前記複数のアレイ導波路に接続されて前記複数のアレイ導波路からの出力光を所定の位置に集光させる集光導波路と、
前記集光導波路の出力に接続される出射光ポートと、
を有し、
前記電気信号による前記ナノカーボン材料への前記通電加熱によって前記複数の位相変調器の位相変化量が制御されて、前記集光導波路の出射端での集光位置が切り替えられることを特徴とする光デバイス。
【請求項11】
前記集光導波路の出射端に接続される複数の出力導波路、
をさらに有し、
前記出射光ポートは、前記複数の出力導波路のそれぞれに接続される複数の出射光ポートを含み、
前記通電加熱による前記位相変化量の制御により、前記集光位置が前記複数の出力導波路のいずれかに合わせられて前記複数の出射光ポートから1つの出射光ポートが選択されることを特徴とする請求項
10に記載の光デバイス。
【請求項12】
前記集光導波路の出射端に接続される単一の出力導波路、
をさらに有し、
前記出射光ポートは、前記出力導波路に接続される単一の出射光ポートであり、
前記入射光は複数の波長を含み、
前記通電加熱による前記位相変化量の制御により、波長に依存して前記集光位置がシフトして、前記出力導波路から特定の波長の光が取り出されることを特徴とする請求項
10に記載の光デバイス。
【請求項13】
前記出射光ポートは、周期的な屈折率分布を有するナノ構造体と、前記ナノ構造体を覆う
第2のナノカーボン材料と、前記
第2のナノカーボン材料に通電加熱する電気信号を入力する電極と、を有
する光アンテナを備え、
前記
第2のナノカーボン材料への前記通電加熱によって前記ナノ構造体の屈折率または伝搬光との相互作用が変調されて前記ナノ構造体に入射した光の出射方向が
変化する請求項10~12のいずれか1項に記載の光デバイス。
【請求項14】
請求項
6~9のいずれか1項の光デバイスを用いて前記複数の出射光ポートから出射する光を所定の角度範囲内で掃引する投光部と、
前記所定の角度範囲内に存在する物体からの反射光を受光する受光部と、
前記受光部での受光結果に基づいて前記物体の距離を計測する制御回路と、
を有する光検出及び測距装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、グラフェンなどのナノカーボン材料を用いた光デバイスに関し、特にナノカーボン材料とシリコンフォトニクス技術を組み合わせた光デバイスに関する。
【背景技術】
【0002】
グラフェン、カーボンナノチューブ(CNT)といったナノカーボン材料を用いた発光素子、光源、及びフォトカプラが提案されている(たとえば、特許文献1及び特許文献2参照)。ナノカーボン材料は高速に通電加熱が可能であり、黒体放射により広い波長範囲で連続スペクトル(白色光)を得ることができる。
【0003】
一方、基板上に微細なシリコン導波路で光回路を集積するシリコンフォトニクス技術が注目を集めている。シリコンフォトニクス技術は多様な分野で利用されており、WDM(Wavelength Division Multiplexing:波長分割多重)方式の光通信ネットワークで用いられる小型の光モジュール等が多く開発されている。
【0004】
シリコン導波路にグラフェンのナノヒータを直接配置することで加熱効率を高めた光フェーズドアレイが知られている(たとえば、非特許文献1参照)。
【先行技術文献】
【特許文献】
【0005】
【文献】特許第5747334号
【文献】特許第6155012号
【非特許文献】
【0006】
【文献】Yubing Wang, et al., "Improved performance of optical phased arrays assisted by transparent grapheme nanoheaters and air trenches," RSC Adv. 2018, 8, 8442-8449, 23 February 2018
【発明の概要】
【発明が解決しようとする課題】
【0007】
光集積デバイスにおける光スイッチや光路変換素子では、一般に金属や半導体のヒーターを用いて、熱光学効果によるスイッチングが行われている。金属や半導体のヒーターを用いた場合、ヒーターでの温度変化によるスイッチング速度はキロヘルツ(kHz)オーダーと非常に遅く、かつ構造が複雑である。素子の性能を上げるために光導波路にヒーターを接近させると、ヒーターによる光吸収によって導波路の損失が増大する。そのため、導波路とヒーターの間に一定の距離がおかれ、スイッチング効率が低い、消費電力が高い、等の問題がある。
【0008】
本発明は、低消費電力で高速動作が可能な光デバイスを提供することを目的とする。
【課題を解決するための手段】
【0009】
実施形態では、グラフェンやカーボンナノチューブといったナノカーボン材料を用いた光デバイスを提供する。本発明の第1の態様では、光デバイスは、
入射光ポートに接続される第1の光導波路と、
第1の出射光ポートに接続される第2の光導波路と、
第2の出射光ポートに接続される第3の光導波路と、
前記第1の光導波路を、前記第2の光導波路と前記第3の光導波路の少なくとも一方に光学的に接続する光部品と、
少なくとも前記光部品が設けられるエリアに配置されるナノカーボン材料と、
前記ナノカーボン材料に電気信号を印加する電極対と、
を有し、前記電気信号の印加によって、前記第1の出射光ポートと前記第2の出射光ポートの間で光路が切り替えられる。
【0010】
本発明の第2の態様では、光デバイスは、
入射光を複数のチャンネルに分岐する光結合器と、
前記複数のチャンネルにそれぞれ設けられる複数の位相変調器と、
前記複数の位相変調器の出力に結合される複数の出射光ポートと、
を有し、
前記複数の位相変調器はナノカーボン材料で覆われる被覆領域を有し、外部から前記ナノカーボン材料に印加される電気信号によって前記複数の位相変調器を通過する光の位相が変化し、
前記複数の位相変調器で与えられる位相差によって、前記複数の出射光ポートから出射される出射光の方向が決まる。
【0011】
本発明の第3の態様では、光デバイスは、
入射光を複数のチャンネルに分岐する光結合器と、前記複数のチャンネルにそれぞれ設けられる複数の位相変調器と、外部からの電気信号による通電加熱によって各チャンネルを通過する光の位相を変化させるナノカーボン材料とを有するアレイ位相変調器と、
前記アレイ位相変調器の出力に接続される複数のアレイ導波路と、
前記複数のアレイ導波路に接続されて前記複数のアレイ導波路からの出力光を所定の位置に集光させる集光導波路と、
前記集光導波路の出力に接続される出射光ポートと、
を有し、
前記電気信号によって前記複数の位相変調器の位相変化量が制御されて、前記集光導波路の出射端での集光位置が決まる。
【0012】
本発明の第4の態様では、光デバイスは、
周期的な屈折率分布を有するナノ構造体と、
前記ナノ構造体を覆うナノカーボン材料と、
前記ナノカーボン材料に印加される電気信号を入力する電極と、
を有し、前記ナノカーボン材料の通電加熱によって前記ナノ構造体の屈折率または伝搬光との相互作用が変調されて前記ナノ構造体に入射した光の出射方向が変化する。
【発明の効果】
【0013】
低消費電力で高速動作が可能な光デバイスが実現される。特に、高速の光路切り替えや光スイープを実現することができる。
【図面の簡単な説明】
【0014】
【
図1A】第1実施形態の光デバイスの一例である光路変換器の上面模式図である。
【
図2A】作製された光路変換器の電極形成前の顕微画像である。
【
図2B】作製された光路変換器の電極形成後の顕微画像である。
【
図2C】作製された光路変換器の導波路構造の顕微画像である。
【
図3A】実施形態の光路変換器の透過光及び分岐光の波長依存性を示す図である。
【
図3B】光路変換器の透過光出射状態を示す図である。
【
図3C】光路変換器の分岐光出射状態を示す図である。
【
図4A】作製した光路変換器の光路切り替え動作の実験を示す画像である。
【
図4B】電圧オフによる分岐光出射を示す画像である。
【
図4C】電圧オンによる透過光出射を示す画像である。
【
図5】グラフェンに印加する電圧に依存した透過光スペクトルの図である。
【
図6A】グラフェンに印加する電圧に対する屈折率の変化を示す図である。
【
図6B】グラフェンに印加する電力に対する屈折率の変化を示す図である。
【
図7】グラフェンに100kHzの変調電圧信号を印加したときの透過光強度の時間変化を示す図である。
【
図8】グラフェンに1GHzの変調信号を印加したときの熱放射の時間分解測定結果を示す図である。
【
図9A】実施形態の光デバイスに利用可能な光共振器の構成例を示す図である。
【
図9B】実施形態の光デバイスに利用可能な光共振器の構成例を示す図である。
【
図9C】実施形態の光デバイスに利用可能な光共振器の構成例を示す図である。
【
図10A】マッハツェンダ干渉計を用いた光路変換器の構成例を示す図である。
【
図10B】方向性カプラを用いた光路変換器の構成例を示す図である。
【
図10C】マルチモードカプラを用いた光路変換器の構成例を示す図である。
【
図11A】光導波路とナノカーボン材料の配置例を示す図である。
【
図11B】光導波路とナノカーボン材料の配置例を示す図である。
【
図11C】光導波路とナノカーボン材料の配置例を示す図である。
【
図11D】光導波路とナノカーボン材料の配置例を示す図である。
【
図11E】光導波路とナノカーボン材料の配置例を示す図である。
【
図12A】第2実施形態の光デバイスの一例である位相変調器の構成例を示す模式図である。
【
図12B】第2実施形態の光デバイスの一例である位相変調器の構成例を示す図である。
【
図12C】第2実施形態の光デバイスの一例である位相変調器の構成例を示す図である。
【
図12D】第2実施形態の光デバイスの一例である位相変調器の構成例を示す図である。
【
図12E】第2実施形態の光デバイスの一例である位相変調器の構成例を示す図である。
【
図13】第3実施形態の光デバイスの一例である光掃引デバイスの模式図である。
【
図14】光掃引デバイスで用いられる位相変調器アレイの構成例を示す図である。
【
図16】第4実施形態の光デバイスである光路制御(ルーティング)デバイスの模式図である。
【
図17】第5実施形態の光デバイスである分光器の模式図である。
【
図18】実施形態の光掃引デバイスを適用した光検出及び測距装置の模式図である。
【
図19A】その他の変形例として、光アンテナの構成例を示す図である。
【
図19B】その他の変形例として、光アンテナの構成例を示す図である。
【発明を実施するための形態】
【0015】
実施形態では、グラフェン、カーボンナノチューブ等のナノカーボン材料を用いた光デバイスを提供する。光デバイスは、シリコン、酸化シリコン、窒化シリコンなどの光透過材料を微細に加工した集積光デバイスであり、光路変換器、光掃引デバイス、分光器、位相変調器、光アンテナなどを含む。
【0016】
光透過材料を微細加工した光導波路や共振器に、通電加熱による熱源を設けることで、熱光学効果を利用して屈折率を制御し、高速の光路切り替えや光掃引などの制御が可能である。
【0017】
ナノカーボン材料は、炭素原子が六員環構造で平面上に配列した原子オーダーの炭素材料である。ナノカーボンは優れた熱的特性を有しており、熱伝導率が高いとされる銅と比べても10倍程度の大きな熱伝導率を有している。加えて、原子オーダーで微小な構造のデバイスが作製できるため、体積に比例した物理量である熱容量が極めて小さい。ナノカーボン材料を光デバイスに応用した場合、非常に小さな熱エネルギーで大きな温度変化が得られるだけではなく、熱容量に比例して温度変化の緩和時間を小さくすることができ、高速に動作する光デバイスを開発することができる。
【0018】
ナノカーボン材料は、ナノカーボン内のプラズモンや基板の表面極性フォノンを利用して熱伝導を大きくすることが可能であり、半導体や金属材料と比べて大きな熱伝導が得られる。この特性を利用して、高速かつ高効率の温度変調を行う。
【0019】
ナノカーボン材料により光路変換、光路制御(ルーティング)、光掃引等を行う場合、数百kHz以上の高速変調が可能であり、最大で、ギガヘルツ(GHz)オーダーの速度での変調が可能である。従来の金属や半導体のヒーターを用いた光デバイスと比べて、100倍~100万倍程度の高速動作が可能な光デバイスが実現できる。
【0020】
<第1実施形態>
図1Aは、光デバイスの一例として、第1実施形態の光路変換器10Aの上面図を示し、
図1Bは斜視図を示す。光路変換器10Aは、基板103上にシリコン(Si)などの光透過材料で形成された一対の光導波路11及び12と、光導波路11及び12に近接して配置される光共振器13と、光導波路11及び12と光共振器13を覆うナノカーボン材料15を有する。ナノカーボン材料15は、一対の電極14、16に接続されている。
【0021】
基板103は、たとえば、シリコン基板、SOI(Silicon on Insulator)基板などである。この例では、Si基板101上にSiO
2層102が形成された基板103の上に光導波路11,12と光共振器13が形成されている。SOI基板を用いる場合は、絶縁層としてのシリコン酸化(SiO
2)層を下部クラッド層として利用し、Si層を加工して、光導波路11、12と光共振器13を形成することができる。
図1の例では、光共振器13はリング共振器である。
【0022】
光路変換器10Aの光導波路11に、入射光ポートPinから光を入射した場合、光共振器13を経由せずにそのまま直進する光は、透過光出射ポートPout1から出射する。光共振器13に結合して周回し、その後、光導波路12に結合した光は、分岐光出射ポートPout2から出射する。光導波路11のうち、入射光ポートPinから光共振器13に近接する部分までを第1の導波路、光共振器13に近接する部分から透過光出射ポートPout1までを第2の導波路としてもよい。光導波路12のうち、光共振器13に近接する部分から分岐光出射ポートPout2までを、第2の光導波路としてもよい。光共振器13は、入射光ポートPinからの入射光を、透過光出射ポートPout1または分岐光出射ポートPout2に光学的に接続する光部品の一例である。
【0023】
通常の動作では、特定の波長を有するレーザー光などの単色光を入射する場合に、波長を選択することで、透過光出射ポートPout1または分岐光出射ポートPout2のいずれか一方からだけ光を出力することが可能である。換言すると、レーザー光の波長を変えることにより、出射光の出口を選択することができる。
【0024】
この状態で、電極14及び16を介してナノカーボン材料15に電圧または電流を印加すると、ナノカーボン材料15は通電により加熱される。ナノカーボン材料15の温度が上昇すると、熱伝導により、下方の光導波路11、12と、光共振器13の温度も上昇する。この温度上昇によって、光導波路11、12及び光共振器13の実効的な屈折率が変化し、光導波路11,12と光共振器13の実質的な光路長が変化する。
【0025】
ナノカーボン材料15への通電の有無によって、光導波路11、12や光共振器13を伝搬する光の位相を変化させることができる。この位相変化を利用し、通電の有無によって、入射光ポートPinから入射した光の出力先を、透過光出射ポートPout1と分岐光出射ポートPout2の間で選択することが可能になる。外部からの電気信号によって、2つの光経路を切り替えることができる。
【0026】
ナノカーボン材料15への通電がない状態で、最初に透過光出射ポートPout1と分岐光出射ポートPout2のいずれから出射させるかは、波長を決めることで設定可能である。ナノカーボン材料15への電圧印加がない状態では、ナノカーボン材料15の温度は上昇せず、最初に設定された出射ポート、たとえば透過光出射ポートPout1からだけ光が出射する。
【0027】
ナノカーボン材料15に電圧が印加されると、通電加熱によりナノカーボン材料15の温度が上昇する。熱伝導により、下方の光導波路11、12と光共振器13の温度も上昇し、熱光学効果によって光導波路11、12と光共振器13の屈折率が変化する。屈折率の変化により、伝搬光の位相がずれて干渉が起こり、出射ポートが分岐光出射ポートPout2に切り替わる。ナノカーボン材料15に印加する電気信号によって、光の経路を変換することができ、光路変換器10Aとして動作する。
【0028】
図2A~
図2Cは、実際に作製した光路変換器10Aの顕微画像である。
図2Aは電極形成前の光学顕微鏡画像、
図2Bは電極形成後の光学顕微鏡画像、
図2Cは、光共振器13の近傍の導波路構造の電子顕微鏡画像である。ここでは、レーストラック型の光共振器13に隣接して2つの光導波路11、12を配置している。光共振器13と光導波路11,12を含むSi細線の光回路の上にナノカーボン材料15であるグラフェンを形成し、グラフェンの両端に電極を配置する。
【0029】
ナノカーボン材料15とSi細線の光回路を組み合わせることで、10μm×10μmのサイズで高速動作する光路変換器10Aを実現することができる。
【0030】
図3Aは、作製した光路変換器10Aにおいて、入射光ポートPinから入射する光の波長を変えたときの光透過率の変化のシミュレーション結果である。図中、「透過光」と記載されているプロファイルは、透過光出射ポートPout1での透過率の波長依存性、「分岐光」と記載されているプロファイルは、分岐光出射ポートPout2での透過率の波長依存性を示す。入射光の波長に応じて、透過光の強度と分岐光の強度が周期的に変化している。透過光強度が高いときは分岐光強度が低く、分岐光強度が強いときは透過光強度が弱くなっている。この図から、波長に依存して光導波路11,12を通る光と光共振器13を通る光の干渉状態が周期的に変化していることがわかる。光の干渉状態を変えることで、光路変換器10Aとして制御可能であることが示される。
図3Bは、
図3Aの透過光出射状態を示し、
図3Cは分岐光出射状態を示す。透過光出射状態では、入力光は導波路を直進して透過光出射ポートPout1に向かう。分岐光出射状態では、入射光はリング共振器に結合し、リング共振器から他方の導波路に結合して分岐光出射ポートPout2に向かう。
【0031】
図4Aは、作製した光路変換器10Aに対して、実際に光路変換動作を行う実験を説明する図であり、光路変換器10Aの電極形成後の光学顕微鏡画像(部分拡大画像を含む)である。ナノカーボン材料15であるグラフェンへの電圧印加を切り替えて、出射口をPout1とPout2の間で切り換える。
図4Bは、電圧印加がない(V=0V)ときの赤外カメラ像、
図4Cは、電圧印加時(V=3.5V)の赤外カメラ像である。
【0032】
入射光ポートPinから入射される光は、透過光導波路を直進する光と、リング共振器を通って分岐光導波路に結合する分岐光に分かれる。この構成例では、グラフェンへの電圧印加がない状態(V=0V)で分岐光のみが得られる波長が選択されており、
図4Bで分岐光出射ポートに向けて光が伝搬している様子が観察される。
図4Cでは、グラフェンに電圧が印加されて(V=3.5V)、光路が分岐光側から透過光側に切り替わって、透過光出射ポートに光が伝搬している様子が観察される。グラフェンヒータを用いることで、高速動作する光路変換器10Aが実現することが実証されている。
【0033】
図5は、実施形態の光路変換器10Aにおける透過率スペクトルの電圧依存性を示す。ナノカーボン材料15であるグラフェンに印加する電圧を0V、1V、2V、3Vと変えることで、透過率スペクトルのピークが長波長側にシフトする。グラフェンへの通電加熱で生じる熱光学効果によって、Si導波路の実効的な屈折率が変化して実効光路長が変化し、光導波路11,12と光共振器13を通過する光の干渉条件が変化する。この干渉条件の変化により透過率スペクトルが変化し、透過光と分岐光の光路が切り替えられる。
【0034】
図6Aは、グラフェンへの印加電圧にともなうSi導波路の屈折率の変化を示し、
図6Bは電力にともなうSi導波路の屈折率の変化を示す。Si導波路の屈折率は、
図5の透過率スペクトルから求めることができる。電力は、電圧印加の際の電流を計測することで求められる。
図6A及び
図6Bで用いたサンプルでは、電力に対して屈折率はほぼ線形に変化している。光導波路の屈折率がどのように変化するかは、光デバイスに使用する素材や、デバイス構造によって異なるため、電気的な外部入力に対する屈折率依存性を用途に合わせて設計することができる。
【0035】
図7は、
図2で作製した光路変換器10Aの電極14,16に100kHzの変調信号を印加したときの透過光出力ポートPout1での透過光強度の測定結果である。ナノカーボン材料としてグラフェンを用い、変調信号は0Vと3.5Vの間で変化する矩形波信号である。透過光の強度変化はオシロスコープで測定した。高速の光路選択または光路切り替えがリアルタイムで観測されている。
【0036】
図8は、グラフェンに1GHzの変調信号を入力したときの熱放射の時間分解測定結果を示す。ナノカーボン材料15は、原子オーダーの微小な構造を有し、熱容量が小さく、高速に温度変調をすることができる。また、ナノカーボン材料15は、熱伝導率が高いとされる銅の10倍程度の高い熱伝導率を有しており、さらに、ナノカーボン内のプラズモンや基板の表面極性フォノンを利用して、さらに大きな熱伝導率を得ることができる。ナノカーボン材料15を用いることで、小さな熱エネルギーで大きな温度変化を得ることができる。また、温度変化の緩和時間が短く、1GHzという高速電圧信号を入力した場合でも、変調信号の速度に追随してグラフェンの温度が変化する。
【0037】
図8の測定結果は、実施形態の光路変換器10Aは、最大で1GHzの速度で動作可能であることを示している。光路変換器10Aは、金属や半導体のヒーターを用いる場合と比較して、百倍~百万倍の高速動作が可能である。
【0038】
図7と
図8の測定結果は、ナノカーボン材料15としてカーボンナノチューブ(CNT)を用いる場合にも当てはまる。CNTとして、単層CNTと多層CNTのいずれを用いてもよい。CNTには、その構造(カイラリティー)に依存して半導体ナノチューブと金属ナノチューブが存在するが、いずれも使用可能である。CNTは、化学気相成長(CVD)法、高圧一酸化炭素(HiPCO)法など、様々な方法で形成することができる。
【0039】
CNTを光導波路11、12及び光共振器13の上に配置する場合、CNT溶液をスピンコートあるいはディップコートしてもよいし、テープ・ゲル・ポリマーで転写してもよい。また、光導波路11、12と光共振器13を含む領域に、CVD法によりCNTを直接成長してもよい。CNTカーボンナノチューブは、一本でもよいが、多くのCNTを用いるほうが大きな屈折率変化を得られることから、CNTをネットワーク状に薄膜化したCNT薄膜を用いるのが効果的である。ナノカーボン材料15にグラフェンを用いる場合も、グラフェンの層数は任意であり、単層、二層、数層、多層のいずれであってもよい。グラフェンの成長法も問わず、CVD、機械剥離、転写や直接成長など、任意の手法を用いることができる。
【0040】
ナノカーボン材料15は、原子オーダーの薄さで通電加熱が可能である。通常の金属材料を用いて原子オーダーの薄膜を形成して通電加熱する場合、加熱やマイグレーションにより金属が破断してしまい、光デバイスを動作させることができない。ナノカーボン材料15は、共有結合を有し通電加熱に強いため、原子オーダーの構造にもかかわらず通電加熱による破断が起きにくく、耐久性が高い。シリコンフォトニクス技術とナノカーボン材料を組み合わせることで、微細な構成の光路変換器を高密度に形成することができる。
【0041】
ナノカーボン材料15は、その微小な構造により特異な電子状態を有し、この電子状態が光デバイスに有利に働く。例えば、グラフェンの場合は、電子のエネルギー分散は線形となっていることに加えて、電界やドーピング状態によって光吸収を制御することができる。電界やドーピング状態を選択することで光吸収を抑制できることから、通常の金属とは異なり、光導波路11、12や光共振器13の直上にナノカーボン材料15を配置しても、吸収による光ロスを低く抑えることができる。CNTの場合もグラフェンと同様の効果があり、電界やドーピングで光吸収が制御できるほか、半導体CNTを用いれば、光吸収をさらに抑制することも可能である。
【0042】
第1実施形態では、光透過材料としてSi導波路を形成しているが、屈折率コントラストによる光閉じ込めが可能であれば、光透過材料として酸化シリコン、窒化シリコン、III-V族またはII-VI族の半導体材料を用いてもよい。光透過材料の種類を問わず、ナノカーボン材料15への電圧印加による光路切り替え制御が可能である。
【0043】
図9A~
図9Cは、光共振器13の構成例を示す。
図9Aはレーストラック型のリング共振器131、
図9Bは円形のリング共振器132、
図9Cはディスク型共振器133である。
図2Cでは、レーストラック型のリング共振器を用いたが、光共振器13として機能すればどのような形状でもよく、
図9Bに示す円形のリング共振器132や
図9Cのディスク型共振器133などを用いてもよい。
【0044】
図10Aは、第1実施形態の光デバイスの変形例として、光路変換器10Bを示す。光路変換器10Bは、マッハツェンダ干渉計(MZ)を用いて光路を切り替える。マッハツェンダ干渉計(MZ)は、光結合器17と光結合器19の間に延びる一対の光導波路11及び12を有する。光導波路11の上にナノカーボン材料15Aが配置され、電極141と電極161によりナノカーボン材料15Aに電圧(または電流)が印加される。光導波路12の上にナノカーボン材料15Bが配置され、電極142と電極162によりナノカーボン材料15Bに電圧(または電流)が印加される。入射光ポートPinから光結合器17までを第1の光導波路、光結合器19から出射光ポートPoutAまでを第2の光導波路、光結合器19から出射光ポートPoutBまでを第3の光導波路としてもよい。マッハツェンダ干渉計MZは、入射光ポートPinからの入射光を、透過光出射ポートPout1または分岐光出射ポートPout2に光学的に接続する光部品である。
【0045】
ナノカーボン材料15A及び15Bへの電圧印加により、光導波路11、12が加熱される。ナノカーボン材料15Aとナノカーボン材料15Bは、互いに独立して制御され、ナノカーボン材料15Aと15Bのいずれか一方を通電加熱してもよいし、両方を通電加熱してもよい。
【0046】
電圧が印加されると、熱光学効果による屈折率変化により、マッハツェンダ干渉計MZの2つの光導波路11、12で光の位相が変化し、出射光ポートPoutAと出射光ポートPoutBの間が切り替えられる。光結合器17と光結合器19は、それぞれ2本の導波路が接近してエバネッセント(近接場)で結合する構成となっているが、光結合器としてどのような形態のものを用いてもよく、たとえば、マルチモード干渉系(MMI:Multi-Mode Interference)を利用してもよい。
【0047】
図10Bは、第1実施形態の光デバイスの変形例として、方向性カプラ170を用いた光路変換器10Cを示す。方向性カプラ170は、2本の光導波路171及び172が所定の箇所で隣接した構造を有している。ナノカーボン材料15は、隣接部を覆って配置される。入射光ポートPinから入射した光は、隣接部において、エバネッセント場で相互に干渉が起こり、出射光ポートPout11とPout12にそれぞれつながる出力側の2つの導波路171と172に光が分配される。その分配の比率を、隣接部を覆うナノカーボン材料15への通電加熱により調整する。ナノカーボン材料15への通電加熱により干渉状態が変化して、2つの出射光の光の強度が変わることから、出射光ポートPout11とPout12からの出力を、ナノカーボン材料15への通電で切り替えることができる。形成されるナノカーボン材料15は、光軸(伝搬軸)に対して対称な構造でもよいし、グラフェンの形状を台形などにして、光軸に対して非対称な構造で温度勾配をつけてもよい。
【0048】
図10Cは、第1実施形態の光デバイスの別の変形例として、マルチモードカプラ180を用いた光路変換器10Cを示す。このマルチモードカプラ180は1入力2出力のマルチモードカプラである。マルチモードカプラ180に替えて、Yスプリッタを用いてもよい。マルチモードカプラ180は、スラブ部184に1つの入力導波路181と、2つの出力導波路182及び183が接続された構造を有する。スラブ部184は、入力導波路181を伝搬してきた光を出力導波路182または183に結合させる結合部である。一定の幅を持つスラブ部184では、入射光は複数の伝搬モードに変換されて、出力導波路182または183に結合する。Yスプリッタを用いる場合は、導波路181、182、及び183が直接結合される。
【0049】
入射光ポートPinから入射した光は、スラブ部184で光干渉により分配されて、出射光ポートPout11と出射光ポートPout12から出射される、その光強度の割合は、スラブ部184の干渉状態で変えることができる。スラブ部184にナノカーボン材料15を配置して通電加熱することにより、干渉状態が変化して、2つの出射光ポートPout11とPout12の光強度を切り替えることができる。形成するナノカーボン材料15は、光軸に対して対称構造でも良いが、
図10Cのようにナノカーボン材料15の形状を台形などにして、光軸に対して非対称な構造で温度勾配をつけても良い。
【0050】
<ナノカーボン材料の配置例>
図11A~
図11Eは、光導波路または光共振器(以下、「光導波路111」と略称する)に対するナノカーボン材料15の配置例を示す。
図11Aでは、基板110の主面に光導波路111が形成され、光導波路111の上面と側面を覆ってナノカーボン材料15が配置されている。
図11Bでは、光導波路111は基板110に埋め込まれた埋め込み導波路であり、ナノカーボン材料15は、光導波路111の上面を直接覆っている。埋め込み型の光導波路111の場合、基板表面がフラットで、ナノカーボン材料15の配置が容易である。
図11Aと
図11Bのいずれも、光導波路111の少なくとも一部がナノカーボン材料15と接触していてもよい。
【0051】
図11A及び
図11Bのように、ナノカーボン材料15で光導波路111を覆う場合、光導波路111の周囲に発生しているエバネッセント光を介して、ナノカーボン材料15の温度上昇の影響をそのまま光路制御に利用することができる。ナノカーボン材料15が光導波路111に接触している場合は、ナノカーボン材料15の熱が直接、光導波路111に伝わることから、高効率に光導波路111の温度を上げることができる。
図11A及び
図11Bの構成により、低消費電力で、高効率の光路切り替え制御が実現される。
【0052】
図11Cでは、光導波路111とナノカーボン材料15の間に、キャップ層112が配置されている。
図11Dでは、光導波路111とナノカーボン材料15の間に下部キャップ層113が配置され、ナノカーボン材料15の上に上部キャップ層115が配置されている。上部キャップ層115を保護層と呼んでもよい。
【0053】
図11C及び
図11Dのように、光導波路111とナノカーボン材料15の間にキャップ層112または下部キャップ層113を挿入する場合、これらのキャップ層を光導波路111よりも屈折率の低い材料で形成して、光導波路111のクラッド層として機能させてもよい。キャップ層112または下部キャップ層113を設けることで、光導波路111の上にナノカーボン材料15を配置したことによる散乱や光吸収の影響を最小限に抑えて、光路変換器100A(または100B)の損失を小さくすることができる。
【0054】
キャップ層112または下部キャップ層113の厚さは、ナノカーボン材料15と光導波路111の加熱の効率や、ナノカーボン材料15による損失を考慮して、最適な厚さに設計することができる。キャップ層112または下部キャップ層113の材質に依存してナノカーボン材料15から光導波路111への熱伝導が変わるため、キャップ層112または下部キャップ層113の材質を選択することで光路変換性能を変えることもできる。
【0055】
図11Dのように、ナノカーボン材料15の上に上部キャップ層115を配置する場合は、ナノカーボン材料15を通電加熱する際に、ナノカーボン材料15が酸素等の雰囲気と反応して損傷することを防ぐことができる。
【0056】
キャップ層112、下部キャップ層113、及び上部キャップ層115は、電気伝導性の低い材料である方が好ましい。光導波路111をシリコンで形成する場合、キャップ層として酸化シリコン、酸化アルミニウムのような無機材料、PMMA(ポリメチルメタクリレート)などのポリマー材料などを用いることができる。
図11Dの構成で、下部キャップ層113を酸化アルミニウム、上部キャップ層115をPMMAで形成してもよい。
【0057】
図11A~
図11Dのすべてにおいて、ナノカーボン材料15、光導波路111、基板110、及びキャップ層115の接触部分に、酸化物や窒化物などの極性を有する物質(極性結晶)の薄膜116を形成してもよい。この場合、極性物質の表面極性フォノンによって熱の逃げが早く(図中の矢印h参照)、高速な温度変化が可能となり、スイッチング速度が向上する。極性物質としては、酸化シリコン、窒化シリコン、窒化ボロン、アルミナ、酸化ハフニウムなど、物質を構成する原子同士に極性があり、極性フォノンを誘起できる物質を選択できる。表面に生じる極性フォノンを用いるため、形成する極性物質は、非常に薄くてよく、ナノメートルオーダーで形成されるだけでも十分に機能する。
【0058】
<第2実施形態>
図12A~
図12Eは、第2実施形態の光デバイスとして、ナノカーボンを利用した位相変調器20A~20Eをそれぞれ示す。
図12A位相変調器20Aは、基板103(
図1参照)に形成された光導波路21と、光導波路21の上に配置されるナノカーボン材料25と、ナノカーボン材料25に電圧または電流を印加するための電極24及び26を有する。位相変調器20Aの動作原理は、第1実施形態で説明したのと同じく、ナノカーボン材料25を通電加熱することによる光導波路21の屈折率変化を利用するものである。光導波路21の屈折率の変化により光の伝搬速度が変化し、位相が変化する。
【0059】
図12Bの位相変調器20Bは、
図12Aの構成に加えて、光導波路21に隣接して配置される1つのリング共振器23を有する。ナノカーボン材料25は、リング共振器23と光導波路21を覆っている。光導波路21を伝搬する光の一部はリング共振器23に結合してリング共振器23を周回する。ナノカーボン材料25への通電加熱により光導波路21とリング共振器23の屈折率が変わると、リング共振器23を通る光と光導波路21を通る光の干渉状態が変化して、透過光の位相が変化する。
【0060】
図12Cの位相変調器20Cは、光導波路21に沿って配置される複数のリング共振器231~234を有する。ナノカーボン材料25は、光導波路21とリング共振器231~234を覆っている。
図12Bと同様に、光導波路21を直進する光と、リング共振器231~234を順次透過する光の干渉状態の変化により、位相変調が起きる。
【0061】
図12Dの位相変調器20Dは、入力側の光導波路21と、出力側の光導波路22と、光導波路21と光導波路22の間に直列に配置される複数のリング共振器231~234を有する。ナノカーボン材料25は、一連のリング共振器231~234と、光導波路21、22との結合部を覆って配置されている。リング共振器231~234の屈折率変化により、リング共振器231~234を順次透過する光が位相変調を受ける。
【0062】
図12Eの位相変調器20Eは、フォトニック結晶27と、フォトニック結晶27を覆うナノカーボン材料25を有する。電極24、26を介してナノカーボン材料25を通電加熱することで、フォトニック結晶27の屈折率が変化し、光と媒質の相互作用の強さ(スローライト効果)が変化して伝搬光の位相が変調される。フォトニック結晶27に替えて、周期的な屈折率分布を有する任意のナノ構造体を用いてもよく、周期的なパターンが形成された有機または向きのナノ構造体が使用可能である。
【0063】
図12A~
図12Eの位相変調器20A~20Eは、金属ヒーターを用いる位相変調器と比べて、高い性能と耐久性を有する。ナノカーボン材料15は微小で高密度化が可能であり、熱容量の小ささから、光導波路や光共振器に隣接して設置をしてもロスが小さく、高速な温度変調が可能である。また、良好な熱伝導特性により高効率かつ低消費電力の位相変調動作が実現する。
【0064】
<第3実施形態>
図13は、第3実施形態の光デバイスとして、第2実施形態の位相変調器20を利用した光掃引デバイス200Aを示す。光掃引デバイス200Aは、入力導波路201と、スラブ導波路202と、スラブ導波路202に接続される複数の導波路203-1~203-nと、導波路203-1~203-nに接続される位相変調器20-1~20-nを有する。複数の導波路203-1~203-nでアレイ導波路204が形成される。複数の位相変調器20-1~20-nの配列で、位相変調器アレイ205Aが構成される。位相変調器20-1~20-nとしては、
図12A~
図12Eのいずれの構成を採用してもよい。各位相変調器20のナノカーボン材料25に印加する電圧を個別に制御することで、位相変化量Δφ
1~Δφ
nを与えることができる。
【0065】
位相変調器アレイ205Aを構成する各位相変調器20の出力光は、対応する出射光ポートP1~Pnから出射される。
【0066】
入力導波路201からスラブ導波路202に入射する光は、たとえば単一波長の光である。入力導波路201からの入射光はスラブ導波路202内で扇型に発散し、破面に合わせて設けられた出力側の端面でn分割されて、導波路203-1~203-nに同相で入射する。導波路203-1~203-nを伝搬した光は、位相変調器20-1~20-nで位相変調を受ける。スラブ導波路202は多チャンネル光結合器の一例であり、スラブ導波路202に替えて、1入力N出力の任意の光結合器を用いてもよい。
【0067】
光は、出射ポートPから波面(等位相面)と垂直な方向に出射する。位相変調器201-1~201-nで各チャンネルの伝搬光の位相を制御することで、波面の角度を変えて任意の方向に光を出射することができる。位相変化量Δφ1~Δφnを連続的に変えることで、出射光を所定の方向に掃引することができる。
【0068】
ナノカーボン材料15とシリコンフォトニクス技術で形成された光導波路を有する位相変調器20-1~20-nは、高密度化に適している。多チャンネルの光の位相を位相変調器20-1~20-nにより動的に変化させることで、任意の方向に光を出射することが可能となる。ナノカーボン材料15を用いた位相変調器20-1~20-nは高速の位相変調が可能であり、高速の光掃引が実現される。
【0069】
図14は、位相変調器アレイの変形例として位相変調器アレイ205Bの構成を示す。位相変調器アレイ205Bは、異なるサイズの複数の位相変調器20-1~20-nと、位相変調器20-1~20-nに共通に用いられるナノカーボン材料25を有する。
【0070】
図14の例では、アレイ導波路204の各導波路203-1~203-nに接続される位相変調器20-1~20-nの長さが異なる。電極24、26を介してナノカーボン材料25に電圧または電流を印加して通電加熱することで、異なる位相変化量Δφ
1~Δφ
nが得られる。
【0071】
複数の位相変調器20-1~20-nは、同一の構成(サイズまたは長さ)であってもよい。この場合は、各位相変調器20でナノカーボン材料25によって覆われる領域のサイズを異ならせることで、
図14の構成と同じ効果が得られる。たとえば、チャンネルごとに位相変調器20を覆うグラフェンの長さまたは面積を変えることで、チャンネル間で相互作用長を変えたり、ナノカーボン材料25の通電加熱による発熱量を変えたりすることで、異なる位相差を与えることができる。
【0072】
図15は、別の構成例の光掃引デバイス200Bを示す。光掃引デバイス200Bは、位相変調器アレイ205に加えて、多段(カスケード)接続された複数の位相変調器208
1~208
nを用いて、位相変調効率を高める。
【0073】
位相変調器208
1~208
nは、同じ位相変化量Δφ
0を与える。この意味で、位相変調器208
1~208
nを共通位相変調器と呼んでもよい。位相変調器208
1~208
nを、適宜「位相変調器208」と総称する。位相変調器208は、
図12A~
図12Eのどの構成を有していてもよく、ナノカーボン材料25の通電加熱により高速の位相変調が可能である。
【0074】
一段目の位相変調器2081を通過した光の一部は、光結合器209-1から位相変調器20-1に入射し、出射ポートP1に出力される。二段目の位相変調器2082を通過した光の一部は、光結合器209-2から位相変調器20-1に入射し、出射ポートP2に出力される。以下、n-1段目まで、各位相変調器208を通過する度に、光結合器209により光の一部を取り出して、位相変調器20に入射させ、アレイ化された出射ポートPに出力する。n段目の位相変調器208nを通過した光は、そのまま位相変調器20-nに入射して出射ポートPnに出力される。
【0075】
この構成では、多段に接続された共通の位相変調器2081~208nによって、位相変化量を累積的に大きくし、位相変調器アレイ205の位相変調器20-1~20-nの各々で、位相変化量を微調整している。多段の位相変調器208を通るたびに位相が変わるため、それぞれの位相変化が小さくても、トータルでは大きな位相変化が得られる。各位相変調器208の変調性能はそれほど高くなくても、光掃引デバイス200Bの全体として大きな位相変調が可能である。なお、光掃引デバイス200Bでは、位相微調整の位相変調器アレイ205は必須ではなく、多段の位相変調器2081~208nだけでも光掃引デバイスとして動作する。この場合は、各光結合器209で取り出された光は、そのまま対応する出射ポートPから出力される。
【0076】
<第4実施形態>
図16は、第4実施形態の光デバイスである光路制御デバイス300の模式図である。光路制御デバイス300は、アレイ化された位相変調を利用して、光路制御またはルーティング動作を行う。光路制御デバイス300は、入力導波路301、アレイ位相変調器30、アレイ位相変調器30の出力側に接続されるアレイ導波路302-1~302-n、スラブ導波路303、スラブ導波路303の出力側に接続されるアレイ導波路304-1~304-nを有する。アレイ導波路304-1~304-nのそれぞれは、対応する出射ポートP1~Pnに接続されている。
【0077】
アレイ位相変調器30は、ナノカーボン材料を用いた複数の位相変調器の配列を含み、第3実施形態で用いたいずれの位相変調器アレイを採用してもよいし、多段接続構成を用いてもよい。入力導波路301は、図示しない多チャンネル光結合器によってアレイ位相変調器30を構成する複数の位相変調器のそれぞれに結合されている。単一の入射光は、n分割されて各位相変調器に入射する。
【0078】
アレイ位相変調器30で各チャンネルの位相差が制御され、位相変化量Δφ1~Δφnを有する光がアレイ導波路302-1~302-nに出力される。アレイ導波路302-1~302-nに接続されるスラブ導波路303の形状は、入射端と出射端が所定の曲率を有するように制御されている。スラブ導波路303に入射した光は、破線で示すように、光の位相によって出射端のある一点に集光される。その集光点に結合されるアレイ導波路304から出射ポートPへと伝搬する。
【0079】
図中の双方向の矢印Aで示すように、アレイ位相変調器30で与えられる位相を制御するで、スラブ導波路303の出射側の集光点を任意の位置に掃引することができる。アレイ位相変調器30の位相変化量を制御することによって、スラブ導波路303に入射した光を所望のチャンネルのアレイ導波路304に結合させることができる。外部からの電気信号によってアレイ位相変調器30で用いられているナノカーボン材料の通電加熱を制御し、入射光を任意の出射ポートPに結合して光路を制御する多チャンネルの光路制御(ルーティング)が実現する。光路制御デバイス300を用いることで、数百kHz~1GHzの高速で出射ポートを切り替えることができる。
【0080】
<第5実施形態>
図17は、第5実施形態の光デバイスである分光器310の模式図である。分光器3101は、アレイ化された位相変調を利用して、複数の波長が多重された入射光から所望の波長を取り出す。第3実施形態の位相変調器の配列を用いることで、固体素子での分光器を作製することができる。
【0081】
分光器310は、入力導波路301、アレイ位相変調器30、アレイ位相変調器30の出力側に接続されるアレイ導波路302-1~302n、スラブ導波路303、スラブ導波路303の出力側に接続される出力導波路306を有する。出力導波路306は、出射ポートPoutに接続されている。
【0082】
アレイ位相変調器30として、第3実施形態で説明したいずれの位相変調器アレイの構成を採用してもよいし、多段接続構成を用いてもよい。アレイ位相変調器30は、ナノカーボン材料25への通電加熱による高速の位相変調が可能である。
【0083】
入力導波路301からアレイ位相変調器30に入射する光は、アレイ位相変調器30を構成する位相変調器の数に応じてn分割され、各位相変調器で位相変調を受けてアレイ導波路302-1~302-nに出力される。アレイ導波路302-1~303-nからスラブ導波路303に入射した光はスラブ導波路303で広がるが、波長によって出射端での焦点位置が異なる。
【0084】
したがって、通常は、ある波長の光だけが出力導波路306に結合して出射ポートPoutから出力される。ここで、ナノカーボン材料25への通電を制御して、アレイ位相変調器30で各チャンネルの位相を制御すると、図中の双方向の矢印Bで示すように、波長に依存した焦点の位置が全体的にシフトする。アレイ位相変調器30で各チャンネルの位相を制御することによって、出射ポートPoutから出射される光の波長を任意に選択でき、特定の波長を取り出す分光器310として機能する。分光器310は、波長多重(WDM:Wavelength Division Multiplexing)方式の光通信での特定波長の選択、分析装置での分光など、分光が必要な用途に利用することができる。アレイ位相変調器30での位相変化量を順次変えることで、複数の波長の光を順番に出射ポートPoutから出力することができる。
【0085】
<光検出及び測距装置への適用>
図18は、第3実施形態で説明した光掃引デバイスを適用した光検出及び測距装置の模式図である。光を使った物体検知と測距技術はLiDAR(Light Detection and Ranging)と呼ばれており、
図18の装置をLiDAR装置400と呼ぶ。
【0086】
LiDAR装置400は、投光部410と、受光部420と、制御回路430とを有する。投光部410は、光源411、光源駆動回路412、光掃引デバイス413、光掃引駆動回路414を有する。光掃引デバイス413は、
図13~
図15を参照して説明したように、複数の位相変調器の配列で構成されるアレイ位相変調器を有し、各位相変調器の位相変化量は、ナノカーボン材料への通電加熱によって制御される。
【0087】
光源411から出力される光は、図示しないカプリングレンズ等を用いて光掃引デバイス413に結合される。光掃引デバイス413は、光掃引駆動回路414から入力される駆動信号をナノカーボン材料に印加して位相変化量を制御し、出射光ポートPoutから出力される光Loutを、双方向矢印BSで示すように、所定の角度範囲内で走査(スイープ)する。ビーム走査によって、ビーム走査角の範囲に存在する物体2が検出され、検出された物体2までの距離を測定することができる。
【0088】
受光部420は、フォトダイオード(PD)等の受光素子を有し、物体2から反射された散乱光Lscatterを検出する。投光部410と受光部420は近接して配置され、数メートル以上離れた位置からは、互いの光軸は同軸関係にあるとみなすことができる。光掃引デバイス413は、ナノカーボン材料25とシリコンフォトニクス技術により微細化された位相変調器アレイを用いるので、投光部410を小型のチップとして形成することができる。
【0089】
物体2からの散乱光Lscatterのうち、光掃引デバイス413から出力された光と同じ光路を辿って戻ってくる光成分が、受光部420で検出される。
【0090】
制御回路430は、受光部420による検出結果に基づいて、物体2のXY平面内の角度θと距離を計測する。物体2との距離は、たとえば飛行時間(Time of Flight:TOF)法により求めることができる。XY面と直交するZ方向の角度φについては、
図19を参照して後述する光アンテナを用いてYZ面内の角度φで光をスイープすることができる。XY平面内の出射角度θとZ方向の角度φを測定することで、物体2の3次元的な位置を計測することができ、さらに飛行時間法で求めた距離を合わせることで、物体2の3次元的な位置をより精度よく計測することができる。
【0091】
一般的なLiDAR装置は、モータ駆動による光掃引が主流であるが、モータ駆動による光掃引は低速で大型であり、外部からの振動によって壊れやすい。光掃引デバイスとしてMEMS(Micro Electro Mechanical System)のようなチップ上の機械駆動素子を用いることもあるが、これも高価で振動によって素子が壊れやすいという問題がある。これに対し、実施形態のLiDAR装置400は、ナノカーボン材料とシリコンフォトニクス技術を組み合わせた光掃引デバイス413を用い、微細な構成で高速な光掃引が可能である。
【0092】
<光アンテナへの適用例>
図19Aと
図19Bは、実施形態の光デバイスの適用例として、屈折率が周期的に変化するナノ構造体とナノカーボン材料を組み合わせた光アンテナの構成例を示す。
図19Aは、屈折率が周期的に変化するナノ構造としてフォトニック結晶を用いた光アンテナ500A、
図19Bは、グレーティングを用いた光アンテナ500Bである。
【0093】
図19Aで、光アンテナ500Aは、光導波路501に接続されるフォトニック結晶502と、フォトニック結晶502を覆うナノカーボン材料15を有する。一対の電極506と508を介して入力される電気信号によってナノカーボン材料15を通電加熱し、フォトニック結晶502のスローライト効果を制御して、YZ平面内の光の出射方向を制御することができる。
【0094】
図19Bで、光アンテナ500Bは、光導波路501に接続されるグレーティング503と、グレーティング503を覆うナノカーボン材料15を有する。一対の電極506と508を介して入力される電気信号によってナノカーボン材料15を通電加熱し、グレーティング503の屈折率を変調してYZ平面内の光の出射方向を制御することができる。
【0095】
光アンテナ500Aまたは500Bは、第1~第5実施形態の光デバイスの出射ポートPoutに用いることができる。また、光アンテナ500Aまたは500Bを、
図18のLiDAR装置400の光掃引デバイス413の出射ポートに用いてもよい。光アンテナ500Aまたは500Bを用いて
図18のLiDAR装置400を構成した場合、XY面内だけではなく、Z方向の位置も計測できるため、3次元の物体の位置を計測することができる。TOF法を用いた場合も、XYZ面内の角度とその距離を測定することで、3次元の物体の位置を計測することができる。
【0096】
図19Aの光アンテナ500Aまたは
図19Bの光アンテナ500Bを用いない場合、光デバイスの出射ポートとして、出力導波路の端面またはその先端にスポットサイズコンバータなどの結合構造を設け、基板の面内方向(基板表面と平行な方向)に光を出射することができる。
【0097】
光アンテナ500Aまたは500Bを用いることで、基板表面(XY面)と垂直なZ方向に光を出射することができる。グレーティング503の構造を最適化することで、光を特定の方向に選択的に出射することも可能である。ナノカーボン材料15の通電加熱によって屈折率やスローライト効果を連続的に変える場合は、出射ポートPoutから出力される光を掃引することができる。
【0098】
以上、特定の実施例に基づいて本発明を説明してきたが、本発明は種々の適用例、変形例を含む。実施形態の光デバイスは、光通信素子、光インターコネクト、集積光・電子回路、量子コンピューターや量子暗号デバイスといった、様々な情報通信デバイスへの応用が可能である。現在の光通信やLiDARの技術だけではなく、次世代の高密度情報通信や量子情報技術にも応用できる。
【0099】
図13~
図17で用いるアレイ導波路は、図中では簡単のために各チャンネルの導波路の長さがほぼ等しく描かれているが、導波路長はチャンネルごとに変えることもできる。チャンネル間で光路長を変えることで、遅延時間や位相差を変えることができるため、例えば出射ポートPoutにおいて高次光を利用することもできる。
【0100】
図16の光路制御デバイス300は、単一波長の入射光を想定して説明したが、入射光がWDM信号の場合、各波長を分離する分波器(デマルチプレクサ)としても利用可能である。
図19Aまたは
図19Bの光アンテナで、周期的な屈折率変化を有するナノ構造体は、フォトニック結晶やグレーティングに限定されず、人工的に周期的な屈折率分布が形成された無機または有機の材料を用いてもよい。
【0101】
この出願は、2018年5月21日に出願された日本国特許出願第2018-097462号に基づきその優先権を主張するものであり、その全内容を含むものである。
【符号の説明】
【0102】
10、10A、10B、10C,10D:光路変換器(光デバイス)
11、12、21:光導波路
13:光共振器(光部品)
14、16、24、26:電極
15、25:ナノカーボン材料
20、20A~20E、20-1~20-n:位相変調器
23、231~234:リング共振器
30:アレイ位相変調器
170 方向性カプラ(光部品)
180 マルチモードカプラ(光部品)
200A、200B:光掃引デバイス(光デバイス)
201、301:入力導波路
203-1~203-n:導波路
204:アレイ導波路
300:光路制御デバイス(光デバイス)
306:出力導波路
310:分光器
400:LiDAR装置(光検出及び測距装置)
500A、500B:光アンテナ(光デバイス)
MZ マッハツェンダ干渉計(光部品)
Pin:入射光ポート
Pout1:透過光出射ポート
Pout2:分岐光出射ポート
PoutA、PoutB、Pout11、Pout12、P1~Pn:出射光ポート