(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-03-14
(45)【発行日】2024-03-25
(54)【発明の名称】放射冷却式ボックス
(51)【国際特許分類】
F28F 13/18 20060101AFI20240315BHJP
A45C 11/20 20060101ALI20240315BHJP
G02B 5/08 20060101ALI20240315BHJP
G02B 5/22 20060101ALI20240315BHJP
【FI】
F28F13/18 E
A45C11/20 F
G02B5/08 A
G02B5/22
(21)【出願番号】P 2020043487
(22)【出願日】2020-03-12
【審査請求日】2022-12-13
(73)【特許権者】
【識別番号】000000284
【氏名又は名称】大阪瓦斯株式会社
(74)【代理人】
【識別番号】110001818
【氏名又は名称】弁理士法人R&C
(72)【発明者】
【氏名】末光 真大
【審査官】古川 峻弘
(56)【参考文献】
【文献】特表2018-526599(JP,A)
【文献】中国特許出願公開第109968769(CN,A)
【文献】特表2019-515967(JP,A)
【文献】特開2004-160979(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
F28F 13/00-13/18
G02B 5/08,5/22
A45C 11/20
(57)【特許請求の範囲】
【請求項1】
物品収納用の筐体の外面に放射冷却層が装着され、
前記放射冷却層が、放射面から赤外光を放射する赤外放射層と、当該赤外放射層における前記放射面の存在側とは反対側に位置させる光反射層とを備える形態に構成され、
前記赤外放射層が、吸収した太陽光エネルギーよりも大きな熱輻射エネルギーを波長8μmから波長14μmの帯域で放つ厚みに調整された樹脂材料層であり、
前記光反射層が、銀または銀合金を備え
、
前記赤外放射層と前記光反射層との間に保護層を備える形態に構成され、
前記保護層が、厚さが17μm以上で、40μm以下のポリエチレンテレフタラート樹脂である放射冷却式ボックス。
【請求項2】
前記放射冷却層が、厚さが5μm以上で、100μm以下の接着剤又は粘着剤の接続層にて前記筐体の外面に装着されている請求項
1に記載の放射冷却式ボックス。
【請求項3】
前記放射冷却層が、前記筐体の外面における底面部を除いた外面部に装着されている請求項
1又は2に記載の放射冷却式ボックス。
【請求項4】
前記放射冷却層における前記放射面が、凹凸状に形成されている請求項
1~3のいずれか1項に記載の放射冷却式ボックス。
【請求項5】
前記筐体の内面に、赤外吸収層が装着されている請求項
1~4のいずれか1項に記載の放射冷却式ボックス。
【請求項6】
前記光反射層は、波長0.4μmから0.5μmの反射率が90%以上、波長0.5μmより長波の反射率が96%以上である請求項
1~5のいずれか1項に記載の放射冷却式ボックス。
【請求項7】
前記樹脂材料層の膜厚が、
波長0.4μmから0.5μmの光吸収率の波長平均が13%以下であり、波長0.5μmから波長0.8μmの光吸収率の波長平均が4%以下であり、波長0.8μmから波長1.5μmまでの光吸収率の波長平均が1%以内であり、1.5μmから2.5μmまでの光吸収率の波長平均が40%以下となる光吸収特性を備え、且つ、
8μmから14μmの輻射率の波長平均が40%以上となる熱輻射特性を備える状態の厚みに調整されている請求項
1~6のいずれか1項に記載の放射冷却式ボックス。
【請求項8】
前記樹脂材料層を形成する樹脂材料は、炭素-フッ素結合、シロキサン結合、炭素-塩素結合、炭素-酸素結合、エーテル結合、エステル結合、ベンゼン環のいずれかを1つ以上有する樹脂材料から選択される請求項
1~7のいずれか1項に記載の放射冷却式ボックス。
【請求項9】
前記樹脂材料層を形成する樹脂材料の主成分がシロキサンであり、
前記樹脂材料層の厚みが、1μm以上である請求項
1~7のいずれか1項に記載の放射冷却式ボックス。
【請求項10】
前記樹脂材料層の厚みが、10μm以上である請求項
8に記載の放射冷却式ボックス。
【請求項11】
前記樹脂材料層の厚みが、20mm以下である請求項
1~10のいずれか1項に記載の放射冷却式ボックス。
【請求項12】
前記樹脂材料層を形成する樹脂材料が、フッ素樹脂もしくはシリコーンゴムである請求項
11に記載の放射冷却式ボックス。
【請求項13】
前記樹脂材料層を形成する樹脂材料が、炭素-塩素結合、炭素-酸素結合、エステル結合、エーテル結合、ベンゼン環のいずれかを1つ以上有する炭化水素を主鎖とする樹脂材料、又は、側鎖の炭化水素の炭素数が2個以上のシリコーン樹脂であり、
前記樹脂材料層の厚みが500μm以下である請求項
1~10のいずれか1項に記載の放射冷却式ボックス。
【請求項14】
前記樹脂材料層を形成する樹脂材料が、炭素-フッ素結合、シロキサン結合を含む樹脂と、炭化水素を主鎖とする樹脂とのブレンドであり、前記樹脂材料層の厚みが500μm以下である請求項
1~10のいずれか1項に記載の放射冷却式ボックス。
【請求項15】
前記樹脂材料層を形成する樹脂材料が、フッ素樹脂であり、
前記樹脂材料層の厚みが、300μm以下である請求項
1~10のいずれか1項に記載の放射冷却式ボックス。
【請求項16】
前記樹脂材料層を形成する樹脂材料が、炭素-塩素結合、炭素-酸素結合、エステル結合、エーテル結合、ベンゼン環のいずれかを一つ以上有する樹脂材料であり、
前記樹脂材料層の厚みが、50μm以下である請求項
1~10のいずれか1項に記載の放射冷却式ボックス。
【請求項17】
前記樹脂材料層を形成する樹脂材料が、炭素―ケイ素結合を有する樹脂材料であり、
前記樹脂材料層の厚みが、10μm以下である請求項
1~10のいずれか1項に記載の放射冷却式ボックス。
【請求項18】
前記樹脂材料層を形成する樹脂材料が、塩化ビニル樹脂又は塩化ビニリデン樹脂であり、
前記樹脂材料層の厚みが、100μm以下で10μm以上である請求項
1~7のいずれか1項に記載の放射冷却式ボックス。
【請求項19】
前記光反射層が、銀または銀合金で構成され、その厚みが50nm以上である請求項
1~16のいずれか1項に記載の放射冷却式ボックス。
【請求項20】
前記光反射層が、前記保護層に隣接して位置する銀または銀合金と前記保護層から離れる側に位置するアルミまたはアルミ合金の積層構造である請求項
1~16のいずれか1項に記載の放射冷却式ボックス。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、放射冷却作用を備えた放射冷却式ボックスに関する。
【背景技術】
【0002】
放射冷却とは、物質が周囲に赤外線などの電磁波を放射することでその温度が下がる現象のことを言う。この現象を利用すれば、たとえば、電気などのエネルギーを消費せずに冷却対象を冷やす放射冷却装置(放射冷却層)を構成することができる。
【0003】
放射冷却装置(放射冷却層)の従来例として、放射面から赤外光を放射する赤外放射層と、当該赤外放射層における前記放射面の存在側とは反対側に位置させる光反射層とが積層状態で設けられ、赤外放射層が、酸化マグネシウムの単結晶、多結晶、又は、焼結体等にて形成され、光反射層が、銀又は銀合金を備える形態に構成されたものがある(例えば、特許文献1参照)。
【0004】
つまり、放射冷却装置(放射冷却層)は、赤外放射層が、波長8μmから14μmの帯域で大きな熱輻射エネルギーを放射し、光反射層が、赤外放射層を透過した光(紫外光、可視光、赤外光)を反射して放射面から放射させて、赤外放射層を透過した光(紫外光、可視光、赤外光)が冷却対象に投射されて、冷却対象が加温されることを回避することにより、昼間の日射環境下においても冷却対象を冷やすことができる。
【0005】
尚、光反射層は、赤外放射層を透過した光に加えて、赤外放射層から光反射層の存在側に放射される光を赤外放射層に向けて反射する作用も奏することになるが、以下の説明においては、光反射層が赤外放射層を透過した光(紫外光、可視光、赤外光)を反射することを目的として設けられるものであるとして説明する。
【先行技術文献】
【特許文献】
【0006】
【発明の概要】
【発明が解決しようとする課題】
【0007】
配電用の電気機器類を収納する配電ケースや蓄電池を収納する蓄電池ケース等、電気機器類を収納する電気用ケース、各種の搬送用物品を収納するコンテナ等、各種の物品を収納する筐体を備えたボックスにおいては、昼間の日射環境下において、筐体の内部温度の上昇を抑制することが望まれている。
【0008】
つまり、例えば、蓄電池用ケースを燃焼電池システムに適用した場合において、収納した蓄電池の温度が40℃を超えると、機器類を保護する必要上、電源を切るあるいは出力を減少させる等の措置を行うことになるため、蓄電池を収納する筐体の内部温度の上昇を極力抑制することが望まれる。
【0009】
本発明は、かかる実状に鑑みて為されたものであって、その目的は、物品を収納する筐体の内部を昼間の日射環境下において放射冷却作用により冷却できる放射冷却式ボックスを提供する点にある。
【課題を解決するための手段】
【0010】
本発明の放射冷却式ボックスは、物品収納用の筐体の外面に放射冷却層が装着され、
前記放射冷却層が、放射面から赤外光を放射する赤外放射層と、当該赤外放射層における前記放射面の存在側とは反対側に位置させる光反射層とを備える形態に構成され、
前記赤外放射層が、吸収した太陽光エネルギーよりも大きな熱輻射エネルギーを波長8μmから波長14μmの帯域で放つ厚みに調整された樹脂材料層であり、
前記光反射層が、銀または銀合金を備え、
前記赤外放射層と前記光反射層との間に保護層を備える形態に構成され、
前記保護層が、厚さが17μm以上で、40μm以下のポリエチレンテレフタラート樹脂である点を特徴とする。
【0011】
すなわち、放射冷却層における赤外放射層としての樹脂材料層の放射面から入射する太陽光は、樹脂材料層を透過した後、樹脂材料層の放射面の存在側とは反対側にある光反射層で反射され、放射面から系外へ逃がされる。
なお、本明細書の記載において、単に光と称する場合、当該光の概念には紫外光(紫外線)、可視光、赤外光を含む。これらを電磁波としての光の波長で述べると、その波長が10nmから20000nm(0.01μmから20μmの電磁波)の電磁波を含む。
【0012】
また、放射冷却層への伝熱(入熱)は、樹脂材料層で赤外線に変換されて、放射面から系外へ逃がされる。
このように、放射冷却層は、放射冷却層へ照射される太陽光を反射し、また、放射冷却層への伝熱(例えば、大気からの伝熱や、放射冷却層が冷却する筐体からの伝熱)を赤外光として系外へ放射することができる。
【0013】
また、樹脂材料層が、吸収した太陽光エネルギーよりも大きな熱輻射エネルギーを波長8μmから波長14μmの帯域で放つ厚みに調整されているから、銀または銀合金を備える光反射層にて太陽光を適切に反射させるようにしながら、昼間の日射環境下においても、冷却機能を発揮することができる。
【0014】
従って、昼間の日射環境下においても、物品収納用の筐体の外面に装着された放射冷却層によって、筐体を冷却することができ、その結果、昼間の日射環境下において、筐体の内部の温度上昇を抑制できる。
【0015】
ちなみに、樹脂材料層は、柔軟性の高い樹脂材料にて形成されることになるから、樹脂材料層に柔軟性を持たせることができ、しかも、光反射層は、例えば銀の薄膜として構成する等により、柔軟性を備えさせることができる。
したがって、樹脂材料層と光反射層とを備える放射冷却層に柔軟性を持たせることができ、放射冷却層を筐体の外面に沿わせるようにしながら良好に装着できる。
【0016】
要するに、本発明の放射冷却式ボックスの特徴構成によれば、物品を収納する筐体の内部を昼間の日射環境下において放射冷却作用により冷却できる放射冷却式ボックスを提供できる。
【0018】
さらに、赤外放射層としての樹脂材料層の放射面から入射する太陽光は、樹脂材料層及び保護層を透過した後、樹脂材料層の放射面の存在側とは反対側にある光反射層で反射され、放射面から系外へ逃がされる。
【0019】
また、保護層が、エチレンテレフタラート樹脂にて厚さが17μm以上で、40μm以下の形態に形成されているから、昼間の日射環境下においても、光反射層の銀または銀合金が変色することを抑制できるため、光反射層にて太陽光を適切に反射させるようにしながら、昼間の日射環境下においても、冷却機能を的確に発揮させることができる。
【0020】
つまり、保護層が存在しない場合には、樹脂材料層にて発生したラジカルが光反射層を形成する銀又は銀合金に到達することや、樹脂材料層を透過する水分が光反射層を形成する銀又は銀合金に到達することにより、光反射層の銀または銀合金が短期間で変色して、光反射機能を適切に発揮しない状態になる虞があるが、保護層の存在により、光反射層の銀または銀合金が短期間で変色することを抑制できる。
【0021】
保護層にて光反射層の銀または銀合金の変色を抑制することについて説明を加える。
【0024】
保護層が、エチレンテレフタラート樹脂にて厚さが17μm以上で、40μm以下の形態に形成される場合には、エチレンテレフタラート樹脂は、ポリオレフィン系樹脂よりも、波長0.3μmから0.4μmの紫外線の波長域において紫外線の光吸収率が高い合成樹脂であるが、厚さが17μm以上であるから、樹脂材料層にて発生したラジカルが光反射層を形成する銀又は銀合金に到達することを遮断し、また、樹脂材料層を透過する水分が光反射層を形成する銀又は銀合金に到達することを遮断する等の遮断機能を長期に亘って良好に発揮することになり、保護層を形成する銀又は銀合金の変色を抑制できることになる。
【0025】
つまり、エチレンテレフタラート樹脂にて形成される保護層は、紫外線の吸収により、反射層から離れる表面側にラジカルを形成しながら劣化することになるが、厚さが17μm以上であるから、形成したラジカルが反射層に到達することはなく、また、ラジカルを形成しながら劣化するにしても、厚さが17μm以上であるから、上述の遮断機能を長期に亘って発揮することになる。
【0026】
尚、エチレンテレフタラート樹脂にて保護層を形成する場合において、その厚さの上限を定める理由は、保護層が放射冷却に寄与しない断熱性を奏することを極力回避するためである。つまり、保護層は、厚さが厚くなるほど放射冷却に寄与しない断熱性を奏することになるから、反射層を保護する機能を発揮させながらも、放射冷却に寄与しない断熱性を奏することを極力回避するために、厚さの上限が定められることになる。
【0027】
要するに、本発明の放射冷却式ボックスの更なる特徴構成によれば、光反射層の銀または銀合金が短期間で変色することを抑制しながら筐体の内部を良好に冷却できる放射冷却式ボックスを提供することができる。
【0028】
本発明の放射冷却式ボックスの更なる特徴構成は、前記放射冷却層が、厚さが5μm以上で、100μm以下の接着剤又は粘着剤の接続層にて前記筐体の外面に装着されている点にある。
【0029】
すなわち、金属材料等にて形成される筐体の外面は、鏡面ではなく、数μmレベルの凹凸が存在する場合があるが、厚さが5μm以上で、100μm以下の接着剤又は粘着剤の接続層にて放射冷却層を筐体の外面に装着することにより、筐体の外面に凹凸が存在する場合においても、光反射層に対して筐体の外面の凹凸が反映されるのを抑制して、光反射層を平坦な状態に維持することができる。
【0030】
つまり、光反射層に対して筐体の外面の凹凸が反映されると、筐体の外面の凹凸に起因する光の散乱により、光反射層の反射率が低下して、光が吸収されてしまう不都合を生じる状態となるが、光反射層を平坦な状態に維持することにより、光反射層の反射率の低下を抑制することができる。
【0031】
ちなみに、接続層の厚さの上限を定める理由は、接続層が放射冷却層と筐体との断熱性を奏することを極力回避するためである。つまり、接続層は、厚さが厚くなるほど断熱性を奏することになるから、放射冷却層と筐体との間の断熱性を奏することを極力回避するために、厚さの上限が定められることになる。
【0032】
要するに、本発明の放射冷却式ボックスの更なる特徴構成によれば、光反射層の反射率の低下を抑制することができる。
【0033】
本発明の放射冷却式ボックスの更なる特徴構成は、前記放射冷却層が、前記筐体の外面における底面部を除いた外面部に装着されている点にある。
【0034】
すなわち、筐体の外面における底面部は、放射冷却作用に寄与しない地表面等を向くことになるが、筐体の外面における底面部を除いた外面部に放射冷却層を装着することにより、筐体の外面部を放射冷却用の面として有効に利用しながら、筐体を一層良好に冷却することができる。
【0035】
要するに、本発明の放射冷却式ボックスの更なる特徴構成によれば、筐体を一層良好に冷却することができる。
【0036】
本発明の放射冷却式ボックスの更なる特徴構成は、前記放射冷却層における前記放射面が、凹凸状に形成されている点にある。
【0037】
すなわち、放射面が凹凸状に形成されることにより、放射面の表面積を増加させることができ、その結果、放射冷却層を風にて冷却して、冷却機能を向上させることができる。
【0038】
特に、筐体が、各種の搬送用物品を収納するコンテナを形成する筐体である場合には、コンテナがトラックや鉄道車両に積み込まれて運搬されるときに、トラックや鉄道車両が走行するに伴って放射面に対して通風されることにより、冷却機能を向上させることができる。
【0039】
要するに、本発明の放射冷却式ボックスの更なる特徴構成によれば、冷却機能を向上させることができる。
【0040】
本発明の放射冷却式ボックスの更なる特徴構成は、前記筐体の内面に、赤外吸収層が装着されている点にある。
【0041】
すなわち、赤外吸収層が筐体の内面に装着されているから、筐体の内部の熱を吸収して放射冷却層に伝えることを適切に行うことにより、筐体の内部の冷却を良好に行うことができる。
【0042】
つまり、筐体がステンレス等の金属にて形成される場合には、筐体が内部からの赤外線を反射する等、筐体の内部の熱を放射冷却層に伝え難いものとなるが、このような場合においても、筐体の内部の冷却を良好に行うことができる。
【0043】
要するに、本発明の放射冷却式ボックスの更なる特徴構成によれば、筐体の内部の冷却を良好に行うことができる。
【0044】
本発明の放射冷却式ボックスの更なる特徴構成は、前記光反射層は、波長0.4μmから0.5μmの反射率が90%以上、波長0.5μmより長波の反射率が96%以上である点にある。
【0045】
すなわち、太陽光スペクトルは波長0.3μmから4μmにかけて存在し、そして、波長が0.4μmから大きくなるにつれて強度が大きくなり、特に波長0.5μmから波長2.5μmにかけての強度が大きい。
光反射層が、波長0.4μmから0.5μmにかけて90%以上の反射率を示し、波長0.5μmより長波の反射率が96%以上である反射特性を備えると、光反射層が太陽光エネルギーを5%程度以下しか吸収しなくなる。
【0046】
その結果、夏場の南中時に、光反射層が吸収する太陽光エネルギーを50W/m2程度以下とすることができ、樹脂材料層による放射冷却を良好に行うことができる。
尚、本明細書では、太陽光について、断りのない場合、スペクトルはAM1.5Gの規格とする。
【0047】
要するに、本発明の放射冷却式ボックスの更なる特徴構成によれば、光反射層よる太陽光エネルギーの吸収を抑えて、樹脂材料層による放射冷却を良好に行うことができる。
【0048】
本発明の放射冷却式ボックスの更なる特徴構成は、前記樹脂材料層の膜厚が、
波長0.4μmから0.5μmの光吸収率の波長平均が13%以下であり、波長0.5μmから波長0.8μmの光吸収率の波長平均が4%以下であり、波長0.8μmから波長1.5μmまでの光吸収率の波長平均が1%以内であり、1.5μmから2.5μmまでの光吸収率の波長平均が40%以下となる光吸収特性を備え、且つ、
8μmから14μmの輻射率の波長平均が40%以上となる熱輻射特性を備える状態の厚みに調整されている点にある。
【0049】
尚、波長0.4μmから0.5μmの光吸収率の波長平均とは、0.4μmから0.5μmの範囲の波長毎の光吸収率の平均値を意味するものであり、波長0.5μmから波長0.8μmの光吸収率の波長平均、波長0.8μmから波長1.5μmまでの光吸収率の波長平均、及び、1.5μmから2.5μmまでの光吸収率の波長平均も同様である。また、輻射率を含む他の同様な記載も同様な平均値を意味するものであり、以下、本明細書においては同様である。
【0050】
すなわち、樹脂材料層は、厚みによって光吸収率や輻射率(光放射率)が変化する。そのため、太陽光をできるだけ吸収せず、いわゆる大気の窓の領域の波長帯域(光の波長8μmから20μmの領域)において大きな熱輻射を発するように樹脂材料層の厚みを調整する必要がある。
【0051】
具体的には、樹脂材料層における太陽光の光吸収率(光吸収特性)の観点において、波長0.4μmから0.5μmの光吸収率の波長平均が13%以下であり、波長0.5μmから波長0.8μmの光吸収率の波長平均が4%以下であり、波長0.8μmから波長1.5μmまでの光吸収率の波長平均が1%以内であり、1.5μmから2.5μmまでの光吸収率の波長平均が40%以下とする必要がある。尚、2.5μmから4μmまでの光吸収率については、波長平均が100%以下であればよい。
このような光吸収率が分布する場合、太陽光の光吸収率は10%以下となり、エネルギーで言うと100W以下となる。
【0052】
つまり、太陽光の光吸収率は樹脂材料層の膜厚を厚くすると増加する。樹脂材料層を厚膜にすると、大気の窓の輻射率はほぼ1となり、その際に宇宙に放出する熱輻射は125W/m2から160W/m2となる。
上述の如く、光反射層での太陽光吸収は50W/m2以下であることが好ましい。
したがって、樹脂材料層と光反射層における太陽光吸収の和が150W/m2以下であり、大気の状態がよければ冷却が進む。樹脂材料層は、以上のように太陽光スペクトルのピーク値付近の吸収率が小さなものを用いるのが良い。
【0053】
また、樹脂材料層の赤外光を放射する輻射率(熱輻射特性)の観点では、波長8μmから14μmの輻射率の波長平均が40%以上となる必要がある。
すなわち、光反射層で吸収される50W/m2程度の太陽光の熱輻射を樹脂材料層から宇宙に放出させるには、それ以上の熱輻射を樹脂材料層が出す必要がある。
例えば、外気温が30℃のとき、波長8μmから14μmの大気の窓の熱輻射の最大は200W/m2である(輻射率1として計算)。この値が得られるのは、高山など、空気の薄いよく乾燥した環境の快晴時である。低地などでは大気の厚みが高山よりも厚くなるので、大気の窓の波長帯域は狭くなり、透過率は低下する。ちなみに、このことを「大気の窓が狭くなる」と呼ぶ。
【0054】
また、実際に放射冷却装置を使用する環境は多湿であることもあり、その場合も大気の窓は狭くなる。低地で利用する際の大気の窓域で発生する熱輻射は、状態の良いときで30℃において160W/m2と見積もられる(輻射率1として計算)。
また、日本ではよくあることであるが、空に靄があるときや、スモッグが存在する場合、大気の窓はさらに狭くなり、宇宙への放射は125W/m2程度となる。
【0055】
かかる事情を鑑みて、波長8μmから14μmの輻射率の波長平均は40%以上(大気の窓帯での熱輻射強度が50W/m2以上)ないと中緯度帯の低地で用いることができない。
したがって、樹脂材料層の厚みを、上述した光学的規定の範囲になるように調整することにより、太陽光の光吸収による入熱よりも大気の窓における出熱の方が大きくなり、昼間の日射環境下でも屋外で放射冷却できるようになる。
【0056】
要するに、本発明の放射冷却式ボックスの更なる特徴構成によれば、太陽光の光吸収による入熱よりも大気の窓における出熱の方が大きくなって、日射環境下でも屋外で放射冷却できる。
【0057】
本発明の放射冷却式ボックスの更なる特徴構成は、前記樹脂材料層を形成する樹脂材料は、炭素-フッ素結合、シロキサン結合、炭素-塩素結合、炭素-酸素結合、エーテル結合、エステル結合、ベンゼン環のいずれかを1つ以上有する樹脂から選択される点にある。
【0058】
すなわち、樹脂材料層を形成する樹脂材料として、炭素-フッ素結合(C-F)、シロキサン結合(Si-O-Si)、炭素-塩素結合(C-Cl)、炭素-酸素結合(C-O)、エーテル結合(R-COO-R)、エステル結合(C-O-C)、ベンゼン環のいずれかを1つ以上有する無色の樹脂材料を用いることができる。
【0059】
キルヒホッフの法則により、輻射率(ε)と光吸収率(A)は等しい。光吸収率(A)は吸収係数(α)から下記式1で求めることができる。
A=1-exp(-αt)・・・(式1) 尚、tは膜厚である。
つまり、樹脂材料層の厚みを厚くすると、吸収係数の大きな波長帯域で大きな熱輻射が得られる。屋外で放射冷却する場合、大気の窓の波長帯域である波長8μmから14μmにおいて吸収係数の大きな材料を用いるとよい。また、太陽光の吸収を抑制するためには、波長0.3μmから4μm、特に0.4μmから2.5μmの範囲で吸収係数を持たない、或いは小さな材料を用いるとよい。上記式1の吸収係数と光吸収率の関係式からわかるように、光吸収率(輻射率)は樹脂材料層の膜厚によって変化する。
【0060】
日射環境下での放射冷却によって周囲の大気より温度を下げるためには、樹脂材料層を形成する樹脂材料として、大気の窓の波長帯域で大きな吸収係数をもち、太陽光の波長帯域で吸収係数を殆ど持たない材料を選ぶと、樹脂材料層の膜厚の調整によって、太陽光は殆ど吸収しないが、大気の窓の熱輻射を多く出す、つまりは太陽光の入力よりも放射冷却による出力の方が大きな状態を作り出すことができる。
【0061】
樹脂材料層を形成する樹脂材料の吸収スペクトルについて説明を加える。
炭素-フッ素結合(C-F)に関しては、CHFおよびCF2に起因する吸収係数が大気の窓である波長8μmから14μmにかけた広帯域に大きく広がっており、特に8.6μmで吸収係数が大きい。併せて、太陽光の波長帯域に関しては、エネルギーが大きな波長0.3μmから2.5μmで目立った吸収係数がない。
【0062】
C-F結合を有する樹脂材料としては、
完全フッ素化樹脂であるポリテトラフルオロエチレン(PTFE)、
部分フッ素化樹脂であるポリクロロトリフルオロエチレン(PCTFE)およびポリフッ化ビニリデン(PVDF)およびポリフッ化ビニル(PVF)、
フッ素化樹脂共重合体であるペルフルオロアルコキシフッ素樹脂(PFA)、
四フッ化エチレン・六フッ化プロピレン共重合体(FEP)、
エチレン・四フッ化エチレン共重合体(ETFE)、
エチレン・クロロトリフルオロエチレン共重合体(ECTFE)が挙げられる。
【0063】
ポリフッ化ビニリデン(PVDF)を代表としての基本構造部のC-C結合、C-H結合、C-F結合の結合エネルギーを求めると、4.50eV、4.46eV、5.05eVとなる。それぞれ、波長0.275μm、波長0.278μm、波長0.246μmに対応し、これら波長より短波長側の光を吸収する。
太陽光スペクトルは波長0.300μmより長波しか存在しないため、フッ素樹脂を用いた場合、太陽光の紫外線、可視光線、近赤外線をほとんど吸収しない。
尚、紫外線は波長0.400μmよりも短波長側の範囲とし、可視光線は波長0.400μmから0.800μmの範囲とし、近赤外線は波長0.800μmから3μmの範囲とし、中赤外線は波長3μmから8μmの範囲とし、遠赤外線は波長8μmよりも長波長側の範囲とする。
【0064】
シロキサン結合(Si-O-Si)をもつ樹脂材料としては、シリコーンゴムおよびシリコーン樹脂が挙げられる。当該樹脂は、C-Siの結合の伸縮に起因する大きな吸収係数が波長13.3μmを中心にブロードに表れ、CSiH2の対象面外変角(縦揺れ)に起因する吸収係数が波長10μmを中心にブロードに表れ、CSiH2の対象面内変角(はさみ)に起因する吸収係数が波長8μm付近に小さく表れる。このように、大気の窓において大きな吸収係数を持つ。紫外領域に関しては、主鎖のSi-O-Siの結合エネルギーが4.60eVであり、波長0.269μmに対応し、この波長より短波長側の光を吸収する。太陽光スペクトルは波長0.300μmより長波しか存在しないため、シロキサン結合を用いた場合、太陽光の紫外線、可視光線、近赤外線をほとんど吸収しない。
【0065】
炭素-塩素結合(C-Cl)に関しては、C-Cl伸縮振動による吸収係数が波長12μmを中心に半値幅1μm以上の広帯域に現れる。
また、炭素-塩素結合(C-Cl)を持つ樹脂材料としてはポリ塩化ビニル(PVC)が挙げられるが、ポリ塩化ビニルの場合、塩素の電子吸引の影響で、主鎖に含まれるアルケンのC-Hの変角振動に由来する吸収係数が波長10μmあたりに現れる。つまり、大気の窓の波長帯域で大きな熱輻射を出すことが可能である。なお、アルケンの炭素と塩素の結合エネルギーは3.28eVであり、その波長は0.378μmに対応し、この波長より短波長側の光を吸収する。つまり、太陽光の紫外線を吸収するが、可視域については吸収をほとんど持たない。
【0066】
エーテル結合(R-COO-R)、エステル結合(C-O-C)に関しては、波長7.8μmから9.9μmにかけて吸収係数を持つ。また、エステル結合、エーテル結合に含まれる炭素-酸素結合に関しては、波長8μmから10μmの波長帯域にかけて強い吸収係数が現れる。
ベンゼン環を炭化水素樹脂の側鎖に導入すると、ベンゼン環自身の振動や、ベンゼン環の影響による周りの元素の振動によって、波長8.1μmから18μmにかけて広く吸収が現れるようになる。
これらの結合をもつ樹脂としては、ポリメタクリル酸メチル樹脂、エチレンテレフタラート樹脂、ポリトリメチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレートがある。例えばメタクリル酸メチルのC-C結合の結合エネルギーは3.93eVであり、波長0.315μmに対応し、この波長より短波長の太陽光を吸収するが、可視域については吸収をほとんど持たない。
【0067】
樹脂材料層を形成する樹脂材料が、前述の輻射率、吸収率特性を有すれば、樹脂材料層としては、一種類の樹脂材料の単層膜、あるいは、複数種類の樹脂材料の多層膜、複数種類がブレンドされた樹脂材料の単層膜、複数種類がブレンドされた樹脂材料の多層膜でも構わない。なお、ブレンドには、交互共重合体、ランダム共重合体、ブロック共重合体、グラフト共重合体といった共重合体や側鎖を置換した変性品も含まれる。
【0068】
要するに、本発明の放射冷却式ボックスの更なる特徴構成によれば、放射冷却層が太陽光の入力よりも放射冷却による出力の方が大きな状態を作り出すことができる。
【0069】
本発明の放射冷却式ボックスの更なる特徴構成は、前記樹脂材料層を形成する樹脂材料の主成分がシロキサンであり、
前記樹脂材料層の厚みが、1μm以上である点にある。
【0070】
すなわち、上記式1のA=1-exp(-αt)から分かるように、厚みtによって、光吸収率(輻射率)は変化する。樹脂材料の光吸収率(輻射率)が、大気の窓において大きな吸収係数を持つ厚みが必要である。
シロキサン結合(Si-O-Si)が主たる構成要素の樹脂材料の場合、1μm以上の膜厚があると、大気の窓における輻射強度が大きくなって、太陽光の入力よりも放射冷却による出力の方が大きな状態を作り出すことができる。
【0071】
要するに、本発明の放射冷却式ボックスの更なる特徴構成によれば、樹脂材料層を形成する樹脂材料の主成分がシロキサンである場合において、放射冷却層が太陽光の入力よりも放射冷却による出力の方が大きな状態を作り出すことができる。
【0072】
本発明の放射冷却式ボックスの更なる特徴構成は、前記樹脂材料層の厚みが、10μm以上である点にある。
【0073】
すなわち、炭素-フッ素結合(C-F)、炭素-塩素結合(C-Cl)、炭素-酸素結合(C-O)、エステル結合(R-COO-R)、エーテル結合(C-O-C)、ベンゼン環のいずれかが主たる構成要素の樹脂材料の場合、10μm以上の膜厚があると、大気の窓における輻射強度が大きくなって、太陽光の入力よりも放射冷却による出力の方が大きな状態を作り出すことができる。
【0074】
要するに、本発明の放射冷却式ボックスの更なる特徴構成によれば、樹脂材料層を形成する樹脂材料が、炭素-フッ素結合(C-F)、炭素-塩素結合(C-Cl)、炭素-酸素結合(C-O)、エステル結合(R-COO-R)、エーテル結合(C-O-C)、ベンゼン環のいずれかが主たる構成要素の樹脂材料の場合において、放射冷却層が太陽光の入力よりも放射冷却による出力の方が大きな状態を作り出すことができる。
【0075】
本発明の放射冷却式ボックスの更なる特徴構成は、前記樹脂材料層の厚みが、20mm以下である点にある。
【0076】
すなわち、樹脂材料層を形成する樹脂材料の大気の窓の熱輻射は材料表面から約100μm程度以内の範囲で生じる。
つまり、樹脂材料の厚みが厚くなっても放射冷却に寄与する厚みは変わらず、残りの厚みは放射冷却後の冷熱を断熱する作用を与える。理想的に太陽光を全く吸収しない樹脂材料層ができたとすると、太陽光は放射冷却装置の光反射層でのみ吸収される。
【0077】
樹脂材料の熱伝導率はおしなべて0.2W/m・K程度であり、この熱伝導性を考慮して計算すると樹脂材料層の厚みが20mmを超えると、冷却面(光反射層における樹脂材料層の存在側とは反対側の面)の温度が上昇する。太陽光をまったく吸収しない理想的な樹脂材料が存在したとしても、樹脂材料の熱伝導率はおしなべて0.2W/m・K程度であるので、20mm以上の厚みにすると、樹脂材料層の熱輻射(放射冷却)によって、上記冷却面にて冷却する筐体を冷却することができず、筐体が日射を受けて加熱されてしまうため、20mm以上の膜厚にすることはできない。
【0078】
要するに、本発明の放射冷却式ボックスの更なる特徴構成によれば、筐体を適切に冷却することができる。
【0079】
本発明の放射冷却式ボックスの更なる特徴構成は、前記樹脂材料層を形成する樹脂材料が、フッ素樹脂もしくはシリコーンゴムである点にある。
【0080】
すなわち、炭素-フッ素結合(C-F)が主たる構成要素のフッ素樹脂、つまり、ポリテトラフルオロエチレン(PTFE)、ポリクロロトリフルオロエチレン(PCTFE)、ポリフッ化ビニリデン(PVDF)、ポリフッ化ビニル(PVF)、ペルフルオロアルコキシフッ素樹脂(PFA)、四フッ化エチレン・六フッ化プロピレン共重合体(FEPP)は、太陽光スペクトルの紫外光域、可視光、近赤外域において殆ど光吸収性を持たない。
【0081】
また、シロキサン結合(Si-O-Si)を主鎖とし、側鎖の分子量が小さい樹脂、つまり、シリコーンゴムは、フッ素樹脂と同様に、太陽光スペクトルの紫外光域、可視光、近赤外域において殆ど光吸収性を持たない。
フッ素樹脂およびシリコーンゴムの熱伝導率は0.2W/m・Kであり、この点に鑑みると、これら樹脂は厚さ20mmまで厚くしても放射冷却機能を発揮する。
【0082】
要するに、本発明の放射冷却式ボックスの更なる特徴構成によれば、樹脂材料層の樹脂材料がフッ素樹脂あるいはシリコーンゴムである場合において、放射冷却層が放射冷却機能を適切に発揮させることができる。
【0083】
本発明の放射冷却式ボックスの更なる特徴構成は、前記樹脂材料層を形成する樹脂材料が、炭素-塩素結合、炭素-酸素結合、エステル結合、エーテル結合、ベンゼン環のいずれかを1つ以上を有する炭化水素を主鎖とする樹脂、又は、側鎖の炭化水素の炭素数が2個以上のシリコーン樹脂であり、
前記樹脂材料層の厚みが500μm以下である点にある。
【0084】
すなわち、樹脂材料層を形成する樹脂材料が、炭素-塩素結合(C-F)、炭素-酸素結合(C-O)、エステル結合(R-COO-R)、エーテル結合(C-O-C)、ベンゼン環のいずれかを1つ以上を有する炭化水素を主鎖とする樹脂であった場合、或いは、側鎖の炭化水素の炭素数が2個以上のシリコーン樹脂であった場合には、共有結合電子による紫外線吸収以外に、近赤外域に結合の変角や伸縮などの振動に基づく吸収が現れる。
【0085】
具体的には、CH3、CH2、CHの第一励起状態への遷移の基準音による吸収がそれぞれ波長1.6μmから1.7μm、波長1.65μmから1.75μm、波長1.7μmに現れる。さらに、CH3、CH2、CHの結合音の基準音による吸収がそれぞれ波長1.35μm、波長1.38μm、波長1.43μmに現れる。さらに、CH2、CHの第二励起状態への遷移の倍音がそれぞれ波長1.24μmあたりに現れる。C-H結合の変角や伸縮の基準音は波長2μmから2.5μmにかけて広帯域に分布している。また、R1-CO2-R2のような構造式を有する場合、波長1.9μmあたりに大きな光吸収が存在する。
【0086】
例えば、ポリメタクリル酸メチル樹脂、エチレンテレフタラート樹脂、ポリトリメチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート、ポリ塩化ビニルは、近赤外域に関してCH3、CH2、CHに起因する同様の光吸収特性を示す。これら樹脂材料を熱伝導性の観点で規定した20mmの厚さまで厚くすると、太陽光に含まれる近赤外線を吸収して加熱される。したがって、これらの樹脂材料を用いる際は、厚さを500μm以下にする必要がある。
【0087】
要するに、本発明の放射冷却式ボックスの更なる特徴構成によれば、樹脂材料が、炭素-塩素結合、炭素-酸素結合、エステル結合、エーテル結合、ベンゼン環のいずれかを1つ以上を有する炭化水素を主鎖とする樹脂、又は、側鎖の炭化水素の炭素数が2個以上のシリコーン樹脂である場合において近赤外線の吸収を抑制できる。
【0088】
本発明の放射冷却式ボックスの更なる特徴構成は、前記樹脂材料層を形成する樹脂材料が、炭素-フッ素結合、シロキサン結合を含む樹脂と、炭化水素を主鎖とする樹脂とのブレンドであり、前記樹脂材料層の厚みが500μm以下である点にある。
【0089】
すなわち、樹脂材料層を形成する樹脂材料が、炭素-フッ素結合(C-F)或いはシロキサン結合(Si-O-Si)を主鎖とする樹脂と、炭化水素を主鎖とする樹脂とをブレンドした樹脂材料の場合、ブレンドされた炭化水素を主鎖とする樹脂の割合に応じてCH、CH2、CH3などに起因する近赤外域の光吸収が現れる。炭素-フッ素結合或いはシロキサン結合が主成分の場合、炭化水素に起因する近赤外域の光吸収は小さくなるので、熱伝導性の観点での上限の20mmまで厚くすることができる。しかし、ブレンドされる炭化水素樹脂が主成分となる場合は厚さを500μm以下にする必要がある。
【0090】
フッ素樹脂或いはシリコーンゴムと炭化水素のブレンドには、フッ素樹脂或いはシリコーンゴムの側鎖を炭化水素に置換したものや、フッ素モノマーおよびシリコーンモノマーと炭化水素モノマーの交互共重合体、ランダム共重合体、ブロック共重合体、グラフト共重合体も含まれる。なお、フッ素モノマーと炭化水素モノマーの交互共重合体としては、フルオロエチレン・ビニルエステル(FEVE)、フルオロオレフィンーアクリル酸エステル共重合体、エチレン・四フッ化エチレン共重合体(ETFE)、エチレン・クロロトリフルオロエチレン共重合体(ECTFE)が挙げられる。
【0091】
置換する炭化水素側鎖の分子量および割合に応じてCH、CH2、CH3などに起因する近赤外域の光吸収が現れる。
側鎖や共重合として導入されるモノマーが低分子であるとき、あるいは、導入されるモノマーの密度が小さいとき、炭化水素に起因する近赤外域の光吸収は小さくなるので、熱伝導性の観点での限界の20mmまで厚くすることができる。
フッ素樹脂或いはシリコーンゴムの側鎖や共重合されるモノマーとして高分子の炭化水素を導入する場合、樹脂の厚みを500μm以下にする必要がある。
【0092】
要するに、本発明の放射冷却式ボックスの更なる特徴構成によれば、樹脂材料が炭素-フッ素結合、シロキサン結合を含む樹脂と、炭化水素を主鎖とする樹脂とのブレンドである場合において、近赤外線の吸収を抑制できる。
【0093】
本発明の放射冷却式ボックスの更なる特徴構成は、前記樹脂材料層を形成する樹脂材料が、フッ素樹脂であり、
前記樹脂材料層の厚みが、300μm以下である点にある。
【0094】
すなわち、放射冷却層は実用の観点では、樹脂材料層の厚みは薄い方がよい。樹脂材料の熱伝導率は、金属やガラスなどよりも一般に低い。冷却対象物を効果的に冷却するには、樹脂材料層の膜厚は必要最低限であるのがよい。樹脂材料層の膜厚を厚くするほどに大気の窓の熱輻射は大きくなり、ある膜厚を超えると大気の窓における熱輻射エネルギーは飽和する。
【0095】
飽和する樹脂材料層の膜厚は樹脂材料にもよるが、フッ素樹脂の場合は概ね300μmもあれば十分に飽和する。したがって、熱伝導度の観点で500μmよりも300μm以下に樹脂材料層の膜厚を抑えるのが望ましい。
ちなみに、熱輻射は飽和していないが、厚みが100μm程度であっても大気の窓領域において十分な熱輻射を得ることができる。厚さが薄い方が、熱貫流率が高まり冷却対象物の温度をより効果的に下げられるので、例えば、フッ素樹脂の場合、100μm程度以下の厚さにしてもよい。
【0096】
また、フッ素樹脂の場合は、C-F結合に起因する吸収係数よりも炭素-ケイ素結合、炭素-塩素結合、炭素-酸素結合、エステル結合、エーテル結合に由来する吸収係数の方が大きい。当然、熱伝導度の観点で500μmよりも300μm以下に膜厚を抑えるのが望ましいが、更に膜厚を薄くして熱伝導性を上げるとさらに大きな放射冷却効果が期待できる。
ちなみに、フッ素樹脂の一例としては、ポリフッ化ビニル(PVF)、ポリフッ化ビニリデン(PVDF)が好適に使用できる。
【0097】
要するに、本発明の放射冷却式ボックスの更なる特徴構成によれば、樹脂材料がフッ素樹脂である場合において放射冷却効果を向上できる。
【0098】
本発明の放射冷却式ボックスの更なる特徴構成は、前記樹脂材料層を形成する樹脂材料が、炭素-塩素結合、炭素-酸素結合、エステル結合、エーテル結合、ベンゼン環のいずれかを一つ以上有する樹脂材料であり、
前記樹脂材料層の厚みが、50μm以下である点にある。
【0099】
すなわち、炭素-塩素結合、炭素-酸素結合、エステル結合、エーテル結合、ベンゼン環を含む樹脂材料の場合には、厚みが100μmであっても、大気の窓における熱輻射エネルギーは飽和しており、厚さ50μmでも大気の窓領域において十分な熱輻射が得られる。
樹脂材料の厚さが薄い方が、熱貫流率が高まり冷却対象物の温度をより効果的に下げられるので、炭素-塩素結合、炭素-酸素結合、エステル結合、エーテル結合、ベンゼン環を含む樹脂の場合、50μm以下の厚さにすると断熱性が小さくなり被冷却物を効果的に冷却することができる。
【0100】
薄くする効用は断熱性を下げて冷熱を伝えやすくすること以外にもある。それは、炭素-塩素結合、炭素-酸素結合、エステル結合、エーテル結合を含む樹脂が呈する、近赤外域でのCH、CH2、CH3由来の近赤外域の光吸収の抑制である。薄くすると、これらによる太陽光吸収を小さくすることができるので、放射冷却装置の冷却能力が高まる。
以上の観点から炭素-塩素結合、炭素-酸素結合、エステル結合、エーテル結合、ベンゼン環を含む樹脂の場合、50μm以下の厚さにするとより効果的に日照下において放射冷却効果を出すことができる。
【0101】
要するに、本発明の放射冷却式ボックスの更なる特徴構成によれば、炭素-塩素結合、炭素-酸素結合、エステル結合、エーテル結合、ベンゼン環のいずれかを一つ以上有する樹脂材料において放射冷却効果を向上できる。
【0102】
本発明の放射冷却式ボックスの更なる特徴構成は、前記樹脂材料層を形成する樹脂材料が、炭素-ケイ素結合を有する樹脂材料であり、
前記樹脂材料層の厚みが、10μm以下である点にある。
【0103】
すなわち、炭素-ケイ素結合を有する樹脂材料の場合、厚さ50μmでも大気の窓領域において熱輻射が飽和しきっており、厚さ10μmでも大気の窓領域において十分な熱輻射が得られる。樹脂材料の厚さが薄い方が、熱貫流率が高まり冷却対象物の温度をより効果的に下げられるので、炭素-ケイ素結合を含む樹脂材料の場合、10μm以下の厚さにすると断熱性が小さくなり冷却対象を効果的に冷却することができる。薄くすると、太陽光吸収を小さくすることができるので、放射冷却式ボックスの冷却能力が高まる。
【0104】
以上の観点から炭素-ケイ素結合を含む樹脂材料の場合、10μm以下の厚さにするとより効果的に日照下において放射冷却効果を出すことができる。
【0105】
要するに、本発明の放射冷却式ボックスの更なる特徴構成によれば、炭素-ケイ素結合を有する樹脂材料において放射冷却効果を向上できる。
【0106】
本発明の放射冷却式ボックスの更なる特徴構成は、前記樹脂材料層を形成する樹脂材料が、塩化ビニル樹脂又は塩化ビニリデン樹脂であり、
前記樹脂材料層の厚みが、100μm以下で10μm以上である点にある。
【0107】
すなわち、厚みが100μm以下で10μm以上である塩化ビニル樹脂(ポリ塩化ビニル)又は塩化ビニリデン樹脂(ポリ塩化ビニリデン)は、大気の窓領域において十分な熱輻射が得られるものである。
塩化ビニル樹脂又は塩化ビニリデン樹脂は、その熱輻射特性が大気の窓領域において大きな熱輻射が得られるフッ素樹脂よりもやや劣るものの、シリコーンゴム等の他の樹脂材料よりも優れ、フッ素樹脂よりもかなり安価であるから、直射日光下で周囲温度よりも温度が低下する放射冷却式ボックスを安価に構成するのに有効である。
【0108】
さらに、薄膜状の塩化ビニル樹脂又は塩化ビニリデン樹脂は、軟質性であるから、他物が接触しても傷がつき難いため、長期に亘って美麗な状態に維持できる。ちなみに、薄膜状のフッ素樹脂は、硬質性であるから、他物の接触により傷がつき易く、美麗な状態を維持し難いものである。
【0109】
要するに、本発明の放射冷却式ボックスの更なる特徴構成によれば、直射日光下で周囲温度よりも温度が低下しかつ傷がつき難い放射冷却層を安価に得ることができる。
【0110】
本発明の放射冷却式ボックスの更なる特徴構成は、前記光反射層が、銀または銀合金で構成され、その厚みが50nm以上である点にある。
【0111】
すなわち、光反射層に上述の反射率特性、つまり、波長0.4μmから0.5μmの反射率が90%以上、波長0.5μmより長波の反射率が96%以上である反射率特性を持たせるためには、光反射層における放射面側の反射材料としては、銀または銀合金である必要がある。
そして、銀または銀合金のみで前述の反射率特性を持たせた状態で太陽光を反射する場合、厚さが50nm以上必要である。
【0112】
要するに、本発明の放射冷却式ボックスの更なる特徴構成によれば、光反射層よる太陽光エネルギーの吸収を的確に抑えて、樹脂材料層による放射冷却を良好に行うことができる。
【0113】
本発明の放射冷却式ボックスの更なる特徴構成は、前記光反射層が、前記保護層に隣接して位置する銀または銀合金と前記保護層から離れる側に位置するアルミまたはアルミ合金の積層構造である点にある。
【0114】
すなわち、光反射層に前述の反射率特性を持たせるためには、銀または銀合金とアルミまたはアルミ合金を積層させた構造にしてもよい。なお、この場合も放射面側の反射材料は銀または銀合金である必要がある。この場合、銀の厚みは10nm以上必要であり、アルミの厚みは30nm以上必要である。
【0115】
そして、アルミまたはアルミ合金は、銀または銀合金よりも安価であるから、適切な反射率特性を持たせながらも、光反射層の低廉化を図ることができる。
つまり、高価な銀または銀合金を薄くして、光反射層の低廉化を図るようにしながらも、光反射層を、銀または銀合金とアルミまたはアルミ合金との積層構造にすることにより、適切な反射率特性を持たせながらも、光反射層の低廉化を図ることができる。
【0116】
要するに、本発明の放射冷却式ボックスの更なる特徴構成によれば、適切な反射率特性を持たせながらも、光反射層の低廉化を図ることができる。
【図面の簡単な説明】
【0117】
【
図1】放射冷却式ボックスの基本構成を説明する図である。
【
図2】樹脂材料の吸収係数と波長帯域との関係を示す図である。
【
図3】樹脂材料の光吸収率と波長との関係を示す図である。
【
図4】シリコーンゴムの輻射率スペクトルを示す図である。
【
図6】塩化ビニル樹脂の輻射率スペクトルを示す図である。
【
図7】エチレンテレフタラート樹脂の輻射率スペクトルを示す図である。
【
図8】オレフィン変成材料の輻射率スペクトルを示す図である。
【
図9】放射面の温度と光反射層の温度との関係を示す図である。
【
図10】シリコーンゴム及びペルフルオロアルコキシフッ素樹脂の光吸収率スペクトルを示す図である。
【
図11】エチレンテレフタラート樹脂の光吸収率スペクトルを示す図である。
【
図12】銀をベースにした光反射層の光反射率スペクトルを示す図である。
【
図13】フルオロエチレンビニルエーテルの輻射率スペクトルを示す図である。
【
図14】塩化ビニリデン樹脂の輻射率スペクトルを示す図である。
【
図16】放射冷却式ボックスの具体構成を示す図である。
【
図17】放射冷却式ボックスの具体構成を示す図である。
【
図18】放射冷却式ボックスの具体構成を示す図である。
【
図19】放射冷却式ボックスの具体構成を示す図である。
【
図20】樹脂材料の光吸収率と波長との関係を示す図である。
【
図21】ポリエチレンの光透過率と波長との関係を示す図である。
【
図23】保護層がポリエチレンの場合の試験結果を示す図である。
【
図24】保護層が紫外線吸収アクリルの場合の試験結果を示す図である。
【
図25】ポリエチレンの輻射率スペクトルを示す図である。
【
図29】放射冷却式ボックスの実験状態を示す図である。
【
図31】放射冷却式ボックスの実験状態を示す図である。
【
図33】放射冷却式ボックスの実験状態を示す図である。
【
図37】放射冷却層の別の設置形態を説明する図である。
【
図40】放射冷却層を凹凸状に形成した構成を示す図である。
【
図41】コンテナをトラックで運搬する場合を示す図である。
【
図42】放射冷却層の凹凸状の具体例を示す図である。
【
図43】放射冷却層の凹凸状の具体例を示す図である。
【
図44】樹脂材料層にフィラーを混入させた構成を説明する図である。
【
図45】樹脂材料層の表裏を凹凸状にした構成を説明する図である。
【発明を実施するための形態】
【0118】
以下、本発明の実施形態を図面に基づいて説明する。
〔放射冷却式ボックスの基本構成〕
図1に示すように、放射冷却式ボックスWは、物品収納用の筐体Eの外面にフィルム状の放射冷却層CPが装着されて、放射冷却層CPの放射冷却作用により、筐体Eの内部が冷却されるように構成されている。
例示する筐体Eは、金属製、例えばステンレス製であり、直方体状に形成され、そして、放射冷却層CPが、筐体Eの外面における底面部を除いた外面部(つまり、上面部及び4つの側面部)に装着されている。
【0119】
筐体Eの内面には、赤外吸収層Zが装着されている。赤外吸収層Zは、筐体Eの内部の熱を吸収して放射冷却層CPに伝えることを適切に行うことにより、筐体Eの内部の冷却を良好に行うために設けられることになる。
つまり、筐体Eがステンレス等の金属にて形成される場合には、筐体Eが内部からの赤外線を反射する等、筐体Eの内部の熱を放射冷却層CPに伝え難いものとなるが、このような場合においても、筐体Eの内部の冷却を良好に行うことができる。
赤外吸収層Zは、筐体Eの内面に樹脂材料を塗布することや、筐体Eの内面に吸収率を高めるフィラーを混入させた樹脂材料を塗布することによって形成される。
尚、筐体Eが樹脂製の場合には、赤外吸収層Zは不要である。
【0120】
放射冷却層CPは、放射面Hから赤外光IRを放射する赤外放射層Aと、当該赤外放射層Aにおける放射面Hの存在側とは反対側に位置させる光反射層Bと、赤外放射層Aと光反射層Bとの間の保護層Dとを積層状態に備え、且つ、フィルム状に形成されている。
つまり、放射冷却層CPが、放射冷却フィルムとして構成されている。
そして、光反射層Bを筐体Eに隣接して位置させる状態で、放射冷却層CPが筐体Eに装着されている。
【0121】
光反射層Bは、赤外放射層A及び保護層Dを透過した太陽光等の光Lを反射するものであり、その反射特性が、波長400nmから500nmの反射率が90%以上、波長500nmより長波の反射率が96%以上である。
太陽光スペクトルは、
図10に示す如く、波長300nmから4000nmにかけて存在し、波長400nmから大きくなるにつれ強度が大きくなり、特に波長500nmから波長1800nmにかけての強度が大きい。
【0122】
尚、本実施形態において、光Lとは、紫外光(紫外線)、可視光、赤外光を含むものであり、これらを電磁波としての光の波長で述べると、その波長が10nmから20000nm(0.01μmから20μmの電磁波)の電磁波を含む。ちなみに、本書では、紫外光(紫外線)の波長域が、300nmから400nmの間であるとする。
【0123】
光反射層Bが、波長400nmから500nmにかけて90%以上の反射特性を示し、波長500nmより長波の反射率が96%以上の反射特性を示すことにより、放射冷却層CP(放射冷却フィルム)が光反射層Bで吸収する太陽光エネルギーを5%以下に抑えることができ、すなわち夏場の南中時に吸収する太陽光エネルギーを50W程度とすることができる。
【0124】
光反射層Bは、銀あるいは銀合金で構成される、又は、保護層Dに隣接して位置する銀または銀合金と保護層Dから離れる側に位置するアルミまたはアルミ合金の積層構造として構成されて、柔軟性を備えるものであって、その詳細は後述する。
【0125】
赤外放射層Aは、吸収した太陽光エネルギーよりも大きな熱輻射エネルギーを波長8μmから波長14μmの帯域で放つ厚みに調整された樹脂材料層Jとして構成されるものであって、その詳細は後述する。
【0126】
従って、放射冷却層CPは、放射冷却層CPに入射した光Lのうちの一部の光を、赤外放射層Aの放射面Hにて反射し、放射冷却層CPに入射した光Lのうちで樹脂材料層J及び保護層Dを透過した光(太陽光等)を、光反射層Bにて反射して、放射面Hから外部へ逃がすように構成されている。
【0127】
そして、光反射層Bにおける樹脂材料層Jの存在側とは反対側に位置する筐体Eからの放射冷却層CPへの入熱(例えば、筐体Eからの熱伝導による入熱)を、樹脂材料層Jによって赤外光IRに変換して放射することにより、筐体Eを冷却するように構成されている。
【0128】
つまり、放射冷却層CPは、当該放射冷却層CPへ照射される光Lを反射し、また、当該放射冷却層CPへの伝熱(例えば、大気からの伝熱や筐体Eからの伝熱)を赤外光IRとして外部に放射するように構成されている。
また、樹脂材料層J、保護層D及び光反射層Bが柔軟性を備えることによって、放射冷却層CP(放射冷却フィルム)が柔軟性を備えるように構成されている。
【0129】
〔樹脂材料層の概要〕
樹脂材料層Jを形成する樹脂材料は、厚みによって光吸収率や輻射率(光放射率)が変化する。そのため、太陽光をできるだけ吸収せず、いわゆる大気の窓の波長帯域(波長8μmから波長14μmの帯域)において大きな熱輻射を発するように樹脂材料層Jの厚みを調整する必要がある。
【0130】
具体的には、太陽光の光吸収率の観点で、樹脂材料層Jの厚みを、波長0.4μmから0.5μmの光吸収率の波長平均が13%以下であり、波長0.5μmから波長0.8μmの光吸収率の波長平均が4%以下であり、波長0.8μmから波長1.5μmまでの光吸収率の波長平均が1%以内であり、波長1.5μmから2.5μmまでの光吸収率の波長平均が40%以下であり、波長2.5μmから4μmまでの光吸収率の波長平均が100%以下である状態の厚みに調整する必要がある。
このような吸収率分布の場合、太陽光の光吸収率は10%以下となり、エネルギーで言うと100W以下となる。
【0131】
後述の如く、樹脂材料の光吸収率は樹脂材料の膜厚を厚くすると増加する。樹脂材料を厚膜にすると、大気の窓の輻射率はほぼ1となり、その際に宇宙に放出する熱輻射は125W/m2から160W/m2となる。保護層D及び光反射層Bでの太陽光吸収は50W/m2以下である。樹脂材料層J、保護層D及び光反射層Bにおける太陽光吸収の和が150W/m2以下であり、大気の状態がよければ冷却が進む。樹脂材料層Jを形成する樹脂材料は、以上のように太陽光スペクトルのピーク値付近の光吸収率が小さなものを用いるのが良い。
【0132】
また、樹脂材料層Jの厚みは、赤外放射(熱輻射)の観点では、波長8μmから14μmの輻射率の波長平均が40%以上となる状態の厚みに調整する必要がある。
保護層D及び光反射層Bで吸収される50W/m2程度の太陽光の熱エネルギーを、樹脂材料層Jの熱輻射より樹脂材料層Jから宇宙に放出させるには、それ以上の熱輻射を樹脂材料層Jが出す必要がある。
例えば、外気温が30℃のとき、8μmから14μmの大気の窓の熱輻射の最大は200W/m2である(輻射率1として計算)。この値が得られるのは、高山など、空気の薄いよく乾燥した環境の快晴時である。低地などでは大気の厚みが高山よりも厚くなるので、大気の窓の波長帯域は狭くなり、透過率は低下する。ちなみに、このことを「大気の窓が狭くなる」と呼ぶ。
【0133】
また、放射冷却層CP(放射冷却フィルム)を実際に使用する環境は多湿であることもあり、その場合においても大気の窓は狭くなる。低地で利用する際の大気の窓域で発生する熱輻射は、状態の良いときで30℃において160W/m2と見積もられる(輻射率1として計算)。また、日本ではよくあることであるが空に靄があるときや、スモッグが存在する場合、大気の窓はさらに狭くなり、宇宙への放射は125W/m2程度となる。
かかる事情を鑑みて、波長8μmから14μmの輻射率の波長平均は40%以上(大気の窓帯での熱輻射強度が50W/m2)ないと中緯度帯の低地で用いることができない。
【0134】
したがって、上記事項を鑑みた光学的規定の範囲になるように樹脂材料層Jの厚みを調整すると、太陽光の光吸収による入熱よりも大気の窓における出熱の方が大きくなり、日射環境下でも屋外で放射冷却できるようになる。
【0135】
〔樹脂材料の詳細〕
樹脂材料には、炭素-フッ素結合(C-F)、シロキサン結合(Si-O-Si)、炭素-塩素結合(C-Cl)、炭素-酸素結合(C-O)、エステル結合(R-COO-R)、エーテル結合(C-O-C結合)、ベンゼン環を含む無色の樹脂材料を用いることができる。
それぞれの樹脂材料(炭素-酸素結合を除く)について、大気の窓の波長帯域における吸収係数を持つ波長域を
図2に示す。
【0136】
キルヒホッフの法則により、輻射率(ε)と光吸収率(A)は等しい。光吸収率は吸収係数(α)からA=1-exp(-αt)の関係式(以下、光吸収率関係式と呼ぶ)で求めることができる。尚、tは膜厚である。
つまり、樹脂材料層Jの膜厚を調整すると、吸収係数の大きな波長帯域で大きな熱輻射が得られる。屋外で放射冷却する場合、大気の窓の波長帯域である波長8μmから14μmにおいて吸収係数の大きな材料を用いるとよい。
また、太陽光の吸収を抑制するために波長0.3μmから4μm、特に0.4μmから2.5μmの範囲で吸収係数を持たない、或いは小さな材料を用いるとよい。吸収係数と吸収率の関係式からわかるように、光吸収率(輻射率)は樹脂材料の膜厚によって変化する。
【0137】
日射環境下での放射冷却によって周囲の大気より温度を下げるためには、大気の窓の波長帯域において大きな吸収係数をもち、太陽光の波長帯域では吸収係数を殆ど持たない材料を選ぶと、膜厚の調整によって太陽光は殆ど吸収しないが、大気の窓の熱輻射を多く出す、つまりは太陽光の入力よりも放射冷却による出力の方が大きな状態を作り出すことができる。
【0138】
炭素-フッ素結合(C-F)に関しては、CHFおよびCF2に起因する吸収係数が大気の窓である波長8μmから14μmにかけた広帯域に大きく広がっており、特に8.6μmで吸収係数が大きい。併せて、太陽光の波長帯域に関しては、エネルギー強度が大きな0.3μmから2.5μmの波長で目立った吸収係数がない。
【0139】
炭素-フッ素結合(C-F)を有する樹脂材料としては、
完全フッ素化樹脂であるポリテトラフルオロエチレン(PTFE)、
部分フッ素化樹脂であるポリクロロトリフルオロエチレン(PCTFE)およびポリフッ化ビニリデン(PVDF)およびポリフッ化ビニル(PVF)、
フッ素化樹脂共重合体であるペルフルオロアルコキシフッ素樹脂(PFA)、
四フッ化エチレン・六フッ化プロピレン共重合体(FEP)、
エチレン・四フッ化エチレン共重合体(ETFE)、
エチレン・クロロトリフルオロエチレン共重合体(ECTFE)が挙げられる。
【0140】
シロキサン結合(Si-O-Si)をもつ樹脂材料としては、シリコーンゴムおよびシリコーン樹脂が挙げられる。
当該樹脂は、C-Siの結合の伸縮に起因する大きな吸収係数が波長13.3μを中心にブロードに表れ、CSiH2の対象面外変角(縦揺れ)に起因する吸収係数が波長10μmを中心にブロードに表れ、CSiH2の対象面内変角(はさみ)に起因する吸収係数が波長8μm付近に小さく表れる。
【0141】
炭素-塩素結合(C-Cl)に関しては、C-Cl伸縮振動による吸収係数が波長12μmを中心に半値幅1μm以上の広帯域に現れる。
また、樹脂材料としては塩化ビニル樹脂(PVC)、塩化ビニリデン樹脂(PVDC)が挙げられるが、塩化ビニル樹脂の場合、塩素の電子吸引の影響で、主鎖に含まれるアルケンのC-Hの変角振動に由来する吸収係数が波長10μmあたりに現れる。
【0142】
エステル結合(R-COO-R)、エーテル結合(C-O-C結合)に関しては、波長7.8μmから9.9μmにかけて吸収係数を持つ。また、エステル結合、エーテル結合に含まれる炭素-酸素結合に関しては、波長8μmから10μmの波長帯域にかけて強い吸収係数が現れる。
ベンゼン環を炭化水素樹脂の側鎖に導入すると、ベンゼン環自身の振動や、ベンゼン環の影響による周りの元素の振動によって、波長8.1μmから18μmにかけて広く吸収が現れるようになる。
【0143】
これらの結合をもつ樹脂としては、メタクリル酸メチル樹脂、エチレンテレフタラート樹脂、トリメチレンテレフタレート樹脂、ブチレンテレフタレート樹脂、エチレンナフタレート樹脂、ブチレンナフタレート樹脂がある。
【0144】
〔光吸収の考察〕
上記した結合および官能基を持つ樹脂材料の紫外-可視領域における光吸収、つまり、太陽光吸収について考察する。紫外線から可視光の吸収の起源は結合に寄与する電子の遷移である。この波長域の吸収は、結合エネルギーを計算するとわかる。
先ずは、炭素-フッ素結合(C-F)をもった樹脂材料の紫外から可視域に吸収係数が生じる波長について考える。ポリフッ化ビニリデン(PVDF)を代表としての基本構造部のC-C結合、C-H結合、C-F結合の結合エネルギーを求めると、4.50eV、4.46eV、5.05eVとなる。それぞれ、波長0.275μm、波長0.278μm、波長0.246μmに対応し、これら波長の光を吸収する。
【0145】
太陽光スペクトルは波長0.300μmより長波しか存在しないため、フッ素樹脂を用いた場合、太陽光の紫外線、可視光線、近赤外線をほとんど吸収しない。なお、紫外線の定義は波長0.400μmよりも短波長側、可視光線の定義は波長0.400μmから0.800μm、近赤外線は波長0.800μmから3μmの範囲とし、中赤外線は3μmから8μmの範囲とし、遠赤外線は波長8μmよりも長波とする。
【0146】
厚さ50μmのPFA(ペルフルオロアルコキシフッ素樹脂)の紫外から可視域の吸収率スペクトルを
図3に示すが、殆ど吸収率を持っていないことがわかる。なお、0.4μmよりも短波長側で若干の吸収率スペクトルの増加がみられるが、この増加は測定に用いたサンプルの散乱の影響が表れているだけであり、実際には吸収率は増大していない。
【0147】
シロキサン結合(Si-O-Si)の紫外領域に関しては、主鎖のSi-O-Siの結合エネルギーが4.60eVであり、波長269nmに対応する。太陽光スペクトルは波長0.300μmより長波しか存在しないため、シロキサン結合が大多数の場合、太陽光の紫外線、可視光線、近赤外線をほとんど吸収しない。
【0148】
厚さ100μmのシリコーンゴムの紫外から可視域の吸収率スペクトルを
図3に示すが、殆ど吸収率を持っていないことがわかる。なお、波長0.4μmよりも短波長側で若干の吸収率スペクトルの増加がみられるが、この増加は測定に用いたサンプルの散乱の影響が表れているだけであり、実際には吸収率は増大していない。
【0149】
炭素-塩素結合(C-Cl)に関して、アルケンの炭素と塩素の結合エネルギーは3.28eVであり、その波長は0.378μmであるので、太陽光の内紫外線を多く吸収するが、可視域については吸収をほとんど持たない。
厚さ100μmの塩化ビニル樹脂の紫外から可視域の吸収率スペクトルを
図3に示すが、波長0.38μmよりも短波長側で光吸収が大きくなる。
厚さ100μmの塩化ビニリデン樹脂の紫外から可視域の吸収率スペクトルを
図3に示すが、波長0.4μmよりも短波長側で若干の吸収率スペクトルの増加がみられる。
【0150】
エステル結合(R-COO-R)、エーテル結合(C-O-C結合)、ベンゼン環をもつ樹脂としては、メタクリル酸メチル樹脂、エチレンテレフタラート樹脂、トリメチレンテレフタレート樹脂、ブチレンテレフタレート樹脂、エチレンナフタレート樹脂、ブチレンナフタレート樹脂がある。例えばアクリルのC-C結合の結合エネルギーは3.93eVであり、波長0.315μmより短波長の太陽光を吸収するが、可視域については吸収をほとんど持たない。
【0151】
これら結合および官能基を持つ樹脂材の一例として、厚さ5mmのメタクリル酸メチル樹脂の紫外から可視域の吸収率スペクトルを
図3に示す。尚、例示するメタクリル酸メチル樹脂は、一般的に市販されているものであって、ベンゾトリアゾール系紫外線吸収剤が混入している。
5mmと厚板であるために、吸収係数の小さな波長も大きくなり、波長0.315よりも長波の0.38μmよりも短波側で光吸収が大きくなる。
【0152】
これら結合および官能基を持つ樹脂材の一例として厚さ40μmのエチレンテレフタラート樹脂の紫外から可視域の吸収率スペクトルを
図3に示す。
図示のように、波長0.315μmに近づくほどに吸収率が大きくなり、波長0.315μmで急激に吸収率が大きくなる。なお、エチレンテレフタラート樹脂も、厚みを増していくと、波長0.315μmより少し長波側において、C-C結合由来の吸収端による吸収率が大きくなり、市販されているメタクリル酸メチル樹脂と同様に紫外線における吸収率が増大する。
【0153】
樹脂材料層Jは、前述の輻射率(光放射率)、光吸収率の特性を有する樹脂材料を用いるものであれば、一種類の樹脂材料の単層膜、複数種類の樹脂材料の多層膜、複数種類の樹脂材料がブレンドされた樹脂材料の単層膜、複数種類の樹脂材料がブレンドされた樹脂材料の多層膜でも構わない。
なお、ブレンドには、交互共重合体、ランダム共重合体、ブロック共重合体、グラフト共重合体といった共重合体や側鎖を置換した変性品も含まれる。
【0154】
〔シリコーンゴムの輻射率〕
図4に、シロキサン結合をもつシリコーンゴムの大気の窓における輻射率スペクトルを示す。
シリコーンゴムからは、C-Siの結合の伸縮に起因する大きな吸収係数が波長13.3μを中心にブロードに表れ、CSiH
2の対象面外変角(縦揺れ)に起因する吸収係数が波長10μmを中心にブロードに表れ、CSiH
2の対象面内変角(はさみ)に起因する吸収係数が波長8μm付近に小さく表れる。
この影響で、厚さ1μmの輻射率の波長平均は、波長8μmから14μmにおいて80%であり、波長平均40%以上という規定の中に入る。図示の通り、膜厚が厚くなると大気の窓領域における輻射率は増大する。
【0155】
ちなみに、
図4には、無機材料である厚み1μmの石英が銀上に存在するときの放射スペクトルを併せて示す。石英は厚み1μmのとき、波長8μmから14μmの間で狭帯域な輻射ピークしか持たない。
この熱輻射を波長8μmから14μmの波長域で波長平均をすると、波長8μmから14μmの輻射率は32%となり、放射冷却性能を示すことが難しい。
【0156】
樹脂材料層Jを用いた本発明の放射冷却層CP(放射冷却フィルム)は、光反射層Bとして無機材料を用いる従来技術よりも薄い赤外放射層Aでも放射冷却性能が得られる。つまり、無機材料である石英やテンパックスガラスにて赤外放射層Aを形成する場合には、赤外放射層Aが膜厚1μmでは放射冷却性能が得られないが、樹脂材料層Jを用いた本発明の放射冷却層CPでは、樹脂材料層Jが膜厚1μmでも放射冷却性能を示す。
【0157】
〔PFAの輻射率〕
図5に、炭素-フッ素結合を持つ樹脂の代表例として、ペルフルオロアルコキシフッ素樹脂(PFA)の大気の窓における輻射率を示す。CHFおよびCF
2に起因する吸収係数が大気の窓である波長8μmから14μmにかけた広帯域に大きく広がっており、特に8.6μmで吸収係数が大きい。
この影響で、厚さ10μmの輻射率の波長平均は、波長8μmから14μmにおいて45%であり、波長平均40%以上という規定の中に入る。図示の通り、膜厚が厚くなると大気の窓領域における輻射率は増大する。
【0158】
〔塩化ビニル樹脂及び塩化ビニリデン樹脂の輻射率〕
図6に、炭素-塩素結合をもつ樹脂の代表例として、塩化ビニル樹脂(PVC)の大気の窓における輻射率を示す。また、
図14に、塩化ビニリデン樹脂(PVDC)の大気の窓における輻射率を示す。
炭素-塩素結合に関しては、C-Cl伸縮振動による吸収係数が波長12μmを中心に半値幅1μm以上の広帯域に現れる。
また、塩化ビニル樹脂の場合、塩素の電子吸引の影響で、主鎖に含まれるアルケンのC-Hの変角振動に由来する吸収係数が波長10μmあたりに現れる。塩化ビニリデン樹脂についても同様である。
これらの影響で、厚さ10μmの輻射率の波長平均は、波長8μmから14μmにおいて43%であり、波長平均40%以上という規定の中に入る。図示の通り、膜厚が厚くなると大気の窓領域における輻射率は増大する。
【0159】
〔エチレンテレフタラート樹脂〕
図7に、エステル結合やベンゼン環を持つ樹脂の代表例として、エチレンテレフタラート樹脂の大気の窓における輻射率を示す。
エステル結合に関しては、波長7.8μmから9.9μmにかけて吸収係数を持つ。また、エステル結合に含まれる炭素-酸素結合に関しては、波長8μmから10μmの波長帯域にかけて強い吸収係数が現れる。ベンゼン環を炭化水素樹脂の側鎖に導入すると、ベンゼン環自身の振動や、ベンゼン環の影響による周りの元素の振動によって、波長8.1μmから18μmにかけて広く吸収が現れる。
これらの影響で、厚さ10μmの輻射率の波長平均は、波長8μmから14μmにおいて71%であり、波長平均40%以上という規定の中に入る。図示の通り、膜厚が厚くなると大気の窓領域における輻射率は増大する。
【0160】
〔オレフィン変成材料の輻射率〕
図8には、炭素-フッ素結合(C-F)、炭素-塩素結合(C-Cl)、エステル結合(R-COO-R)、エーテル結合(C-O-C結合)、ベンゼン環を含まない、主成分がオレフィンである、オレフィン変性材料の輻射率スペクトルを示す。サンプルは、蒸着した銀上にオレフィン樹脂をバーコーターで塗布し乾燥させることによって作製した。
図示の通り、大気の窓領域での輻射率は小さく、この影響で、厚さ10μmの輻射率の波長平均は、波長8μmから14μmにおいて27%であり、波長平均40%以上という規定の中に入らない。
【0161】
図示の輻射率はバーコーターとして塗布するために変性されたオレフィン樹脂のものであり、純粋なオレフィン樹脂の場合には、更に、大気の窓領域における輻射率は小さい。
このように、炭素-フッ素結合(C-F)、炭素-塩素結合(C-Cl)、エステル結合(R-COO-R)、エーテル結合(C-O-C結合)、ベンゼン環を含まないと放射冷却できない。
【0162】
〔光反射層および樹脂材料層の表面の温度〕
樹脂材料層Jの大気の窓の熱輻射は樹脂材料の表面近傍で発生する。
図4より、シリコーンゴムの場合は10μmより厚いと大気の窓領域における熱輻射は増大しない。つまり、シリコーンゴムの場合、大気の窓における熱輻射の大部分は表面から深さ約10μm以内の部分で生じており、より深い部分の輻射は外に出てこない。
【0163】
図5より、フッ素樹脂の場合は100μmより厚くなっても大気の窓領域における熱輻射の増大は殆どなくなる。つまり、フッ素樹脂場合、大気の窓における熱輻射は表面から深さ約100μm以内の部分で生じており、より深い部分の輻射は外に出てこない。
図6より、塩化ビニル樹脂の場合は100μmより厚くなっても大気の窓領域における熱輻射の増大は殆どなくなる。つまり、塩化ビニル樹脂場合、大気の窓における熱輻射は表面から深さ約100μm以内の部分で生じており、より深い部分の輻射は外に出てこない。
図14より、塩化ビニリデン樹脂は、塩化ビニル樹脂と同様であることが分かる。
【0164】
図7より、エチレンテレフタラート樹脂の場合は125μmより厚くなっても大気の窓領域における熱輻射の増大は殆どなくなる。つまり、エチレンテレフタラート樹脂場合、大気の窓における熱輻射は表面から深さ約100μmの部分で生じており、より深い部分の輻射は外に出てこない。
【0165】
以上のように、樹脂材料表面から発生する大気の窓領域の熱輻射は、表面からの深さが概ね100μm以内の部分で生じており、それ以上に樹脂の厚みが増していくと、熱輻射に寄与しない樹脂材料によって、放射冷却層CPの放射冷却した冷熱が断熱される。
理想的に太陽光を全く吸収しない樹脂材料層Jを光反射層Bの上に作製することを考える。この場合、太陽光は放射冷却層CPの光反射層Bでのみ吸収される。
樹脂材料の熱伝導率はおしなべて0.2W/m/K程度であり、この熱伝導性を考慮して計算すると、樹脂材料層Jの厚みが20mmを超えると、冷却面(光反射層Bにおける樹脂材料層Jの存在側とは反対側の面)の温度が上昇する。
【0166】
太陽光をまったく吸収しない理想的な樹脂材料が存在したとしても、樹脂材料の熱伝導率はおしなべて0.2W/m/K程度であるので、
図9のように20mmを超えると光反射層Bが日射を受けて加熱されてしまい、光反射層側に設置された筐体Eは加熱される。つまり、放射冷却層CPの樹脂材料の厚みは20mm以下にする必要がある。
【0167】
なお、
図9は、真夏の西日本の良く晴れた日の南中を想定して計算した放射冷却層(放射冷却フィルム)CPの放射面Hの表面温度と光反射層Bの温度のプロットである。太陽光はAM1.5とし、1000W/m
2のエネルギー密度としている。外気温は30℃であり、放射エネルギーは温度によって変わるが30℃において100Wである。樹脂材料層で太陽光の吸収はないものとしての計算である。無風状態を仮定し、対流熱伝達率は5W/m
2/Kとしている。
【0168】
〔シリコーンゴム等の光吸収率について〕
図10に、側鎖がCH
3であるシリコーンゴムの厚さが100μmのときの太陽光スペクトルに対する光吸収率、及び、厚さ100μmのペルフルオロアルコキシフッ素樹脂の太陽光スペクトルに対する光吸収率スペクトルを示す。先に述べた通り、両樹脂ともに紫外域においては光吸収率を殆ど持たないことがわかる。
【0169】
シリコーンゴムに関して、近赤外域においては、光吸収率が波長2.35μmより長波側の域で増加する。但し、この波長域における太陽光スペクトルの強度は弱いため、波長2.35μmより長波側の光吸収率が100%となっても吸収される太陽光エネルギーは20W/m2である。
【0170】
ペルフルオロアルコキシフッ素樹脂に関しては、波長0.3μmから2.5μmの波長範囲では光吸収率を殆ど持たず、波長2.5μmより長波長側で光吸収を持つ。但し、当該樹脂の膜厚を厚くし、波長2.5μmより長波長側の光吸収率が100%になったとしても、吸収される太陽光エネルギーは7W程度である。
【0171】
尚、樹脂材料層Jの厚さ(膜厚)を厚くしていくと、大気の窓領域の輻射率はほぼ1となる。つまり、厚膜の場合、低地で利用する際の大気の窓域で宇宙に放射する熱輻射は、30℃において160W/m2から125W/m2程度となる。光反射層Bにおける光吸収は、上述の規定の如く、50W/m2程度であり、光反射層Bの光吸収とシリコーンゴム又はペルフルオロアルコキシフッ素樹脂を厚膜にした際の太陽光吸収を足しても宇宙に放射する熱輻射より小さい。
以上より、シリコーンゴム及びペルフルオロアルコキシフッ素樹脂の最大の膜厚は、熱伝導性の観点から20mmとなる。
【0172】
〔炭化水素系樹脂の光吸収について〕
樹脂材料層Jを形成する樹脂材料が、炭素-塩素結合、炭素-酸素結合、エステル結合、エーテル結合、ベンゼン環を1つ以上有する炭化水素を主鎖とする樹脂であった場合、或いは、シリコーン樹脂であり側鎖の炭化水素の炭素数が2個以上の場合、先述の共有結合電子による紫外線吸収以外に、近赤外域に結合の変角や伸縮などの振動に基づく吸収が観測される。
【0173】
具体的には、CH3、CH2、CHの第一励起状態への遷移の基準音による吸収がそれぞれ波長1.6μmから1.7μm、波長1.65μmから1.75μm、波長1.7μmに現れる。さらに、CH3、CH2、CHの結合音の基準音による吸収がそれぞれ波長1.35μm、波長1.38μm、波長1.43μmに現れる。さらに、CH2、CHの第二励起状態への遷移の倍音がそれぞれ波長1.24μmあたりに現れる。C-H結合の変角や伸縮の基準音は波長2μmから2.5μmにかけて広帯域に分布している。
【0174】
また、エステル結合(R-COO-R)、エーテル結合(C-O-C)を有する場合、波長1.9μmあたりに大きな光吸収が存在する。
これらに起因する光吸収率は、上述の光吸収率関係式より、樹脂材料の膜厚が薄いと小さくなり目立たなくなるが、膜厚が厚いと大きくなる。
【0175】
図11には、エステル結合とベンゼン環を持つエチレンテレフタラート樹脂の膜厚を変化させた場合における光吸収率と太陽光のスペクトルとの関係を記す。
図示の如く、膜厚が25μm、125μm、500μmと大きくなるごとに、それぞれの振動に起因する波長1.5μmよりも長波域の光吸収が増加する。
また、長波長側だけでなく、紫外線領域から可視領域にかけての光吸収も増加する。これは、化学結合に起因する光の吸収端に広がりがあることに起因している。
【0176】
膜厚が薄い時は最も大きな吸収係数を持つ波長で光吸収率が大きくなるが、膜厚が厚くなると、上述の光吸収率関係式より、広がりを持った吸収端の弱い吸収係数が吸収率となり出現する。このことにより、膜厚が厚くなると紫外線領域から可視領域にかけての光吸収が増加する。
厚さが25μmのときの太陽光スペクトルの吸収は15W/m2、厚さが125μmのとき太陽光スペクトルの吸収は41W/m2、厚さが500μmの時の太陽光スペクトルの吸収は88W/m2である。
【0177】
光反射層Bの光吸収は、上述の規定により50W/m2であるから、膜厚が500μmである場合、エチレンテレフタラート樹脂の太陽光吸収と光反射層Bの太陽光吸収の和が138W/m2となる。日本の低地の夏場における、大気の窓の波長帯域の赤外放射の最大値は先述の通り30℃において大気の状態の良い日で160W程度、通常は125W程度である。
以上より、エチレンテレフタラート樹脂の膜厚が500μm以上では、放射冷却性能を発揮しなくなる。
【0178】
1.5μmから4μmの波長帯域の吸収スペクトルの起源は、官能基でなく主鎖の炭化水素の振動であり、炭化水素系樹脂であればエチレンテレフタラート樹脂と同様の挙動を示す。また、炭化水素系樹脂は紫外域に化学結合に起因する光吸収を有しており、紫外から可視についてもエチレンテレフタラート樹脂と同様の挙動を示す。
つまり、炭化水素樹脂であれば波長0.3μmから4μmまでエチレンテレフタラート樹脂と同様の挙動をとる。以上から、炭化水素系の樹脂の膜厚は500μmよりも薄い必要がある。
【0179】
〔ブレンド樹脂の光吸収について〕
樹脂材料が、炭素-フッ素結合或いはシロキサン結合を主鎖とする樹脂と、炭化水素を主鎖とする樹脂とをブレンドした樹脂材料である場合には、ブレンドされた炭化水素を主鎖とする樹脂の割合に応じてCH、CH2、CH3などに起因する近赤外域の光吸収が現れる。
炭素-フッ素結合或いはシロキサン結合が主成分の場合、炭化水素に起因する近赤外域の光吸収は小さくなるので、熱伝導性の観点での上限の20mmまで厚くすることができる。しかし、ブレンドされる炭化水素樹脂が主成分となる場合は厚さを500μm以下にする必要がある。
【0180】
フッ素樹脂或いはシリコーンゴムと炭化水素とのブレンドには、フッ素樹脂或いはシリコーンゴムの側鎖を炭化水素に置換したものや、フッ素モノマーおよびシリコーンモノマーと炭化水素モノマーの交互共重合体、ランダム共重合体、ブロック共重合体、グラフト共重合体も含まれる。なお、フッ素モノマーと炭化水素モノマーの交互共重合体としては、フルオロエチレン・ビニルエステル(FEVE)、フルオロオレフィン-アクリル酸エステル共重合体、エチレン・四フッ化エチレン共重合体(ETFE)、エチレン・クロロトリフルオロエチレン共重合体(ECTFE)が挙げられる。
【0181】
置換する炭化水素側鎖の分子量および割合に応じてCH、CH2、CH3などに起因する近赤外域の光吸収が現れる。側鎖や共重合として導入されるモノマーが低分子であるとき、あるいは、導入されるモノマーの密度が小さいときには、炭化水素に起因する近赤外域の光吸収は小さくなるので、熱伝導性の観点での限界の20mmまで厚くすることができる。
フッ素樹脂或いはシリコーンゴムの側鎖や共重合されるモノマーとして高分子の炭化水素を導入する場合、樹脂の厚みを500μm以下にする必要がある。
【0182】
〔樹脂材料層の厚みについて〕
放射冷却層CPの実用の観点では、樹脂材料層Jの厚みは薄い方がよい。樹脂材料の熱伝導率は、金属やガラスなどよりも一般に低い。筐体Eを効果的に冷却するには、樹脂材料層Jの膜厚は必要最低限であるのがよい。樹脂材料層Jの膜厚を厚くするほどに大気の窓の熱輻射は大きくなり、ある膜厚を超えると大気の窓における熱輻射エネルギーは飽和する。
【0183】
飽和する膜厚は樹脂材料にもよるが、フッ素樹脂の場合は概ね300μmもあれば十分に飽和する。したがって、熱伝導度の観点で500μmよりも300μm以下に膜厚を抑えるのが望ましい。さらに、熱輻射は飽和していないが、厚みが100μm程度であっても大気の窓領域において十分な熱輻射を得ることができる。厚さが薄い方が、熱貫流率が高まり筐体Eの温度をより効果的に下げられるので、フッ素樹脂の場合、100μm程度以下の厚さにするのがよい。
【0184】
C-F結合に起因する吸収係数よりも炭素-ケイ素結合、炭素-塩素結合、炭素-酸素結合、エステル結合、エーテル結合に由来する吸収係数の方が大きい。当然、熱伝導度の観点で500μmよりも300μm以下に膜厚を抑えるのが望ましいが、更に膜厚を薄くして熱伝導性を上げるとさらに大きな放射冷却効果が期待できる。
炭素-塩素結合、炭素-酸素結合、エステル結合、エーテル結合、ベンゼン環を含む樹脂の場合、厚みが100μmであっても飽和しており、厚さ50μmでも大気の窓領域において十分な熱輻射が得られる。樹脂材料の厚さが薄い方が、熱貫流率が高まり筐体Eの温度をより効果的に下げられるので、炭素-塩素結合、炭素-酸素結合、エステル結合、エーテル結合、ベンゼン環を含む樹脂の場合、50μm以下の厚さにすると断熱性が小さくなり筐体Eを効果的に冷却することができる。炭素-塩素結合の場合には、100μm以下の厚さであれば、筐体Eを効果的に冷却することができる。
【0185】
薄くする効用は断熱性を下げて冷熱を伝えやすくすること以外にもある。それは、炭素-塩素結合、炭素-酸素結合、エステル結合、エーテル結合を含む樹脂が呈する、近赤外域でのCH、CH2、CH3由来の近赤外域の光吸収の抑制である。薄くすると、これらによる太陽光吸収を小さくすることができるので、放射冷却層CPの冷却能力が高まることになる。
以上の観点から、炭素-塩素結合、炭素-酸素結合、エステル結合、エーテル結合、ベンゼン環を含む樹脂の場合、50μm以下の厚さにするとより効果的に日照下において放射冷却効果を出すことができる。
【0186】
炭素-ケイ素結合の場合、厚さ50μmでも大気の窓領域において熱輻射が飽和しきっており、厚さ10μmでも大気の窓領域において十分な熱輻射が得られる。樹脂材料層Jの厚さが薄い方が、熱貫流率が高まり筐体Eの温度をより効果的に下げられるので、炭素-ケイ素結合を含む樹脂の場合、10μm以下の厚さにすると断熱性が小さくなり筐体Eを効果的に冷却することができる。薄くすると、太陽光吸収を小さくすることができるので、放射冷却層CPの冷却能力が高まる。
以上の観点から、炭素-ケイ素結合を含む樹脂の場合、10μm以下の厚さにするとより効果的に日照下において放射冷却効果を出すことができる。
【0187】
〔光反射層の詳細〕
光反射層Bに上述の反射率特性を持たせるためには、放射面Hの存在側(樹脂材料層Jの存在側)の反射材料は銀または銀合金である必要がある。
図12に示す通り、銀をベースとして光反射層Bを構成すれば、光反射層Bに求められる反射率が得られる。
【0188】
銀または銀合金のみで太陽光を前記の反射率特性を持たせた状態で反射する場合、厚さが50nm以上必要である。
但し、光反射層Bに柔軟性を備えさせるためには、厚さを100μm以下にする必要がある。これ以上厚いと曲げにくくなる。
ちなみに、「銀合金」としては、銀に、銅、パラジウム、金、亜鉛、スズ、マグネシウム、ニッケル、チタンのいずれかを、例えば、0.4質量%から4.5質量%程度添加した合金を用いることができる。具体例としては、銀に銅とパラジウムを添加して作成した銀合金である「APC-TR(フルヤ金属製)」を用いることができる。
【0189】
光反射層Bに上述の反射率特性を持たせるためには、保護層Dに隣接して位置する銀または銀合金と保護層Dから離れる側に位置するアルミまたはアルミ合金とを積層させた構造にしてもよい。尚、この場合においても、放射面Hの存在側(樹脂材料層Jの存在側)の反射材料は銀または銀合金である必要がある。
銀(銀合金)とアルミ(アルミ合金)の2層で構成する場合、銀の厚みは10nm以上必要であり、アルミの厚みは30nm以上必要である。
但し、光反射層Bに柔軟性を備えさせるためには、銀の厚さとアルミの厚さとの合計を100μm以下にする必要がある。これ以上厚いと曲げにくくなる。
【0190】
ちなみに、「アルミ合金」としては、アルミに、銅、マンガン、ケイ素、マグネシウム、亜鉛、機械構造用炭素鋼、イットリウム、ランタン、ガドリニウム、テルビウムを添加した合金を用いることができる。
【0191】
銀および銀合金は雨や湿度に弱くそれらから保護をする必要があり、また、その変色を抑制する必要がある。そのために、
図16から
図19に示す如く、銀や銀合金に隣接させる形態で、銀を保護する保護層Dが必要である。
保護層Dの詳細は、後述する。
【0192】
〔実験結果について〕
ガラス基板上に銀を300nmの厚さで形成し、その上に、シロキサン結合を有するシリコーンゴム、炭素-フッ素結合を有するフルオロエチレンビニルエーテル、オレフィン変性体(オレフィン変成材料)、塩化ビニル樹脂をバーコーターで膜厚制御しつつ塗布し、放射冷却性能を測定した。
放射冷却性能の評価は外気温35℃の6月下旬の屋外の南中後3時間で実施し、基板を断熱性高く保持したうえで、基板裏面の温度(℃)を測定した。但し、塩化ビニル樹脂については、外気温が29℃のときに実施した。冶具に設置後5分後の温度が外気温より低いか、或いは高いかで放射冷却効果があるか否かを評価した。
放射冷却試験の結果を、
図15に示す。
【0193】
ちなみに、フルオロエチレンビニルエーテルの大気の窓領域の輻射率は、
図13に示す通りである。尚、シリコーンゴムの輻射率は、
図4に示す通りであり、オレフィン変性体(オレフィン変成材料)の輻射率は、
図8に示す通りであり、塩化ビニル樹脂の輻射率は、
図6に示す通りである。
【0194】
シロキサン結合を有するシリコーンゴムの場合、理論から予想された通り1μm以上の厚みで放射冷却能力を発揮することがわかった。
炭素-フッ素結合を有するフルオロエチレンビニルエーテルは、理論で予測される10μmよりも薄い5μmの膜厚で放射冷却能力を発揮することがわかった。この原因は、炭素-フッ素結合による大気の窓の光吸収のみならず、ビニルエーテルのエーテル結合による光吸収が加わり、それぞれ単独のときよりも大気の窓の光吸収率が増えたためである。
オレフィン変性体(オレフィン変成材料)は、大気の窓領域の熱輻射が殆どでないため放射冷却能力を持たない。
【0195】
〔放射冷却式ボックスの具体構成〕
放射冷却層CPは、樹脂材料層J及び保護層Dを形成する樹脂材料が柔軟であるから、光反射層Bを薄膜にすると、光反射層Bにも柔軟性を備えさせることができ、その結果、放射冷却層CPを、柔軟性を備えるフィルム(放射冷却フィルム)とすることができる。
【0196】
そして、
図16から
図19に示すように、フィルム状の放射冷却層CP(放射冷却フィルム)を、接着剤又は粘着剤の接続層Sにて筐体Eの外面に装着することにより、筐体Eの内部を冷却することができる。
接続層Sに用いる接着剤又は粘着剤としては、ウレタン系接着剤(粘着剤)、アクリル系接着剤(粘着剤)、EVA(エチレン酢酸ビニル)系接着剤(粘着剤)等がある。
【0197】
放射冷却層CPをフィルム状に作製するには、種々の形態が考えられる。例えば、フィルム状に作製された光反射層Bに保護層D及び樹脂材料層Jを塗布して作ることが考えられる。あるいは、フィルム状に作製された光反射層Bに保護層D及び樹脂材料層Jを貼り付けて作ることが考えられる。或いは、フィルム状に作製された樹脂材料層Jの上に、保護層Dを塗布あるいは貼り付けて作成し、保護層Dの上に、蒸着・スパッタリング・イオンプレーティング・銀鏡反応などによって光反射層Bを作製することが考えられる。
【0198】
具体的に説明すると、
図16の放射冷却層CP(放射冷却フィルム)は、光反射層Bを、銀又は銀合金の一層として形成する場合や、銀(銀合金)とアルミ(アルミ合金)の2層で構成する場合において、当該光反射層Bの上側に、保護層Dを形成し、保護層Dの上部に、樹脂材料層Jを形成したものであり、かつ、光反射層Bの下側にも、下側保護層Dsを形成する。
【0199】
図16の放射冷却層CP(放射冷却フィルム)の作成方法としては、フィルム状の樹脂材料層Jの上に、保護層D、光反射層B、下側保護層Dsを順次塗布して、一体的に成形する方法を採用することができる。
【0200】
図17の放射冷却層CP(放射冷却フィルム)は、光反射層Bを、アルミ(アルミ合金)として機能するアルミ箔にて形成されたアルミ層B1と、銀又は銀合金からなる銀層B2とから構成し、当該光反射層Bの上側に、保護層Dを形成し、保護層Dの上部に、樹脂材料層Jを形成したものである。
【0201】
図17の放射冷却層CP(放射冷却フィルム)の作成方法としては、アルミ箔にて構成されるアルミ層B1の上に、銀層B2、保護層D、樹脂材料層Jを順次塗布して、一体的に成形する方法を採用することができる。
尚、別の作成方法として、樹脂材料層Jをフィルム状に形成して、当該フィルム状の樹脂材料層Jの上に、保護層D、銀層B2を順次塗布し、アルミ層B1を銀層B2に貼り付ける方法を採用することができる。
【0202】
図18の放射冷却層CP(放射冷却フィルム)は、光反射層Bを、銀又は銀合金の一層として形成する場合や、銀(銀合金)とアルミ(アルミ合金)の2層で構成する場合において、当該光反射層Bの上側に、保護層Dを形成し、保護層Dの上部に、樹脂材料層Jを形成し、光反射層Bの下側に、PET等のフィルム層Fを形成したものである。
【0203】
図18の放射冷却層CP(放射冷却フィルム)の作成方法としては、PET(エチレンテレフタラート樹脂)等にてフィルム状に形成されたフィルム層F(基材に相当)の上に、光反射層B、保護層Dを順次塗布して、一体的に成形し、保護層Dに対して、別途形成したフィルム状の樹脂材料層Jをのり層Nにて接着する方法を採用することができる。
のり層Nにて使用する接着剤(粘着剤)は、例えば、ウレタン系接着剤(粘着剤)、アクリル系接着剤(粘着剤)、EVA(エチレン酢酸ビニル)系接着剤(粘着剤)等があり、太陽光に対して高い透明性を持つものが望ましい。
【0204】
図19の放射冷却層CP(放射冷却フィルム)は、光反射層Bを、アルミ(アルミ合金)として機能するアルミ層B1と、銀又は銀合金(代替銀)からなる銀層B2とから構成し、アルミ層B1を、PET(エチレンテレフタラート樹脂)等にてフィルム状に形成されたフィルム層F(基材に相当)の上部に形成し、銀層B2の上側に、保護層Dを形成し、保護層Dの上側に、樹脂材料層Jを形成したものである。
【0205】
図19の放射冷却層CP(放射冷却フィルム)の作成方法としては、フィルム層Fの上に、アルミ層B1を塗布して、フィルム層Fとアルミ層B1とを一体的に成形し、別途、フィルム状の樹脂材料層Jの上に、保護層D、銀層B2を塗布して、樹脂材料層J、保護層D、銀層B2を一体形成し、アルミ層B1と銀層B2とをのり層Nにて接着する方法を採用することができる。
のり層Nにて使用する接着剤(粘着剤)は、例えば、ウレタン系接着剤(粘着剤)、アクリル系接着剤(粘着剤)、EVA(エチレン酢酸ビニル)系接着剤(粘着剤)等があり、太陽光に対して高い透明性を持つものが望ましい。
【0206】
〔保護層の詳細〕
保護層Dは、厚さが17μm以上で、40μm以下のポリエチレンテレフタラートである。
【0207】
図20に、ポリエチレン、塩化ビニリデン樹脂、エチレンテレフタラート樹脂、塩化ビニル樹脂の紫外線の吸収率を示す。
また、
図21に、保護層Dを形成する合成樹脂として好適なポリエチレンの光透過率を示す。
【0208】
放射冷却層CP(放射冷却フィルム)は、夜間のみならず、日射環境下にても放射冷却作用を発揮するものであるから、光反射層Bが光反射機能を発揮する状態を維持するには、保護層Dにて光反射層Bを保護することにより、日射環境下で光反射層Bの銀が変色しないようにする必要がある。
【0212】
保護層Dが、エチレンテレフタラート樹脂にて厚さが17μm以上で、40μm以下の形態に形成される場合には、エチレンテレフタラート樹脂は、ポリオレフィン系樹脂よりも、波長0.3μmから0.4μmの紫外線の波長域において紫外線の光吸収率が高い合成樹脂であるが、厚さが17μm以上であるから、樹脂材料層Jにて発生したラジカルが光反射層Bを形成する銀又は銀合金に到達することを遮断し、また、樹脂材料層Jを透過する水分が光反射層を形成する銀又は銀合金に到達することを遮断する等の遮断機能を長期に亘って良好に発揮することになり、光反射層Bを形成する銀又は銀合金の変色を抑制できることになる。
【0213】
つまり、エチレンテレフタラート樹脂にて形成される保護層は、紫外線の吸収により、光反射層Bから離れる表面側にラジカルを形成しながら劣化することになるが、厚さが17μm以上であるから、形成したラジカルが反射層に到達することはなく、また、ラジカルを形成しながら劣化するにしても、厚さが17μm以上であるから、上述の遮断機能を長期に亘って発揮することになる。
【0214】
説明を加えると、エチレンテレフタラート樹脂(PET)の劣化は紫外線によってエチレングリコールとテレフタル酸のエステル結合が開裂しラジカルが形成されることに起因する。この劣化は、エチレンテレフタラート樹脂(PET)における紫外線が照射される面の表面から順に進行する。
【0215】
例えば、大阪における強さの紫外線がエチレンテレフタラート樹脂(PET)に照射されると、1日あたり、照射される面より順に約9nmのエチレンテレフタラート樹脂(PET)のエステル結合が開裂していく。エチレンテレフタラート樹脂(PET)は十分に重合しているので、開裂した表面のエチレンテレフタラート樹脂(PET)が光反射層Bの銀(銀合金)を攻撃することはないが、エチレンテレフタラート樹脂(PET)の開裂端が光反射層B銀(銀合金)まで到達すると、銀(銀合金)が変色する。
【0216】
従って、屋外で使用するうえで、保護層Dを1年以上耐久させるためには、9nm/日と365日とを積算して、約3μmの厚さが必要となる。保護層Dのエチレンテレフタラート樹脂(PET)を3年以上耐久させるためには、厚さが10μm以上必要である。5年以上耐久させるためには、厚さが17μm以上必要である。
【0217】
尚、エチレンテレフタラート樹脂にて保護層Dを形成する場合において、その厚さの上限を定める理由は、保護層Dが放射冷却に寄与しない断熱性を奏することを回避するためである。つまり、保護層Dは、厚さが厚くなるほど放射冷却に寄与しない断熱性を奏することになるから、光反射層Bを保護する機能を発揮させながらも、放射冷却に寄与しない断熱性を奏することを回避するために、厚さの上限が定められることになる。
【0218】
つまり、保護層Dが厚くなると、光反射層Bの銀(銀合金)の着色を防ぐうえでのデメリットは生じないが、放射冷却するうえでの問題が発生する。つまり、厚くすると放射冷却材料の断熱性を上げることになる。
例えば、保護層Dを形成する合成樹脂として優れている主成分がポリエチレンの樹脂は、
図25に示すように、大気の窓における輻射率が小さいため、厚く形成しても放射冷却に寄与しない。それどころか、厚くすると放射冷却材料の断熱性を上げることになる。次に、厚くなると主鎖の振動に由来する近赤外域の吸収が増加し、太陽光吸収が増える効果が増加する。
これら要因により、保護層Dが厚いことは、放射冷却にとって不利である
。
【0219】
ところで、
図18に示すように、樹脂材料層Jと保護層Dとの間にのり層Nが位置する場合には、のり層Nからもラジカルが発生することになるが、保護層Dを形成す
るエチレンテレフタラート樹脂の厚さが17μm以上であれば、のり層Nにて発生したラジカルが光反射層Bの到達することを、長期に亘って抑制できる。
【0220】
〔保護層の考察〕
保護層Dによる銀の着色のされ方の違いを検討するために、
図22に示すような、赤外放射層Aとしての樹脂材料層Jを備えない保護層Dを露出させたサンプルを作製し、模擬太陽光が照射された後の銀の着色を調べた。
つまり、保護層Dとして、紫外線を吸収する一般的なアクリル系樹脂(例えば、ベンゾトリアゾール系紫外線吸収剤が混入するメタクリル酸メチル樹脂)とポリエチレンとの二種類を、バーコーターで、光反射層Bとして銀を備えるフィルム層F(基材に相当)上に塗布したサンプルを形成し、保護層Dとしての機能を検討した。塗布した保護層Dの厚みは、それぞれ10μmと1μmである。
尚、フィルム層F(基材に相当)は、PET(エチレンテレフタラート樹脂)等にてフィルム状に形成されたものである。
【0221】
図24に示すように、保護層Dが紫外線を良く吸収するアクリル系樹脂の場合、保護層Dが紫外線で分解されラジカルを形成し、直ぐに銀が黄化して、放射冷却層CPとして機能しなくなる(太陽光を吸収し、一般の材料のように日射が当たると温度上昇する)。
尚、図中の600hの線は、JIS規格5600-7-7の条件でキセノンウエザー試験(紫外光エネルギーは60W/m
2)を600h(時間)行った後の反射率スペクトルである。また、0hの線は、キセノンウエザー試験を行う前の反射率スペクトルである。
【0222】
図23に示すように、保護層Dが紫外線の光吸収率が低いポリエチレンの場合には、近赤外域から可視域での反射率の低下がみられないことがわかる。つまり、主成分がポリエチレンの樹脂(ポリオレフィン系樹脂)は、地上に届く太陽光が持つ紫外線を殆ど吸収しないため、太陽光が当たってもラジカルを形成し難いので、日射が当たっても、光反射層Bとしての銀の着色が発生しない。
尚、図中の600hの線は、JIS規格5600-7-7の条件でキセノンウエザー試験(紫外光エネルギーは60W/m
2)を600h(時間)行った後の反射率スペクトルである。また、0hの線は、キセノンウエザー試験を行う前の反射率スペクトルである。
【0223】
なお、この波長帯域の反射率スペクトルが波打つ理由は、ポリエチレン層のファブリペロー共振である。キセノンウエザー試験の熱などによってポリエチレン層の厚みが変化したことによる原因で、この共振位置が0hの線と600hの線とで多少変わっていることがわかるが、銀の黄化に由来する紫外-可視域における大きな反射率の低下は観測されない。
【0224】
尚、フッ素樹脂系も紫外線吸収の観点からは保護層Dを形成する材料に適用できるが、実際に保護層Dとして形成すると、形成段階で着色し、劣化するため、保護層Dを形成する材料としては用いることができない。
また、シリコーンも紫外線吸収の観点からは保護層Dを形成する材料に適用できるが、銀(銀合金)との密着性が極めて悪く、保護層Dを形成する材料としては用いることができない。
【0225】
〔放射冷却層の別構成〕
図26に示すように、放射冷却層CPは、フィルム層F(基材に相当)の上部にアンカー層Gを備え、当該アンカー層Gの上部に、光反射層B、保護層D、赤外放射層Aを備える形態に構成してもよい。
尚、フィルム層F(基材に相当)は、例えば、PET(エチレンテレフタラート樹脂)等にてフィルム状に形成されたものである。
【0226】
アンカー層は、フィルム層Fと光反射層Bとの密着を強めるために導入されている。つまり、フィルム層Fに、直接、銀(Ag)を製膜しようとすると、簡単に剥がれが生じることになる。アンカー層Gは、アクリルやポリオレフィン、ウレタンが主成分であり、イソシアネート基を持つ化合物やメラミン樹脂が混合されているものが望ましい。太陽光に直接当たらない部分のコーティングであり、紫外線を吸収する素材であっても問題ない。
尚、フィルム層Fと光反射層Bとの密着を強める方法には、アンカー層Gを入れる以外の方法もある。例えば、フィルム層Fの製膜面にプラズマ照射して表面を荒らすと密着性は高まる。
【0227】
〔接続層の考察〕
筐体Eの外面に放射冷却層CPを装着する場合、接続層Sの厚さを、5μm以上で、100μm以下にすることが良い。
すなわち、屋外に設置される配電ボックスや屋外に設置される蓄電池ボックスの筐体Eの外面(表面)は鏡面でないことが多い。
図28に、鏡面ではない筐体Eの外面(材料表面)の模式図を示す。鏡面とは異なる筐体Eの外面(材料表面)は、例示する図に示すように、数μmレベルの傷や凹凸が無数に存在することになる。
【0228】
無数の傷や凹凸が存在すると、この無数の傷や凹凸で光が散乱され、鏡面とは異なる見た目となる。このような、鏡面とは異なる材料表面に太陽光が照射されると、(1)の光Lのように、外面(材料表面)との相互作用が1回で反射する光線のみならず、(2)の光Lのように、外面(材料表面)との相互作用が複数回生じた後に反射する光線、(3)の光Lのように、外面(材料表面)との相互作用が無限回になり、筐体Eにほぼ吸収されてしまう光線が発生する。
光Lと外面(材料表面)との相互作用が増大すると、光吸収率が増大することになる。例えば、鏡面の時の反射率が80%の表面があったとして、構造内で平均2回反射して外部に光が出ると仮定すると、その反射率は64%となる。
【0229】
このように、鏡面とは異なる表面(光を散乱する表面)を持つ素材の反射率は光線工学的に必ず下がる。そして、この外面(材料表面)に存在するμmレベルの凹凸が、放射冷却層CPの光反射層B(銀層)に転写されると、反射率が下がることになる。
したがって、放射冷却層CPに外面(材料表面)に存在する凹凸が反映されないようにする構造を導入する必要があり、このために、放射冷却層CPを、5μmから100μmの厚みの接続層Sにて、筐体Eの外面に接合させるとよい。
【0230】
接着剤や粘着剤にて構成される接続層Sが存在すると、接続層Sが筐体Eの外面の凹凸を吸収し、放射冷却層CPの光反射層B(銀層)が平坦となる。
光反射層B(銀層)が平坦になると、光Lの光反射層B(銀層)との相互作用が平均1回となり、太陽光反射率の低下(換言すると太陽光吸収率の増大)を防げることになる。
【0231】
筐体Eの外面(材料表面)の表面粗さは種々多様であるが、一般的な外面(材料表面)の凹凸は基準線に対して±2.5μm以内に収まる。故に、接続層Sの厚みは5μm以上が望ましい。
但し、接続層Sの厚みが厚くなると断熱性が向上する。断熱性が向上すると放射冷却層CPの冷熱が断熱されるため、良くない。このような観点から不必要なほどに厚い接続層Sは不要であり、100μmの厚さがあれば十分である。
【0232】
〔放射冷却式ボックスの実験結果〕
図29は、ステンレス製で直方体状の筐体Eの外面に放射冷却層CPを装着した放射冷却式ボックスWを、地面1に置いた状態を示す。尚、例示する放射冷却式ボックスWは、筐体Eの内面に赤外吸収層Zが装着されていない。
図30に、地面1に置いた放射冷却式ボックスWの内部温度を計測した結果を示す。
尚、
図30には、ステンレス製で直方体状の筐体E、つまり、ステンレス製の箱を地面1に置いた状態における内部温度の変化、及び、ステンレス製で直方体状の筐体Eの外面に日射反射塗料を塗布した箱、つまり、日射反射塗料を用いた箱を地面1に置いた状態における内部温度の変化を、併せて記載する。
【0233】
放射冷却式ボックスWを地面1に置いた状態においては、放射冷却式ボックスWが置かれた地面1には、日射が当たらない。このような場合、土壌は夜間の冷熱を蓄熱しており、放射冷却式ボックスWの内部温度は上昇し難いものとなる。故に、放射冷却式ボックスWを地面1に置く形態を採用すると、後述する架台方式、つまり、放射冷却式ボックスWを架台2に載置する形態(
図31参照)よりも、冷却が促進される。
【0234】
南中時、ステンレス製の箱の場合、放射冷却式ボックスWよりも内部温度が7℃近く高くなる。また、南中時、日射反射塗料を用いた箱の場合、放射冷却式ボックスWよりも内部温度が3℃近く高くなる。
本試験結果により、配電用の電気機器類を収納する配電ケースや蓄電池を収納する蓄電池ケース等、電気機器類を収納する電気用ケースを、放射冷却式ボックスWとして構成して、地面1に置く形態を採用すれば、内部温度の上昇を抑制することができる。
尚、筐体Eの内面に赤外吸収層Zを装着すれば、内部温度の上昇を一層抑制することができる。
【0235】
図31は、放射冷却式ボックスWを架台2に載置した状態を示す。尚、例示する放射冷却式ボックスWは、筐体Eの内面に赤外吸収層Zが装着されていない。
図32に、架台2に載置した放射冷却式ボックスWの内部温度を計測した結果を示す。
尚、
図32には、ステンレス製の箱を架台2に載置した状態における内部温度の変化、及び、日射反射塗料を用いた箱を架台2に載置した状態における内部温度の変化を、併せて記載する。
【0236】
放射冷却式ボックスWを架台2に載置した状態においては、放射冷却式ボックスWが地面1に接していないので、内部温度が上昇しやすい。また、底面部を含めた6面全体で外気との熱交換を行うため、外気の影響を受けやすい。
南中時、ステンレス製の箱の場合、放射冷却式ボックスWよりも内部温度が6℃近く高くなる。また、南中時、日射反射塗料を用いた箱の場合、放射冷却式ボックスWよりも内部温度が1℃近く高くなる。
【0237】
本試験結果により、配電用の電気機器類を収納する配電ケースや蓄電池を収納する蓄電池ケース等、電気機器類を収納する電気用ケースを、放射冷却式ボックスWとして構成して、架台2に置く形態を採用しても、内部温度の上昇を抑制することができる。
尚、筐体Eの内面に赤外吸収層Zを装着すれば、内部温度の上昇を一層抑制することができる。
【0238】
図33は、蓄電池を収納したステンレス製で直方体状の放射冷却式ボックスWを住宅の西側の壁3に近づけ、ベランダ等の載置部4に枕木5を介して載置した状態を示す。尚、例示する放射冷却式ボックスWは、底面部及び壁3に対向する背面部を除いた4面に放射冷却層CPを装着した。
上記状態に設置した放射冷却式ボックスWにおける筐体Eの上面温度(放射冷却層CPの裏面温度に相当する温度であり、以下、放射冷却層有の筐体温度と略称)の変化、及び、放射冷却式ボックスWに収納した蓄電地の上面温度(以下、放射冷却層有の蓄電池温度と略称)の変化を計測した結果を、
図34から
図36に示す。
【0239】
尚、放射冷却層CPを備えない筐体Eを、放射冷却式ボックスWと同様な状態で、放射冷却式ボックスWに並べて設置し、筐体Eの上面温度(以下、放射冷却層無しの筐体温度と略称)の変化、及び、筐体Eに収納した蓄電地の上面温度(以下、放射冷却層無しの蓄電池温度と略称)の変化を計測した結果を、
図34から
図36に併せて記載する。
【0240】
図34は、放射冷却式ボックスWや放射冷却層CPを備えない筐体Eが設置されている場所の現場温度(外気温度)を零度として、放射冷却層有の筐体温度及び放射冷却層無しの筐体温度を示し、且つ、2019年7月28日の日射量の変化を併せて示す。
図35は、放射冷却式ボックスWや放射冷却層CPを備えない筐体Eが設置されている場所の現場温度を零度として、放射冷却層有の蓄電池温度及び放射冷却層無しの蓄電池温度を示し、且つ、2019年7月28日の日射量の変化を併せて示す。
図36は、上記現場温度と、放射冷却層有の蓄電池温度及び放射冷却層無しの蓄電池温度との相関を示す図である。
【0241】
放射冷却式ボックスWや放射冷却層CPを備えない筐体Eが西側に設置されているので、放射冷却層有の筐体温度と放射冷却層無しの筐体温度との差、及び、放射冷却層有の蓄電池温度及び放射冷却層無しの蓄電池温度との差が、12時過ぎから際立つ。
放射冷却層有の筐体温度が、一日を通じて現場温度程度の温度を維持しているのに対して、放射冷却層無しの筐体温度が、現場温度よりも最大で15℃近く温度上昇する。
【0242】
なお、放射冷却層有の筐体温度が、12時以降において1℃から2℃程度現場温度よりも上昇しているが、これは、家とボックスを近づけて設置したことが原因である。西日を受けて家の外壁が暖められ、その熱輻射を受けると加熱される。また、近隣のアスファルトの熱輻射を受けても加熱される。さらに、放射冷却式ボックスWからみて東側の天空が見えないので、宇宙空間への放熱が減少する。以上のことから少し、温度上昇した。
【0243】
放射冷却層有の蓄電池温度が、一日を通じて現場温度よりも少し低いか、現場温度よりも上昇しても1℃程度である。
これに対して、放射冷却層無しの蓄電池温度が、最大で7℃程度温度上昇した。
例えば蓄電池の場合、温度が40℃を超える環境で使用すると、内部の伝送基板や、蓄電池そのものの劣化が早まるため、40℃を超えた場合運転を停止する制御ロジックが組まれている。放射冷却式ボックスWを用いると、現場温度(外気温度)にもよるが、放射冷却層CPを備えない一般的な配電ボックスと比較して、夏場の機器停止の頻度が低下することになる。
【0244】
同じことは、燃料電池やメガソーラーの分電盤、電気自動車など、様々な機器についてもいえ、これらの機器用のボックスとして、筐体Eの外面に放射冷却層CPを備えた放射冷却式ボックスWに構成すると、ボックス内に収納した電気機器類の寿命が延びる、或いはボックス内に収納した装置の停止が防げる、走行距離が延びる、安全性が増すなど、様々な効果が得られる。
【0245】
〔放射冷却層の別の設置形態〕
筐体Eに放射冷却層CPを装着する形態としては、
図37に示すように、直方体状の筐体Eの底面部を除いた外面に合わせて、底面部を除いた直方体の展開図形状をした放射冷却層CPを形成する。
そして、その展開した放射冷却層CPの必要箇所に、マジックテープ6(登録商標、以下同じ)を取り付ける。
【0246】
従って、筐体Eに放射冷却層CPを装着する際には、展開した放射冷却層CPを、筐体Eを覆うように巻き付け、且つ、マジックテープ6にて固定するようにする。
この場合には、接続層Sを用いることなく、放射冷却層CPを装着することができる。
【0247】
〔放射冷却式ボックスの別例示〕
図38に示す、バンボディのトラックの物品収納部7を放射冷却式ボックスWに構成することや、
図39に示す、トラックや鉄道車両にて運搬されるコンテナ8を放射冷却式ボックスWに構成することができる。
つまり、物品収納部7を構成する筐体Eに放射冷却層CPを装着して、物品収納部7を放射冷却式ボックスWに構成する。
また、コンテナ8を構成する筐体Eに放射冷却層CPを装着して、コンテナ8を放射冷却式ボックスWに構成する。
【0248】
バンボディのトラックの物品収納部7やコンテナ8を放射冷却式ボックスWに構成する場合には、
図40に示すように、放射冷却層CPの放射面Hを凹凸状に形成してもよい。
つまり、例えば、放射面Hに凸部Uが存在する状態に形成してもよい。
凹凸状の例としては、ライン状の凸部Uが並ぶラインアンドスペース構造(
図42参照)、円錐柱の凸部Uを縦横に並べた構造(
図43参照)、図示は省略するが、三角柱やピラミッド状の凸部Uがラインアンドペース状に並んだ構造、図示は省略するが、方形体状の凸部Uが縦横に並んだ構造、凸部Uをランダムに形成した構造等、各種の構成を採用できる。
ちなみに、放射面Hを凹凸状に形成する際の高低差は、100μm程度である。
【0249】
放射面Hに凹凸部Uを形成した場合の利点を、コンテナ8を代表として説明する。
コンテナ8はトラックの荷台、鉄道車両、船舶など、特に移動体に載置してよく用いられる。
図41に示すように、トラックは移動するため、日中トラックの下面は常に熱せられたアスファルトがある。熱せられたアスファルトなどからの熱の流入により、コンテナ8の筐体Eを放射冷却層CPで覆っても、コンテナ8の内部温度が環境温度(外気温度)より上昇してしまう虞がある。
移動体の場合、移動中強い風を受ける。この風はアスファルトなどで温められたコンテナ内部の温度より低温であり、走行中の風による熱交換(対流)も考慮した設計を導入するのが望ましい。
【0250】
ここまでの議論をまとめる。コンテナ8の入熱は下記2点である。
第1点は、太陽光による入熱。
第2点は、熱せられたアスファルト由来の熱輻射(移動するので、常に熱々のアスファルトの真上にコンテナがある状態)。
この2点の影響によりコンテナ内部が環境温度(外気温度)より暑くなる虞がある。
【0251】
コンテナ8を放射冷却式ボックスWに構成した場合、放射冷却層CPがコンテナ8の熱を排出しようとするので、日射反射塗料などの他の素材をつけた場合よりもコンテナ内部の温度が相対的に低下する。しかしながら、第2点のアスファルト由来の熱流入が大きいため、放射冷却層CPを備えるとはいえ、日中、環境温度(外気温度)よりも温度上昇しやすい。環境温度(外気温度)よりもコンテナ内部の温度が高い場合、外部の空気は冷熱源として作用し、外部の空気との熱交換を増やすことが望ましい。特に、移動体は移動中に強い風を受けるため、風を受けて熱交換しやすい構造を放射冷却層CPに導入する。つまり、風との熱交換を大きくするには表面粗さを高め、表面積を増やすのが良い。
【0252】
このような観点で、
図40に示すように、放射冷却層CPの赤外放射層Aの放射面Hを、エンボス加工等により凹凸状に形成して、表面積を増やすのがよい。
つまり、本構造は、太陽光や熱せられた大気以外に熱源があり、放射冷却層CPを装着する筐体Eの温度が環境温度(外気温度)よりも上昇し、環境温度(外気温度)が冷熱として作用する際に導入するとよい。
【0253】
放射面Hを凹凸状に形成すると、見た目に関してもメリットがある。放射冷却層CPの放射面H(上面)が鏡面である場合よりも、放射面Hが凹凸状に形成されている場合の方が、太陽光が散乱されるので、放射冷却層CPのギラツキが低減される。放射冷却層CPがぎらつかない方が、視認性が高まるので、走行時の安全性が高まる。
尚、放射面Hに「散乱する」という機能を付与しても、光反射層Bの銀(銀合金)における光吸収は増大しないので、放射冷却を良好に行うことができる。
【0254】
その他の放射冷却式ボックスWとして、牛乳を貯留する牛乳タンクや牛乳タンクローリーの牛乳貯留部の外面に放射冷却層CPを装着して、放射冷却式ボックスWとすることができる。
【0255】
〔赤外放射層の別構成〕
図44に示すように、赤外放射層Aを構成する樹脂材料層Jに、無機材料のフィラーVを混入させて、光散乱構成を備えさせるようにしてもよい。また、
図45に示すように、赤外放射層Aを構成する樹脂材料層Jの表裏両面を凹凸状に形成して、光散乱構成を備えさせるようにしてもよい。
このように構成すれば、放射面Hを見たときに、放射面Hのギラツキを抑制できるものとなる。
【0256】
つまり、上記した樹脂材料層Jは、表裏両面が平坦で、フィラーVが混入しない構成であるが、このような構成の場合には、放射面Hが鏡面状となるため、放射面Hを見たときに、ギラツキを感じるものとなるが、光散乱構成を備えさせるとこのギラツキを抑制できる。
また、樹脂材料層JにフィラーVを混入させた場合において、保護層D及び光反射層Bが存在すると、にフィラーVを混入させた樹脂材料層Jのみの場合や光反射層Bのみの場合よりも、光反射率が向上する。
【0257】
フィラーVを形成する無機材料としては、二酸化ケイ素(SiO2)、酸化チタン(TiO2)、酸化アルミニウム(Al2O3)、酸化マグネシウム(MgO)等を好適に使用できる。尚、樹脂材料層JにフィラーVを混入すると、樹脂材料層Jの表裏両面が凹凸状になる。
また、樹脂材料層Jの表裏両面を凹凸状にするには、エンボス加工や表面に傷を付ける加工等を行うことにより行うことができる。
【0258】
樹脂材料層Jの裏面が凹凸状になる場合には、
図18で説明した構成と同様に、樹脂材料層Jと保護層Dとの間にのり層N(接合層)が位置するようにすることが望ましい。
つまり、樹脂材料層Jの裏面が凹凸状であっても、樹脂材料層Jと保護層Dとの間にのり層N(接合層)が位置するから、樹脂材料層Jと保護層Dとを適切に接合することができる。
【0259】
尚、樹脂材料層Jの裏面が凹凸状になる場合において、例えば、プラズマ接合により、樹脂材料層Jと保護層Dとを直接的に接合するようにしてもよい。尚、プラズマ接合とは、樹脂材料層Jの接合面と保護層Dの接合面にプラズマの放射によりラジカルを形成し、そのラジカルにより接合する形態である。
【0260】
ちなみに、保護層DにフィラーVを混入すると、保護層Dの光反射層Bに接する裏面が凹凸状になり、光反射層Bの表面を凹凸状に変形させる原因になるため、保護層DにフィラーVを混入することは避ける必要がある。つまり、光反射層Bの表面が凹凸状に変形すると、光反射を適正通り行えないものとなり、その結果、放射冷却を適正通り行えないものとなる。
【0261】
〔別実施形態〕
以下、別実施形態を列記する。
(1)上記実施形態では、樹脂材料層Jを形成する樹脂材料として各種のものを例示したが、好適に使用できる樹脂材料としては、塩化ビニル樹脂(PVC)、塩化ビニリデン樹脂(PVDC)、フッ化ビニル樹脂(PVF)、フッ化ビニリデン樹脂(PVDF)を挙げることができる。
【0262】
(2)上記実施形態では、筐体Eとして、直方体状あるいは立方体状のものを例示したが、楕円状、球状等、各種の形状のものを冷却対象とすることができる。
【0263】
(3)上記実施形態では、保護層Dを備えさせる場合を例示したが、保護層Dを省略する形態で実施してもよい。
【0264】
(4)上記実施形態では、樹脂材料層Jの放射面Hを露出させる形態を例示したが、放射面Hを覆うハードコートを設けるようにしてもよい。
ハードコートとしては、UV硬化アクリル系、熱硬化アクリル系、UV硬化シリコーン系、熱硬化シリコーン系、有機無機ハイブリッド系、塩化ビニルが存在し、いずれを用いてもよい。添加材として有機系帯電防止剤を用いてもよい。
UV硬化アクリル系の中でもウレタンアクリレートは特によい。
【0265】
ハードコートの成膜方法としては、グラビアコート法、バーコート法、ナイフコート法、ロールコート法、ブレードコート法、ダイコート法などを用いることができる。
ハードコート(塗膜)の厚みは1~50μmであり、特に2~20μmが望ましい。
【0266】
樹脂材料層Jの樹脂材料として、塩化ビニル樹脂を用いる場合において、塩化ビニル樹脂の可塑剤の量を減らし、硬質塩化ビニル樹脂、或いは、半硬質塩化ビニル樹脂にしてもよい。この場合、放射層の塩化ビニルそのものがハードコート層となる。
【0267】
なお、上記実施形態(別実施形態を含む、以下同じ)で開示される構成は、矛盾が生じない限り、他の実施形態で開示される構成と組み合わせて適用することが可能であり、また、本明細書において開示された実施形態は例示であって、本発明の実施形態はこれに限定されず、本発明の目的を逸脱しない範囲内で適宜改変することが可能である。
【符号の説明】
【0268】
A 赤外放射層
B 光反射層
D 保護層
E 筐体
H 放射面
J 樹脂材料層
U 凹凸部
Z 赤外吸収層