(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-03-14
(45)【発行日】2024-03-25
(54)【発明の名称】検知装置及び検知プログラム
(51)【国際特許分類】
G06T 7/60 20170101AFI20240315BHJP
【FI】
G06T7/60 110
(21)【出願番号】P 2020111786
(22)【出願日】2020-06-29
【審査請求日】2023-02-09
(73)【特許権者】
【識別番号】392026693
【氏名又は名称】株式会社NTTドコモ
(74)【代理人】
【識別番号】100088155
【氏名又は名称】長谷川 芳樹
(74)【代理人】
【識別番号】100113435
【氏名又は名称】黒木 義樹
(74)【代理人】
【識別番号】100121980
【氏名又は名称】沖山 隆
(74)【代理人】
【識別番号】100128107
【氏名又は名称】深石 賢治
(74)【代理人】
【識別番号】100183081
【氏名又は名称】岡▲崎▼ 大志
(72)【発明者】
【氏名】北出 卓也
(72)【発明者】
【氏名】川嶋 克明
(72)【発明者】
【氏名】山谷 佳祐
(72)【発明者】
【氏名】加藤 剛志
(72)【発明者】
【氏名】鈴木 基紹
【審査官】新井 則和
(56)【参考文献】
【文献】韓国公開特許第10-2019-0036426(KR,A)
【文献】特開2006-178657(JP,A)
【文献】特開平11-333770(JP,A)
【文献】特開2019-111640(JP,A)
【文献】特開平08-271223(JP,A)
【文献】特開2009-181307(JP,A)
【文献】特開2014-186550(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G06T 7/60
(57)【特許請求の範囲】
【請求項1】
平面視において多角形状の物品が載置された状態で搬送されるトレーを上方から撮影することにより得られたトレー画像を取得する取得部と、
前記トレー画像に対して画像認識を実行することにより、前記トレー画像に含まれる前記物品の頂点を検出する認識部と、
前記認識部による前記頂点の検出結果に基づいて、前記トレーに複数の前記物品が載置されているか否かを判定する判定部と、
を備え
、
前記認識部は、前記トレー画像において前記物品の全体を含む物品領域内において前記物品が占める物品占有領域を推定し、
前記判定部は、前記認識部によって前記物品占有領域の内側に位置する前記頂点である内包頂点が検出された場合に、前記トレーに複数の前記物品が載置されていると判定する、検知装置。
【請求項2】
前記認識部は、前記物品占有領域の内側であって、且つ、前記物品占有領域を規定する境界線から予め定められた閾値距離以上離れた前記頂点を前記内包頂点として検出する、請求項1に記載の検知装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明の一側面は、検知装置及び検知プログラムに関する。
【背景技術】
【0002】
コンベヤ等の搬送手段によって搬送される商品箱に収納される物品の検知を行う装置として、商品箱の上面のX線透過画像と、商品箱の側面のX線透過画像と、予め用意された物品の基準画像と、に基づいて商品箱に収納された物品を計数する装置が知られている(例えば特許文献1参照)。
【0003】
また、コンベヤにより搬送される複数のワーク(物品)の重なりの有無を、3次元カメラによって撮影された搬送中のワークの3次元画像と、基準となるワークの3次元形状と、に基づいて検出する装置が知られている(例えば特許文献2参照)。
【先行技術文献】
【特許文献】
【0004】
【文献】特開2016-141541号公報
【文献】特開2019-111640号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
ところで、物流センタ等に設置される商品(物品)の仕分けを行うソーターシステムにおいては、コンベヤによって仕分け対象の商品を1つずつ搬送しなければならない場合がある。この場合、コンベヤ上を流れる1つのトレー上に複数の商品が載置される状態(いわゆる二重載せの状態)が作業ミス等に起因して発生した際には、当該トレーに載置された商品が誤った配送先に配送されてしまうことを防止するために、当該トレーを速やかに検知する必要がある。
【0006】
上述した特許文献1,2に記載された仕組みによれば、このような異常状態(二重載せの状態)を検知できる可能性があるが、上記特許文献1に開示された装置には、2方向のX線透過画像を取得するためのX線撮像システム(X線発生装置、及びラインセンサ等のX線検出センサ等)が必要となる。このため、設備が大型化すると共に設備コストが比較的高額になるという問題がある。上記特許文献2に開示された装置においても、物品の3次元画像を撮影する3次元カメラが必要となるため、上記特許文献1の装置と同様の問題がある。
【0007】
本発明の一側面は、物品搬送に関する異常状態を簡易な設備で検知可能な検知装置及び検知プログラムを提供することを目的とする。
【課題を解決するための手段】
【0008】
本発明の一側面に係る検知装置は、平面視において多角形状の物品が載置された状態で搬送されるトレーを上方から撮影することにより得られたトレー画像を取得する取得部と、トレー画像に対して画像認識を実行することにより、トレー画像に含まれる物品の頂点を検出する認識部と、認識部による頂点の検出結果に基づいて、トレーに複数の物品が載置されているか否かを判定する判定部と、を備える。
【0009】
本発明の一側面に係る検知装置においては、物品が載置された状態で搬送されるトレーの画像(トレー画像)に対する画像認識結果から、トレー画像に含まれる物品の頂点(角部)が検出される。そして、頂点の検出結果(例えば、頂点数)に基づいて、トレーに複数の物品が載置されている状態(いわゆる二重載せの状態)であるか否かが判定される。上記検知装置によれば、トレーの上方から撮影された画像に対する比較的簡易な解析処理によって異常状態(上述した二重載せの状態)を検知することができる。すなわち、物品搬送に関する異常状態を簡易な設備で検知することができる。
【発明の効果】
【0010】
本発明の一側面によれば、物品搬送に関する異常状態を簡易な設備で検知可能な検知装置及び検知プログラムを提供することができる。
【図面の簡単な説明】
【0011】
【
図1】実施形態に係る検知装置を含む検知システムの構成を示す図である。
【
図2】トレー画像の取得方法の一例を説明するための図である。
【
図3】トレー画像及びトレー画像に対する画像認識結果の一例を示す図である。
【
図8】頂点が誤検出された場合の例を示す図である。
【
図9】検知装置の動作の一例を示すフローチャートである。
【
図10】判定部による判定処理の手順の一例を示すフローチャートである。
【
図11】検知装置のハードウェア構成の一例を示す図である。
【
図12】記録媒体に格納された検知プログラムの構成を示す図である。
【発明を実施するための形態】
【0012】
以下、添付図面を参照して、本発明の一実施形態について詳細に説明する。なお、図面の説明において同一又は相当要素には同一符号を付し、重複する説明を省略する。
【0013】
図1は、一実施形態に係る検知装置10を含む検知システム1の構成を示す図である。検知システム1は、例えば、物流センタ等において用いられる。検知システム1は、検知装置10と、ソーターシステム20と、カメラ30と、を備えている。
【0014】
ソーターシステム20は、商品G(物品)の仕分けを行うシステムである。商品Gは、平面視において多角形状を有している。商品Gは、特定の商品に限定されないが、例えばパッケージ(箱)に収納されたスマートフォン、タブレット端末等である。通常、パッケージは直方体状に形成されることが多い。また、商品Gの外形は、パッケージの形状と同様の形状となる。従って、この場合には、商品Gは、直方体状であり、平面視において四角形状を有する。以下の説明において、商品Gは、平面視において四角形状を有するものとする。
【0015】
ソーターシステム20は、コンベヤ21と、コンベヤ21上に配置されてコンベヤ21上を流れる複数のトレー22と、を含んでいる。トレー22には、仕分け対象の商品Gが載置される。コンベヤ21は、トレー22に商品Gが載置された状態で、トレー22を搬送する。なお、コンベヤ21上には、商品Gが載置されていない空のトレー22も流れている。コンベヤ21によるトレー22の搬送速度は、例えば分速85m程度であり、比較的高速である。
【0016】
ソーターシステム20において、商品Gの仕分けが適切に行われるためには、1つのトレー22上に1つの商品Gのみが載置される必要がある。しかし、例えば商品Gをトレー22上に載置する際における作業ミス等に起因して、1つのトレー22上に複数(典型的には2つ)の商品Gが載置される異常状態(以下、「二重載せ」という。)が発生し得る。このような二重載せが発生すると、商品Gの仕分けミスが発生し、商品Gが誤った配送先(例えば店舗等)に配送される問題(誤配送)が生じるおそれがある。
【0017】
そこで、検知システム1は、上述した二重載せを検知するためのシステムとして、検知装置10及びカメラ30を有している。カメラ30は、例えば、コンベヤ21の上方に設置され、コンベヤ21により搬送されるトレー22を上方から撮影する。
【0018】
図2に示されるように、カメラ30は、コンベヤ21上において予め設定された撮影エリアSAを通過するトレー22を撮影するように構成されている。カメラ30は、例えばトリガーカメラである。カメラ30は、例えば図示しないセンサ等によって撮影エリアSAにトレー22の全体が進入したことが検知されると、当該センサからの検知信号に基づいて、撮影エリアSAを撮影する。このような撮影処理により、
図3の左部に示されるようなトレー画像IM1が取得される。トレー画像IM1は、トレー22の全体を被写体として含んだ静止画像である。
図3の左部に示されるように、トレー22には、トレー22を識別するためのトレーIDが記載されたID領域が設けられている。
図3の例では、「101」がトレーIDである。
【0019】
なお、トレー画像IM1は、必ずしもトレー22の全体を被写体として含んでいる必要はない。トレー画像IM1は、トレー22において商品Gが載置されることが予定されている領域(例えば、トレー22が箱形に形成されている場合には、箱の内側部分の領域)を被写体として含んでいればよい。また、ソーターシステム20は、1つのカメラ30のみを含んでいてもよいし、それぞれ異なる撮影エリアSAを有する複数のカメラ30を含んでいてもよい。
【0020】
検知装置10は、カメラ30によって撮影されたトレー画像IM1を取り込み、当該トレー画像IM1を解析することによって、二重載せを検知する。
図1に示されるように、検知装置10は、取得部11と、認識部12と、判定部13と、を備えている。
【0021】
取得部11は、商品Gが載置された状態で搬送されるトレー22を上方から撮影することにより得られたトレー画像IM1(
図3の左部参照)を取得する。本実施形態では、取得部11は、カメラ30によって撮影されたトレー画像IM1を取得する。取得部11は、カメラ30から直接トレー画像IM1を取得してもよいし、カメラ30とは別の記録媒体に一旦記録されたトレー画像IM1を取得してもよい。
【0022】
認識部12は、トレー画像IM1に対して画像認識を実行することにより、少なくともトレー画像IM1に含まれる商品Gの頂点を検出する。本実施形態では、認識部12は、商品Gの頂点以外にも、商品領域(物品領域)と上述したID領域とを検出する。
図3の右部に示されるように、認識部12は、例えば、物体検出処理及びエッジ検出処理等を行うことにより、ID領域、商品領域、及び商品Gの頂点を検出する。
図3の右部に示される結果画像IM2は、トレー画像IM1に対して認識部12による認識結果を重畳表示させたものである。具体的には、結果画像IM2は、認識部12によって検出されたID領域A1、商品領域A2、及び頂点領域A3(商品Gの頂点を含む領域)をトレー画像IM1に重畳表示させたものである。
【0023】
ID領域A1は、トレー22においてトレーID(
図3の例では「101」)が記載された部分を含む領域である。ID領域A1は、例えば矩形状の領域として設定される。
【0024】
商品領域A2は、トレー22上に載置された一以上の商品Gの全体を含む領域である。商品領域A2は、例えば矩形状の領域として設定される。例えば、商品領域A2は、トレー22上に載置された一以上の商品Gの全体を含む最小の矩形状の領域として設定される。或いは、商品領域A2は、商品領域A2の各辺と商品Gとが接しないように(例えば、各辺と商品Gとの間に所定長の隙間ができるように)設定されてもよい。ただし、商品領域A2は、画像認識の結果として決定される領域であるため、必ずしも上記のように予め定めた通りに設定されるわけではない。すなわち、商品Gの一部が商品領域A2よりも外側にはみ出る場合もあり得る。このように認識部12により検出された領域と実際の領域とが異なり得る点は、商品領域A2以外の領域についても同様である。
【0025】
頂点領域A3は、商品Gの頂点(本実施形態では、商品Gのパッケージの四隅に対応する部分)を含む領域である。頂点領域A3は、例えば矩形状の領域として設定される。頂点領域A3は、例えば、頂点を中心とする予め定められた大きさの矩形状の領域として設定される。
【0026】
上述したID領域A1、商品領域A2、及び頂点領域A3の位置は、例えば、各領域A1,A2,A3の四隅に対応する座標によって特定される。各領域A1,A2,A3には、それぞれ異なるクラス名(分類情報)が関連付けられる。例えば、ID領域A1には、ID領域を示すクラス名「id」が関連付けられ、商品領域A2には、商品領域を示すクラス名「item」が関連付けられ、頂点領域A3には、頂点を示すクラス名「edge」が関連付けられる。このようなクラス名に基づいて、各領域A1,A2,A3は、内部的に(すなわち、検知装置10の内部の処理において)区別され得る。なお、各領域A1,A2,A3には、検出結果の確からしさを示す評価値が関連付けられてもよい。認識部12は、検出された領域のうち、予め定められた閾値以上の評価値を有する領域のみを、最終的な検出結果(領域A1,A2,A3)として取得してもよい。
【0027】
認識部12は、予め学習された学習済みモデルを用いることによって、上述した物体検出処理を実行してもよい。学習済みモデルは、例えば、トレー画像IM1を読み込んで、当該トレー画像IM1に含まれる各領域A1,A2,A3を検出するように学習されたモデルである。このような学習済みモデルは、例えば深層学習(ディープラーニング)等によって学習され得る。この場合、学習済みモデルは、多層ニューラルネットワークによって構成され得る。ただし、学習済みモデルに適用される機械学習の手法は上記例に限定されず、学習済みモデルの内部構造は、適用される機械学習の手法に応じて決定される。
【0028】
上記学習のための教師データとしては、例えば、トレー画像IM1と、トレー画像IM1中におけるID領域、商品領域、及び頂点領域の位置(座標)を示す情報(すなわち正解ラベル)と、を互いに関連付けたデータが用いられ得る。また、上述した教師データを用いた学習は、例えば以下のように行われる。トレー22が空の場合(第1の正常例)、トレー22内に1つの商品Gが載置されている場合(第2の正常例)、及びトレー22内に2つの商品Gが載置されている場合(二重載せ(異常)の例)等のパターン毎に複数の教師データが用意される。なお、様々なバリエーションに対応可能な学習済みモデルを生成するためには、第1の正常例については、トレー22内に載置される商品Gの複数の異なる姿勢パターンの各々について教師データが用意されることが好ましい。また、二重載せの例については、後述する
図4~
図7に例示されるような種々のパターンについて教師データが用意されることが好ましい。このように用意された複数の教師データを用いた学習によって、上述した学習済みモデルが得られる。
【0029】
図3の左部に示されるように、商品Gが平面視において四角形状を有する場合において、認識部12による画像認識が適切に実行された場合には、1つのID領域A1と、1つの商品領域A2と、4つの頂点領域A3と、が検出されることになる。一方、トレー22が空の場合において、認識部12による画像認識が適切に実行された場合には、1つのID領域A1のみが検出されることになる。以下、認識部12による検出結果のいくつかの例について説明する。なお、以下では、トレー22内において商品Gが載置されるエリアのみに着目し、ID領域A1の説明を省略する。
【0030】
(二重載せ状態の第1の例)
図4は、二重載せ状態の第1の例を示す図である。この例では、2つの商品G1,G2が互いに離間した状態でトレー22上に載置されている。この場合、
図4に示されるように、認識部12によって、2つの商品G1,G2の全体を含むように設定された商品領域A2と、8つの頂点領域A3(商品G1の4つの頂点領域A3及び商品G2の4つの頂点領域A3)と、が検出される。
【0031】
(二重載せ状態の第2の例)
図5は、二重載せ状態の第2の例を示す図である。この例では、一方の商品G1の一部の上に他方の商品G2が重なった状態で、2つの商品G1,G2がトレー22上に載置されている。また、商品G2によって、商品G1の1つの頂点が覆い隠されている。この場合、
図5に示されるように、認識部12によって、2つの商品G1,G2の全体を含むように設定された商品領域A2と、7つの頂点領域A3(商品G1の3つの頂点領域A3及び商品G2の4つの頂点領域A3)と、が検出される。すなわち、商品G2によって隠された商品G1の頂点が検出されず、それ以外の7つの頂点に対応する頂点領域A3が検出される。
【0032】
ここで、認識部12は、商品領域A2内において商品Gが占める商品占有領域A4(物品占有領域)を推定してもよい。商品占有領域A4は、商品領域A2のうち実際に商品Gが占有する領域である。例えば、認識部12は、トレー画像IM1(
図3参照)において、トレー22が占める領域(すなわち、商品Gが載置されていない領域)と商品Gが占める領域とを輝度等の画素値に基づく二値化処理によって切り分けてもよい。このような二値化処理により、商品Gが占める領域のみを切り出したシルエット画像(例えば、商品Gが占める領域を黒で表し、その他の領域を白で表した画像)が得られる。認識部12は、当該シルエット画像に基づいて商品占有領域A4を設定してもよい。ただし、商品占有領域A4を推定する方法は、上記のシルエット画像に基づく方法に限定されない。例えば、認識部12は、予め撮影された空のトレー22の画像とトレー画像IM1とを比較することで差分(背景差分)を抽出し、当該差分に対応する領域を商品占有領域A4として設定してもよい。
【0033】
或いは、認識部12は、例えば公知のセグメンテーション処理(例えば、セマンティックセグメンテーション等)を用いることにより、トレー画像IM1において商品占有領域A4を抽出(推定)してもよい。例えば、認識部12は、トレー画像IM1に対する画像認識として、上述した物体検出処理及びセグメンテーション処理の両方を実行することにより、
図5に示されるような各領域A1~A4を検出することができる。ただし、トレー画像IM1における光の反射具合、ブレ等によっては、商品占有領域A4を精度良く推定することができない場合もある。その場合には、認識部12は、商品占有領域A4を推定する処理を省略してもよい。
【0034】
商品占有領域A4が推定された場合には、各頂点を商品占有領域A4の内側に位置する内包頂点(すなわち、トレー画像IM1において、トレー22の領域と接さずに他の商品Gの領域と接する頂点)と、トレー22の領域と接する外接頂点と、に区別して把握することが可能となる。
図5における頂点領域A31は、内包頂点に対応する頂点領域である。この例では、内包頂点は、商品G2の頂点のうち商品G1の領域と接する頂点(言い換えれば、商品G1と重なる頂点)である。それ以外の頂点領域A3は、外接頂点に対応する頂点領域である。
【0035】
認識部12は、例えば、商品占有領域A4の内側であって、且つ、商品占有領域A4を規定する境界線(
図5の一点鎖線部)から予め定められた閾値距離以上離れた頂点を内包頂点として検出してもよい。この場合、商品占有領域A4の十分内側にある頂点を内包頂点として検出することができるため、内包頂点の誤検出(すなわち、実際には内包頂点に該当しない頂点を内包頂点として検出すること)の発生を抑制することができる。
【0036】
(二重載せ状態の第3の例)
図6は、二重載せ状態の第3の例を示す図である。第3の例は、商品G2によって商品G1の2つの頂点が覆い隠されている点において、第2の例(
図5)と相違している。この場合、
図6に示されるように、認識部12によって、2つの商品G1,G2の全体を含むように設定された商品領域A2と、6つの頂点領域A3(商品G1の2つの頂点領域A3及び商品G2の4つの頂点領域A3)と、が検出される。ここで、認識部12によって上述した商品占有領域A4が推定された場合には、1つの内包頂点(すなわち、商品G2の頂点のうち商品G1の領域と接する頂点)に対応する頂点領域A31と、それ以外の5つの外接頂点に対応する頂点領域A3と、が区別されて検出される。
【0037】
(二重載せ状態の第4の例)
図7は、二重載せ状態の第4の例を示す図である。この例では、一方の商品G1の上に、商品G1よりも一回り小さい商品G2が完全に重なった状態で、2つの商品G1,G2がトレー22上に載置されている。平面視において、商品G2は、商品G1の外側にはみ出さないように、商品G1の内側に配置されている。この場合、
図7に示されるように、認識部12によって、2つの商品G1,G2の全体(すなわち、商品G1)を含むように設定された商品領域A2と、8つの頂点領域A3(商品G1の4つの頂点領域A3及び商品G2の4つの頂点領域A3)と、が検出される。ここで、認識部12によって上述した商品占有領域A4が推定された場合には、4つの内包頂点(すなわち、商品G2の各頂点)に対応する頂点領域A31と、4つの外接頂点(すなわち、商品G1の各頂点)に対応する頂点領域A3と、が区別されて検出される。
【0038】
判定部13は、認識部12による頂点の検出結果に基づいて、トレー22に複数の商品Gが載置されているか否か(すなわち、二重載せの状態であるか否か)を判定する。
【0039】
例えば、判定部13は、認識部12により検出された頂点の数(すなわち、頂点領域A3の数)に基づいて、二重載せの状態であるか否かを判定してもよい。一例として、商品GがN角形状であるとき、判定部13は、認識部12により検出された頂点領域A3の数がNと1以上の所定の閾値dとの和(すなわち、N+d)以上である場合に、二重載せの状態であると判定してもよい。ここで、Nは3以上の整数であり、本実施形態ではNは4である。
【0040】
図3の右部のように、トレー22上に1つの商品Gのみが載置されている場合には、認識部12により検出される頂点領域A3の数はNと一致する。また、トレー22が空の場合には、認識部12により検出される頂点領域A3の数は0となる。一方、
図4~
図7に示される例のように、二重載せの状態では、認識部12により検出される頂点領域A3の数は、Nよりも大きい数(すなわち、「N+1」以上)となる。具体的には、
図4の例(第1の例)では、検出される頂点領域A3の数は8(=N+4)であり、
図5の例(第2の例)では、検出される頂点領域A3の数は7(=N+3)であり、
図6の例(第3の例)では、検出される頂点領域A3の数は6(=N+2)であり、
図7の例(第4の例)では、検出される頂点領域A3の数は8(=N+4)である。従って、上記構成によれば、検出された頂点数と「N+d」とを比較することによって、二重載せの状態であるか否かを適切に判定することができる。
【0041】
ここで、閾値dは2であってもよい。認識部12による画像認識において、頂点領域A3は、誤検出される可能性がある。具体的には、実際には商品Gの頂点に対応しない領域が、誤って頂点領域A3として検出される場合があり得る。閾値dを2とすることにより、このような頂点領域A3の誤検出に起因して生じる二重載せの誤判定を抑制することができる。例えば、トレー22上に商品Gが1つだけ載置されているにもかかわらず、認識部12によって実際には存在しない頂点に対応する頂点領域A3が1つ誤検出された場合について考える。この場合、認識部12により検出された頂点領域A3の数は5つとなる。閾値dを2とした場合、判定部13は、認識部12により検出された頂点領域A3の数が6つ以上である場合に二重載せであると判定することになる。その結果、上記場合に判定部13が誤って二重載せであると判定してしまうことを防止できる。
【0042】
なお、二重載せの状態において、認識部12により検出される頂点領域A3の数が「N+1」となる場合もあり得る。例えば、
図7の例のように一方の商品G1が他方の商品G2よりも大きい場合であって、商品G1が商品G2の「N-1」個(ここでは3つ)の頂点を覆い隠すように商品G2の上に重なる場合には、認識部12によって検出される頂点領域A3の数は「N+1」個(ここでは5つ)となる。ただし、このような状態が発生する可能性は比較的低いと考えられる。従って、閾値dを2とすることによって二重載せの判定漏れ(実際には二重載せの状態であるにもかかわらず二重載せであると判定しないこと)が生じ得るものの、そのデメリットよりも、上述したような二重載せの誤判定(実際には二重載せの状態でないものを二重載せと判定すること)を抑制できるメリットの方が大きいと考えられる。
【0043】
なお、二重載せの判定の正確性(適合率)よりも再現率を重視する場合(すなわち、誤判定が生じることをある程度許容して判定漏れが生じることを極力防止したい場合)には、閾値dを1とすればよい。逆に、二重載せの判定の再現率よりも適合率を重視する場合(すなわち、判定漏れが生じることをある程度許容して誤判定が生じることを極力防止したい場合)には、閾値dを大きくすればよい。このように、閾値dは、実現したい二重載せの判定の適合率及び再現率のバランスに応じて決定されればよい。また、閾値dは、認識部12による画像認識の精度に応じて決定されてもよい。例えば、認識部12によって頂点領域A3が誤検出される確率が比較的低い場合には、閾値dを小さくし、認識部12によって頂点領域A3が誤検出される確率が比較的高い場合には、閾値dを大きくしてもよい。
【0044】
また、判定部13は、認識部12により検出された頂点領域A3のうち商品領域A2の外側で検出された頂点領域A32(
図8参照)を除外して、二重載せの状態であるか否かを判定してもよい。例えば、
図8に示されるように、トレー22の商品載置面の傷、模様、カメラ30による撮影時における光の反射の具合等によって、商品領域A2の外側の領域(トレー22に対応する領域)において、頂点領域A3が誤検出される場合がある。上述したように閾値dを2以上とすることによっても、このような頂点領域A3が検出された場合に二重載せの誤判定が生じることを抑制できるが、判定部13は、上述したように商品領域A2の外側で検出された頂点領域A3を除外する(無効にする)ことによっても、二重載せの誤判定が生じることを抑制できる。なお、頂点領域A3の誤検出は、商品領域A2の内側で生じることもあり得るため、閾値dを2以上に設定する処理と、商品領域A2の外側で検出された頂点領域A32を除外する処理と、は併用されてもよい。
【0045】
また、判定部13は、認識部12によって商品占有領域A4(
図5参照)の内側において頂点領域A3(すなわち、内包頂点に対応する頂点領域A31)が検出された場合に、二重載せであると判定してもよい。商品占有領域A4の内側で検出された頂点領域A31は、当該頂点領域A31が誤検出によるものではない場合には、一の商品G上に重なる他の商品Gの頂点に対応する頂点領域であることになる。従って、上記構成によれば、内包頂点が検出されたことに基づいて、二重載せの状態を適切に検知することができる。
【0046】
判定部13は、上述した判定結果を、例えば検知装置10が備えるディスプレイ等の出力装置に出力してもよい。例えば、二重載せの状態が判定された場合に、判定部13は、二重載せの状態が判定されたトレー22のトレーIDと共に、当該トレーIDに示されるトレー22において二重載せの状態が発生していることを示す情報を、ディスプレイ等に出力してもよい。或いは、判定部13は、検知装置10が備えるスピーカ等の出力装置からアラート(警報)を出力したり、現場に設置されたパトランプを点灯させたりすることによって、異常状態(二重載せの状態)が検知されたことを現場の作業員等に通知してもよい。
【0047】
次に、
図9のフローチャートを参照して、検知装置10の動作の一例について説明する。
【0048】
ステップS1において、取得部11は、トレー画像IM1(
図3参照)を取得する。トレー画像IM1は、撮影エリアSA(
図2参照)を通過するトレー22をカメラ30が撮影することによって得られた画像である。
【0049】
ステップS2において、認識部12は、トレー画像IM1に対する画像認識を実行することにより、ID領域A1、商品領域A2、及び頂点領域A3を検出する。なお、トレー22に商品Gが載置されていない場合には、ID領域A1のみが検出される。また、認識部12は、商品占有領域A4(
図5参照)を更に検出(推定)してもよい。
【0050】
ステップS3において、判定部13は、ステップS2における頂点(頂点領域A3)の検出結果に基づいて、トレー22に複数の商品Gが載置されているか否か(すなわち、二重載せの状態であるか否か)を判定する。
【0051】
図10のフローチャートを参照して、判定部13による判定処理(
図9のステップS3)の手順の一例について説明する。
【0052】
ステップS31において、判定部13は、認識部12によって商品占有領域A4が推定されたか否かを判定する。商品占有領域A4が推定されている場合(ステップS31:YES)には、判定部13は、ステップS32の処理に進む。一方、商品占有領域A4が推定されていない場合(ステップS31:NO)には、判定部13は、ステップS34の処理に進む。
【0053】
ステップS32において、判定部13は、認識部12によって商品占有領域A4の内側で頂点が検出されたか否かを判定する。すなわち、判定部13は、内包頂点に対応する頂点領域A31が検出されたか否かを判定する。頂点領域A31が検出されている場合(ステップS32:YES)には、判定部13は、二重載せの状態であると判定する(ステップS33)。一方、頂点領域A31が検出されていない場合(ステップS32:NO)には、判定部13は、ステップS34の処理に進む。
【0054】
ステップS34において、判定部13は、認識部12によって商品領域A2の外側で頂点(すなわち、頂点領域A32(
図8参照))が検出されたか否かを判定する。頂点領域A32が検出されている場合(ステップS34:YES)には、判定部13は、当該頂点領域A32を除外し(ステップS35)、ステップS36の処理に進む。一方、頂点領域A32が検出されていない場合(ステップS34:NO)には、判定部13は、上記ステップS35の処理をスキップして、ステップS36の処理に進む。
【0055】
ステップS36において、判定部13は、認識部12によって検出された頂点数(頂点領域A3の数)がN+d以上であるか否かを判定する(ステップS36)。検出された頂点数がN+d以上である場合(ステップS36:YES)、判定部13は、二重載せの状態であると判定する(ステップS33)。一方、検出された頂点数がN+d未満の場合(ステップS36:NO)、判定部13は、正常状態であると判定する(ステップS37)。
【0056】
なお、認識部12による商品占有領域A4(
図5参照)の推定処理が省略される(或いは実行できない)ことが予め判明している場合等には、
図10におけるステップS31及びS32は省略されてもよい。この場合、判定処理は、ステップS34から開始されることになる。また、商品領域A2の外側で検出された頂点領域A32を除外する処理は必須ではない。すなわち、
図10におけるステップS34及びS35は、省略されてもよい。
【0057】
また、判定部13は、内包頂点に対応する頂点領域A32が検出されたか否かのみに基づいて、二重載せであるか否かを判定してもよい。すなわち、判定部13は、
図10におけるステップS31~S33のみを実行し、
図10におけるステップS34~S37を省略してもよい。この場合、判定部13は、
図4に示される態様(2つの商品G1,G2同士が重なっていない態様)の二重載せを検知することはできないものの、
図5~
図7に示した態様の二重載せを検知することができる。従って、例えば、トレー22の大きさに対して商品Gが十分に大きく、トレー22上に2つの商品Gが載置されると必然的に2つの商品G同士が重なってしまう場合(すなわち、
図4に示される態様の二重載せが発生し得ない場合)には、判定部13は、
図10におけるステップS31~S33のみを実行することによって、適切に二重載せを検知することができる。
【0058】
以上説明した検知装置10においては、商品Gが載置された状態で搬送されるトレー22の画像(トレー画像IM1)に対する画像認識結果から、トレー画像IM1に含まれる商品Gの頂点(角部)に対応する頂点領域A3が検出される。そして、頂点領域A3の検出結果(例えば、頂点数)に基づいて、トレー22に複数の商品Gが載置されている状態(いわゆる二重載せの状態)であるか否かが判定される。検知装置10によれば、トレー22の上方から撮影されたトレー画像IM1に対する比較的簡易な解析処理によって異常状態(上述した二重載せの状態)を検知することができる。すなわち、物品搬送(商品Gの搬送)に関する異常状態(二重載せの状態)を、簡易な設備で検知することができる。
【0059】
物流センタ等のソーターシステム20のように商品Gを高速に仕分けする必要がある場合には、トレー22の搬送速度が比較的速い。このため、例えばRGB-Dセンサ等によってトレー22内の商品Gの3次元形状を捉えることは困難である。一方、検知装置10では、上述したような3次元形状を認識するための特別なセンサ等を用いずに、カメラ30によって取得された2次元のトレー画像IM1を用いて異常状態(二重載せ)を検知することができる。
【0060】
また、トレー22には、トレー22を識別するためのトレーIDが記載されたID領域が設けられている(
図3参照)。そして、認識部12は、頂点領域A3だけでなく、ID領域A1も検出する。この場合、トレー22毎の判定結果を容易に管理することが可能となる。例えば、二重載せが検知されたトレー22をトレーIDによって特定できる。
【0061】
なお、検知装置10によって二重載せを判定される対象は、必ずしも消費者に販売されることが目的とされた商品Gでなくてもよく、商品用途以外の物品であってもよい。また、上記実施形態では「N=4」の場合(すなわち、商品Gが平面視において四角形状である場合)について説明したが、商品Gは、三角形状、五角形状等の四角形状以外の形状であってもよい。また、トレー画像IM1の種類は特に限定されない。トレー画像IM1は、上述した画像解析が可能な画像であればよく、例えばX線を用いて取得されたX線画像等であってもよい。
【0062】
なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
【0063】
機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、見做し、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。
【0064】
例えば、本開示の一実施の形態における検知装置10は、本開示の通信制御方法を行うコンピュータとして機能してもよい。
図11は、本開示の一実施の形態に係る検知装置10のハードウェア構成の一例を示す図である。上述の検知装置10は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
【0065】
なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。検知装置10のハードウェア構成は、
図1に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
【0066】
検知装置10における各機能は、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004による通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。
【0067】
プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU:Central Processing Unit)によって構成されてもよい。
【0068】
また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、認識部12は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。上述の各種処理は、1つのプロセッサ1001によって実行される旨を説明してきたが、2以上のプロセッサ1001により同時又は逐次に実行されてもよい。プロセッサ1001は、1以上のチップによって実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されても良い。
【0069】
メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically Erasable Programmable ROM)、RAM(Random Access Memory)などの少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施の形態に係る通信制御方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
【0070】
ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、CD-ROM(Compact Disc ROM)などの光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップなどの少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。上述の記憶媒体は、例えば、メモリ1002及びストレージ1003の少なくとも一方を含むデータベース、サーバその他の適切な媒体であってもよい。
【0071】
通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。
【0072】
入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
【0073】
また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
【0074】
また、検知装置10は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
【0075】
次に、コンピュータを、本実施形態の検知装置10として機能させるための検知プログラムについて説明する。
図12は、検知プログラムPの構成を示す図である。
【0076】
検知プログラムPは、検知装置10における上記の処理を統括的に制御するメインモジュールm10、取得モジュールm11、認識モジュールm12、及び判定モジュールm13を有する。各モジュールm11~m13により、検知装置10における取得部11、認識部12、及び判定部13が実現される。なお、検知プログラムPは、通信回線等の伝送媒体を介して伝送される態様であってもよいし、
図12に示されるように、記録媒体Mに記憶される態様であってもよい。
【0077】
以上、本実施形態について詳細に説明したが、当業者にとっては、本実施形態が本明細書中に説明した実施形態に限定されるものではないということは明らかである。本実施形態は、特許請求の範囲の記載により定まる本発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本明細書の記載は、例示説明を目的とするものであり、本実施形態に対して何ら制限的な意味を有するものではない。
【0078】
本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。
【0079】
入出力された情報等は特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報等は、上書き、更新、又は追記され得る。出力された情報等は削除されてもよい。入力された情報等は他の装置へ送信されてもよい。
【0080】
判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:true又はfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
【0081】
本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。
【0082】
ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
【0083】
また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(DSL:Digital Subscriber Line)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。
【0084】
本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
【0085】
また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。
【0086】
上述したパラメータに使用する名称はいかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式等は、本開示で明示的に開示したものと異なる場合もある。様々な情報要素は、あらゆる好適な名称によって識別できるので、これらの様々な情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。
【0087】
本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
【0088】
本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素への参照は、2つの要素のみが採用され得ること、又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
【0089】
本開示において、「含む(include)」、「含んでいる(including)」及びそれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
【0090】
本開示において、例えば、英語でのa, an及びtheのように、翻訳により冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。
【0091】
本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。
【符号の説明】
【0092】
10…検知装置、11…取得部、12…認識部、13…判定部、22…トレー、A1…ID領域、A2…商品領域(物品領域)、A3,A31,A32…頂点領域、A4…商品占有領域(物品占有領域)、G…商品(物品)、IM1…トレー画像。