(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-03-15
(45)【発行日】2024-03-26
(54)【発明の名称】インライン粒子センサ
(51)【国際特許分類】
G01N 15/06 20240101AFI20240318BHJP
【FI】
G01N15/06 D
(21)【出願番号】P 2020555452
(86)(22)【出願日】2019-04-10
(86)【国際出願番号】 US2019026773
(87)【国際公開番号】W WO2019199958
(87)【国際公開日】2019-10-17
【審査請求日】2020-12-08
(32)【優先日】2018-04-11
(33)【優先権主張国・地域又は機関】US
【前置審査】
(73)【特許権者】
【識別番号】500148488
【氏名又は名称】サイバーオプティクス コーポレーション
(74)【代理人】
【識別番号】110001508
【氏名又は名称】弁理士法人 津国
(72)【発明者】
【氏名】シューダ,フェリクス・ジェイ
(72)【発明者】
【氏名】チェン,フェリス・ジェイ
【審査官】野田 華代
(56)【参考文献】
【文献】特開平06-082358(JP,A)
【文献】特開2001-059808(JP,A)
【文献】特開平11-304688(JP,A)
【文献】特開平06-082360(JP,A)
【文献】特表2002-502027(JP,A)
【文献】特表2016-536573(JP,A)
【文献】特表2009-532670(JP,A)
【文献】特開2017-187444(JP,A)
【文献】特開平5-142175(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G01N 15/00-15/14
(57)【特許請求の範囲】
【請求項1】
インライン粒子センサであって、
継手のボア内に実装されるように構成された円筒形センサヘッドであって、レーザ光を真空ラインに発するように構成されたレーザ光源を含み、
継手のボア内に実装されるように及び粒子によって散乱されたレーザ光を示す信号を提供するように構成された検出回路を含む前記センサヘッドと、
前記センサヘッドに結合され、検出回路からの前記信号を受け取り、検出回路からの前記信号に基づいて粒子出力を提供するように構成された電子機器と
を含む、インライン粒子センサ。
【請求項2】
散乱光検出の主要な軸が、粒子流の主要な方向とほぼ直交し、同時に主要なレーザ光方向とほぼ直交する、請求項1に記載のインライン粒子センサ。
【請求項3】
前記レーザ光源が真空UVから約480nmまでの帯域内で1つ又は複数の波長を発する、請求項1に記載のインライン粒子センサ。
【請求項4】
レーザインターロックをさらに含む、請求項1に記載のインライン粒子センサ。
【請求項5】
前記レーザインターロックが、選択された真空閾値より下で閉じるように構成された真空スイッチである、請求項4に記載のインライン粒子センサ。
【請求項6】
前記レーザインターロックが圧力センサを含む、請求項4に記載のインライン粒子センサ。
【請求項7】
継手のポートの一つに配置されるように構成された流量制限器をさらに含む、請求項1に記載のインライン粒子センサ。
【請求項8】
前記継手が真空ポンプとプロセスチャンバとの間で真空ポンプラインに結合される、請求項1に記載のインライン粒子センサ。
【請求項9】
前記継手が低圧真空ポンプと高圧真空ポンプとの間で真空ポンプラインに結合される、請求項1に記載のインライン粒子センサ。
【請求項10】
前記電子機器が前記センサヘッドに外部から結合される、請求項1に記載のインライン粒子センサ。
【請求項11】
前記電子機器が前記センサヘッド内に収容される、請求項1に記載のインライン粒子センサ。
【請求項12】
インライン粒子センサシステムであって、
真空ポンプと、
真空ポンプラインと、
プロセスチャンバと、
前記真空ポンプと前記プロセスチャンバとの間で前記真空ポンプラインに流体的に結合された継手と、
前記継手のボアに挿入され、前記センサシステム内の粒子の散乱光を感知
するように構成されたインライン粒子センサであって、
継手のボア内に実装されるように及び前記粒子の散乱光の存在を示すセンサ信号を提供するように構成された検出回路を含む前記インライン粒子センサと、
前記センサ信号を受け取り、前記センサ信号に基づいて粒子出力を生成するように構成された前記インライン粒子センサに結合された電子機器と
を含む、インライン粒子センサシステム。
【請求項13】
前記真空ポンプが第1の真空ポンプであり、低圧真空ポンプ又は高圧真空ポンプのどちらかを含む、請求項12に記載のインライン粒子センサシステム。
【請求項14】
前記インライン粒子センサが、UVから約480nmまでの波長でレーザを発するように構成されたレーザ光源を含む、請求項12に記載のインライン粒子センサシステム。
【請求項15】
第2の継手に結合された第2のインライン粒子センサをさらに含み、前記第2の継手が前記真空ポンプと前記プロセスチャンバとの間で前記真空ポンプラインに流体的に結合される、請求項12に記載のインライン粒子センサシステム。
【発明の詳細な説明】
【背景技術】
【0001】
半導体ウェーハの製造中には、ウェーハが露出する複数のツール及びプロセスがある。これらの各ステップ中には、ウェーハの表面上に微細粒子が堆積することが原因で、最終的な集積回路デバイスの歩留まりの低下を生じさせる可能性があるプロセス条件によって引き起こされ得る潜在的な欠陥がある。これが重要なのは、各ウェーハが数十又は数百でさえもの集積回路デバイスの回路を含む場合があり、1つのウェーハの損失が結果として何百ドル又は何千ドルにも値するスクラップを生み出し得るからである。少数の粒子でさえ、ウェーハの品質に悪影響を及ぼす可能性がある。よって、半導体ウェーハ処理の様々な段階の前及びその間に非常に感度の高い感知手段を用いて少量の微粒子を監視することが重要である。
【発明の概要】
【0002】
一実施態様において、インライン粒子センサは、継手内に実装されるように構成されたセンサヘッドを含み、該センサヘッドは、感知体積を通るビームを発するように構成されたレーザ光源と、感知体積を通過する粒子から散乱されたレーザ光を検出するように配置された検出器とを含む。本インライン粒子センサは、センサヘッドに結合され、粒子を示す検出器からの信号を受け取るように構成された電子機器をさらに含む。電子機器は、検出された粒子の存在を示す出力を生成する。
【0003】
別の実施態様において、インライン粒子センサシステムは、真空ポンプと、真空ポンプラインと、半導体ウェーハ・プロセスチャンバと、真空ポンプとウェーハ・プロセスチャンバとの間で真空ポンプラインに流体的に結合された継手とを含む。本インライン粒子センサシステムは、継手に結合され、センサシステムを用いて粒子の特性を感知し、粒子の特性を示すセンサ信号を生成するように構成されたインライン粒子センサと、センサ信号を受け取り、センサ信号に基づいて粒子出力を生成するように構成された、真空粒子センサに結合された電子機器とをさらに含む。
【0004】
別の実施態様において、インライン粒子センサシステムは、プロセスチャンバと、プロセスチャンバに結合され、プロセスチャンバから真空ポンプライン中への流体流動を可能にするように構成された真空ポンプラインと、真空ポンプラインに結合された第1の真空ポンプと、真空ポンプラインに結合された第2の真空ポンプと、第1の真空ポンプと第2の真空ポンプとの間と、第1の真空ポンプ又は第2の真空ポンプのどちらかとプロセスチャンバとの間とで真空ポンプラインに流体的に結合された継手とを含む。本インライン粒子センサシステムは、継手に結合され、システム内で粒子の特性を感知し、特性を示すセンサ信号を生成するように構成されたインライン粒子センサと、センサ信号を受け取り、センサ信号に基づいて粒子出力を決定するように構成された、センサに結合された電子機器とをさらに含む。
【図面の簡単な説明】
【0005】
【
図1】本発明の一実施態様による半導体処理環境において動作するインライン粒子感知システムの構成要素の図である。
【
図2】本発明の一実施態様によるインライン粒子センサの図である。
【
図3】本発明の一実施態様によるインライン粒子センサの図である。
【
図4】本発明の一実施態様によるインライン粒子センサの図である。
【
図5】本発明の一実施態様によるインライン粒子センサのブロック図である。
【発明を実施するための形態】
【0006】
半導体ウェーハプロセスは、多くの場合、プロセスチャンバ内部の粒子汚染に敏感である。微粒子はチャンバ内部の機械的要素から、又は他の発生源から生じ得る。以下で開示されるように、インライン粒子センサは、ユーザがメインチャンバ内又はポンプライン内を監視して、粒子がいつ生成されるかを確認できるようにする診断センサとして設けられる。センサ出力における粒子バースト又はその他の適切な検出パターンを手順におけるステップと相関させることにより、ユーザは問題をより容易かつ効果的に診断することができる。
【0007】
1つの特に難しいプロセスが極端紫外線(EUV)リソグラフィである。EUVでは、プラズマが、約13.5ナノメートルの波長を有する光に変換される。この光は次いで、いくつかの反射鏡に当たって跳ね返り、ウェーハに作用する。EUVは、5ナノメートルスケールまでの処理を可能にすると考えられている。理解できるように、システムにおける粒子又は不純物の影響は、印刷される機構がより小型化するにつれて拡大される。EUVプロセス自体も、不要な微粒子の発生源となる可能性がある。
【0008】
後述する実施態様は、一般に、真空システムの、メインチャンバ又は真空ポンプラインのうちの1つに挿入可能であるように構成された光学粒子センサを提供する。開示の実施態様の重要な態様には、センサを真空システムに挿入し、真空システムから除去する際の容易さ、センサがメインチャンバ内で生成された微粒子を潜在的に感知できるように、センサをポンプライン、特に低真空ポンプと高真空ポンプとの間のラインにどのようにして挿入できるか、感知領域におけるレーザビームの形状及び整列が、散乱光集光の配置と協調して、個々の粒子の検出をどのようにして最大化するか、並びに、センサが、高出力短波長の(青色やUVなどの)レーザを使用してより多くの粒子及びより小さい粒子をどのようにして感知できるかが含まれる。
【0009】
図1は、本発明の一実施態様による半導体処理環境において動作するインライン粒子感知システムの構成要素の図である。
図1に示されるように、インライン粒子センサ100は、継手101に結合されており、真空ポンプライン102上でプロセスチャンバ104と真空ポンプ106との間に流体的に介在している。一実施態様では、ライン102はプロセスチャンバ104のための水素排気ラインである。1つの特定の例では、ライン102は水素排気を、圧力約17Pa、流量約2.73Pa m
3/秒で運ぶ。一例では、ライン102は、直径約85mmのパイプである。図示のように、インライン粒子センサ100は、プロセスチャンバ104の外部、真空ポンプ106の前に位置する。しかしながら、センサがプロセスチャンバ104又はその他の適切な半導体処理ツール/環境に取り付けられる実施態様を実施することもできる。さらに、センサ100を、高真空ポンプと低真空ポンプとの間の真空ライン上に流体的に介在させることもできる。別の実施態様では、インライン粒子センサは、低真空ポンプから大気までの排気ライン内に位置し得る。
【0010】
センサ100は、コントローラ108に通信可能に結合されている。コントローラ108は、センサ100からの信号情報を収集し、その信号情報を格納してもよく、ライン102を流れる粒子に関する定性的情報及び/又は定量的情報を示す出力を提供するために信号情報を処理する。加えて、コントローラ108は、半導体ツール(プロセスチャンバ104など)に関する粒子流のより包括的な指示を取得するために、その他の排気ライン又は流体管路上に配置されたいくつかの追加のインライン粒子センサにも、物理的に又は無線で、接続されていてもよい。一例では、コントローラ108は、12個の別々のインライン粒子センサ100に接続するように構成される。これら追加のセンサは、異なるラインに結合されてもよく、かつ/又は複数のインライン粒子センサが同じライン102に結合されてもよい。そのような場合、複数のセンサは、流路の断面積の異なる領域で粒子を検出するように配置されたそれぞれの感知域を有し得る。例えば、第1の粒子センサはライン102内の流れ面積の第1の半分の大部分を感知し、第1のインライン粒子センサに近接して位置する第2のインライン粒子センサは、流れ面積の第2の半分の大部分を感知し得る。そのようなシステムは、単一のより大きくより複雑な感知構造を必要とせずに、ライン内の粒子存在のより完全な感知を可能にし得る。
【0011】
図2は、本発明の一実施態様によるインライン粒子センサの図である。センサ100は、標準KF50クロス継手122などの標準継手内に収まるサイズ及び形状のレーザ感知ヘッド120を含む。継手122を、ステンレス鋼及びアルミニウムを含むがこれに限定されない任意の適切な材料で形成することができる。一実施態様では、感知ヘッド120は、実質的に継手122の脚124内に延在するように、長さ約140mmである。非常に小さい密度の気体中の不要な粒子がプロセス条件の不良を示す可能性があり、そのため可能な限り多くの気体及び粒子流を捕捉する感知体積を有することが不可欠である。一実施態様では、感知ヘッド120は、レーザ光源光学素子及び散乱光検出素子の固有の形状により、感知体積におけるレーザビーム「リボン」を、薄く、気体及び粒子流に対して大きな断面積のものになるように構成する。そのサイズについて、インライン粒子センサのこの光学ヘッドの配置は、他のタイプの環境のための粒子センサよりもはるかに大きい感知域を有する。例えば、一実施態様では、感知域は約6mm×6mmであり、インライン粒子センサが典型的な既存のセンサよりもポンプライン・チューブの大幅に大きい部分をサンプリングすることを可能にする。
【0012】
ほぼ直交する気体及び粒子流方向と、レーザビーム伝播方向と、検出軸との固有の形状は、粒子流に対して提示される大きなリボン状の面積及び流れ方向の薄いレーザビームと組み合わされて、散乱光の効率的な集光も可能にし、単一粒子を検出する効率の改善をもたらす。レーザビームは大きな断面積のものであるが、粒子流の方向には薄いので、レーザビームを非常に高い強度レベルに維持することができ、これに対応して単一粒子からの散乱光信号の大きさも増す。粒子流方向の薄いレーザビームの広がりが小さいことの結果として短い幅の散乱光パルスも得られ、これにより、検出された散乱光パルスと、背景雑音源及び検出された粒子を示さないその他の信号とのより明確な区別が可能になる。
【0013】
レーザ光の波長とほぼ同じサイズ及びこれより小さい、約0.5ミクロン(μm)以下の直径の粒子が、多くの場合、半導体ウェーハ処理の制御に最も重要である。それらの散乱特性が大部分の課題を提示する、レーザ波長の<20%の最小直径では、散乱断面は極めて急速に減少する。これらの粒子を確実に検出するためには、非常に高い強度を維持しながら可能な限り短いレーザ波長を使用することが不可欠である。一実施態様では、レーザ光源は、0.450μmの波長で動作し、最大3ワットまで出力する。検出できる散乱光の量は、主要な検出方向に対するレーザ偏光の向きに強く依存する。一実施態様では、主要な検出軸はレーザリボン平面内にあり、レーザ偏光方向はレーザリボンの平面に対して直角をなし、これにより主要な検出軸における散乱が最大になる。
【0014】
図2に示される実施態様では、感知ヘッド120は、ケーブル130を介して電子機器筐体128に電気的に結合されたプリアンプ及びレーザドライバ回路を含む。筐体128内の電子機器は、感知ヘッド120内の(
図2には示されていない)レーザ光源を駆動し、感知ヘッド120の感知域を通過する粒子の存在、サイズ、及び/又は量を検出するために、(
図2には示されていない)光学検出器の電気的応答を監視することができる。さらに、筐体128内の電子機器は、(
図1に示される)コントローラ108などのコントローラに電気的出力を提供するように構成される。これは、ケーブル結合された筐体を介して(
図1に示されるような)コントローラ108に信号を送ることによってなされてもよく、又は公知のブルートゥースプロトコルやWiFiプロトコルなどの無線通信プロトコルを使用してなされてもよい。
【0015】
図3は、本発明の一実施態様によるインライン粒子センサの図である。
図3に示される実施態様は
図2の実施態様と同様であり、同様の構成要素は同様に付番されている。インライン粒子センサ200は、KF50クロス継手122などの標準継手内に収まるように構成される。加えて、粒子をセンサ200の感知域に流すために、センサ200の上流に任意選択の流量制限器126を配置することもできる。センサ200とセンサ100との主要な差異は、センサ200に必要とされるすべての電子機器がセンサヘッド201及びエンドキャップ202内に配置されていることである。エンドキャップ202は、一実施態様では、プラスチックなどのRF透過性材料で形成され得る。さらに、エンドキャップ202は、電源(5VDCなど)がセンサヘッド201及びエンドキャップ202内の電子機器に結合することを可能にする電源入力ポートを含み得る。加えて、エンドキャップ202は、1つ又は複数のインジケータLEDも含み得る。そのようなインジケータLEDは、次のイベントに関する有用な情報を提供することができる:電源オン、レーザ稼働、粒子検出、及び/又は適切なトラブルシューティングコード。センサ200は、電子的に、又はそれ以外に通信可能にコントローラ(コントローラ108など)に結合され得る。
【0016】
図2及び
図3に関して説明された実施態様のどちらでも、電気構成要素(電子機器、レーザ光源、及び検出器など)は、コネクタを流れる気体から密封及び隔離される。これはインラインセンサ、特に、半導体処理産業を支援するために動作するインラインセンサにとって重要な特徴である。
【0017】
図4は、本発明の一実施態様によるインライン粒子センサの図である。センサ200は、
図3に示される継手122(KF50クロスコネクタなど)ではなくT字形コネクタ250に結合されている。したがって、ここで説明される実施態様を、クイックフランジ、ISO継手(ISO63など)、並びに50mmより大又は小の継手を含むがこれに限定されない任意の適切なタイプ及び/又はサイズのコネクタ又はカプラを用いて実施することができる。実施態様は、一般に、真空システムを妨げることなく再較正又は修理のために容易に取り外すことができるインライン粒子センサを提供する。
【0018】
図2、
図3、及び
図4に関して説明された実施態様では、センサは、継手、ポンプライン、及び/又はプロセスチャンバその他の適切な半導体処理ツール/環境に便利に結合及び分離され、よってセンサは、検査、修理、交換、較正、及び/又はその他の保守業務のためにシステムから個別に取り外され得る。加えて、電子機器はセンサ内に完全に収容されるか、又はセンサに外部から結合されるので、オペレータはより容易に電子機器にアクセスし、又はセンサと一緒に電子機器を取り外し得る。
【0019】
図5は、本発明の一実施態様によるインライン粒子センサのブロック図である。センサ300は、上述した実施態様のいずれかを含み得る。センサ300は、電源モジュール301を含む。センサ300が電池式の実施態様では、電源モジュール301は、充電式電池などの電池を含み得る。しかしながら、電源モジュール300は、センサ300のその他の構成要素に供給するために適切な電流制限及び電力調整回路も含む。別の実施態様では、電源モジュール301は、センサ300に電気的に結合された外部電源、例えば、電源入力ポートを介してセンサ300に結合された5VDCを含み得る。コントローラ302が、電源モジュール301、通信モジュール304、インターロック306、レーザ光源モジュール308及び検出モジュール310に結合されている。コントローラ302は、検出回路310から信号を受け取り、検出回路310からの信号に基づいて粒子を識別又はそうでなければ定量化し、通信モジュール304を介して出力を提供することができる任意の適切な論理又は回路を含み得る。一実施態様では、コントローラ302はマイクロプロセッサである。
【0020】
光源308は、コントローラ302に電気的に結合されており、真空ライン中に照明を向けるように構成される。好ましくは、光源308は、青色-UV範囲内の波長(すなわち、約480nmまでのUV波長)を有するレーザ照明を発生するように構成される。さらに、光源308は、比較的高出力のレーザ照明を提供するように構成される。一例では、この出力は、高出力青色レーザダイオードを使用する約3.5ワットである。しかしながら、出力電力が真空ライン内の粒子を気化させるのに十分ではない限りは、より高出力のレーザ照明を使用することができる。高出力電力が与えられる場合、センサ300は、好ましくは、高出力レーザが真空ライン(ライン102など)内に安全に含まれるときにのみ稼働するようにするために、レーザインターロック306も含む。一実施態様では、レーザインターロックは、コントローラ302に結合された真空スイッチ又は圧力センサと一緒に作成され、十分な真空が存在するときにのみコントローラ302が光源308を稼働させるようにする。しかしながら、本発明の実施態様に従って他のタイプのインターロックを使用することもできる。そのようなインターロックには、手動スイッチ、手動カップリング、又は流路(ライン102など)内で安全に動作しているときにのみレーザが稼働することを確実にするように設計された任意の他の適切な手動若しくは自動の構造が含まれ得る。
【0021】
センサ300は、その他の電子機器312をさらに含む。電子機器312は、(例えば
図2に示されるように)有線接続を介してセンサ300に外部から結合されてもよく、又は(例えば
図3及び
図4に示されるように)センサ300内に収容されていてもよい。電子機器312は、WiFi又はブルートゥース構成要素、追加電源、ディスプレイなどを含むがこれに限定されない、インライン粒子センサに必要又は有利な任意の数の電気構成要素を含み得る。
【0022】
本発明を、好ましい実施態様を参照して説明したが、当業者は、本発明の趣旨及び範囲から逸脱することなく形態及び詳細に変更が加えられ得ることを認めるであろう。例えば、実施態様は真空センサに関して説明されているが、電子機器を感知域から隔離するという利点が与えられれば、実施態様は、気体が腐食性及び/又は毒性である非真空環境において用いられ得る。