(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-03-15
(45)【発行日】2024-03-26
(54)【発明の名称】デュアルマイクイヤホンの振動除去装置及び方法
(51)【国際特許分類】
G10K 11/178 20060101AFI20240318BHJP
H04R 1/00 20060101ALI20240318BHJP
【FI】
G10K11/178 120
H04R1/00 327A
【外国語出願】
(21)【出願番号】P 2022045315
(22)【出願日】2022-03-22
(62)【分割の表示】P 2020560320の分割
【原出願日】2018-04-26
【審査請求日】2022-03-23
(73)【特許権者】
【識別番号】514156013
【氏名又は名称】深▲セン▼市韶音科技有限公司
【氏名又は名称原語表記】SHENZHEN SHOKZ CO.,LTD.
【住所又は居所原語表記】Floors 1-4,Factory Building 26,Shancheng Industrial Park,Shiyan Street,Bao’an District,Shenzhen,Guangdong 518108,CHINA
(74)【代理人】
【識別番号】100108453
【氏名又は名称】村山 靖彦
(74)【代理人】
【識別番号】100110364
【氏名又は名称】実広 信哉
(74)【代理人】
【識別番号】100133400
【氏名又は名称】阿部 達彦
(72)【発明者】
【氏名】▲張▼ 磊
(72)【発明者】
【氏名】廖 ▲風▼云
(72)【発明者】
【氏名】▲齊▼ 心
【審査官】佐久 聖子
(56)【参考文献】
【文献】特開2010-114878(JP,A)
【文献】中国実用新案第203840513(CN,U)
【文献】特開2011-176533(JP,A)
【文献】米国特許出願公開第2007/0041588(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
G10K 11/00-13/00
H04R 1/00-1/14
1/42-3/14
25/00-25/04
(57)【特許請求の範囲】
【請求項1】
イヤホンシステムであって、
電気信号を音信号に変換するよう構成されたスピーカーと、
マイクと、
振動センサーと、
を備え、
前記マイクは、音声信号および第1の振動信号を含む第1の信号を受信するよう構成されており、
前記振動センサーは、第2の振動信号を受信するよう構成されており、
前記第1の振動信号および前記第2の振動信号は、振動源の振動から発生し、かつ、
前記振動センサーの空洞容積は、前記マイクの空洞容積よりも大きく、
前記振動センサーの前記空洞容積は、前記振動センサーの前部空洞容積、後部空洞容積、又は前部空洞容積および後部空洞容積の合計に基づいて決定され、
前記マイクの前記空洞容積は、前記マイクの前部空洞容積、後部空洞容積、又は前部空洞容積および後部空洞容積の合計に基づいて決定され、
前記振動センサーの前記空洞容積は、前記マイクが受信する前記第1の振動信号が、前記振動センサーが受信する前記第2の振動信号に相殺されるように、前記マイクの前記空洞容積に比例し、
前記マイクは空気伝導マイクであり、前記振動センサーは骨伝導マイクである、イヤホンシステム。
【請求項2】
前記振動センサーの前記空洞容積と前記マイクの前記空洞容積との比は、3:1から6.5:1の範囲にある、請求項1に記載のイヤホンシステム。
【請求項3】
前記振動センサーの前記空洞容積は、前記マイクの前記空洞容積に比例している、請求項1または請求項2に記載のイヤホンシステム。
【請求項4】
前記イヤホンシステムはハウジングをさらに含み、前記スピーカーと前記マイクと前記振動センサーとは、前記ハウジング内に配置されている、請求項1から請求項3のいずれか一項に記載のイヤホンシステム。
【請求項5】
前記第1の振動信号および前記第2の振動信号は互いに類似しており、
前記イヤホンシステムは、前記第2の振動信号によって前記第1の振動信号を相殺しかつ前記音声信号を出力するように構成された信号処理ユニットをさらに含む、請求項1から請求項4のいずれか一項に記載のイヤホンシステム。
【請求項6】
前記マイクは、前部空洞開口を備える装置であり、
前記振動センサーは、密閉した前部空洞と密閉した後部空洞とを備える密閉型マイクである、請求項1から請求項5のいずれか一項に記載のイヤホンシステム。
【請求項7】
前記マイクは、後部空洞開口を備える装置であり、
前記振動センサーは、密閉した前部空洞と密閉した後部空洞とを備える密閉型マイクである、請求項1から請求項5のいずれか一項に記載のイヤホンシステム。
【請求項8】
前記マイクは、前部空洞開口を備える装置であり、
前記振動センサーは、開放した前部空洞と開放した後部空洞とを備えるデュアルリンクマイクである、請求項1から請求項5のいずれか一項に記載のイヤホンシステム。
【請求項9】
前記マイクは、後部空洞開口を備える装置であり、
前記振動センサーは、開放した前部空洞と開放した後部空洞とを備えるデュアルリンクマイクである、請求項1から請求項5のいずれか一項に記載のイヤホンシステム。
【請求項10】
前記マイクの前記前部空洞開口は、前部空洞の上部または側壁における少なくとも1つの開口部を含む、請求項6または請求項8に記載のイヤホンシステム。
【請求項11】
前記マイクおよび前記振動センサーはいずれも微小電気機械システムマイクである、請求項1から請求項
10のいずれか一項に記載のイヤホンシステム。
【請求項12】
前記マイクおよび前記振動センサーは、独立して同じハウジングに接続されている、請求項1から請求項
11のいずれか一項に記載のイヤホンシステム。
【請求項13】
前記マイクおよび前記振動センサーは、前記ハウジング上の隣接する位置に、または前記スピーカーに対して前記ハウジング上の対称な位置に配置される、請求項
12に記載のイヤホンシステム。
【請求項14】
前記マイクと前記ハウジングとの間の接続または前記振動センサーと前記ハウジングとの間の接続は、カンチレバー接続、周辺接続、または基板接続のうちの1つを含む、請求項
12に記載のイヤホンシステム。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、イヤホンのノイズ除去装置及び方法、特にデュアルマイクを使用することによってイヤホンの振動ノイズを除去する装置及び方法に関する。
【背景技術】
【0002】
骨伝導イヤホンは、着用者が耳を開いた状態で周囲の音を聞くことを可能にする場合があり、かつ市場でますます人気が高まっている。使用シナリオが複雑になるにつれ、通信における通信効果の要求はますます高まっている。通話中に、骨伝導イヤホンのハウジングの振動がマイクによって拾われる場合があり、これにより、通話中にエコー又は他の干渉が発生する場合がある。ブルートゥース(登録商標)チップと一体化されたいくつかのイヤホンでは、複数の信号処理方法は、風雑音耐性、エコー消去、デュアルマイクノイズ除去などのブルートゥース(登録商標)チップ上に統合されてもよい。しかしながら、通常の空気伝導ブルートゥース(登録商標)イヤホンと比較すると、骨伝導イヤホンによって受信される信号がより複雑であるため、信号処理方法を用いてノイズを除去することはより困難になり、文字の深刻な欠損、深刻な残響、ポップ音などが発生し、これにより、通信効果に深刻な影響を与える場合がある。いくつかの場合において、通信効果を確保するために、イヤホンに除振構造を設ける必要がある。しかしながら、イヤホンの容積の制限により、除振構造の容積も制限される場合がある。
【発明の概要】
【0003】
本開示の一態様によれば、マイク装置を提供する。マイク装置は、マイク及び振動センサーを含んでもよい。マイクは、音声信号及び第1の振動信号を含む第1の信号を受信してもよい。振動センサーは、第2の振動信号を受信してもよい。そして、マイク及び振動センサーは、第1の振動信号が第2の振動信号に相殺され得るように構成される。
【0004】
いくつかの実施形態では、振動センサーの空洞容積は、第2の振動信号に対する振動センサーの振幅周波数応答が、第1の振動信号に対するマイクの振幅周波数応答と同じであり、及び/又は第2の振動信号に対する振動センサーの位相周波数応答が、第1の振動信号に対するマイクの位相周波数応答と同じであるように構成されてもよい。
【0005】
いくつかの実施形態では、振動センサーの空洞容積は、マイクの空洞容積に比例して、第2の振動信号に第1の振動信号を相殺させてもよい。
【0006】
いくつかの実施形態では、振動センサーの空洞容積とマイクの空洞容積との比は、3:1から6.5:1の範囲にあってもよい。
【0007】
いくつかの実施形態では、装置は、第2の振動信号によって第1の振動信号を相殺し、音声信号を出力するように構成された信号処理ユニットをさらに含んでもよい。
【0008】
いくつかの実施形態では、振動センサーは、密閉型マイク又はデュアルリンクマイクであってもよい。
【0009】
いくつかの実施形態では、マイクは、前部空洞開口イヤホン又は後部空洞開口イヤホンであってもよく、振動センサーは、密閉した前部空洞及び密閉した後部空洞を備える密閉
型マイクであってもよい。
【0010】
いくつかの実施形態では、マイクは、前部空洞開口イヤホン又は後部空洞開口イヤホンであってもよく、振動センサーは、開放した前部空洞及び開放した後部空洞を備えるデュアルリンクマイクであってもよい。
【0011】
いくつかの実施形態では、マイクの前部空洞開口は、前部空洞の上部又は側壁に少なくとも1つの開口部を含んでもよい。
【0012】
いくつかの実施形態では、マイク及び振動センサーは、独立して同じハウジングに接続されてもよい。
【0013】
いくつかの実施形態では、装置は、振動ユニットをさらに含んでもよい。振動ユニットの少なくとも一部は、ハウジング内に配置されてもよい。そして、振動ユニットは、第1の振動信号及び第2の振動信号を生成してもよい。マイクと振動センサーは、ハウジングにある隣接する位置、又は振動ユニットに対してハウジングにある対称な位置に配置されてもよい。
【0014】
いくつかの実施形態では、マイク又は振動センサーとハウジングとの間の接続は、カンチレバー接続、周辺接続、又は基板接続のうちの1つを含んでもよい。
【0015】
いくつかの実施形態では、マイク及び振動センサーは、両方とも微小電気機械システムマイクであってもよい。
【0016】
本開示の他の態様によれば、イヤホンシステムを提供する。イヤホンシステムは、振動スピーカー、マイク装置、及びハウジングを含んでもよい。振動スピーカー及びマイク装置は、ハウジング内に配置されてもよく、マイク装置は、マイク及び振動センサーを含んでもよい。マイクは、音声信号及び第1の振動信号を含む第1の信号を受信してもよい。振動センサーは、第2の振動信号を受信し、第1の振動信号及び第2の振動信号は、振動スピーカーの振動によって生成されてもよい。そして、マイク及び振動センサーは、第1の振動信号が第2の振動信号に相殺され得るように構成されてもよい。
【0017】
従来技術と比較して、本開示の有益な効果は、
1.構造設計とアルゴリズムの組み合わせを使用して、イヤホン内の振動ノイズをより効果的に除去することと、
2.特別に設計された振動センサー(例えば、骨伝導マイク、密閉型マイク、又はデュアルリンクマイク)を使用して、振動ノイズ信号のみが拾われるようにイヤホン内の気導音信号を効果的にシールドすることと、
3.構造設計を使用して、振動ノイズ信号に対する振動センサー(例えば、骨伝導マイク、密閉型マイク、デュアルリンクマイク)の振幅周波数応答及び/又は位相周波数応答を空気伝導マイクと一致させることにより、より優れたノイズ除去効果を実現することと、を含む。
【0018】
本開示の実施形態に関する技術的解決策を説明するために、実施形態を説明するために使用される図面を以下に簡単に説明する。明らかに、以下で説明される図面は、本開示のいくつかの実施例又は実施形態にすぎない。当業者は、さらなる創造的な努力なしに、これらの図面に従って本開示を他の同様のシナリオに適用することができる。文脈から明らかに得られない限り、又は文脈上他に示されていない限り、図面内の同じ数字は同じ構造又は動作を指すものとする。
【図面の簡単な説明】
【0019】
【
図1】本開示のいくつかの実施形態に係るデュアルマイクイヤホンの構造を示す概略図である。
【
図2-A】本開示のいくつかの実施形態に係る振動ノイズを除去するための信号処理方法を示す概略図である。
【
図2-B】本開示のいくつかの実施形態に係る振動ノイズを除去するための信号処理方法を示す概略図である。
【
図2-C】本開示のいくつかの実施形態に係る振動ノイズを除去するための信号処理方法を示す概略図である。
【
図3】本開示のいくつかの実施形態に係るイヤホンのハウジングの構造を示す概略図である。
【
図4-A】本開示のいくつかの実施形態に係るイヤホンのハウジングにある異なる位置に配置されたマイクの振幅周波数応答曲線を示す概略図である。
【
図4-B】本開示のいくつかの実施形態に係るイヤホンのハウジングにある異なる位置に配置されたマイクの位相周波数応答曲線を示す概略図である。
【
図5】本開示のいくつかの実施形態に係るハウジングに接続されたマイク又は振動センサーを示す概略図である。
【
図6-A】本開示のいくつかの実施形態に係るハウジングにある異なる位置に接続されたマイク又は振動センサーの振幅周波数応答曲線を示す概略図である。
【
図6-B】本開示のいくつかの実施形態に係るハウジングにある異なる位置に接続されたマイク又は振動センサーの位相周波数応答曲線を示す概略図である。
【
図7】本開示のいくつかの実施形態に係るハウジングに接続されたマイク又は振動センサーを示す概略図である。
【
図8-A】本開示のいくつかの実施形態に係るハウジングにある異なる位置に接続されたマイク又は振動センサーの振幅周波数応答曲線を示す概略図である。
【
図8-B】本開示のいくつかの実施形態に係るハウジングにある異なる位置に接続されたマイク又は振動センサーの位相周波数応答曲線を示す概略図である。
【
図9-A】本開示のいくつかの実施形態に係るマイク及び振動センサーの構造を示す概略図である。
【
図9-B】本開示のいくつかの実施形態に係るマイク及び振動センサーの構造を示す概略図である。
【
図9-C】本開示のいくつかの実施形態に係るマイク及び振動センサーの構造を示す概略図である。
【
図10-A】本開示のいくつかの実施形態に係る異なる空洞高さを有する振動センサーの振幅周波数応答曲線を示す概略図である。
【
図10-B】本開示のいくつかの実施形態に係る異なる空洞高さを有する振動センサーの位相周波数応答曲線を示す概略図である。
【
図11-A】本開示のいくつかの実施形態に係る前部空洞容積が変化するときの空気伝導マイクの振幅周波数応答曲線を示す概略図である。
【
図11-B】本開示のいくつかの実施形態に係る後部空洞容積が変化するときの空気伝導マイクの振幅周波数応答曲線を示す概略図である。
【
図12】本開示のいくつかの実施形態に係る異なる開口部位置を有するマイクの振幅周波数応答曲線を示す概略図である。
【
図13】本開示のいくつかの実施形態に係る前部空洞容積が変化するときの振動に対するハウジングとの周辺接続における空気伝導マイク及び完全密閉型マイクの振幅周波数応答曲線を示す概略図である。
【
図14】本開示のいくつかの実施形態に係る空気伝導マイク及び気導音信号に対する2つのデュアルリンクマイクの振幅周波数応答曲線を示す概略図である。
【
図15】本開示のいくつかの実施形態に係る振動に対する振動センサーの振幅周波数応答曲線を示す概略図である。
【
図16】本開示のいくつかの実施形態に係るデュアルマイクイヤホンの構造を示す概略図である。
【
図17】本開示のいくつかの実施形態に係るデュアルマイクアセンブリの構造を示す概略図である。
【
図18】本開示のいくつかの実施形態に係るデュアルマイクイヤホンの構造を示す概略図である。
【
図19】本開示のいくつかの実施形態に係るデュアルマイクイヤホンの構造を示す概略図である。
【
図20】本開示のいくつかの実施形態に係るデュアルマイクイヤホンの構造を示す概略図である。
【
図21】本開示のいくつかの実施形態に係るデュアルマイクイヤホンの構造を示す概略図である。
【発明を実施するための形態】
【0020】
明細書及び特許請求の範囲に示されるように、文脈が明確に例外を示さない限り、単語「a」、「an」及び/又は「the」は、特に単数形を指すのではなく、複数形を含んでもよい。「含む」と「備える」という用語は、明確に識別されたステップ及び要素が含まれることを示唆するだけであり、これらのステップ及び要素は排他的リストを構成せず、方法又は装置も他のステップ又は要素を含んでもよい。「基づく」という用語は、「少なくとも部分的に基づく」である。「一実施形態」という用語は、「少なくとも1つの実施形態」を意味する。「別の実施形態」という用語は、「少なくとも1つの追加の実施形態」を意味する。他の用語の関連する定義は、以下の説明に記載されている。
【0021】
本開示では、フローチャートを使用して、アプリケーションの実施形態に係るシステムによって実行される動作を説明する。先行又は後続の動作は、必ずしも正確に順番に実行されるとは限らないことを理解されたい。代わりに、様々なステップは、逆の順序で、又は同時に処理されてもよい。同時に、これらのプロセスに他の動作を追加してもよく、或いは、これらのプロセスからステップ又はいくつかの動作を削除してもよい。
【0022】
図1は、本開示のいくつかの実施形態に係るイヤホン100の構造を示す概略図である。イヤホン100は、振動スピーカー101、弾性構造102、ハウジング103、第1の接続構造104、マイク105、第2の接続構造106、及び振動センサー107を含んでもよい。
【0023】
振動スピーカー101は、電気信号を音信号に変換してもよい。音信号は、空気伝導又は骨伝導を介してユーザに送信されてもよい。例えば、スピーカー101は、直接又は特定の媒体(例えば、1つ又は複数のパネル)を介してユーザの頭に接触し、頭蓋骨振動の形式で音信号をユーザの聴覚神経に送信してもよい。
【0024】
ハウジング101は、イヤホン100内の1つ又は複数の構成部品(例えば、スピーカー101)を支持し、かつ保護するために使用されてもよい。弾性構造102は、振動スピーカー101とハウジング103とを接続してもよい。いくつかの実施形態では、弾性構造102は、振動スピーカー101を金属シートの形式でハウジング103に固定し、振動減衰方式で振動スピーカー101からハウジング103に伝達される振動を低減してもよい。
【0025】
マイク105は、環境内の音信号(例えば、ユーザの声)を収集し、電気信号に変換してもよい。いくつかの実施形態では、マイク105は、空気を介して送信される音を取得してもよい(「空気伝導マイク」とも呼ばれる)。
【0026】
振動センサー107は、機械的振動信号(例えば、ハウジング103の振動によって生成された信号)を収集し、電気信号に変換してもよい。いくつかの実施形態では、振動センサー107は、機械的振動に敏感であり、気導音に鈍感である装置であってもよい(すなわち、機械的振動に対する振動センサー107の応答性は、気導音に対する振動センサー107の応答性よりも高い)。本明細書で言う機械的振動信号は、主に、固体を通って伝搬される振動を指す。いくつかの実施形態では、振動センサー107は、骨伝導マイクであってもよい。いくつかの実施形態では、振動センサー107は、空気伝導マイクの構成を変更することによって取得されてもよい。空気伝導マイクを変更して振動センサーを得ることに関する詳細は、本開示の他の部分、例えば、
図9-B及び9-Cと、それと関連する記載に見出してもよい。
【0027】
マイク105は、第1の接続構造104を介してハウジング103に接続されてもよい。振動センサー107は、第2の接続構造106を介してハウジング103に接続されてもよい。第1の接続構造104及び/又は第2の接続構造106は、同じ又は異なる方式で、マイク105及び振動センサー107をハウジング103の内側に接続してもよい。第1の接続構造104及び/又は第2の接続構造106に関する詳細は、本開示の他の部分、例えば、
図5及び/又は
図7、及び本明細書に見出してもよい。
【0028】
イヤホン100の他の構成部品の影響により、マイク105は、動作中にノイズを発生させ得る。説明のみを目的として、マイク105のノイズ発生プロセスを以下のように説明してもよい。振動スピーカー101は、電気信号が印加されると振動し得る。振動スピーカー101は、弾性構造102を介してハウジング103に振動を伝達し得る。ハウジング103とマイク105が接続構造104を介して直接接続されているので、ハウジング103の振動は、マイク105のダイアフラムの振動を引き起こし得る。このような場合、ノイズ(「振動ノイズ」又は「機械的振動ノイズ」とも呼ばれる)が発生し得る。
【0029】
振動センサー107によって取得された振動信号は、マイク105で発生する振動ノイズを除去するために使用されてもよい。いくつかの実施形態では、マイク105及び/又は振動センサー107のタイプ、マイク105及び/又は振動センサー107がハウジング103の内側に接続される位置、マイク105及び/又は振動センサー107とハウジング103との間の接続方式を、振動に対するマイク105の振幅周波数応答及び/又は位相周波数応答が振動に対する振動センサー107の応答と一致するように選択することにより、振動センサー107によって収集された振動信号を使用して、マイク105で発生する振動ノイズを除去してもよい。
【0030】
イヤホンの構造に関する上記説明は、特定の例にすぎず、唯一の実行可能な実装と見なされるべきではない。当業者にとって、イヤホンの基本原理を理解した後、原理から逸脱することなく、イヤホンを実施する特定の方法の形態及び詳細において様々な修正及び変更を行うことができることは明らかである。しかしながら、これらの修正及び変更は、依然として上述の範囲内である。例えば、イヤホン100は、より多くのマイク又は振動センサーを含んで、マイク105によって発生した振動ノイズを除去しもよい。
【0031】
図2-Aは、本開示のいくつかの実施形態に係る振動ノイズを除去するための信号処理方法を示す概略図である。いくつかの実施形態では、信号処理方法は、デジタル信号処理方法を使用して、マイクによって受信された振動ノイズ信号を、振動センサーによって受信された振動信号によって相殺することを含んでもよい。いくつかの実施形態では、信号処理方法は、アナログ回路によって生成されたアナログ信号を使用して、マイクによって受信された振動ノイズ信号と振動センサーによって受信された振動信号を互いに相殺することを含んでもよい。いくつかの実施形態では、信号処理方法は、イヤホン内の信号処理ユニットによって実施されてもよい。
【0032】
図2-Aに示すように、信号処理回路210において、A
1は振動センサー(例えば、振動センサー107)であり、B
1はマイク(例えば、マイク105)である。振動センサーA
1は振動信号を受信してもよく、マイクB
1は気導音信号及び振動ノイズ信号を受信してもよい。振動センサーA
1によって受信された振動信号及びマイクB
1によって受信された振動ノイズ信号は、同じ振動源(例えば、振動スピーカー101)から発生してもよい。振動センサーA
1によって受信された振動信号は、適応フィルタCを通過した後、マイクB
1によって受信された振動ノイズ信号と重畳されてもよい。適応フィルタCは、重畳結果に応じて振動センサーA
1によって受信された振動信号を調整して(例えば、振動信号の振幅及び/又は位相を調整して)、振動センサーA
1によって受信された振動信号にマイクB
1によって受信された振動ノイズ信号を相殺させることにより、ノイズを除去してもよい。
【0033】
いくつかの実施形態では、適応フィルタCのパラメータは固定されてもよい。例えば、イヤホンの振動センサーA1とハウジングとの間、及びイヤホンのマイクB1とハウジングとの間の接続位置及び接続方式が固定されているため、振動に対する振動センサーA1及びマイクB1の振幅周波数応答及び/又は位相周波数応答は、変化しないままであってもよい。したがって、適応フィルタCのパラメータは、決定された後、信号処理チップに格納されてもよいし、信号処理回路210において直接使用されてもよい。いくつかの実施形態では、適応フィルタCのパラメータは可変であってもよい。ノイズ除去プロセスでは、適応フィルタCのパラメータを、振動センサーA1及び/又はマイクB1によって受信された信号に従って調整して、ノイズを除去してもよい。
【0034】
図2-Bは、本開示のいくつかの実施形態に係る振動ノイズを除去するための信号処理方法を示す概略図である。
図2-Aと
図2-Bの違いは、
図2-Bの信号処理回路220において、適応フィルタCの代わりに、信号振幅変調素子D及び信号位相変調素子Eが使用されることである。振幅及び位相変調後、振動センサーA
2によって受信された振動信号によって、マイクB
2によって受信された振動ノイズ信号を相殺することにより、ノイズを除去してもよい。いくつかの実施形態では、信号処理方法は、イヤホン内の信号処理ユニットによって実施されてもよい。いくつかの実施形態では、信号振幅変調素子D又は信号位相変調素子Eは、不要であってもよい。
【0035】
図2-Cは、本開示のいくつかの実施形態に係る振動ノイズを除去するための信号処理方法を示す概略図である。
図2-A及び2-Bの信号処理回路と異なり、
図2-Cでは、合理的な構造設計により、振動センサーA
3によって受信された振動信号S1からマイクB
3によって取得された振動ノイズ信号S2を直接減算することによりノイズを除去してもよい。いくつかの実施形態では、信号処理方法は、イヤホン内の信号処理ユニットによって実施されてもよい。
【0036】
なお、
図2-A、2-B又は2-Cの2つの信号を処理するプロセスでは、振動センサーによって受信された信号とマイクによって受信された信号の重畳プロセスは、マイクによって受信された信号中の振動ノイズに関連する部分を、振動センサーによって受信された信号に基づいて除去することにより、振動ノイズを除去するプロセスとして理解してもよい。
【0037】
ノイズ除去の上記説明は、特定の例にすぎず、唯一の実行可能な実装と見なされるべきではない。当業者にとって、イヤホンの基本原理を理解した後、この原理から逸脱することなく、ノイズ除去を実施する特定の方法の形態及び詳細において様々な修正及び変更を行うことができることは明らかである。しかしながら、これらの修正及び変更は、依然として上述の範囲内である。例えば、当業者にとって、適応フィルタC、信号振幅変調素子D、及び信号位相変調素子Eは、振動センサーの振動信号を調整してマイク内の振動ノイズ信号を除去する目的を達成できる限り、信号調整に使用できる他の素子又は回路によって交換されてもよい。
【0038】
上記のように、振動に対する振動センサー及び/又はマイクの振幅周波数応答及び/又は位相周波数応答は、振動センサー及び/又はマイクのイヤホンのハウジング上に配置される位置に関連してもよい。ハウジングに接続された振動センサー及び/又はマイクの位置を調整することにより、振動に対するマイクの振幅周波数応答及び/又は位相周波数応答は、振動センサーによって収集された振動信号がマイクによって発生した振動ノイズを相殺するために使用できるように、振動センサーと基本的に一致してもよい。
図3は、本開示のいくつかの実施形態に係るイヤホンのハウジングの構造を示す概略図である。
図3に示すように、ハウジング300は、環状であってもよい。ハウジング300は、イヤホンの振動スピーカー(例えば、振動スピーカー101)を支持し保護してもよい。位置301、位置302、位置303、及び位置304は、マイク又は振動センサーを配置し得るハウジング300内の4つの任意の位置である。マイクと振動センサーがハウジング300内の異なる位置に接続される場合、振動に対するマイクと振動センサーの振幅周波数応答及び/又は位相周波数応答は異なってもよい。これらの位置のうち、位置301と位置302は隣接している。位置303と位置301は、ハウジング300の隣接する角に配置される。位置304は、位置301から最も遠く、ハウジング300の対角位置に配置される。
【0039】
図4-Aは、本開示のいくつかの実施形態に係るイヤホンのハウジングにある異なる位置に配置されたマイクの振幅周波数応答曲線を示す概略図である。
図4-Bは本開示のいくつかの実施形態に係るイヤホンのハウジングにある異なる位置に配置されたマイクの位相周波数応答曲線を示す概略図である。
図4-Aに示すように、横軸は、振動周波数を示し、縦軸は、振動に対するマイクの振幅周波数応答を示す。振動は、イヤホン内の振動スピーカーによって発生してもよいし、ハウジング、接続構造などを介してマイクに伝達されてもよい。曲線P1、P2、P3、及びP4は、マイクがそれぞれハウジング300内の位置301、位置302、位置303、及び位置304に配置されたときの振幅周波数応答曲線を示してもよい。
図4-Bに示すように、横軸は、振動周波数を示し、縦軸は、振動に対するマイクの位相周波数応答を示す。曲線P1、P2、P3、及びP4は、マイクがそれぞれハウジング内の位置301、位置302、位置303、及び位置304に配置されたときの位相周波数応答曲線を示してもよい。
【0040】
位置301を基準として分かるように、マイクが位置302にあるときの振幅周波数応答曲線及び位相周波数応答曲線は、マイクが位置301にあるときの振幅周波数応答曲線及び位相周波数応答曲線に最も類似してもよい。第2に、マイクが位置304に配置されるときの振幅周波数応答曲線及び位相周波数応答曲線は、マイクが位置301に配置されるときの振幅周波数応答曲線及び位相周波数応答曲線に比較的類似してもよい。いくつかの実施形態では、マイクと振動センサーの構造と接続などの他の要因を考慮しない場合、マイクと振動センサーは、ハウジング内の近接位置(例えば、隣接位置)、又はハウジング内の振動スピーカーに対して対称な位置(例えば、振動スピーカーがハウジングの中央に配置される場合、マイクと振動センサーは、それぞれ、ハウジングの対角位置に配置されてもよい)に接続されてもよい。このような場合、マイクの振幅周波数応答及び/又は位相周波数応答と振動センサーの応答との間の差を最小化することにより、マイクの振動ノイズをより効果的に除去できる。
【0041】
図5は、本開示のいくつかの実施形態に係るハウジングに接続されたマイク又は振動センサーを示す概略図である。説明のために、マイクとハウジングとの間の接続を例として以下に説明してもよい。
【0042】
図5に示すように、マイク503の側壁は、接続構造502を介してイヤホンハウジングの側壁501に接続されて、カンチレバー接続を形成してもよい。接続構造502は、マイク503及びハウジングの側壁501をシリコーンスリーブと干渉するように固定するか、又はマイク503及びハウジングの側壁501を接着剤(硬質接着剤又は軟質接着剤)で直接接続してもよい。図面に示すように、接続構造502の中心軸とハウジングの側壁501との間の接触点504は、塗布位置として定義されてもよい。塗布位置504とマイク503の底部との間の距離は、H1であってもよい。振動に対するマイク503の振幅周波数応答及び/又は位相周波数応答は、塗布位置の変化に伴って変化してもよい。
【0043】
図6-Aは、本開示のいくつかの実施形態に係るハウジングにある異なる位置に接続されたマイクの振幅周波数応答曲線を示す概略図である。
図6-Aに示すように、横軸は、振動周波数を示し、縦軸は、異なる周波数の振動に対するマイクの振幅周波数応答を示す。振動は、イヤホン内の振動スピーカーによって発生してもよいし、ハウジング、接続構造などを介してマイクに伝達されてもよい。図面に示すように、塗布位置とマイクの底面との間の距離H1が0.1mmの場合、マイクの振幅周波数応答のピーク値が最も高くなる。H1が0.3mmの場合、振幅周波数応答のピーク値は、H1が0.1mmの場合のピーク値よりも低くなり、かつ高周波に移動してもよい。H1が0.5mmの場合、振幅周波数応答のピーク値は、さらに低下し、かつ高周波に移動してもよい。H1が0.7mmの場合、振幅周波数応答のピーク値は、さらに低下し、かつ高周波に移動してもよい。このとき、ピーク値は、ほぼゼロになる。振動に対するマイクの振幅周波数応答は、塗布位置の変化に伴って変化してもよいことが分かる。実際の用途では、塗布位置は、振動に対して必要な振幅周波数応答を有するマイクを得るために、実際の要件に従って柔軟に選択されてもよい。
【0044】
図6-Bは、本開示のいくつかの実施形態に係るハウジングにある異なる位置に接続されたマイクの位相周波数応答曲線を示す概略図である。
図6-Bに示すように、横軸は、振動周波数を示し、縦軸は、異なる周波数の振動に対するマイクの位相周波数応答を示す。
図6-Bから分かるように、塗布位置とマイクの底部との間の距離が増加するにつれて、マイクのダイアフラムの振動位相はそれに応じて変化してもよいし、位相変化の位置は高周波に移動してもよい。振動に対するマイクの位相周波数応答は、塗布位置の変化に伴って変化してもよいことが分かる。実際の用途では、塗布位置は、振動に対して必要な位相周波数応答を有するマイクを得るために、実際の要件に従って柔軟に選択されてもよい。
【0045】
当業者にとって、マイクがハウジングの側壁に接続される方式に加えて、マイクはまた、他の方式又は他の位置でハウジングに接続されてもよいことは明らかである。例えば、マイクの底部は、ハウジングの内側の底部に接続されてもよい(「基板接続」とも呼ばれる)。
【0046】
また、マイクは、周辺接続を介してハウジングに接続されてもよい。例えば、
図7は、本開示のいくつかの実施形態に係る周辺接続を介してハウジングに接続されたマイクを示す概略図である。
図7に示すように、マイク703の少なくとも2つの側壁は、接続構造702を介してハウジング701にそれぞれ接続されて、周辺接続を形成してもよい。接続構造702は、ここでは繰り返されない接続構造502と類似してもよい。図面に示すように、接続構造702の中心軸とハウジングとの間の接触点704及び705は、塗布位置であってもよく、そして、塗布位置とマイク703の底部との間の距離は、H2であってもよい。振動に対するマイク703の振幅周波数応答及び/又は位相周波数応答は、塗布位置の変化に伴って変化してもよい。
【0047】
図8-Aは、本開示のいくつかの実施形態に係る周辺接続を介してハウジングにある異なる位置に接続されたマイクの振幅周波数応答曲線を示す概略図である。
図8-Aに示すように、横軸は、振動周波数を示し、縦軸は、異なる周波数の振動に対するマイクの振幅周波数応答を示す。
図8-Aから分かるように、塗布位置とマイクの底部との間の距離が増加するにつれて、マイクの振幅周波数応答のピーク値は、徐々に増加してもよい。マイクが周辺接続を介してハウジングに接続される場合、振動に対するマイクの振幅周波数応答は、塗布位置の変化に伴って変化してもよいことが分かる。実際の用途では、塗布位置は、振動に対して必要な振幅周波数応答を有するマイクを得るために、実際の要件に従って柔軟に選択されてもよい。
【0048】
図8-Bは、本開示のいくつかの実施形態に係る周辺接続を介してハウジングにある異なる位置に接続されたマイクの位相周波数応答曲線を示す概略図である。
図8-Bに示すように、横軸は、振動周波数を示し、縦軸は、異なる周波数の振動に対するマイクの位相周波数応答を示す。
図8-Bから分かるように、塗布位置とマイクの底部との間の距離が増加するにつれて、マイクのダイアフラムの振動位相も変化してもよいし、位相変化の位置は高周波に移動してもよい。マイクが周辺接続を介してハウジングに接続される場合、振動に対するマイクの位相周波数応答は、塗布位置の変化に伴って変化してもよいことが分かる。実際の用途では、塗布位置は、振動に対して必要な位相周波数応答を有するマイクを得るために、実際の要件に従って柔軟に選択されてもよい。
【0049】
いくつかの実施形態では、振動に対する振動センサーの振幅周波数応答/位相周波数応答をマイクと可能な限り一致させるために、振動センサーとマイクは、同じ方式(例えば、カンチレバー接続、周辺接続、又は基板接続の1つ)でハウジング内に接続されてもよく、かつ振動センサーとマイクそれぞれの塗布位置は、同じであるか、又は可能な限り近くてもよい。
【0050】
上記のように、振動に対する振動センサー及び/又はマイクの振幅周波数応答及び/又は位相周波数応答は、マイク及び/又は振動センサーのタイプに関連してもよい。適切なタイプのマイク及び/又は振動センサーを選択することにより、振動に対するマイク及び振動センサーの振幅周波数応答及び/又は位相周波数応答は、振動センサーによって取得された振動信号を使用してマイクによって拾われた振動ノイズを除去できるように、基本的に同じであってもよい。
【0051】
図9-Aは、本開示のいくつかの実施形態に係る空気伝導マイク910の構造を示す概略図である。いくつかの実施形態では、空気伝導マイク910は、微小電気機械システム(MEMS)マイクであってもよい。MEMSマイクは、小型、低消費電力、高安定性、及び振幅周波数応答と位相周波数応答の一貫性に優れているという特徴を有してもよい。
図9-Aに示すように、空気伝導マイク910は、開口部911、ハウジング912、集積回路(ASIC)913、プリント回路基板(PCB)914、前部空洞915、ダイアフラム916、及び後部空洞917を含んでもよい。開口部911は、ハウジング912の片側(
図9-Aの上側、すなわち上部)に配置されてもよい。集積回路913は、PCB914に取り付けられてもよい。前部空洞915と後部空洞917は、ダイアフラム916によって分離され、形成されてもよい。図面に示すように、前部空洞915は、ダイアフラム916の上の空間を含んでもよく、かつダイアフラム916及びハウジング912によって形成されてもよい。後部空洞917は、ダイアフラム916の下の空間を含んでもよく、かつダイアフラム916及びPCB914によって形成されてもよい。いくつかの実施形態では、空気伝導マイク910がイヤホンに配置される場合、環境内の気導音(例えば、ユーザの声)は、開口部911を通って前部空洞915に入り、ダイアフラム916の振動を引き起こしてもよい。同時に、振動スピーカーによって生成された振動信号は、イヤホンのハウジング、接続構造などを介して空気伝導マイク910のハウジング912の振動を引き起こすことにより、ダイアフラム916を振動させるように駆動して、振動ノイズ信号を生成してもよい。
【0052】
いくつかの実施形態では、空気伝導マイク910は、後部空洞917が開口部を有し、前部空洞915が外気から隔離される方法により置き換えられてもよい。
【0053】
図9-Bは、本開示のいくつかの実施形態に係る振動センサー920の構造を示す概略図である。
図9-Bに示すように、振動センサー920は、ハウジング922、集積回路(ASIC)923、プリント回路基板(PCB)924、前部空洞925、ダイアフラム926、及び後部空洞927を含んでもよい。いくつかの実施形態では、振動センサー920は、
図9-Aの空気伝導マイクの開口部911を閉じることによって取得されてもよい(本開示では、振動センサー920は、密閉型マイク920と呼ばれてもよい)。いくつかの実施形態では、密閉型マイク920がイヤホンに配置される場合、環境内の気導音(例えば、ユーザの声)は、密閉型マイク920に入らず、ダイアフラム926を振動させない場合がある。振動スピーカーによって生成された振動は、密閉型マイク920のハウジング922をイヤホンのハウジング、接続構造などを通して振動させ、さらにダイアフラム926を振動させるように駆動して振動信号を生成してもよい。
【0054】
図9-Cは、本開示のいくつかの実施形態に係る振動センサー930の構造を示す概略図である。
図9-Cに示すように、振動センサー930は、開口部931、ハウジング932、集積回路(ASIC)933、プリント回路基板(PCB)934、前部空洞935、ダイアフラム936、後部空洞937、及び開口部938を含んでもよい。いくつかの実施形態では、振動センサー930は、後部空洞937が外部と連通するように、
図9-Aの空気伝導マイクの後方空洞937の底部に孔を開けることによって取得されてもよい(本開示では、振動センサー930は、デュアルリンクマイク930と呼ばれてもよい)。いくつかの実施形態では、デュアルリンクマイク930がイヤホンに配置される場合、環境内の気導音(例えば、ユーザの音声)は、開口部931及び開口部938を介してデュアルリンクマイク930に入り、これにより、ダイアフラム936の両側で受信された気導音信号は、互いに相殺されてもよい。したがって、気導音信号は、ダイアフラム936の明らかな振動を引き起こさない場合がある。振動スピーカーによって生成された振動は、デュアル通信マイク930のハウジング932をイヤホンのハウジング、接続構造などを通して振動させ、さらにダイアフラム936を振動させるように駆動して振動信号を生成してもよい。
【0055】
空気伝導マイクと振動センサーの上記説明は、特定の例にすぎず、唯一の実行可能な実装と見なされるべきではない。明らかに、当業者にとって、マイクの基本原理を理解した後、原理から逸脱することなく、マイク及び/又は振動センサーの特定の構造に様々な修正及び変更を行うことができる。しかしながら、これらの修正及び変更は、依然として上述の範囲内である。例えば、当業者にとって、空気伝導マイク910又は振動センサー930の開口部911又は931は、開口部が前部空洞915又は935と外部との間の連通を容易にすることができる限り、ハウジング912又はハウジング932の左側又は右側に配置されてもよい。さらに、開口部の数は1つに限定されなくてもよく、空気伝導マイク910又は振動センサー930は、開口部911又は931と類似している複数の開口部を含んでもよい。
【0056】
いくつかの実施形態では、密閉型マイク920又はデュアルマイク930のダイアフラム926又は936によって生成された振動信号は、空気伝導マイク910のダイアフラム916によって生成された振動ノイズ信号を相殺するために使用されてもよい。いくつかの実施形態では、振動及びノイズを除去するより高い効果を得るために、密閉型マイク920又はデュアルリンクマイク930及び空気伝導マイク910は、イヤホンのハウジングの機械的振動に対する同じ振幅周波数応答又は位相周波数応答を有することが必要である場合がある。
【0057】
説明のみのために、
図9-A、
図9-B及び
図9-Cに記載されている空気伝導マイクと振動スピーカーを例として説明してもよい。空気伝導マイク又は振動センサー(例えば、密閉型マイク920又はデュアルリンクマイク930)の前部空洞容積、後部空洞容積、及び/又は空洞容積を変更して、空気伝導マイクと振動センサーが振動に対する同じ又はほぼ同じ振幅周波数応答及び/又は位相周波数応答を有するようにし、それにより振動及びノイズを除去してもよい。本明細書における空洞容積は、マイク又は密閉型マイクの前部空洞容積及び後部空洞容積の合計を指す。いくつかの実施形態では、イヤホンのハウジングの振動に対する振動センサーの振幅周波数応答及び/又は位相周波数応答が空気伝導マイクの応答と一致する場合、振動センサーの空洞容積は、空気伝導マイク910の空洞容積の「等価容積」と見なされる場合がある。いくつかの実施形態では、空気伝導マイクの空洞容積の等価容積である空洞容積を有する密閉型マイクは、空気伝導マイクの振動ノイズ信号の除去を容易にするように選択されてもよい。
【0058】
図10-Aは、本開示のいくつかの実施形態に係る異なる空洞容積を備える振動センサーの振幅周波数応答曲線を示す概略図である。いくつかの実施形態では、振動に対する異なる空洞容積を有する振動センサーの振幅周波数応答曲線は、有限要素計算法又は実際の測定によって取得されてもよい。例えば、振動センサーは、密閉型マイクであり、かつ振動センサーの底部は、イヤホンハウジングの内側に設置されてもよい。
図10-Aに示すように、横軸は、振動周波数を示し、縦軸は、異なる周波数の振動に対する密閉型マイクの振幅周波数応答を示す。振動は、イヤホン内の振動スピーカーによって発生してもよいし、ハウジング及び接続構造を介して空気伝導マイク又は振動センサーに伝達されてもよい。実線は、振動に対する空気伝導マイクの振幅周波数応答曲線を示す。点線は、密閉型マイクと空気伝導マイクの空洞の容積比が1:1、3:1、6.5:1、及び9.3:1の場合の、振動に対する密閉型マイクの振幅周波数応答曲線を示す。容積比が1:1の場合、密閉型マイクの全振幅周波数応答曲線は、空気伝導マイクよりも低くてもよい。容積比が3:1の場合、密閉型マイクの振幅周波数応答曲線は上昇してもよいが、全振幅周波数応答曲線は、依然として空気伝導マイクの曲線よりもわずかに低くてもよい。容積比が6.5:1の場合、密閉型マイクの全振幅周波数応答曲線は、空気伝導マイクの曲線よりもわずかに高くてもよい。空洞容積比が9.3:1の場合、密閉型マイクの全振幅周波数応答曲線は、空気伝導マイクの曲線よりも高くてもよい。空洞容積比が3:1から6.5:1の間である場合、密閉型マイクと空気伝導マイクの振幅周波数応答曲線は、基本的に同じであってもよいことが分かる。したがって、空気伝導マイクの空洞容積と等価容積(すなわち、密閉型マイクの等価容積)の比は、3:1から6.5:1の間であってもよいと考えられる。いくつかの実施形態では、振動センサー(例えば、密閉型マイク920)及び空気伝導マイク(例えば、空気伝導マイク910)が同じ振動源から振動信号を受信し、かつ振動センサーの空洞容積と空気伝導マイクの空洞容積の比が3:1から6.5:1の間である場合、振動センサーは、空気伝導マイクによって受信された振動信号を除去するのに役立つ。
【0059】
同様に、
図10-Bは、本開示のいくつかの実施形態に係る異なる空洞高さを有する振動センサーの位相周波数応答曲線を示す概略図である。
図10-Bに示すように、横軸は、振動周波数を示し、縦軸は、異なる周波数の振動に対する密閉型マイクの位相周波数応答を示す。
図10-Bに示すように、実線は、振動に対する空気伝導マイクの位相周波数応答曲線を示す。点線は、密閉型マイクと空気伝導マイクの空洞の容積比が1:1、3:1、6.5:1、及び9.3:1の場合の、振動に対する密閉型マイクの位相周波数応答曲線を示す。いくつかの実施形態では、密閉型マイク(例えば、密閉型マイク920)及び空気伝導マイク(例えば、空気伝導マイク910)が同じ振動源から振動信号を受信し、かつ密閉型マイクの空洞容積と空気伝導マイクの空洞容積の比が3:1より大きい場合、密閉型マイクは、空気伝導マイクによって受信された振動信号を除去するのに役立つ。
【0060】
空気伝導マイクの空洞容積の等価容積に関する上記説明は、特定の例にすぎず、唯一の実行可能な実装と見なされるべきではない。明らかに、当業者にとって、空気伝導マイクの基本原理を理解した後、原理から逸脱することなく、マイク及び/又は振動センサーの特定の構造に様々な修正及び変更を行うことができる。しかしながら、これらの修正及び変更は、依然として上述の範囲内である。例えば、適切な空洞容積を有する密閉型マイクを選択して振動とノイズを除去する目的を達成する限り、空気伝導マイクの空洞容積の等価容積を、空気伝導マイク又は振動センサーの構造の変更を通じて変更してもよい。
【0061】
上記のように、空気伝導マイクが異なる構造を有する場合、その空洞容積の等価容積もまた異なってもよい。いくつかの実施形態では、空気伝導マイクの空洞容積の等価容積に影響を与える要因は、空気伝導マイクの前部空洞容積、後部空洞容積、開口部の位置、及び/又は音源伝送経路を含んでもよい。或いは、いくつかの実施形態では、空気伝導マイクの前部空洞容積の等価容積を使用して、振動センサーの前部空洞容積を表徴してもよい。本明細書におけるマイクの前部空洞容積の等価容積が、振動センサーの後部空洞容積が空気伝導マイクの後部空洞容積と同じである場合として説明されてもよく、かつイヤホンのハウジングの振動に対する振動センサーの振幅周波数応答及び/又は位相周波数応答が空気伝導マイクの応答と一致する場合、振動センサーの前部空洞容積は、空気伝導マイクの前部空洞容積の「等価容積」であってもよい。いくつかの実施形態では、空気伝導マイクの後部空洞容積に等しい後部空洞容積と、空気伝導マイクの前部空洞容積の等価容積である前部空洞容積とを有する密閉型マイクは、空気伝導マイクの振動ノイズ信号を除去するのを助けるように選択されてもよい。
【0062】
空気伝導マイクが異なる構造を有する場合、前部空洞容積の等価容積も異なってもよい。いくつかの実施形態では、空気伝導マイクの前部空洞容積の等価容積に影響を与える要因は、空気伝導マイクの前部空洞容積、後部空洞容積、開口部の位置、及び/又は音源伝送経路を含んでもよい。
【0063】
図11-Aは、本開示のいくつかの実施形態に係る前部空洞容積が変化するときの空気伝導マイクの振幅周波数応答曲線を示す概略図である。いくつかの実施形態では、振動に対する異なる前部空洞容積を有する空気伝導マイクの振幅周波数応答曲線は、有限要素計算法又は実際の測定によって取得されてもよい。
図11-Aに示すように、横軸は、振動周波数を示し、縦軸は、異なる周波数の振動に対する空気伝導マイクの振幅周波数応答を示す。V
0は、空気伝導マイクの前部空洞容積を示す。
図11-Aに示すように、実線は、前部空洞容積がV
0の場合の空気伝導マイクの振幅周波数応答曲線を示し、点線は、前部空洞容積がそれぞれ2V
0、3V
0、4V
0、5V
0、及び6V
0の場合の空気伝導マイクの振幅周波数応答曲線を示す。図面から分かるように、空気伝導マイクの前部空洞容積が増加するにつれて、空気伝導マイクのダイアフラムの振幅は増加し、ダイアフラムは振動しやすくなる場合がある。
【0064】
異なる前部空洞容積を有する空気伝導マイクについて、各空気伝導マイクの前部空洞容積の等価容積は、対応する振幅周波数応答曲線に従って決定されてもよい。いくつかの実施形態では、前部空洞容積の等価容積は、
図10-Aと同様の方法に従って決定されてもよい。例えば、
図11-Aの対応する振幅周波数応答曲線によれば、2V
0の前部空洞容積を有する空気伝導マイクの前部空洞容積の等価容積は、
図10-Aの方法を使用して6.7V
0として決定されてもよい。すなわち、振動センサーの後部空洞容積が空気伝導マイクの後部空洞容積と等しい場合、振動センサーの前部空洞容積は6.7V
0であり、空気伝導マイクの前部空洞容積は2V
0であり、振動に対する振動センサーの振幅周波数応答は、空気伝導マイクの応答と同じであってもよい。表1に示すように、前部空洞容積が増加するにつれて、空気伝導マイクの前部空洞容積の等価容積も増加してもよい。
【表1】
【0065】
同様に、
図11-Bは、本開示のいくつかの実施形態に係る後部空洞容積が変化するときの空気伝導マイクの振幅周波数応答曲線を示す概略図である。いくつかの実施形態では、振動に対する異なる後部空洞容積を有する空気伝導マイクの振幅周波数応答曲線は、有限要素計算法又は実際の測定によって取得されてもよい。
図11-Bに示すように、横軸は、振動周波数を示し、縦軸は、異なる周波数の振動に対する空気伝導マイクの振幅周波数応答を示す。V
1は、空気伝導マイクの後部空洞容積を示す。
図11-Bに示すように、実線は、後部空洞容積が0.5V
1の場合の空気伝導マイクの振幅周波数応答曲線を示し、点線は、後部空洞容積がそれぞれ1V
1、1.5V
1、2V
1、2.5V
1、及び3V
1の場合の空気伝導マイクの振幅周波数応答曲線を示す。図面から分かるように、空気伝導マイクの後部空洞容積が増加するにつれて、空気伝導マイクのダイアフラムの振幅は増加し、ダイアフラムは振動しやすくなる場合がある。異なる後部空洞容積を有する空気伝導マイクについて、各空気伝導マイクの前部空洞容積の等価容積は、対応する振幅周波数応答曲線に従って決定されてもよい。いくつかの実施形態では、前部空洞容積の等価容積は、
図10-Aと同様の方法に従って決定されてもよい。例えば、
図11-Bに示される実線によれば、0.5V
1の後部空洞容積を有する空気伝導マイクの前部空洞容積の等価容積は、
図10-Aの方法を使用して、3.5V
0として決定されてもよい。すなわち、空気伝導マイクと振動センサーの後部空洞容積が両方とも0.5V
1の場合、振動センサーの前部空洞容積は3.5V
0であり、空気伝導マイクの前部空洞容積は1V
0であり、振動に対する振動センサーの振幅周波数応答は、空気伝導マイクの応答と同じであってもよい。別の例として、空気伝導マイクと振動センサーの後部空洞容積が両方とも3.0V
1の場合、振動センサーの前部空洞容積は7V
0であり、空気伝導マイクの前部空洞容積は1V
0であり、振動に対する振動センサーの振幅周波数応答は、空気伝導マイクの応答と同じであってもよい。空気伝導マイクの前部空洞容積が1V
0で変化せず、後部空洞容積が0.5V
1から3.0V
1に増加する場合、空気伝導マイクの前部空洞容積の等価容積は3.5V
0から7V
0に増加してもよい。
【0066】
いくつかの実施形態では、空気伝導マイクのハウジングの開口部の位置も、空気伝導マイクの前部空洞容積の等価容積に影響を与えてもよい。
図12は、本開示のいくつかの実施形態に係る異なる開口部位置に対応するダイアフラムの振幅周波数応答曲線を示す概略図である。いくつかの実施形態では、開口部位置の異なる空気伝導マイクの振幅周波数応答曲線は、有限要素計算法又は実際の測定によって取得されてもよい。図面に示すように、横軸は、振動周波数を示し、縦軸は、振動に対する開口部位置の異なる空気伝導マイクの振幅周波数応答を示す。
図12に示すように、実線は、ハウジングの上部に開口部がある空気伝導マイクの振幅周波数応答曲線を示し、点線は、ハウジングの側壁に開口部がある空気伝導マイクの振幅周波数応答曲線を示す。開口部が上部にあるときの空気伝導マイクの全振幅周波数応答は、開口部が側壁にあるときの空気伝導マイクの応答よりも高いことが分かる。いくつかの実施形態では、開口部位置の異なる空気伝導マイクについて、対応する前部空洞容積の等価容積は、対応する振幅周波数応答曲線に従って決定されてもよい。前部空洞容積の等価容積を決定するための方法は、
図10-Aの方法と同じであってもよい。
【0067】
いくつかの実施形態では、ハウジングの上部に開口部がある空気伝導マイクの前部空洞容積の等価容積は、側壁に開口部がある空気伝導マイクの前部空洞容積の等価容積よりも大きい。例えば、上部に開口部がある空気伝導マイクの前部空洞容積は1V0であってもよく、前部空洞容積の等価容積は4V0であってもよく、側壁に開口部がある同じサイズの空気伝導マイクの前部空洞容積の等価容積は約1.5V0であってもよい。同じサイズは、側壁に開口部がある空気伝導マイクの前部空洞容積と後部空洞容積が、上部に開口部がある空気伝導マイクの前部空洞容積と後部空洞容積にそれぞれ等しいことを意味する。
【0068】
いくつかの実施形態では、振動源の伝送経路が異なってもよく、空気伝導マイクの前部空洞容積の等価容積も異なってもよい。いくつかの実施形態では、振動源の伝送経路は、マイクとイヤホンのハウジングとの間の接続方式に関連してもよいし、マイクとイヤホンのハウジングとの間の異なる接続方式は、異なる振幅周波数応答に対応してもよい。例えば、マイクが周辺接続を介してハウジング内に接続される場合、振動に対する振幅周波数応答は、側壁接続の応答と異なってもよい。
【0069】
図10のハウジングへの基板接続とは異なり、
図13は、本開示のいくつかの実施形態に係る前部空洞容積が変化するときの振動に対するハウジングとの周辺接続における空気伝導マイク及び完全密閉型マイクの振幅周波数応答曲線を示す概略図である。なお、空気伝導マイクの前部空洞容積又は空洞容積の等価容積について説明する場合、空気伝導マイクの接続方式は、対応する等価容積(前部空洞容積の等価容積又は空洞容積の等価容積)を有する振動センサーの接続方式と同じであってもよい。例えば、
図7、
図8及び
図13において、空気伝導マイクと振動センサーは、周辺接続を介してハウジングに接続されてもよい。別の例として、本開示の他の実施形態における空気伝導マイクと振動センサーは、基板接続、周辺接続、又は他の接続方式を介してハウジングに接続されてもよい。いくつかの実施形態では、ハウジングとの周辺接続による振動に対する空気伝導マイクと完全密閉型マイクの振幅周波数応答曲線は、有限要素計算法又は実際の測定によって取得されてもよい。
図13に示すように、実線は、前部空洞容積がV
0で、かつ空気伝導マイクが周辺接続を介してハウジングに接続される場合の、振動に対する空気伝導マイクの振幅周波数応答曲線を示す。点線は、完全密閉型マイクが周辺接続を介してハウジングに接続され、かつ前部空洞容積がそれぞれ1V
0、2V
0、4V
0、6V
0である場合の、振動に対する完全密閉型マイクの振幅周波数応答曲線を示す。1V
0の前部空洞容積を有する空気伝導マイクが周辺接続を介してハウジングに接続される場合、全振幅周波数応答曲線は、周辺接続を介してハウジングに接続された1V
0の前部空洞容積を有する完全密閉型マイクの曲線よりも低くてもよい。2V
0の前部空洞容積を有する完全密閉型マイクが周辺接続を介してハウジングに接続される場合、全振幅周波数応答曲線は、周辺接続を介してハウジングに接続された1V
0の前部空洞容積を有する空気伝導マイクの曲線よりも低くてもよい。4V
0及び6V
0の前部空洞容積を有する完全密閉型マイクが周辺接続を介してハウジングに接続される場合、振幅周波数応答曲線は、下降し続けて、周辺接続を介してハウジングに接続された1V
0の前部空洞容積を有する空気伝導マイクの振幅周波数応答曲線よりも低くてもよい。図面から分かるように、完全密閉型マイクの前部空洞容積が1V
0~2V
0の場合、周辺接続を介してハウジングに接続された完全密閉型マイクの振幅周波数応答曲線は、側壁接続を介してハウジングに接続された空気伝導マイクの振幅周波数応答曲線に最も近くてもよい。空気伝導マイクと密閉型マイクの両方が周辺接続を介してハウジングに接続されると、空気伝導マイクの前部空洞容積の等価容積は、1V
0~2V
0の間であってもよいと結論づけられる。
【0070】
図14は、本開示のいくつかの実施形態に係る空気伝導マイク及び気導音信号に対する2つのデュアルリンクマイクの振幅周波数応答曲線を示す概略図である。具体的には、実線は、空気伝導マイクの振幅周波数応答曲線に対応し、点線は、ハウジングの上部に開口部があるデュアルリンクマイクと側壁に開口部があるデュアルリンクマイクの振幅周波数応答曲線にそれぞれ対応する。図面の点線で示すように、気導音信号の周波数が5kHz未満の場合、デュアルリンクマイクは気導音信号に応答しない場合がある。気導音信号の周波数が10kHzを超える場合、気導音信号の波長が徐々にデュアルリンクマイクの特徴的な長さに近づき、同時に気導音信号の周波数がダイアフラム構造の特徴的な周波数に近いか又は到達するため、ダイアフラムを共振させて比較的高い振幅を生成してもよく、このとき、デュアルリンクマイクは、気導音信号に応答してもよい。本明細書におけるデュアルリンクマイクの特徴的な長さは、一つの次元におけるデュアルリンクマイクのサイズであってもよい。例えば、デュアルリンクマイクが直方体又はほぼ直方体である場合、特性長さは、デュアルリンクマイクの長さ、幅、又は高さであってもよい。別の例として、デュアルリンクマイクが円筒形又はほぼ円筒形である場合、特徴的な長さは、デュアルリンクマイクの直径又は高さであってもよい。いくつかの実施形態では、気導音信号の波長は、デュアルリンクマイクの特徴的な長さに近く、それは、気導音信号の波長と、デュアルリンクマイクの特徴的な長さとが同程度の大きさ(例えば、mmの大きさである)であると理解されてもよい。いくつかの実施形態では、音声通信の周波数帯域は、500Hz~3400Hzの範囲にあってもよい。デュアルリンクマイクは、この範囲の気導音の影響を受けなく、かつ振動ノイズ信号の測定に使用できる。密閉型マイクと比較して、デュアルリンクマイクは、低周波数帯域の気導音信号に対してより高いアイソレーション効果をもたらすことができる。このような場合、ハウジングの上部又は側壁に孔があるデュアルリンクマイクを振動センサーとして使用して、空気伝導マイクの振動ノイズ信号を除去するのに役立つ。
【0071】
図15は、本開示のいくつかの実施形態に係る振動に対する振動センサーの振幅周波数応答曲線を示す概略図である。振動センサーは、密閉型マイク及びデュアルリンクマイクを含んでもよい。具体的には、
図15は、振動に対する2つの密閉型マイク及び2つのデュアルリンクマイクの振幅周波数応答曲線を示す。
図15に示すように、太い実線は、振動に対する、前部空洞容積が1V
0で、上部に開口部があるデュアル通信マイクの振幅周波数応答曲線を示し、細い実線は、振動に対する、前部空洞容積が1V
0で、側壁に開口部があるデュアル通信マイクの振幅周波数応答曲線を示す。2本の点線は、振動に対する、前部空洞容積がそれぞれ9V
0と3V
0の密閉型マイクの振幅周波数応答曲線を示す。図面から分かるように、前部空洞容積が1V
0で側壁に開口部があるデュアルリンクマイクは、前部空洞容積が9V
0の密閉型マイクとほぼ「同等」であってもよい。前部空洞容積が1V
0で上部に開口部があるデュアルリンクマイクは、前部空洞容積が3V
0の密閉型マイクとほぼ「同等」であってもよい。したがって、大容積の完全密閉型マイクの代わりに、小容積のデュアルリンクマイクを使用してもよい。いくつかの実施形態では、互いに「同等」又はほぼ「同等」であるデュアルリンクマイクと密閉型マイクは、交換可能に使用されてもよい。
【0072】
実施例1
図16に示すように、イヤホン1600は、空気伝導マイク1601、骨伝導マイク1602、及びハウジング1603を含んでもよい。本明細書で使用される場合、空気伝導マイク1601の音孔1604は、イヤホン1600の外側の空気と連通してもよく、空気伝導マイク1601の側面は、ハウジング1603の内側の側面に接続してもよい。骨伝導マイク1602は、ハウジング1603の側面に結合されてもよい。空気伝導マイク1601は、音孔1604を介して気導音信号を取得し、かつ側面とハウジング1603との間の接続構造を介して第1の振動信号(すなわち、振動ノイズ信号)を取得してもよい。骨伝導マイク1602は、第2の振動信号(すなわち、ハウジング1603によって送信された機械的振動信号)を取得してもよい。第1の振動信号及び第2の振動信号の両方は、ハウジング1603の振動によって生成されてもよい。特に、骨伝導マイク1602と空気伝導マイク1601との間の構造の大きな違いのため、2つのマイクの振幅周波数応答と位相周波数応答は異なってもよく、
図2-Aに示す信号処理方法は、振動信号とノイズ信号を除去するために使用されてもよい。
【0073】
実施例2
図17に示すように、デュアルマイクアセンブリ1700は、空気伝導マイク1701、密閉型マイク1702、及びハウジング1703を含んでもよい。本明細書で使用される場合、空気伝導マイク1701及び密閉型マイク1702は、一体型構成部品であってもよく、2つのマイクの外壁は、それぞれ、ハウジング1703の内側に結合されてもよい。空気伝導マイク1701の音孔1704は、デュアルマイクアセンブリ1700の外側の空気と連通してもよく、密閉型マイク1702(
図9-Bの密閉型マイクに相当)の音孔1702は、空気伝導マイク1701の底部に配置され、外気から隔離されてもよい。特に、密閉型マイク1702は、空気伝導マイク1701とまったく同じであり、密閉型マイク1702が構造設計を通じて外気と連通しない密閉した構造からの空気伝導マイクを使用してもよい。一体化構造により、空気伝導マイク1701及び密閉型マイク1702は、振動源(例えば、
図1の振動スピーカー101)に対して同じ振動伝達経路を有し、これにより空気伝導マイク1701及び密閉型マイク1702は同じ振動信号を受信してもよい。空気伝導マイク1701は、音孔1704を介して気導音信号を取得し、ハウジング1703を介して第1の振動信号(すなわち、振動ノイズ信号)を取得してもよい。密閉型マイク1702は、第2の振動信号(すなわち、ハウジング1703によって送信された機械的振動信号)のみを取得してもよい。第1の振動信号及び第2の振動信号の両方は、ハウジング1603の振動によって生成されてもよい。特に、密閉型マイク1702の前部空洞容積、後部空洞容積、及び/又は空洞容積は、空気伝導マイク1701と密閉型マイク1702が同じ又はほぼ同じ周波数応答を有するように、空気伝導マイク1701の対応する容積(前部空洞容積、後部空洞容積、及び/又は空洞容積)の等価容積に応じて決定されてもよい。デュアルマイクアセンブリ1700は、小容積であるという利点を有し、そして個別にデバッグされ、簡単な製造プロセスを通じて取得できる。いくつかの実施形態では、デュアルマイクアセンブリ1700は、空気伝導マイク1701によって受信されたすべての通信周波数帯域における振動及びノイズを除去してもよい。
【0074】
図18は、
図17のデュアルマイク構成部品を含むイヤホンの構造を示す概略図である。
図18に示すように、イヤホン1800は、デュアルマイクアセンブリ1700、ハウジング1801、及び接続構造1802を含んでもよい。デュアルマイクアセンブリ1700の構成部品のハウジング1703は、周辺接続を介してハウジング1801に接続されてもよい。周辺接続は、デュアルマイクアセンブリ1700内の2つのマイクをハウジング1801上の接続位置に対して対称に維持することにより、振動源から2つのマイクへの振動伝達経路が同じであることをさらに保証できる。いくつかの実施形態では、
図18中のイヤホン構造は、振動ノイズの異なる伝送経路、異なるタイプの2つのマイクなどの振動ノイズの除去への影響を効果的に除去してもよい。
【0075】
実施例3
図19は、本開示のいくつかの実施形態に係るデュアルマイクイヤホンの構造を示す概略図である。
図19に示すように、イヤホン1900は、振動スピーカー1901、ハウジング1902、弾性要素1903、空気伝導マイク1904、骨伝導マイク1905、及び開口部1906を含んでもよい。本明細書で使用されるように、振動スピーカー1901は、弾性要素1903を介してハウジング1902に固定されてもよい。空気伝導マイク1904と骨伝導マイク1905は、それぞれ、ハウジング1902内の異なる位置に接続されてもよい。空気伝導マイク1904は、開口部1906を介して外気と連通して、気導音信号を受信してもよい。振動スピーカー1901が振動して音を発する場合、ハウジング1902を振動させるように駆動して、ハウジング1902は、振動を空気伝導マイク1904及び骨伝導マイク1905に伝達してもよい。いくつかの実施形態では、
図2-B中の信号処理方法は、骨伝導マイク1905によって取得された振動信号を使用して、空気伝導マイク1904によって受信された振動ノイズ信号を除去するために使用されてもよい。いくつかの実施形態では、骨伝導マイク1905は、空気伝導マイク1904によって受信されたすべての通信周波数帯域における振動ノイズを除去するために使用されてもよい。
【0076】
実施例4
図20は、本開示のいくつかの実施形態に係るデュアルマイクイヤホンの構造を示す概略図である。
図20に示すように、イヤホン2000は、振動スピーカー2001、ハウジング2002、弾性要素2003、空気伝導マイク2004、振動センサー2005、及び開口部2006を含んでもよい。振動センサー2005は、本開示のいくつかの実施形態に示されるように、密閉型マイク、二重接続マイク、又は骨伝導マイクであってもよいか、又は振動信号収集機能を有する他のセンサー装置であってもよい。振動スピーカー2001は、弾性要素2003を介してハウジング2002に固定されてもよい。空気伝導マイク2004及び振動センサー2005は、選択又は調整後に同じ振幅周波数応答及び/又は位相周波数応答を有する2つのマイクであってもよい。空気伝導マイク2004の上部と側面は、それぞれ、ハウジング2006の内側に接続されてもよく、振動センサー2005の側面は、ハウジング2006の内側に接続されてもよい。空気伝導マイク2004は、開口部2006を介して外気と連通してもよい。振動スピーカー2001が振動する場合、ハウジング2002を振動させるように駆動して、ハウジング2002の振動は、空気伝導マイク2004及び振動センサー2005に伝達されてもよい。空気伝導マイク2004がハウジング2006に接続される位置は、振動センサー2005がハウジング2006に接続される位置に非常に近い(例えば、2つのマイクは、それぞれ、
図3の位置301と302に配置されてもよい)ので、ハウジング2006によって2つのマイクに伝達される振動は同じであってもよい。いくつかの実施形態では、空気伝導マイク2004によって受信された振動ノイズ信号は、空気伝導マイク2004及び振動センサー2005によって受信された信号に基づいて、
図2-Cに示されるような信号処理方法を使用して除去されてもよい。いくつかの実施形態では、振動センサー2005は、空気伝導マイク2004によって受信されたすべての通信周波数帯域における振動ノイズを除去するために使用されてもよい。
【0077】
実施例5
図21は、本開示のいくつかの実施形態に係るデュアルマイクイヤホンの構造を示す概略図である。デュアルマイクイヤホン2100は、
図20のイヤホン2000の他の変形例であってもよい。イヤホン2100は、振動スピーカー2101、ハウジング2102、弾性要素2103、空気伝導マイク2104、振動センサー2105、及び開口部2106を含んでもよい。振動センサー2105は、密閉型マイク、デュアルリンクマイク、又は骨伝導マイクであってもよい。空気伝導マイク2104と振動センサー2105は、それぞれ、周辺接続を介してハウジング2102の内側に接続されてもよく、振動スピーカー2101に対して対称的に分布されてもよい(例えば、2つのマイクは、それぞれ、
図3の位置301と304に配置されてもよい)。空気伝導マイク2104及び振動センサー2105は、選択又は調整後の同じ振幅周波数応答及び/又は位相周波数応答を有する2つのマイクであってもよい。いくつかの実施形態では、空気伝導マイク2104によって受信された振動ノイズ信号は、空気伝導マイク2104及び振動センサー2105によって受信された信号に基づいて、
図2-Cに示される信号処理方法を使用して除去されてもよい。いくつかの実施形態では、振動センサー2105は、空気伝導マイク2104によって受信されたすべての通信周波数帯域における振動ノイズを除去するために使用されてもよい。
【0078】
以上、基本概念について説明した。当業者にとって、本発明の開示は、あくまで一例に過ぎず、本開示に対する制限を構成するものではないことは明らかである。本明細書では明示的に示されていないが、当業者であれば、本開示に対する様々な修正、改良、及び補正を行うことができる。これらの修正、改良、及び補正は、本開示によって示唆されるものとし、本開示の例示的な実施形態の趣旨及び範囲内にある。
【0079】
さらに、特許請求の範囲に明確に記載されていない限り、本開示における処理要素及びシーケンスの順序、数字及び文字の使用、又は他の名称の使用は、本開示の手順及び方法の順序を限定するために使用されない。上記開示は、現在、本開示の様々な有用な実施形態であると現在考えられる様々な実施例を通して論じているが、そのような詳細は説明を目的としてなされていることに過ぎず、添付の特許請求の範囲は、開示される実施形態に限定されず、むしろ、開示される実施形態の精神及び範囲内にある変形例及び等価な構成を包含するように意図されることが理解されるべきである。例えば、上述した様々な構成部品の実装は、ハードウェア装置で具体化され得るが、ソフトウェアのみの解決策として、例えば、既存のサーバ又はモバイルデバイス上にインストールとして実装されてもよい。
【0080】
同様に、本開示の実施形態の前述の説明では、本開示を簡素化し、1つ以上の様々な実施形態の理解に資するため、様々な特徴が単一の実施形態、図、又はその説明にまとめられた場合があることを理解すべきである。しかしながら、本開示は、本開示の目的が、特許請求の範囲に記載の特徴よりも多くの特徴を必要とすることを意味するものではない。むしろ、特許請求された主題は、前述の単一の開示される実施形態のすべての特徴よりも少ない範囲にある。
【0081】
最後に、本開示で説明される実施形態は、本開示の実施形態の原理の単なる例示であることを理解されたい。使用され得る他の修正は、本開示の範囲内にあってもよい。したがって、例として、本開示の実施形態の代替的な構成が本明細書中の教示に従って利用され得るが、それらに限定されない。これにより、本開示の実施形態は、まさに示され、説明されたようなものに限定されない。
【符号の説明】
【0082】
100 イヤホン
101 振動スピーカー
101 スピーカー
102 弾性構造
103 ハウジング
104 第1の接続構造
105 マイク
106 第2の接続構造
107 振動センサー
210、220 信号処理回路
300 ハウジング
501 ハウジングの側壁
502 接続構造
503 マイク
504 接触点
701 ハウジング
702 接続構造
703 マイク
704、705 接触点
910 空気伝導マイク
911 開口部
912 ハウジング
913 集積回路(ASIC)
914 プリント回路基板(PCB)
915 前部空洞
916 ダイアフラム
917 後部空洞
920 振動センサー
922 ハウジング
923 集積回路(ASIC)
924 プリント回路基板(PCB)
925 前部空洞
926 ダイアフラム
927 後部空洞
930 振動センサー
931 開口部
932 ハウジング
933 集積回路(ASIC)
934 プリント回路基板(PCB)
935 前部空洞
936 ダイアフラム
937 後部空洞
938 開口部