(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-03-18
(45)【発行日】2024-03-27
(54)【発明の名称】光学カモフラージュフィルター
(51)【国際特許分類】
G02B 5/02 20060101AFI20240319BHJP
B32B 7/023 20190101ALI20240319BHJP
G02B 5/20 20060101ALI20240319BHJP
【FI】
G02B5/02 A
B32B7/023
G02B5/20
(21)【出願番号】P 2020503700
(86)(22)【出願日】2018-07-25
(86)【国際出願番号】 IB2018055567
(87)【国際公開番号】W WO2019021222
(87)【国際公開日】2019-01-31
【審査請求日】2021-07-21
【審判番号】
【審判請求日】2024-01-10
(32)【優先日】2017-07-26
(33)【優先権主張国・地域又は機関】US
【早期審理対象出願】
(73)【特許権者】
【識別番号】505005049
【氏名又は名称】スリーエム イノベイティブ プロパティズ カンパニー
(74)【代理人】
【識別番号】100130339
【氏名又は名称】藤井 憲
(74)【代理人】
【識別番号】100135909
【氏名又は名称】野村 和歌子
(74)【代理人】
【識別番号】100133042
【氏名又は名称】佃 誠玄
(74)【代理人】
【識別番号】100171701
【氏名又は名称】浅村 敬一
(72)【発明者】
【氏名】シャルマ,ニーラジュ
(72)【発明者】
【氏名】ドゥ,グワーンレイ
(72)【発明者】
【氏名】ソウサ,マシュー イー.
(72)【発明者】
【氏名】スワンソン,ジェレミー オー.
(72)【発明者】
【氏名】ウ,ジュン-シェン
【合議体】
【審判長】里村 利光
【審判官】関根 洋之
【審判官】河原 正
(56)【参考文献】
【文献】国際公開第2017/110939(WO,A1)
【文献】特開2006-165493(JP,A)
【文献】特表2012-524299(JP,A)
【文献】特表2013-545131(JP,A)
【文献】特開2010-72616(JP,A)
【文献】特表2018-536204(JP,A)
【文献】特表2007-508646(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G02B 5/02
G02B 5/20
(57)【特許請求の範囲】
【請求項1】
発光体又は受光体の一方又は両方と、
前記発光体又は前記受光体の一方又は両方に隣接する光学フィルターと、備え、
前記光学フィルターは、波長選択性散乱層を含み、
前記波長選択性散乱層は、
バインダーと複数の粒子
と複数の相互接続空隙とを含み、
前記波長選択性散乱層は、約0.9未満の近赤外散乱率を有し、前記近赤外散乱率は、平均可視ヘイズに対する平均近赤外散乱の比率であり、
前記波長選択性散乱層は、約0.1より大きい可視反射ヘイズ率を有し、前記可視反射ヘイズ率は、平均可視全反射率に対する平均可視拡散反射率の比率であり、
前記複数の粒子は、10未満の仮想屈折率を有する、
システム。
【請求項2】
前記複数の粒子が、10~10
-1の仮想屈折率を有する、請求項1に記載のシステム。
【請求項3】
前記複数の粒子が、TiO
2、無機顔料、又は有機顔料を含む、請求項1に記載のシステム。
【請求項4】
前記波長選択性散乱層が、印刷可能インクを含む、請求項1に記載のシステム。
【請求項5】
前記波長選択性散乱層が、染料を含む、請求項1に記載のシステム。
【請求項6】
光学フィルターを備える物品であって、
前記光学フィルターは、波長選択性散乱層を含み、
前記波長選択性散乱層は、
バインダーと複数の粒子
と複数の相互接続空隙とを含み、
前記波長選択性散乱層は、約0.9未満の近赤外散乱率を有し、前記近赤外散乱率は、平均可視ヘイズに対する平均近赤外散乱の比率であり、
前記波長選択性散乱層は、約0.1より大きい可視反射ヘイズ率を有し、前記可視反射ヘイズ率は、平均可視全反射率に対する平均可視拡散反射率の比率であり、
前記複数の粒子は、10未満の仮想屈折率を有する、物品。
【請求項7】
前記複数の粒子が、10~10
-1の仮想屈折率を有する、請求項6に記載の物品。
【請求項8】
前記複数の粒子が、TiO
2、無機顔料、又は有機顔料を含む、請求項6に記載の物品。
【請求項9】
前記散乱層が、印刷可能インクを含む、請求項6に記載の物品。
【請求項10】
前記散乱層が、染料を含む、請求項6に記載の物品。
【発明の詳細な説明】
【背景技術】
【0001】
光は、例えば鏡面反射又は拡散反射として、異なる仕方で表面から反射され得る。不透明材料では、材料の最表面層上において、例えば空気/材料界面において、鏡面反射が生じ得、反射は入射光の全スペクトルを伝えることができる。鏡面反射は、全反射光の4%未満を占め得る、テカリ又は光沢として発現し得る。対照的に、材料の上面下では拡散反射が生じ得、選択された波長又は色を伝えることができる。例えば、非金属物体の拡散反射では色が見え得る。例えば、ハイブリッド表面、例えば、透明な仕上げ塗りで被覆されたペンキ塗膜を含む表面においては、両方の種類の反射が観察され得る。それゆえ、空気/仕上げ塗り界面では鏡面反射が生じ得、仕上げ塗り/ペイント塗膜界面では拡散反射が生じ得る。
【0002】
光学フィルターは、光通信システム、センサ、イメージング、科学及び産業光学機器、並びにディスプレイシステムなどの多種多様の用途において使用されている。光学フィルターは、光を含む入射電磁放射の透過を管理する光学層を備えることができる。光学フィルターは、入射光の一部を反射又は吸収し、入射光の別の部分を透過させることができる。光学フィルター内の光学層は、波長選択性、光透過率、光学的透明度、光学ヘイズ、及び屈折率が異なることがある。
【発明の概要】
【0003】
一態様では、本開示は、システムに関する。本システムは、発光体又は受光体の一方又は両方と、発光体又は受光体の一方又は両方に隣接する光学フィルターとを含む。光学フィルターは波長選択性散乱層を含む。波長選択性散乱層は、複数の粒子を含む。波長選択性散乱層は、約0.9未満の近赤外散乱率を有し、近赤外散乱率は平均可視ヘイズに対する平均近赤外散乱である。波長選択性散乱層はまた、約0.1より大きい可視反射ヘイズ率を有し、可視反射ヘイズ率は、平均可視全反射率に対する平均可視拡散反射率の比率である。複数の粒子は、10未満の仮想屈折率を有する。
【0004】
別の態様では、本開示は、物品に関する。本物品は、光学フィルターを含む。光学フィルターは波長選択性散乱層を含む。波長選択性散乱層は、複数の粒子を含む。波長選択性散乱層は、約0.9未満の近赤外散乱率を有し、近赤外散乱率は平均可視ヘイズに対する平均近赤外散乱である。波長選択性散乱層はまた、約0.1より大きい可視反射ヘイズ率を有し、可視反射ヘイズ率は、平均可視全反射率に対する平均可視拡散反射率の比率である。複数の粒子は、10未満の仮想屈折率を有する。
【0005】
本発明の1つ以上の態様の詳細は、添付の図面及び以下の説明に記載されている。本発明のその他の特徴、目的、及び利点は、明細書及び図面、並びに特許請求の範囲から明らかであろう。
【図面の簡単な説明】
【0006】
以下の「発明を実施するための形態」と、添付の図面を併せて読むことによって、本発明の上記及び他の態様はより明らかになる。
【
図1A】光学フィルターを含む例示的な物品の横断面図である。
【
図1B】光学フィルターを含む例示的な物品の横断面図である。
【
図1C】光学フィルターを含む例示的な物品の横断面図である。
【
図1D】光学フィルターを含む例示的な物品の横断面図である。
【
図1E】光学フィルターを含む例示的な物品の横断面図である。
【
図2A】光学フィルターを含む例示的なシステムの概念的略図である。
【
図2B】光学フィルターを含む例示的なシステムの概念的略図である。
【
図2C】光学フィルターを含む例示的なシステムの概念的略図である。
【
図2D】光学フィルターを含む例示的なシステムの概念的略図である。
【
図2E】光学フィルターを含む例示的なシステムの概念的略図である。
【
図3A】例示的な光学フィルターと、視認可能なパターン及び不可視の近赤外パターンを表示する電子ディスプレイとを含む例示的なシステムの概念図である。
【
図3B】例示的な光学フィルターと、視認可能なパターン及び不可視の近赤外パターンを表示する電子ディスプレイとを含む例示的なシステムの概念図である。
【
図3C】例示的な光学フィルターと、視認可能なパターン及び不可視の近赤外パターンを表示する電子ディスプレイとを含む例示的なシステムの概念図である。
【
図3D】例示的な光学フィルターと、視認可能なパターン及び不可視の近赤外パターンを表示する電子ディスプレイとを含む例示的なシステムの概念図である。
【
図5】屈折率の虚部成分が10より小さい光学媒体及び複数の粒子を含む例示的な波長選択性散乱層についての、粒径及び屈折率差の関数としての近赤外散乱率のチャートである。
【
図6】屈折率の虚部成分が10
-7より小さい光学媒体及び複数の粒子を含む例示的な波長選択性散乱層についての、粒径及び屈折率差の関数としての近赤外散乱率のチャートである。
【
図7】屈折率の虚部成分が10
-7より小さい光学媒体及び複数の粒子を含む例示的な波長選択性散乱層についての、粒径及び屈折率差の関数としての940nmの散乱率のチャートである。
【
図8】屈折率の虚部成分が10より小さい光学媒体及び複数の粒子を含む例示的な波長選択性散乱層についての、粒径及び屈折率差の関数としての940nmの散乱率のチャートである。
【
図9】屈折率の虚部成分が10~0.1である光学媒体及び複数の粒子を含む例示的な波長選択性散乱層についての、粒径及び屈折率差の関数としての近赤外散乱率のチャートである。
【
図10】屈折率の虚部成分が10~0.1である光学媒体及び複数の粒子を含む例示的な波長選択性散乱層についての、粒径及び屈折率差の関数としての940nmの散乱率のチャートである。 本開示の特定の図の特徴は必ずしも原寸に比例して描かれているとは限らず、図は、本明細書に開示されている技法の非排他的な実施例を示していることを理解されたい。
【発明を実施するための形態】
【0007】
本開示において、「可視」は、約400nm~約700nmの範囲の波長を指し、「近赤外」は約700nm~約2000nmの範囲の波長、例えば約800nm~約1200nmの範囲の波長を指す。ULI(ultra-low index、超低屈折率)フィルムは、全体が本明細書において参照により組み込まれる、米国特許出願公開第2012/0038990号に記載されている、バインダー、複数の粒子、及び複数の相互接続空隙を含む光学フィルムを指す。
【0008】
周囲電磁放射源は、特定の波長の、又は特定の光源からの光を受光するように構成された受光体、あるいは特定の波長の光を発光するように構成された発光体と干渉し得る。例えば、可視波長は、例えば、受光体内又は発光体内のノイズを増大させることによって、近赤外波長の受光、感知、又は透過に干渉し得る。電磁放射源も意図せずに明らかにされ得る。例えば、近赤外波長のみを発光するように構成された発光体によって発光された光は視認可能ではないが、発光を担う装置又は構造体、例えば発光体の筐体が視認可能になり得る。カモフラージュ技術は、所望の近赤外波長の透過の阻止、干渉、又は減少を不必要に生じさせ得るため、発光体のマスキング、覆い隠し、又はその他の仕方のカモフラージュは課題を提示し得る。本開示の諸例に係る光学フィルターは、可視波長からの不要な光学干渉を防止し、あるいは電磁放射源を視覚からカモフラージュし、その一方で、所望の近赤外波長が発光体によって透過されること、又は受光体によって受光されることを少なくとも部分的に可能にし、あるいはその一方で、比較的高い透明度による近赤外波長の透過を可能にするために用いられ得る。
【0009】
例えば、近赤外波長を受光又は感知するよう動作する受光体は可視波長から遮蔽され、可視波長によって生じ得る近赤外波長の受光又は感知との干渉を防止することができる。近赤外波長を透過するよう動作する光透過体は、可視波長を散乱させることによって、視覚に対してカモフラージュされ得る。例えば、散乱された可視波長は、近赤外波長の透過を妨げることなく、光透過体の存在を隠すことができる。
【0010】
表面からの鏡面反射量は、空気界面のフレネル反射によって決定され得る。透明な最上層を有する不透明な表面については、全ての鏡面反射は上部の空気界面から生じ、残りの反射は下層からの拡散反射であると想定され得る。不透明な着色材料もまた、その屈折率を用いて上面上におけるフレネル反射を算出し、他の全ての反射は拡散性であると扱いつつ、同様のモデルに従うことができるであろう。例示的な光学フィルターは、透明基材上又は反射フィルム上に配置された拡散コーティングを有し得る。透明基材上に拡散コーティングがコーティングされる場合には、それは、その下にある要素を隠すために、より高いヘイズを有し得る。反射体上にコーティングがコーティングされる場合には、コーティングは、入射光を反射によって2回拡散させることになる。この場合には、コーティングはより少ないヘイズを有し得る。
【0011】
それゆえ、例示的なシステムは、受光体及び発光体の一方又は両方と、可視波長の透過を少なくとも部分的に減少させることができ、その一方で、近赤外波長の透過を少なくとも部分的に可能にする波長選択性散乱層とを含む光学フィルターを含み得る。例えば、波長選択性散乱層は、入射可視光の大部分を拡散させることができる。本開示による例示的なシステム及び物品は、近赤外光を比較的高い透明度で透過させ、その一方で、例えば可視波長を選択的に散乱又は反射させることによって可視波長の透過を減少させる例示的な波長選択性散乱層を含む例示的な光学物品を含み得る。
【0012】
図1A~
図1Eは、光学フィルターを含む例示的な物品の横断面図である。
図1Aは例示的な物品10aの横断面図を示す。物品10aは、基板12と、波長選択性散乱層14とを含む。基板12は、ガラス、ポリマー、金属、又は任意の他の適切な硬質、半硬質又は軟質の膜(maters)、及びそれらの組み合わせを含み得る。
図1Aの例示的な物品10aでは、基板12が層として示されているが、諸例では、基板12は、平坦な表面、実質的に平坦な表面、又はテクスチャー化表面を有し得る任意の適切な三次元形状を取ることができる。諸例では、基板12は、デバイス、例えば電子デバイスの筐体、スクリーン、又は表面を含み得る。
【0013】
波長選択性散乱層14は、可視光を選択的に散乱させ、近赤外光を透過させる。諸例では、波長選択性散乱層は、約0.9未満、約0.8未満、約0.7未満、約0.6未満、又は約0.5未満の近赤外散乱率を有し得る。近赤外散乱率は、平均可視散乱に対する平均近赤外散乱の比率である。例えば、波長選択性散乱層14は、約0.5より大きい、又は約0.7より大きい、又は約0.9より大きい可視反射ヘイズ率を有し得る。可視反射ヘイズ率は、平均可視全反射率に対する平均可視拡散反射率の比率である。諸例では、波長選択性散乱層14は、入射可視光の約50%未満を透過させることができる。諸例では、波長選択性散乱層14は、入射近赤外光の約50%超を透過させることができる。諸例では、波長選択性散乱層14は、入射可視光の約50%未満を透過させ、入射近赤外光の約50%超を透過させることができる。諸例では、波長選択性散乱層14は、入射可視光の約50%超を散乱させることができる。例えば、波長選択性散乱層14は、入射可視光の約50%超を散乱させることによって、入射可視光の約50%未満を透過させることができる。諸例では、波長選択性層14は、入射可視光の約50%超を白色光として散乱させることができる。いくつかの実施形態では、波長選択性散乱層は、約0.1より大きい可視反射ヘイズ率を有する。いくつかの実施形態では、可視反射ヘイズ率は、約0.3より大きい。
【0014】
波長選択性散乱層14は、それぞれの所定の屈折率を有する媒体と複数の粒子とを含み得る。複数の粒子は、TiO2、無機顔料、又は有機顔料を含み得る。媒体は、ポリマー、コーティングされたポリマー、熱可塑性ポリマー、又は接着剤を含み得る。諸例では、波長選択性散乱層14は、ビーズ状の拡散層を含み得る。例えば、波長選択性散乱層14は、媒体と、媒体中に分散されたビーズとを含み得る。ビーズ状の拡散層の媒体は、ガラス、ポリマー、又は任意の他の好適な光学媒体、あるいはそれらの組み合わせを含み得る。ビーズは、シリカ、ガラス、ポリマー、有機、無機、金属酸化物、ポリスチレン、又は他の好適な散乱材料、あるいはそれらの組み合わせを含み得る。拡散層は、空気などの気体を含む細孔を含み得る。諸例では、気体を含む細孔はビーズ内に封入されていてもよい。波長選択性散乱層は、印刷可能インクを含み得る。波長選択性散乱層は、染料を含み得る。
【0015】
波長選択性散乱層14は、第1の屈折率を有する光学媒体を含み得る。光学媒体は複数の粒子を含み得る。複数の粒子は、仮想屈折率成分を有し得る。仮想屈折率成分は、10未満であり得る。仮想屈折率は、10-7未満であり得る。仮想屈折率は、10~10-1であり得る。複数の粒子は、第1の屈折率と第2の屈折率との絶対差が約0.1未満となるように第2の屈折率を有し得る。諸例では、複数の粒子は約5μm未満の平均粒径を有し得、第1の屈折率と第2の屈折率との絶対差は約0.1未満であり得る。諸例では、複数の粒子は約1μm未満の平均粒径を有し得、第1の屈折率と第2の屈折率との絶対差は約0.2未満であり得る。諸例では、複数の粒子は約0.5μm未満の平均粒径を有し得、第1の屈折率と第2の屈折率との絶対差は約0.4未満であり得る。諸例では、複数の粒子は約0.3μm未満の平均粒径を有し得、第1の屈折率と第2の屈折率との絶対差は約0.6未満であり得る。諸例では、複数の粒子は約0.2μm未満の平均粒径を有し得、第1の屈折率と第2の屈折率との絶対差は約1.8未満であり得る。
【0016】
波長選択性散乱層14の近赤外散乱率は、0.2未満であり得る。波長選択性散乱層14の近赤外散乱率は、0.4未満であり得る。波長選択性散乱層14の近赤外散乱率は、0.6未満であり得る。波長選択性散乱層14の近赤外散乱率は、0.8未満であり得る。諸例では、波長選択性散乱層14の近赤外散乱率は0.7未満になり得るか、又は0.5未満になり得る。諸例では、それぞれの線82、84、86、88の下の区域、又は任意の他の区域は、粒径下限によって境界付けされ得る。例えば、領域は、10nm、又は30nm、又は50nmを超える粒径、あるいはレイリー散乱が発現又は支配し得る粒径よりも大きい粒径のみを含み得る。
【0017】
いくつかの実施形態では、波長選択性散乱層は、第1の屈折率を有する光学媒体と、平均粒径及び第2の屈折率を有する複数の粒子とを含み得るものであり、平均粒径、第1の屈折率、及び第2の屈折率は、
図5の線[0.900]の下の領域から選択される。いくつかの実施形態では、波長選択性散乱層は、第1の屈折率を有する光学媒体と、平均粒径及び第2の屈折率を有する複数の粒子とを含み得るものであり、平均粒径、第1の屈折率、及び第2の屈折率は、
図5の線[0.600]の下の領域から選択される。いくつかの実施形態では、波長選択性散乱層は、第1の屈折率を有する光学媒体と、平均粒径及び第2の屈折率を有する複数の粒子とを含み得るものであり、平均粒径、第1の屈折率、及び第2の屈折率は、
図5の線[0.400]の下の領域から選択される。いくつかの実施形態では、波長選択性散乱層は、第1の屈折率を有する光学媒体と、平均粒径及び第2の屈折率を有する複数の粒子とを含み得るものであり、平均粒径、第1の屈折率、及び第2の屈折率は、
図6の線[0.900]の下の領域から選択される。いくつかの実施形態では、波長選択性散乱層は、第1の屈折率を有する光学媒体と、平均粒径及び第2の屈折率を有する複数の粒子とを含み得るものであり、平均粒径、第1の屈折率、及び第2の屈折率は、
図6の線[0.600]の下の領域から選択される。いくつかの実施形態では、波長選択性散乱層は、第1の屈折率を有する光学媒体と、平均粒径及び第2の屈折率を有する複数の粒子とを含み得るものであり、平均粒径、第1の屈折率、及び第2の屈折率は、
図6の線[0.400]の下の領域から選択される。いくつかの実施形態では、波長選択性散乱層は、第1の屈折率を有する光学媒体と、平均粒径及び第2の屈折率を有する複数の粒子とを含み得るものであり、平均粒径、第1の屈折率、及び第2の屈折率は、
図9の線[0.900]の下の領域から選択される。いくつかの実施形態では、波長選択性散乱層は、第1の屈折率を有する光学媒体と、平均粒径及び第2の屈折率を有する複数の粒子とを含み得るものであり、平均粒径、第1の屈折率、及び第2の屈折率は、
図9の線[0.600]の下の領域から選択される。いくつかの実施形態では、波長選択性散乱層は、第1の屈折率を有する光学媒体と、平均粒径及び第2の屈折率を有する複数の粒子とを含み得るものであり、平均粒径、第1の屈折率、及び第2の屈折率は、
図9の線[0.400]の下の領域から選択される。
【0018】
諸例では、波長選択性散乱層14は、50%未満、少なくとも50%、又は少なくとも60%、又は少なくとも70%の全可視反射率を有し得る。諸例では、全可視反射率は50%未満であってもよく、波長選択性散乱層14は可視ヘイズによって物体を覆い隠し得る。諸例では、全可視反射率は50%より大きくてもよく、波長選択性散乱層14は可視反射と可視ヘイズとの組み合わせによって物体を覆い隠し得る。諸例では、波長選択性散乱層14は、60%未満、又は40%未満の平均近赤外散乱を有し得る。諸例では、波長選択性散乱層は、10%より大きい、又は25%より大きい、又は58%より大きい平均可視散乱を有し得る。諸例では、波長選択性散乱層14の%全可視反射率と%拡散可視反射率との差は20未満であり得る。諸例では、波長選択性散乱層は、40%未満の平均近赤外散乱、及び58%より大きい平均可視散乱率を有し得、%全可視反射率と%拡散可視反射率との差は18未満であり得る。
【0019】
いくつかの実施形態では、波長選択性散乱層は、800nm~1000nmの範囲において約0.5未満の平均近赤外透過散乱を有し得る。いくつかの実施形態では、平均近赤外散乱は、約0.2未満であり得る。いくつかの実施形態では、平均近赤外散乱は、約0.1未満であり得る。いくつかの実施形態では、平均近赤外透過散乱は、約0.05未満であり得る。いくつかの実施形態では、平均近赤外透過散乱は、約0.02未満であり得る。
【0020】
諸例では、波長選択性散乱層14は、少なくとも15%、又は少なくとも25%、又は少なくとも35%、又は少なくとも50%の可視ヘイズを有し得る。諸例では、光学フィルター10aは、微細複製表面構造などの表面光学微細構造を含み得る。
【0021】
諸例では、波長選択性散乱層14は、バインダーと、複数の粒子と、複数の相互接続空隙とを含むULI層を含み得る。光学フィルター内における複数の相互接続空隙の体積分率は約20%以上であり得る。複数の粒子に対するバインダーの重量比は約1:2以上であり得る。
【0022】
光学フィルターは保護層を含み得る。光学フィルターはシーラント層を含み得る。
【0023】
図1Bは、例示的な物品10bの横断面図を示す。物品10bは、基板12と、波長選択性散乱層14と、反射層16とを含み得る。物品10bにおいては、波長選択性散乱層14と基板12との間に反射層16が示されているが、諸例では、物品10bは基板12を含まなくてもよく、波長選択性散乱層は反射層16上に配置されていてもよい。諸例では、基板12は、例えば、基板12の主表面、又は内部中に、反射層16を含み得る。諸例では、反射層16は、基板12の下方に配置されていてもよい。諸例では、反射層16は、基板12の上方に配置されていてもよい。諸例では、反射層16は、穿孔されていてもよい。諸例では、物品10bは、可視光の50%未満を反射し、近赤外光の50%超を透過させることができる。諸例では、反射層16は、例えば選択された波長のみを反射する波長選択性であり得る。反射層16は、多層光学フィルム、ダイクロイック反射体、干渉フィルム、無機多層積層体、金属誘電体積層体、研磨された基板、ミラー、反射型偏光子、又は反射金属若しくはガラス表面などの反射表面を含み得る。諸例では、物品10bは、反射層と波長選択性散乱層14との間、又は波長選択性散乱層14の上方の、又は物品10b内の任意の層に隣接して位置する染料層(図示せず)を含み得る。染料層は、近赤外では透過性又は透明になり、可視では中性となることができ、それにより、反射層16の可視反射を低減する、スペクトル選択性染料を含み得る。諸例では、染料層は、少なくとも30%、50%、70%、又は90%の吸収を有し得る。諸例では、染料層は、可視色を有し、その一方で、近赤外では透過性のままであるように着色されてもよい。
【0024】
図1Cは、例示的な物品10cの横断面図を示す。物品10cは、基板12と波長選択性散乱層14とを含み得る。物品10cは、任意選択的に、
図1Cに示すように、反射層16、インク受容層18、印刷パターン層22、及び保護層24のうちの1つ以上を含み得る。
図1Cは物品10c内の層のための特定の配置を示しているが、それぞれの層は任意の適切な構成に再配置されてもよい。例えば、反射層12が存在する場合には、基板16を省略してもよい。保護層24はシーラント層を含み得る。諸例では、インクパターン層22は、インク受容層18上に堆積され得るインク又は顔料の印刷パターンを含む。諸例では、インク受容層は省略されてもよく、インクパターン層22は波長選択性散乱層14上に堆積されてもよい。諸例では、保護層24は、インクパターン層22と波長選択性散乱層14との間に配置されていてもよい。諸例では、2つの保護層24が配置されていてもよく、一方はインクパターン層22の上方に、他方は波長選択性散乱層14に隣接して配置されていてもよい。
【0025】
図1Dは、例示的な物品10dの横断面図を示す。物品10dは、基板12と、波長選択性散乱層14と、第1のシーラント層26と、第2のシーラント層28とを含み得る。第1のシーラント層26及び第2のシーラント層28の両方のうちの一方はラテックスコーティングを含み得る。各シーラント層は、例えば、水分又は他の反応物若しくは崩壊剤の侵入を防止又は低減することによって、波長選択性散乱層14の完全性を保護することができる。各シーラント層は、波長選択性散乱層14に対して構造支持及び物理的安定性をも提供し得る。例えば、第1のシーラント層26及び第2のシーラント28の一方又は両方は、波長選択性散乱層14が製造基板から剥離又は除去され、その後、製品基板、例えば基板12上に移送され、適用されることを可能にし得る。
【0026】
図1Eは、例示的な物品10eの横断面図を示す。物品10eは、基板12と、基板12に隣接する波長選択性散乱層14と、波長選択性散乱層14上に堆積されたインクパターン層24とを含み得る。各センサセグメント32a、32b、32c、32dを含むセンサ層32が、基板12に隣接して配置され得る。諸例では、基板12は省略されてもよく、波長選択性散乱層14はセンサ層32上に堆積されてもよい。諸例では、波長選択性散乱層14は、各センサセグメント32a、32b、32c、及び32dと整列され得る、各選択散乱セグメント14a、14b、14c、及び14dを含み得る。選択散乱セグメントのうちの1つ以上は省略されてもよく、そのため、波長選択性散乱層14は、各センサセグメントのうちの少なくとも1つと整列され得る少なくとも1つの穿孔を含み得る。異なる選択散乱セグメントは、近赤外散乱率、可視ヘイズ率、又は各選択散乱セグメントと整列したセンサセグメントの性能を向上させることができる他の光学特性を変更することによって調整され得る。
図1Eの波長散乱層14及びセンサ層32内には、4つのセグメントが表示されているが、諸例では、波長散乱層14及びセンサ層32は任意の適当な数のセグメントを有し得る。
図1Eの例では、センサ層32が記載されているが、諸例では、物品10eは、センサセグメントの代わりに光源32a、32b、32c、及び32dを含み得る。
【0027】
図1A~
図1Eは、それぞれの物品10a~10eを、平坦な層を含むように示しているが、様々な例では、物品10a~10eは、任意の好適な形状、周囲又は断面を取り得、物品10a~10eの層は、規則的、不規則、又は複合的な曲率を取り得るか、あるいは異なる領域内では、平坦な、若しくは湾曲した幾何形状を取るか、又はさもなければ、層若しくは物品10a~10eの真下の基材の外径に一致し得る。例えば、物品10a~10eは半球状又はレンズ状の形状を取り得る。
【0028】
図2A~
図2Eは、光学フィルターを含む例示的な光学システムの概念的略図である。
図2Aは、光学フィルター10及び受光体40を含む例示的な光学システムの概念的略図である。諸例では、受光体40は、光センサ、カメラ、CCD、又は少なくとも光の所定の波長区域を感知するように構成された任意の他のセンサを含み得る。例えば、受光体40は近赤外センサを含み得る。諸例では、受光体40は、光を受光する物体、例えば、入射光を少なくとも部分的に吸収する物体、例えば、太陽熱ヒータ、又は光を受光する任意の他の物体を含み得る。光学フィルター10は、以上において
図1A~
図1Eを参照して説明されたとおりの、波長選択性散乱層を含む例示的な光学フィルターのうちの任意のもの、又は本開示に記載の他の例示的な光学フィルターを含み得る。
図2Aに示すように、光学フィルター10は、受光体40に隣接して配置されていてもよい。入射近赤外線42aは、近赤外波長を含んでもよく、光学フィルター10を通して受光体40へ実質的に透過され得る。入射可視光線44aは、可視波長を含んでもよく、光学フィルター10によって実質的に反射又は散乱され得、これにより、受光体40は可視光線44aから少なくとも部分的に遮蔽され、近赤外線42aを少なくとも部分的に受光する。諸例では、受光体は、光学フィルター10によって可視光線44aから実質的に又は完全に遮蔽され得、近赤外線42aの実質的に全てを受光し得る。
【0029】
図2Bは、光学フィルター10、受光体40、発光体46、及び物体48を含む例示的な光学システムの概念的略図である。諸例では、発光体46は、可視波長、近赤外波長、又は紫外波長を含む、光又は電磁放射の任意の好適な波長の発生源を含み得る。諸例では、発光体46は、電球、白熱光源、小型蛍光灯、LED、ライトガイド、又は任意の自然光源若しくは人工光源を含み得る。諸例では、発光体46は、光を発生しなくてもよく、光源によって発生された光を反射又は透過させるのみでもよい。光学フィルター10は、受光体40と物体48との間に配置されていてもよい。発光体は、光学フィルター10の、受光体40と同じ側に配置されていてもよい。発光体46から透過された近赤外線42bは、近赤外波長を含んでもよく、光学フィルター10を通して物体48へ実質的に透過され得る。光42bは物体48によって反射され得、反射光は物体48の光学特性によって変更され得る。反射光線42は、光学フィルター10を通して受光体40へ実質的に透過され得る。入射可視光線44bは、可視波長を含んでもよく、光学フィルター10によって実質的に反射又は散乱され得、これにより、受光体40及び発光体46の一方又は両方は、可視光線44aから少なくとも部分的に遮蔽される。諸例では、受光体は、光学フィルター10によって可視光線44bから実質的に又は完全に遮蔽され得、近赤外線42bの実質的に全てを受光し得る。
【0030】
図2Cは、光学フィルター10、受光体40、及び物体48を含む例示的な光学システムの概念的略図である。光学フィルター10は、受光体40と物体48との間に配置されていてもよい。入射近赤外線42cは、近赤外波長を含んでもよく、物体48及び光学フィルター10を通して受光体40へ実質的に透過され得る。入射可視光線44cは、可視波長を含んでもよく、光学フィルター10によって実質的に反射又は散乱され得、これにより、受光体40は、可視光線44cから少なくとも部分的に遮蔽され、近赤外線42cを少なくとも部分的に受光する。諸例では、受光体40は、光学フィルター10によって可視光線44cから実質的に又は完全に遮蔽され得、近赤外線42cの実質的に全てを受光し得る。
【0031】
図2Dは、光学フィルター10及び受光体40を含む例示的な光学システムの概念的略図である。光学フィルター10は、受光体40に隣接して配置されていてもよい。入射近赤外線42dは、近赤外波長を含んでもよく、光学フィルター10から受光体40へ実質的に反射され得る。入射可視光線44dは、可視波長を含んでもよく、光学フィルター10によって実質的に反射又は散乱され得、これにより、受光体40は、可視光線44dを少なくとも部分的に受光し、その一方で、近赤外線42dを少なくとも部分的に受光する。
【0032】
図2Eは、光学フィルター10、受光体40、及び発光体46を含む例示的な光学システムの概念的略図である。光学フィルター10は、発光体46と受光体40との間に配置されていてもよい。発光体46から透過された近赤外線42eは、近赤外波長を含んでもよく、光学フィルター10を通して受光体40へ実質的に透過され得る。入射可視光線44eは、可視波長を含んでもよく、光学フィルター10によって実質的に反射又は散乱され得、そのため、発光体46は、可視光線44eから少なくとも部分的に遮蔽される。諸例では、発光体46は、光学フィルター10によって可視光線44eから実質的に又は完全に遮蔽され得る。
図2Eの例示的な光学システムにおいては、受光体40が記載されているが、諸例では、
図2Eの例示的な光学システムは受光体40を含まなくてもよい。例えば、例示的な光学システムは、発光体46及び光学フィルター10を含み得、光学フィルター10は、発光体46を、視覚によって見えてしまうことから覆い隠し得る。
【0033】
諸例では、光学フィルター10は、少なくとも1つの取り外し可能又は再配置可能な層を含み得るか、あるいは光学フィルター10は、全体として取り外し又は再配置可能であり、そのため、光学フィルター10は、光学フィルター10の下の、又はそれに隣接する基板に対して取り外し又は再配置可能である。諸例では、光学フィルター10の周囲は、発光体46又は受光体40の一方又は両方の周囲を越えて延びていてもよく、あるいは光学フィルター10の主表面の面積は、発光体46又は受光体40の一方又は両方の表面積よりも大きいか小さくてもよい。諸例では、光学フィルター10は、電子機器、回路、基板、センサ、送信機などの他の構成要素を、光学フィルターによってこれらの構成要素を視覚から遮蔽することによって、カモフラージュするように構成され得る。諸例では、1つ以上の発光体46又は受光体40、例えばアレイを、光学フィルター10に隣接して配置することができるであろう。諸例では、発光体46又は受光体40の一方又は両方は、光学フィルター10から、例えば、少なくとも1cm、又は10cm、又は1m、又は10m、又は100m、又は1km、相対的に離れているか、あるいはなお更に離れていてもよい。
図2A~
図2Eでは、例えば、発光体46及び受光体40の一方又は両方と光学フィルター10との間の、直接経路が示されているが、諸例では、発光体46及び受光体40の一方又は両方と光学フィルター10との間の光は、光学的に導かれた経路、反射経路、又は屈折若しくはフィルタリングを含む光学的操作を含む経路、又は異なる光学媒体を通って進む経路を含む、非直接的経路をたどり得る。
【0034】
このように、諸例では、光学フィルター10は、受光体40を可視波長から少なくとも部分的に遮蔽し、その一方で、受光体40が近赤外波長を受光することを実質的に可能にするように構成され得る。諸例では、光学フィルター10は、例えば可視波長を散乱させることによって、受光体40又は発光体46の一方又は両方を視覚からカモフラージュするように構成され得る。
【0035】
図3A~
図3Dは、例示的な光学フィルターと、視認可能なパターン及び不可視の近赤外パターンを表示する電子ディスプレイとを含む例示的なシステムの概念図である。電荷結合素子(charge-coupled device、CCD)などの撮像センサは近赤外区域内で検出するため、可視的に反射可能なグラフィックを含む標示を生成することが可能であろう。標示は、カメラによって検出可能である不可視画像を覆い隠すことができるであろう。例えば、画像は、例えば、バーコード、2Dバーコード、又はQRコードなどの、信号又は情報を符号化する所定のパターンを含むことができるであろう。QRコードの物理的サイズは、それらが包含し得る情報量を制限し得る。しかし、不可視QRコードは、可視グラフィックを乱す、又は損なうことなく、標示と同じ物理的大きさを有することができるであろう。一例では、電子ディスプレイ60は、ディスプレイ60の背後に覆い隠されたそれぞれの可視及び近赤外発光体によって放射された可視及び近赤外光パターンを同時に表示する能力を有し得る。電子ディスプレイ60は、以上において
図1A~
図1Eを参照して説明された例示的な光学フィルターで被覆されていてもよい。例えば、電子ディスプレイ60は、
図3Bに示すように、視認可能であるパターン62と不可視の近赤外パターン64とを同時に表示し得る。パターン62は、相対的により小さいQRコード、又は相対的により小さい表示フットプリントを有する他のインダイシア(indicia)を含み得、パターン64は、相対的により大きいQRコード、又は相対的により大きなフットプリントを有する他のインダイシアを含み得る。パターン62は、光学フィルター(図示されていない)による可視波長の反射又は散乱の結果、視認可能になり得る。
図3Aにおいて見られるように、パターン62のみが視認可能であり、パターン64は、近赤外波長において比較的高い透明度で提示されている一方で、視覚に対して不可視のままとなり得る。それゆえ、近赤外波長を感知する能力を有するカメラは、十分な解像度で、例えば、パターン64内に包含され得る情報を復号するのに十分な解像度で、パターン64を感知することができる。
図3Cに示す例では、所定のパターンのみがディスプレイ60上で視認可能であり、その一方で、
図3Dに示すように、近赤外カメラによってのみ検出可能な不可視の近赤外パターンがディスプレイ60上に同時に表示され得る。それゆえ、3A、3B、3C、及び3Dのそれぞれの例示的なシステムでは、例示的な光学フィルターを用いて、所定の可視パターンのみを見せつつ、近赤外パターンの発生源を覆い隠す又はカモフラージュすることができる。一部の例では、不可視の近赤外パターン64を用いて秘匿情報を符号化することができ、その一方で、視認可能なパターン62を用いて、視認可能な情報、又は少なくとも、符号化可能であるが、符号化しても視認可能な情報を提示することができる。例えば、パターン62は、ウェブサイトなどの、情報の第1のセットを符号化することができ、その一方で、パターン64は、ディスプレイ60の位置などの、情報の第2のセットを符号化することができる。諸例では、電子ディスプレイ60は、可視パターン、不可視パターン、又はその両方を表示し得る。諸例では、電子ディスプレイ60は複数のパターンを表示し得る。諸例では、電子ディスプレイは、静的パターン又は動的パターンを表示し得る。それゆえ、例示的な光学フィルターは、高透明度の近赤外透過を有するカモフラージュをもたらし得る。
【0036】
図4は例示的な技術のフローチャートである。例示的な技術は、発光体46又は受光体40の一方又は両方に隣接して光学フィルター10を配置すること(52)を含み得る。光学フィルター10は、以上において
図1A~
図1E及び
図2A~
図2Eを参照して説明されたとおりの、波長選択性散乱層を含む。例示的な技術は任意選択的に、光学フィルター10と発光体46又は受光体40の一方又は両方との間に反射層16を配置すること(54)を更に含み得る。光学フィルター10は任意選択的に、発光体46又は受光体40の一方又は両方をカモフラージュし得る(56)。光学フィルター10は任意選択的に、発光体又は受光体の一方又は両方を可視波長から少なくとも部分的に遮蔽し得る(58)。
【0037】
このように、本開示による例示的なシステム、物品、及び技術は、例えば可視波長を選択的に散乱又は反射させることによって、可視波長の透過を減少させながら近赤外光を比較的高い透明度で透過させる、例示的な波長選択性散乱層を含む例示的な光学物品を含み得る。
【0038】
本開示に係る例示的な物品及び技法を、以下の非限定的な実施例によって例示する。
【実施例】
【0039】
表1の市販の材料及び機器を、サンプルの調製及び実験の実施において使用した。
【表1】
【0040】
粒子及び顔料サイズ測定方法
サンプルの粒径分布は、以下のように決定された。サンプルは、2-ブタノン又はMEKを用いて1:1000~1:10000(体積)で希釈された。粒径分布は、Zetasizer Nano ZSを使用して測定された。Z平均サイズ及びPDI(多分散度指数)データは、動的光散乱法に基づいて報告された。Z平均(Zavg)サイズは、ISO13321及びISO22412に定義されるようなキュムラント解析における調和強度平均流体力学粒径である。PDIは、0~1の無次元数であり、ISO規格文書13321:1996E及びISO22412:2008で定義されている相関データに対する単純な2パラメータ適合から計算された粒径分布を示す。
【0041】
顔料分散体の粒径は、動的レーザー光散乱(DLS)を使用して測定された。Microlith Blue顔料の屈折率は、金属アゾ染料の一群(Huangら、China Phys.Lett.20(2003)2259-2261)と同様に、文献(Liuら、J.Phys.D.Appl.Phys.37(2004)678-688)に報告されている。Microlith Blue顔料について、屈折率の虚部成分は、Liuらに報告されている。金属アゾ染料の一群について、屈折率の虚部成分は、Huangらに報告されている。
【0042】
光学特性の測定方法
サンプルについての光学特性が決定された。ヘイズ計(HAZE-GARD PLUS,BYK-Gardner)を用いて、サンプルについての透過率、ヘイズ、及び透明度が決定された。ヘイズは、全可視透過に対する拡散可視透過の比として定義され、パーセンテージ(比×100)として表される。全可視及び拡散可視(400~700nm)並びにNIR(800~1000nm)透過は、分光計(Hunterlab Ultrascan Pro)を使用して測定された。1000~1050nmのデータはノイズが多く、計算に使用されなかった。
【0043】
940nmでのNIR散乱は、拡散透過を940nmでの全透過で除算したものとして定義される。
【0044】
940nmでのNIR散乱率は、940nmでのNIR散乱を100で乗算し、可視透過ヘイズで除算することによって決定される。可視透過ヘイズは、ASTM D 1003及びISO/DIS 14782に従ってBYK Haze-gard plusにより測定された。
【0045】
800~1000nmの平均NIR散乱は、800nm~1000nmの各波長におけるNIR散乱として定義され、それらの波長におけるNIR散乱の平均をとる。
【0046】
800~1000nmのNIR散乱率は、800~1000nmの平均NIR散乱を100で乗算し、可視透過ヘイズで除算することによって決定される。可視透過ヘイズは、ASTM D 1003及びISO/DIS 14782に従ってBYK HAZE-GARD PLUSにより測定された。
【0047】
可視反射ヘイズ率は、平均可視全反射率に対する平均可視拡散反射率の比率である。
【0048】
サンプルについて決定される更なる光学特性には、鏡面含む反射スペクトル(SPIN)及び鏡面除く反射スペクトル(SPEX)の測定が含まれる。これらの測定は、Ultra Scan Pro分光計(Hunterlab(Reston,VA))を用いて行われ、Hunterlabソフトウェアに含まれている標準的な測定選択肢である。SPIN及びSPEX測定値から拡散反射スペクトル及びグレア反射スペクトルを計算し、ここで、拡散反射スペクトルは、SPEXであり、グレア反射スペクトルは、SPINからSPEXを引いたものである。表4は、拡散スペクトル及びグレアスペクトルに基づいて、L値、a値、及びb値を報告する。計算された拡散反射スペクトル及びグレア反射スペクトルを使用して、CIE 1931色空間に従ってX値、Y値、及びZ値を計算し、続いて既知のHunter Lab法を使用して値L、a値、及びb値を計算した。変数Lは明度に相関しており、0が黒色であり100が白色である。変数aは、反対色赤色及び緑色に相関しており、正の値がより赤色であり、負の値がより緑色である。変数bは、反対色青色及び黄色に相関しており、負の値がより青色であり、正の値がより黄色である。
【0049】
X1296の接着剤合成法
ベース接着剤配合物は、以下のように調製された。2-エチルヘキシルアクリレート40g、ブチルアクリレート40g、ヒドロキシエチルアクリレート15g、アクリルアミド5g、熱開始剤Vazo52、Karenx MT PE1 0.08g、MEK60gが反応容器に充填された。この容器は窒素で5分間スパージされ、密閉されてから、60℃の撹拌水浴中に20時間置かれた。次いで、生成した溶液ポリマーが冷却され、空気で10分間スパージされ、イソシアナチルエチルメタクリレート(Isocyanatyl Ethyl Methacrylate、IEM)0.3gが容器に添加された。容器は再び密閉され、50℃まで12時間加熱され、IEMが、形成されたアクリルポリマー上のペンダントOH官能基と反応することが可能になった。この官能化に続いて、0.4gのIrgacure-184及び8gのCN983 が容器に添加され、1時間混合された。
【0050】
実施例1
サンプル光学フィルムS01は、下記のように調製された。19.13gのM1192、3.38gのCN9018、2.5gのTospearl 145、12.5gのSR415、12.5gのIBOA中の42.3重量%のUV30 TITAN L-530、25gのMEK、及び0.5gのTPO-Lを混合することによって、配合物が調製された。得られた配合物が、3M(St.Paul,MN)から市販されているESR2フィルム上に、#8メイヤーバーを用いてコーティングされた。得られたフィルムは、他のサンプルのためのベースフィルムとして使用され、以下、ベースフィルムと呼ばれる。実施例1のサンプルS01は、波長選択性散乱層がTiO2ナノ粒子及びシリカ微小粒子を含む、ベースフィルムを用いて調製された。
【0051】
S01の光学特性は、表2に記載された特性を有する光学特性測定法に基づいて決定された。
【0052】
実施例2
サンプル光学フィルムS02は、下記のように調製された。Microlith(登録商標) Magenta 4500J Magenta PigmentをMEK中に分散させて、10重量%の分散体を作製した。この顔料分散体の粒径は、Malvern Nano ZSを使用した動的光散乱法で測定され、Zavgは140nmである。得られた分散体1部を用いてコーティング溶液が調製され、X1296接着剤溶液2部と組み合わされた。コーティング溶液は、#20メイヤーロッドを使用して透明PET上にコーティングされた。コーティングは乾燥され、コーティングを保護するために剥離ライナーがコーティング上に適用された。
【0053】
S01の光学特性は、表2に記載された特性を有する光学特性測定法に基づいて決定された。更に、測定された透過スペクトルは、選択的可視吸収及び高IR透過を示す。
【0054】
実施例3
サンプル光学フィルムS03は、下記のように調製された。実施例2で作製されたコーティング溶液が、実施例1に記載のベースフィルム上にコーティングされた。着色された接着剤溶液は、散乱ULI層に浸透する。コーティングは乾燥され、コーティングを保護するために剥離ライナーがコーティング上に適用された。
【0055】
S03の光学特性は、表2に記載された特性を有する光学特性測定法に基づいて決定された。測定された透過スペクトルは、選択的可視吸収、可視散乱、及びIR透過を示す。可視透過ヘイズは16.7%である。より高い可視ヘイズは、実施例1で説明したULI構造からの拡散散乱の増加によるものである。
【0056】
実施例4
サンプル光学フィルムS04は、下記のように調製された。Microlith(登録商標) Magenta 4500J Magenta PigmentをMEK中に分散させて、10重量%の分散体を作製した。この顔料分散体の粒径は、Malvern Nano ZSを使用した動的光散乱法で測定され、Zavgは140nmである。得られた分散体1部を用いてコーティング溶液が調製され、MEK中のParaloid B66の40重量%溶液2部と組み合わされた。得られたコーティング溶液は、#20メイヤーロッドを使用して透明PET上にコーティングされた。コーティングは乾燥された。
【0057】
S04の光学特性は、表2に記載された特性を有する光学特性測定法に基づいて決定された。測定された透過スペクトルは、選択的可視吸収及び高IR透過を示す。可視透過ヘイズは7.9%である。
【0058】
実施例5
サンプル光学フィルムS04は、下記のように調製された。Microlith(登録商標) Blue 7080KJ PigmentをMEK中に分散させて、10重量%の分散体を作製した。この顔料分散体の粒径は、Malvern Nano ZSを使用した動的光散乱法で測定され、Zavgは200nmである。得られた分散体1部を用いてコーティング溶液が調製され、MEK中のParaloid B66の40重量%溶液2部と組み合わされた。得られたコーティング溶液は、#20メイヤーロッドを使用して透明PET上にコーティングされた。コーティングは乾燥された。
【0059】
S05の光学特性は、表2に記載された特性を有する光学特性測定法に基づいて決定された。測定された透過スペクトルは、最大800nmまで延びている強可視吸収(緑色及び赤色波長)及び高NIR透過を示す。可視透過ヘイズは2.2%である。Microlith Blue顔料の屈折率の虚部成分は、0.1より大きくかつ1未満である。実施例5は、屈折率の虚部成分が可視スペクトル内にある
図9及び
図10に関連する。
【0060】
実施例6
サンプル光学フィルムS06は、下記のように調製された。Orasol Black X55染料が、MEK中に20重量%で溶解された。染料溶液1部が、MEK中のParaloid B66の40重量%溶液2部と混合された。得られたコーティング溶液は、#30メイヤーロッドを使用して透明PET上にコーティングされた。コーティングは乾燥され、コーティングを保護するために剥離ライナーがコーティング上に適用された。
【0061】
S06の光学特性は、表2に記載された特性を有する光学特性測定法に基づいて決定された。測定された透過スペクトルは、全可視波長にわたる強可視吸収及び高NIR透過を示す。金属アゾ染料の一群の屈折率の虚部成分は、10未満である。実施例6は、屈折率の虚部成分が可視スペクトル内にある
図5及び
図8に関連する。
【0062】
実施例7
サンプル光学フィルムS07は、下記のように調製された。Orasol Black X55染料が、MEK中に20重量%で溶解された。染料溶液1部をX1296接着剤溶液2部と混合して、6.66重量%のOrasol Black X55染料を含有するコーティング溶液を作製した。得られたコーティング溶液は、#20メイヤーロッドを使用して実施例1で調製されたフィルム上にコーティングされた。コーティングは乾燥され、コーティングを保護するために剥離ライナーがコーティング上に適用された。
【0063】
S06の光学特性は、表2に記載された特性を有する光学特性測定法に基づいて決定された。測定された透過スペクトルは、全可視波長にわたる強可視吸収及び高NIR透過を示す。金属アゾ染料の一群の屈折率の虚部成分は、10未満である。実施例7は、屈折率の虚部成分が可視スペクトル内にある
図5及び
図8に関連する。
【0064】
実施例8
実施例8は、Mimaki UJF-3042HG UVインクジェットプリンタ(Mimaki,Tomi,Japan)を使用して、実施例1のベースフィルム上に正方形の色パッチが印刷されたサンプルS08~S011を含む。積層体上の透明なビニル9097(3M、St.Paul、MN)が各サンプルに適用された。サンプル光学フィルムS08は、インクの色がプロセスブラックであり、上記のように調製された。サンプル光学フィルムS09は、インクの色がイエローであり、上記のように調製された。サンプル光学フィルムS10は、インクの色がマゼンタであり、上記のように調製された。サンプル光学フィルムS11は、インクの色がシアンであり、上記のように調製された。
【0065】
S08~S11の光学特性は、表2に記載された特性を有する光学特性測定法に基づいて決定された。
【0066】
実施例9
サンプル光学フィルムS12~S18が下記のように調製された。7重量%のCAP504-0.2と93重量%のDowanol(商標)PMとを混合することにより、キャリア層が調製された。3.5重量%のCAB381-20と、1.5重量%のPFC105 TiO2と、95重量%のDowanol(商標)PMとを混合することによって、散乱層が調製された。6.99重量%のCAB381-20と、0.007重量%のBYK333と、0.007重量%のTinuvin123と、93重量%のDowanol(商標)PMとを混合することによって、保護層が調製された。キャリア層、散乱層、及び保護層は、3層スライドダイを使用して同時にコーティングされた。キャリア層は、1分あたり80gでコーティングされ、乾燥時に約0.33μmであった。散乱層は、S12~S18で1分あたり60~200グラムまで変更され、これは乾燥厚さ約0.17~0.55μmであった。保護層は、1分あたり230gでコーティングされ、これは乾燥厚さ約1.0μmであった。コーティング中のウェブ速度は、1分あたり150フィートであった。コーティング後、各層は、マルチゾーンオーブン内で140F及び160Fで乾燥された。
【0067】
S12~S18の光学特性は、表3及び表4に記載された特性を有する光学特性測定法に基づいて決定された。実施例9の複数の粒子は、10
-7未満の可視スペクトルにおける屈折率の虚部成分を有する。実施例9は、
図6及び
図7に関連する。
【0068】
実施例10
S19のサンプル光学フィルムは、下記のように調製された。7重量%のCAP504-0.2と93重量%のDowanol(商標)PMとを混合することにより、キャリア層が調製された。3.5重量%のCAB381-20と、1.5重量%のKronos 2160 TiO2と、95重量%のDowanol(商標)PMとを混合することによって、散乱層が調製された。6.99重量%のCAB381-20と、0.007重量%のBYK333と、0.007重量%のTinuvin123と、93重量%のDowanol(商標)PMとを混合することによって、保護層が調製された。キャリア層、散乱層、及び保護層は、3層スライドダイを使用して同時にコーティングされた。キャリア層は、1分あたり80gでコーティングされ、乾燥時に約0.33μmであった。散乱層は、1分あたり210gでコーティングされ、これは乾燥厚さ約0.58μmであった。保護層は、1分あたり230gでコーティングされ、これは乾燥厚さ約1.0μmであった。コーティング中のウェブ速度は、1分あたり150フィートであった。コーティング後、各層は、マルチゾーンオーブン内で140F及び160Fで乾燥された。
【0069】
S19の光学特性は、表3及び表4に記載された特性を有する光学特性測定法に基づいて決定された。実施例10の複数の粒子は、10
-7未満の可視スペクトルにおける屈折率の虚部成分を有する。実施例10は、
図6及び
図7に関連する。
【表2】
【表3】
【表4】
【0070】
以下は本開示による例示的な実施形態である。
【0071】
項目1.発光体又は受光体の一方又は両方と、
発光体又は受光体の一方又は両方に隣接する光学フィルターであって、
光学フィルターは、波長選択性散乱層を含み、
波長選択性散乱層は、複数の粒子を含み、
波長選択性散乱層は、約0.9未満の近赤外散乱率を有し、近赤外散乱率は、平均可視ヘイズに対する平均近赤外散乱の比率であり、
波長選択性散乱層は、約0.1より大きい可視反射ヘイズ率を有し、可視反射ヘイズ率は、平均可視全反射率に対する平均可視拡散反射率の比率であり、
複数の粒子は、10未満の仮想屈折率を有する、光学フィルターと、を備える、システム。
【0072】
項目2.波長選択性散乱層が、約0.6未満の近赤外散乱率を有する、項目1に記載のシステム。
【0073】
項目3.波長選択性散乱層が、約0.4未満の近赤外散乱率を有する、項目1に記載のシステム。
【0074】
項目4.波長選択性散乱層が、約0.3より大きい可視反射ヘイズ率を有する、項目1~3のいずれか一項に記載のシステム。
【0075】
項目5.波長選択性散乱層が、約0.5より大きい可視反射ヘイズ率を有する、項目1~3のいずれか一項に記載のシステム。
【0076】
項目6.複数の粒子が、10-7未満の仮想屈折率を有する、項目1~5のいずれか一項に記載のシステム。
【0077】
項目7.複数の粒子が、10~10-1の仮想屈折率を有する、項目1~5のいずれか1つに記載のシステム。
【0078】
項目8.複数の粒子が、TiO2、無機顔料、又は有機顔料を含む、項目1~7のいずれか一項に記載のシステム。
【0079】
項目9.波長選択性散乱層が、ポリマー、コーティングされたポリマー、熱可塑性ポリマー、又は接着剤を含む光学媒体を含む、項目1~8のいずれか一項に記載のシステム。
【0080】
項目10.波長選択性散乱層が印刷可能インクを含む、項目1~9のいずれか一項に記載のシステム。
【0081】
項目11.波長選択性散乱層が染料を含む、項目1~9のいずれか一項に記載のシステム。
【0082】
項目12.光学フィルターが保護層を含む、項目1~9のいずれか一項に記載のシステム。
【0083】
項目13.光学フィルターがシーラント層を含む、項目1~9のいずれか一項に記載のシステム。
【0084】
項目14.波長選択性散乱層が、800nm~1000nmの近赤外範囲で約0.5未満の平均近赤外透過散乱を有する、項目1~11のいずれか一項に記載のシステム。
【0085】
項目15.波長選択性散乱層が、800nm~1000nmの近赤外範囲で約0.2未満の平均近赤外透過散乱を有する、項目1~11のいずれか一項に記載のシステム。
【0086】
項目16.波長選択性散乱層が、800nm~1000nmの近赤外範囲で約0.1未満の平均近赤外透過散乱を有する、項目1~11のいずれか一項に記載のシステム。
【0087】
項目17.波長選択性散乱層が、800nm~1000nmの近赤外範囲で約0.05未満の平均近赤外透過散乱を有する、項目1~11のいずれか一項に記載のシステム。
【0088】
項目18.波長選択性散乱層が、800nm~1000nmの近赤外範囲で約0.02未満の平均近赤外透過散乱を有する、項目1~11のいずれか一項に記載のシステム。
【0089】
項目19.光学フィルターを備える物品であって、
光学フィルターは、波長選択性散乱層を含み、
波長選択性散乱層は、複数の粒子を含み、
波長選択性散乱層は、約0.9未満の近赤外散乱率を有し、近赤外散乱率は平均可視ヘイズに対する平均近赤外散乱の比率であり、
波長選択性散乱層は約0.1より大きい可視反射ヘイズ率を有し、可視反射ヘイズ率は平均可視全反射率に対する平均可視拡散反射率の比率であり、
複数の粒子は10未満の仮想屈折率を有する、物品。
【0090】
項目20.波長選択性散乱層が、約0.6未満の近赤外散乱率を有する、項目19に記載の物品。
【0091】
項目21.波長選択性散乱層が、約0.4未満の近赤外散乱率を有する、項目19に記載の物品。
【0092】
項目22.波長選択性散乱層が、約0.3より大きい可視反射ヘイズ率を有する、項目19~21のいずれか一項に記載の物品。
【0093】
項目23.波長選択性散乱層が、約0.5より大きい可視反射ヘイズ率を有する、項目19~21のいずれか一項に記載の物品。
【0094】
項目24.複数の粒子が、10-7未満の仮想屈折率を有する、項目19~21のいずれか一項に記載の物品。
【0095】
項目25.複数の粒子が、10~10-1の仮想屈折率を有する、項目19~21のいずれか一項に記載の物品。
【0096】
項目26.複数の粒子が、TiO2、無機顔料、又は有機顔料を含む、項目19~21のいずれか一項に記載の物品。
【0097】
項目27.波長選択性散乱層が、ポリマー、コーティングされたポリマー、熱可塑性ポリマー、又は接着剤を含む光学媒体を含む、項目19~26のいずれか一項に記載の物品。
【0098】
項目28.散乱層が印刷可能インクを含む、項目19~27のいずれか一項に記載の物品。
【0099】
項目29.散乱層が染料を含む、項目19~27のいずれか一項に記載の物品。
【0100】
項目30.光学フィルターが保護層を含む、項目19~29のいずれか一項に記載の物品。
【0101】
項目31.光学フィルターがシーラント層を含む、項目19~29のいずれか一項に記載の物品。
【0102】
項目32.波長選択性散乱層が、800nm~1000nmの近赤外範囲で約0.5未満の平均近赤外透過散乱を有する、項目19~29のいずれか一項に記載の物品。
【0103】
項目33.波長選択性散乱層が、800nm~1000nmの近赤外範囲で約0.2未満の平均近赤外透過散乱を有する、項目19~29のいずれか一項に記載の物品。
【0104】
項目34.波長選択性散乱層が、800nm~1000nmの近赤外範囲で約0.1未満の平均近赤外透過散乱を有する、項目19~29のいずれか一項に記載の物品。
【0105】
項目35.波長選択性散乱層が、800nm~1000nmの近赤外範囲で約0.05未満の平均近赤外透過散乱を有する、項目19~29のいずれか一項に記載の物品。
【0106】
項目36.波長選択性散乱層が、800nm~1000nmの近赤外範囲で約0.02未満の平均近赤外透過散乱を有する、項目19~29のいずれか一項に記載の物品。
【0107】
項目37.波長選択性散乱層が第1の屈折率を有する光学媒体を含み、複数の粒子が第2の屈折率を有し、複数の粒子の平均粒径、第1の屈折率、及び第2の屈折率が、
図5の線[0.9の線]の下の領域から選択される、項目19に記載の物品。
【0108】
項目38.波長選択性散乱層が第1の屈折率を有する光学媒体を含み、複数の粒子が第2の屈折率を有し、複数の粒子の平均粒径、第1の屈折率、及び第2の屈折率が、
図5の線[0.6の線]の下の領域から選択される、項目19に記載の物品。
【0109】
項目39.波長選択性散乱層が第1の屈折率を有する光学媒体を含み、複数の粒子が第2の屈折率を有し、複数の粒子の平均粒径、第1の屈折率、及び第2の屈折率が、
図5の線[0.4の線]の下の領域から選択される、項目19に記載の物品。
【0110】
項目40.波長選択性散乱層が第1の屈折率を有する光学媒体を含み、複数の粒子が第2の屈折率を有し、複数の粒子の平均粒径、第1の屈折率、及び第2の屈折率が、
図6の線[0.9の線]の下の領域から選択される、項目24に記載の物品。
【0111】
項目41.波長選択性散乱層が第1の屈折率を有する光学媒体を含み、複数の粒子が第2の屈折率を有し、複数の粒子の平均粒径、第1の屈折率、及び第2の屈折率が、
図6の線[0.6の線]の下の領域から選択される、項目24に記載の物品。
【0112】
項目42.波長選択性散乱層が第1の屈折率を有する光学媒体を含み、複数の粒子が第2の屈折率を有し、複数の粒子の平均粒径、第1の屈折率、及び第2の屈折率が、
図6の線[0.4の線]の下の領域から選択される、項目24に記載の物品。
【0113】
項目43.波長選択性散乱層が第1の屈折率を有する光学媒体を含み、複数の粒子が第2の屈折率を有し、複数の粒子の平均粒径、第1の屈折率、及び第2の屈折率が、
図9の線[0.9の線]の下の領域から選択される、項目25に記載の物品。
【0114】
項目44.波長選択性散乱層が第1の屈折率を有する光学媒体を含み、複数の粒子が第2の屈折率を有し、複数の粒子の平均粒径、第1の屈折率、及び第2の屈折率が、
図9の線[0.6の線]の下の領域から選択される、項目25に記載の物品。
【0115】
項目45.波長選択性散乱層が第1の屈折率を有する光学媒体を含み、複数の粒子が第2の屈折率を有し、複数の粒子の平均粒径、第1の屈折率、及び第2の屈折率が、
図9の線[0.4の線]の下の領域から選択される、項目25に記載の物品。
【0116】
本発明のさまざまな実施例について説明した。これら及びその他の実施例は、以下の特許請求の範囲の範囲内である。