IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 東レ株式会社の特許一覧

特許7459509トリコデルマ属糸状菌の変異株およびタンパク質の製造方法
<>
  • 特許-トリコデルマ属糸状菌の変異株およびタンパク質の製造方法 図1-1
  • 特許-トリコデルマ属糸状菌の変異株およびタンパク質の製造方法 図1-2
  • 特許-トリコデルマ属糸状菌の変異株およびタンパク質の製造方法 図2
  • 特許-トリコデルマ属糸状菌の変異株およびタンパク質の製造方法 図3
  • 特許-トリコデルマ属糸状菌の変異株およびタンパク質の製造方法 図4
  • 特許-トリコデルマ属糸状菌の変異株およびタンパク質の製造方法 図5
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-03-25
(45)【発行日】2024-04-02
(54)【発明の名称】トリコデルマ属糸状菌の変異株およびタンパク質の製造方法
(51)【国際特許分類】
   C12N 1/15 20060101AFI20240326BHJP
   C12P 21/02 20060101ALN20240326BHJP
   C12N 15/31 20060101ALN20240326BHJP
   C12R 1/885 20060101ALN20240326BHJP
   C12N 9/42 20060101ALN20240326BHJP
【FI】
C12N1/15 ZNA
C12P21/02 C
C12N15/31
C12R1:885
C12N9/42
【請求項の数】 6
(21)【出願番号】P 2019547718
(86)(22)【出願日】2019-07-29
(86)【国際出願番号】 JP2019029563
(87)【国際公開番号】W WO2020027010
(87)【国際公開日】2020-02-06
【審査請求日】2022-06-21
(31)【優先権主張番号】P 2018142425
(32)【優先日】2018-07-30
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】000003159
【氏名又は名称】東レ株式会社
(72)【発明者】
【氏名】加川 雄介
(72)【発明者】
【氏名】平松 紳吾
(72)【発明者】
【氏名】山田 勝成
【審査官】小田 浩代
(56)【参考文献】
【文献】特表2014-513531(JP,A)
【文献】国際公開第2017/170917(WO,A1)
【文献】HELDWEIN, E.E. et al.,Crystal structure of the clathrin adaptor protein 1 core,Proc. Natl. Acad. Sci. USA.,2004年,Vol. 101,pp. 14108-14113
(58)【調査した分野】(Int.Cl.,DB名)
C12N15/00-15/90
C07K14/00-19/00
C12P21/00-21/08
JSTPlus/JMEDPlus/JST7580(JDreamIII)
CAplus/MEDLINE/EMBASE/BIOSIS/WPIDS(STN)
PubMed
(57)【特許請求の範囲】
【請求項1】
配列番号2で表されるアミノ酸配列または配列番号2で表されるアミノ酸配列と配列同一性が90%以上のアミノ酸配列からなるポリペプチドであるbeta-adaptin large subunitの発現が欠損または低下する変異を有し、当該変異株の培養液の粘度が、beta-adaptin large subunitの機能が欠損または低下する変異を有さない親株と比較して低下することを特徴とする、トリコデルマ属糸状菌変異株。
【請求項2】
配列番号2で表されるアミノ酸配列からなるポリペプチド、または、配列番号2で表されるアミノ酸配列と配列同一性が90%以上のアミノ酸配列からなり、当該アミノ酸配列のN末端側から300番目のアミノ酸残基がグルタミン残基であるポリペプチドであるbeta-adaptin large subunitにおいて、当該アミノ酸配列のN末端側から300番目のグルタミン残基がリジン残基に変異し、当該変異株の培養液の粘度が、beta-adaptin large subunitを構成するアミノ酸配列に変異を有さない親株と比較して低下することを特徴とする、トリコデルマ属糸状菌変異株。
【請求項3】
前記beta-adaptin large subunitを構成するアミノ酸配列が配列番号2から10で表されるアミノ酸配列のいずれかである、請求項1または2に記載のトリコデルマ属糸状菌変異株。
【請求項4】
前記トリコデルマ属糸状菌がTrichoderma reeseiである、請求項1から3のいずれかに記載のトリコデルマ属糸状菌変異株。
【請求項5】
請求項1から4のいずれかに記載のトリコデルマ属糸状菌変異株を培養する工程を含む、タンパク質の製造方法。
【請求項6】
請求項1から4のいずれかに記載のトリコデルマ属糸状菌変異株を培養する工程を含む、セルラーゼの製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は培養液の粘度を低く保つことができるトリコデルマ属糸状菌の変異株および当該変異株を用いたタンパク質の製造方法に関する。
【背景技術】
【0002】
トリコデルマ属糸状菌は、高いタンパク質製造能を有していることが知られており、トリコデルマ属糸状菌を用いたタンパク質の製造の検討が行われてきた。具体的には、トリコデルマ属糸状菌は、セルロース、ラクトース、セロビオースなどを誘導物質として、タンパク質の中でも特に糖化酵素に分類されるセルラーゼを製造する。セルラーゼ製造量を強化するため、古くよりセルラーゼ製造を制御する因子の過剰発現、欠損をはじめとする遺伝子の改変、培養条件の最適化などの検討が多々行われている。
【0003】
一方で、トリコデルマ属糸状菌は生育やタンパク質の製造に酸素を必須とする好気性糸状菌に属している。また、トリコデルマ属糸状菌は液体培地で培養すると、増殖に伴い培養液の粘度が高まるという特徴を有している。培養液の粘度が高まると、酸素や栄養素の分布が不均一になるため、トリコデルマ属糸状菌を培養する際には、培養液を撹拌したり、酸素供給量を増加させたりして培養中の溶存酸素飽和度の低下を防ぎ、一定以上に維持する必要がある。また、培養槽が大型化すると、酸素移動容量係数が低くなるため、培養中の溶存酸素飽和度を一定以上に保つためには、さらに撹拌数や酸素供給量を増やす必要がある。しかしながら、撹拌数を増やすと、菌体に大きなせん断ダメージを与えてしまうという課題があり、酸素供給量を増やすためにはより大きなエネルギーが必要になるという課題もある。
【0004】
特許文献1から6では、それぞれトリコデルマ属糸状菌のSfb3、Mpg1、Gas1、Seb1、Crz1およびTps1のタンパク質の破壊または生成を減少させることにより、親株と比較して深部培養における好気性発酵時の溶存酸素量を低い撹拌数で維持することが可能になると開示されている。また、特許文献7には、トリコデルマ属糸状菌のBXL1遺伝子を破壊すると、培養液の溶存酸素飽和度の低下を抑制することができると記載されている。
【先行技術文献】
【特許文献】
【0005】
【文献】特表2013-533751号公報
【文献】特表2014-513529号公報
【文献】特表2014-513530号公報
【文献】特表2014-513531号公報
【文献】特表2014-513532号公報
【文献】特表2014-513533号公報
【文献】国際公開第2017/170917号
【発明の概要】
【発明が解決しようとする課題】
【0006】
上記のとおり、トリコデルマ属糸状菌を用いてタンパク質を製造するにあたり、培養液中の溶存酸素濃度の低下を抑制し、一定以上に保つことは非常に重要である。本発明では、トリコデルマ属糸状菌を用いた液体培養によるタンパク質の製造の際に、培養液の粘度を低く保つことができれば、培養スケールを大型化した場合でも、攪拌に必要なエネルギーを低減することができると共に、培養液中の溶存酸素飽和度の低下を抑制することもできると考え、培養液の粘度を低下させるトリコデルマ属糸状菌の変異株の取得および当該トリコデルマ属糸状菌の変異株を用いたタンパク質の製造方法を提供することを課題とする。
【課題を解決するための手段】
【0007】
本発明者は、培養液の粘度を低く保つことを可能にするトリコデルマ属糸状菌の遺伝子を特定するために鋭意検討した結果、beta-adaptin large subunitの変異が培養液の粘度を低く保つことができるようになり、さらに培養液中の溶存酸素飽和度の低下を抑制できることを見出し、本発明を完成するに至った。
【0008】
すなわち、本発明は以下の(1)~(8)で構成される。
(1)beta-adaptin large subunitの機能が欠損または低下する変異を有し、当該変異株の培養液の粘度が、beta-adaptin large subunitの機能が欠損または低下する変異を有さない親株と比較して低下することを特徴とする、トリコデルマ属糸状菌変異株。
(2)beta-adaptin large subunitを構成するアミノ酸配列に変異を有し、当該変異株の培養液の粘度が、beta-adaptin large subunitを構成するアミノ酸配列に変異を有さない親株と比較して低下することを特徴とする、トリコデルマ属糸状菌変異株。
(3)前記アミノ酸配列の変異が、beta-adaptin large subunitを構成するアミノ酸配列のN末端側から300番目のグルタミン残基のグルタミン以外のアミノ酸残基への変異である、(2)に記載のトリコデルマ属糸状菌変異株。
(4)前記グルタミン以外のアミノ酸残基がリジンである、(3)に記載のトリコデルマ属糸状菌変異株。
(5)前記beta-adaptin large subunitを構成するアミノ酸配列が配列番号2から10で表されるアミノ酸配列のいずれかである、(1)から(4)のいずれかに記載のトリコデルマ属糸状菌変異株。
(6)前記トリコデルマ属糸状菌がTrichoderma reeseiである、(1)から(5)のいずれかに記載のトリコデルマ属糸状菌変異株。
(7)(1)から(6)のいずれかに記載のトリコデルマ属糸状菌変異株を培養する工程を含む、タンパク質の製造方法。
(8)(1)から(6)のいずれかに記載のトリコデルマ属糸状菌変異株を培養する工程を含む、セルラーゼの製造方法。
【発明の効果】
【0009】
本発明のトリコデルマ属糸状菌変異株は、変異導入前の親株と比較して培養液の粘度を低く保つことが可能であり、培養液中の溶存酸素飽和度の低下も抑制することができる。さらに、タンパク質、特にセルラーゼの製造量も向上するという予想外の効果も得られる。
【図面の簡単な説明】
【0010】
図1-1】トリコデルマ属糸状菌が有するbeta-adaptin large subunitを構成する全長アミノ酸配列の比較。
図1-2】トリコデルマ属糸状菌が有するbeta-adaptin large subunitを構成する全長アミノ酸配列の比較。
図2】Trichoderma reesei QM9414株とQM9414変異株IをArbocel B800を用いて培養した際の培養液中の溶存酸素飽和度の経時的な推移。
図3】Trichoderma reesei QM9414株とQM9414変異株IをArbocel B800を用いて培養した際の培養液中の粘度の経時的な推移。
図4】Trichoderma reesei QM9414株とQM9414変異株IIをArbocel B800を用いて培養した際の培養液中の溶存酸素飽和度の経時的な推移。
図5】Trichoderma reesei QM9414株とQM9414変異株IIをArbocel B800を用いて培養した際の培養液中の粘度の経時的な推移。
【発明を実施するための形態】
【0011】
本発明は、もともとタンパク質の製造能に優れる微生物であるトリコデルマ属糸状菌の親株に変異を導入することによって、培養液の粘度を低く保つことができることを特徴としている。本発明で用いるトリコデルマ属糸状菌の親株は野生株に制限されず、タンパク質製造能が高まるように改良されたトリコデルマ属糸状菌の変異株も親株として好ましく用いることができる。例えば、トリコデルマ属糸状菌の変異株には、変異剤や紫外線照射などで変異処理を施し、タンパク質の製造性が向上した変異株を上記親株として利用することができる。
【0012】
前記親株の具体例としては、Trichoderma reeseiの先祖にあたるTrichoderma parareesei(ATCC MYA-4777)、Trichoderma reeseiに属する公知の変異株であるQM6a株(NBRC31326)、QM9123株(ATCC24449)、QM9414株(NBRC31329)、PC-3-7株(ATCC66589)、QM9123株(NBRC31327)、RutC-30株(ATCC56765)、CL-847株(Enzyme.Microbiol.Technol.10,341-346(1988))、MCG77株(Biotechnol.Bioeng.Symp.8, 89(1978))、MCG80株(Biotechnol.Bioeng.12,451-459(1982))、Trichoderma citrinoviride(ATCC24961)、Trichoderma longibrachiatum(ATCC18648)、Trichoderma virens(ATCC9645)、Trichoderma atroviride(ATCC20476)、Trichoderma gamsii(NFCCI2177)、Trichoderma asperellum(ATCC52438)、Trichoderma harzianum(ATCC20846)、Trichoderma guizhouenseなどが挙げられる。なお、QM6a株、QM9414株、QM9123株はNBRC(NITE Biological Resource Center)より、PC-3-7株、RutC-30株、Trichoderma citrinoviride、Trichoderma longibrachiatum、Trichoderma virens、Trichoderma atroviride、Trichoderma asperellum、Trichoderma harzianumはATCC(American Type Culture Collection)より、Trichoderma gamsiiはNFCCI(National Fungal Culture Collection of India)より入手することができる。これら具体例のうち、親株として特に好ましく用いられるのはTrichoderma reeseiに属する菌株である。
【0013】
beta-adaptin large subunitは、4量体から構成されるアダプタープロテイン複合体を構成するタンパク質のひとつである。アダプタープロテイン複合体は、真核生物に広く保存されている。当該アダプタープロテインはクラスリンと結合し、細胞内外や菌体内外の輸送に関与する小胞を構成することが知られている(Proc.Nati.Acad.Sci.USA.101,14108-14113(2004))。
【0014】
トリコデルマ属糸状菌の有するbeta-adaptin large subunitの具体例としては、好ましくは配列番号2から10のいずれかで表されるアミノ酸配列からなるポリペプチドである。配列番号2で表されるアミノ酸配列は、Trichoderma reesei由来であり、配列番号3で表されるアミノ酸配列は、Trichoderma citrinoviride由来であり、配列番号4で表されるアミノ酸配列は、Trichoderma longibrachiatum由来であり、配列番号5で表されるアミノ酸配列は、Trichoderma virens由来であり、配列番号6で表されるアミノ酸配列は、Trichoderma atroviride由来であり、配列番号7で表されるアミノ酸配列は、Trichoderma gamsii由来であり、配列番号8で表されるアミノ酸配列は、Trichoderma asperellum由来であり、配列番号9で表されるアミノ酸配列は、Trichoderma harzianum由来であり、配列番号10で表されるアミノ酸配列は、Trichoderma guizhouense由来である。ここで、配列番号2から10で表されるアミノ酸配列のアライメント結果を図1-1および図1-2に示す。図1-1および図1-2に示す通り、配列番号2から10の配列同一性は90%以上であり、beta-adaptin large subunitは、トリコデルマ属糸状菌においてアミノ酸の配列保存性が高いことがわかる。また、図1-1で示した通り、配列番号2から10で表されるアミノ酸配列のN末端側より300番目のアミノ酸残基には、グルタミン残基が共通して保存されている。以下、配列番号2を例にその特徴をさらに説明する。
【0015】
配列番号2で表されるアミノ酸配列からなるポリペプチドは、上記のとおりTrichoderma reeseiが有するポリペプチドであり、National Center for Biotechnology Informationでは、Trichoderma reesei QM6a株が持つadaptor protein(AP-1)complex beta-adaptin large subunit(EGR48910)として登録されている。また、National Center for Biotechnology InformationのConserved Domain Architecture Retrieval Toolによれば、N末端側から14番目~531番目のアミノ酸残基はAdaptin N terminal regionドメインを有すると開示されている。
【0016】
本発明における、beta-adaptin large subunitを構成するアミノ酸配列に変異を有するとは、アミノ酸の欠失、置換、または付加のいずれであってもよい。好ましくは、配列番号2から10のいずれかで表されるアミノ酸配列のN末端側から300番目のグルタミン残基が、グルタミン以外のアミノ酸残基に変異していることが好ましく、特に好ましくはリジンへ変異していることが好ましい。
【0017】
配列番号2で表されるアミノ酸配列からなるポリペプチドをコードする遺伝子の具体例として、配列番号1で表される塩基配列が挙げられる。
【0018】
配列番号2で表されるアミノ酸配列のN末端側から300番目のグルタミン残基が、グルタミン以外のアミノ酸残基に変異したアミノ酸配列をコードする塩基配列の具体例としては、配列番号1で表される塩基配列のうち、1080番目の塩基であるシトシンがアデニンへの変異した配列が挙げられる。当該変異により、配列番号2で表されるアミノ酸配列のN末端側から300番目のアミノ酸残基がグルタミンからリジンへ変異する。
【0019】
また、本発明のトリコデルマ属糸状菌の変異株は、beta-adaptin large subunitの機能が欠損または低下した変異株であってもよい。
【0020】
beta-adaptin large subunitの機能が欠損するとは、そのポリペプチドが全て無くなる、一部が無くなる、全てが異なるアミノ酸に変わる、一部が異なるアミノ酸に変わる、またはそれらの組み合わせのことを指す。さらに具体的には、配列番号2で表されるアミノ酸配列において、上記に示したbeta-adaptin large subunitのアミノ酸配列と配列同一性が80%以下になることを指し、好ましくは50%以下であり、さらに好ましくは20%以下であり、さらに好ましくは10%以下であり、さらに好ましくは5%以下であり、さらに好ましくは3%以下であり、さらに好ましくは1%以下であり、最も好ましくは0%である。beta-adaptin large subunitの全欠損、一部欠損、全て異なるアミノ酸に変わる、一部が異なるアミノ酸に変わる方法として、配列番号2で表されるアミノ酸配列からなるポリペプチドをコードする遺伝子配列に対して、塩基の欠失、挿入、置換などによるフレームシフトやストップコドン変異が挙げられる。
【0021】
beta-adaptin large subunitの機能が低下するとは、beta-adaptin large subunitの全欠損や一部欠損が挙げられ、また、beta-adaptin large subunitの発現量の低下または発現量の消失させる変異を導入することによっても、beta-adaptin large subunitの機能を低下させることができる。beta-adaptin large subunitの発現量の低下または発現の消失は、beta-adaptin large subunitをコードする遺伝子のプロモーターやターミネーター領域の変異により行われる。一般的に、プロモーターとターミネーター領域は、転写に関与する遺伝子の前後数百塩基の領域に相当する。beta-adaptin large subunitを構成するアミノ酸配列自体にアミノ酸の欠失、置換、または付加などの変異が起こらない場合でも、beta-adaptin large subunit外に位置するアミノ酸配列にアミノ酸の欠失、置換、または付加などの変異が起こることにより、タンパク質の機能が低下することが知られている。また、beta-adaptin large subunitをコードする遺伝子自体に塩基の欠失、置換、または付加などの変異が起こらない場合でも、beta-adaptin large subunitをコードする遺伝子外に位置する塩基配列に塩基の欠失、置換、または付加などの変異が起こることにより、タンパク質の機能が低下することが知られている。
【0022】
beta-adaptin large subunitの機能が欠損または低下する変異、あるいはbeta-adaptin large subunitを構成するアミノ酸配列に変異を導入する方法は、当業者にとって公知の変異剤または紫外線照射などによる変異処理、選択マーカーを用いた相同組換えなどの遺伝子組換え、トランスポゾンによる変異など、公知の遺伝子変異方法を用いることができる。
【0023】
本発明のトリコデルマ属糸状菌の変異株は、当該変異導入前の親株と比較して、培養液の粘度が低下し、培養液中の溶存酸素飽和度の低下も抑制することができる。これにより、通気撹拌に必要なエネルギーや、回転数を低減させることができる。また、撹拌の回転数を低く設定できるため、菌糸への剪断ダメージを低減させることもできる。特に、大きなスケールでの培養の際には、通気に必要なブロワや撹拌モーターの容量、撹拌エネルギーの削減につながるためさらに効果的である。
【0024】
本発明において、培養液の粘度は以下の条件で測定した値を用い、粘度の比較は以下の条件で測定した値のうち最大値同士を比較する。まず、評価対象とするトリコデルマ属糸状菌の変異株と親株の胞子を前培養培地1mLあたり1.0×10胞子となるよう前培養培地(具体的な培地組成の一例は、実施例中の表1のとおり。)へ接種し、振盪培養機にて28℃、120rpmの条件にて菌体量が11g/L前後になるまで培養を行う。次に、100g/L(w/v)になるようArbocel B800(レッテンマイヤー社製)を添加した表2で示した本培養培地に対し、10%(v/v)になるよう前培養培地を接種させ、5Lジャーファーメンターを用い、深部培養を行う。培養条件は、本培養培地に前培養培地を接種後、28℃、700rpm、通気量100mL/minの培養条件にて、pH5.0に制御しながら深部培養を行う。培養液の粘度の測定は、デジタル回転粘度計を用いる。デジタル回転粘度計は、予め0点校正を行う。培養開始から、39、48、62、72、86、96、111時間後の採取直後の培養液をそれぞれ指定の容器に16mL採取し、培養液にスピンドルを浸して0.3rpmの回転数にて回転させ、この時のスピンドルに働く粘性抵抗であるトルクを室温条件下にて測定することにより、培養液の粘度を測定する。粘度の単位は、センチポアズ(cP)とする。1ポアズは、流体内に1cmにつき1cm/秒の速度勾配があるとき、その速度勾配の方向に垂直な面において速度の方向1cmにつき1ダインの力の大きさの応力が生ずる粘度と定義される。デジタル回転粘度計には、DV2T(BROOKFIELD社)、スピンドルには、UL ADAPTOR(BROOKFIELD社)などを用いることができる。
【0025】
本発明のトリコデルマ属糸状菌の変異株は、当該変異導入前の親株を同様の条件で培養した場合と比較すると、変異株は親株に比べて、培養液の粘度が低くなり、培養中の粘度の最大値が、好ましくは100cP以上、より好ましくは200cP以上、より好ましくは400cP以上、より好ましくは500cP以上、さらに好ましくは600cP以上、さらに好ましくは700cP以上、さらに好ましくは800cP以上、さらに好ましくは900cP以上、特に好ましくは1000cP以上低くなる。
【0026】
培養液中の溶存酸素飽和度は、培養液中の酸素利用速度を測定することによって算出することができる。本発明における酸素利用速度(mM/L/hr)は、培養開始後24時間後の単位時間当たりの培養液1L当たりの酸素消費速度のことを指す。具体的な算出方法は、培養条件を一定に保って培養を行い、培養開始後24時間時点で酸素の供給を止め、溶存酸素(mg/L)の値(DO値)を10秒間ごとにプロットし、その曲線の中で対数的に減少している3点以上のプロットについて、その傾き(A)(単位;DO/sec)を求める。酸素利用速度の算出には式は以下に示す式1を用いる。
【0027】
酸素利用速度(mM/L/hr)=(-A)×(1/32)×60×60・・・(式1)。
【0028】
DO値の測定には市販のDO計を使用することができる。使用するDO計には特に制限はなく、DO値を正確に測定できるものであれば良い。例として、密閉型DO電極(エイブル株式会社製)や溶存酸素センサー(メトラー・トレド株式会社製)などが挙げられる。DO計は予め0点校正とスパン校正を行っておく。0点校正は亜硫酸ソーダ2%溶液を使用して行う。スパン校正は実際に培養する条件において菌体が存在しない状態で通気、攪拌を行い、溶存酸素が飽和になるまで待ち、その後計器の指示値が安定していることを確認し、その温度での飽和溶存酸素に合わせて校正を行う。また、培養槽を加圧してDO測定を行う際は、圧補正を行う必要がある。さらに、培養槽が大きい場合は静水圧補正を行う必要がある。補正を行う際には、以下に示す式2を用いて算出する。
【0029】
D=DO(1+α+β)・・・(式2)
D:補正した飽和溶存酸素
DO:1気圧、純水中での飽和溶存酸素
α:ゲージ圧(kg/cm
β:静水圧(DO計取り付け位置の液深(m)/10)。
【0030】
溶存酸素飽和度は、菌を含まない培地を用いてpHや温度を培養条件に設定し、空気を通気した際の溶存酸素の飽和状態を100%とした場合の、飽和溶存酸素に対する培養期間中の溶存酸素の割合を溶存酸素飽和度として算出する。溶存酸素(mg/L)は、水中に溶解している酸素の濃度を表す。飽和溶存酸素とは、実際に培養を行なう培養条件において、菌体が存在しない状態で通気、攪拌を行い、溶存酸素が一定になった状態での溶存酸素のことを指す。また、溶存酸素飽和度を算出する際は、培養期間中に通気条件など培養条件を変化させることはしないこととする。酸素要求性 が低下すると、溶存酸素飽和度は増加する。溶存酸素飽和度は以下の式3に従って算出する。
【0031】
溶存酸素飽和度(%)=(培養中の溶存酸素)/(培養開始前の飽和溶存酸素)×100・・・(式3)。
【0032】
溶存酸素飽和度を比較する場合には、最小値同士を比較する。
【0033】
酸素利用速度や、溶存酸素飽和度を比較する場合には、培地、酸素供給量、撹拌速度、温度、培養容量、植菌量などの培養条件を揃えて測定した結果を用いる。測定の際の植菌量は本培養液に対し、10%(v/v)程度が好ましい。
【0034】
本発明のトリコデルマ属糸状菌の変異株と、当該変異導入前の親株の溶存酸素を同様の条件で培養すると、変異株は、親株に比べて溶存酸素飽和度の最小値が高くなり、好ましくは5%以上、さらに好ましくは6%以上、さらに好ましくは7%以上、さらに好ましくは8%以上、さらに好ましくは9%以上、さらに好ましくは10%以上、さらに好ましくは11%以上、さらに好ましくは12%以上、さらに好ましくは13%以上、さらに好ましくは14%以上、特に好ましくは15%以上高くなる。
【0035】
本発明のトリコデルマ属糸状菌の変異株は、当該変異導入前の親株と比較して、増殖能が低下しないことが好ましい。増殖能の差は菌体量を測定することで比較することができる。菌体量は、乾燥菌体重量として測定する。培養液10mLを定性ろ紙(グレード4、GEヘルスケア社)を用いて吸引ろ過し、残渣をろ紙ごと一緒に100℃にて乾燥させる。そして、重量を測定し、ろ過前後のろ紙の重量差を乾燥菌体重量とする。
【0036】
本発明のトリコデルマ属糸状菌の変異株は、beta-adaptin large subunitの機能が欠損または低下する変異、あるいはbeta-adaptin large subunitを構成するアミノ酸配列の変異以外にも、タンパク質製造量が向上する遺伝子変異を有していてもよい。具体的には、配列番号11および/または配列番号13で表されるポリペプチドの機能が低下する遺伝子変異が挙げられる。
【0037】
配列番号11で表されるアミノ酸配列からなるポリペプチドは、Trichoderma reeseiが有するポリペプチドであり、National Center for Biotechnology Informationでは、Trichoderma reesei QM6a株が持つpredicted proteinのEGR50654として登録されている。配列番号11で表されるアミノ酸配列からなるポリペプチドは機能未知のポリペプチドであるが、National Center for Biotechnology InformationのConserved Domain Architecture Retrieval Toolによれば、N末端側から95番目~277番目のアミノ酸残基は「Middle domain of eukaryotic initiation factor 4Gドメイン(以降MIF4Gドメインと記載する。)、N末端側から380番目~485番目のアミノ酸残基はMA-3ドメインを有すると開示されている。MIF4GおよびMA-3の両ドメインは、DNAまたはRNAに結合する機能を有することが知られている(Biochem.44,12265-12272(2005)、Mol.Cell.Biol.1,147-156(2007))。これらの記載により配列番号11で表されるアミノ酸配列からなるポリペプチドは、少なくともDNAおよび/またはRNAに結合する機能を有すると推定される。
【0038】
配列番号11で表されるアミノ酸配列からなるポリペプチドをコードする遺伝子の具体例として、配列番号12で表される塩基配列が挙げられる。EGR50654の機能が低下する遺伝子変異とは、EGR50654が有するMIF4Gドメインおよび/またはMA-3ドメインの全欠損、MIF4Gドメインおよび/またはMA-3ドメインの一部欠損、MIF4GドメインとMA-3ドメインとの立体配置関係の変化する遺伝子変異が挙げられる。さらに、配列番号11で表されるアミノ酸配列からなるポリペプチドの発現量の低下や消失させる変異を導入することによっても当該ポリペプチドの機能を低下させることができる。配列番号11で表されるアミノ酸配列からなるポリペプチドの機能が欠損する具体例としては、配列番号12で表される塩基配列において、1039番目から1044番目のいずれかの塩基が欠失する変異が挙げられる。
【0039】
配列番号13で表されるアミノ酸配列からなるポリペプチドは、Trichoderma reeseiが有するポリペプチドであり、National Center for Biotechnology Informationでは、Trichoderma reesei QM6a株が持つpredicted proteinのEGR44419として登録されている。配列番号13で表されるアミノ酸配列からなるポリペプチドは機能未知のポリペプチドであるが、National Center for Biotechnology InformationのConserved Domain Architecture Retrieval Toolによれば、N末端側から26番目~499番目のアミノ酸残基は「Sugar(and other) Transporterドメインを有すると開示されている。この記載により配列番号13で表されるアミノ酸配列からなるポリペプチドは、少なくとも菌体の内側と外側の間における糖の輸送に関与していると推定される。
【0040】
配列番号13で表されるアミノ酸配列からなるポリペプチドをコードする遺伝子の具体例として、配列番号14で表される塩基配列が挙げられる。EGR44419の機能が低下する遺伝子変異とは、EGR44419が有するSugar(and other) Transporterドメインの全欠損、Sugar(and other) Transporterドメインの一部欠損、Sugar(and other) Transporterドメインの立体配置関係の変化する遺伝子変異が挙げられる。さらに、配列番号13で表されるアミノ酸配列からなるポリペプチドの発現量の低下や消失させる変異を導入することによっても当該ポリペプチドの機能を低下させることができる。配列番号13で表されるアミノ酸配列からなるポリペプチドの機能が欠損する具体例としては、配列番号14で表される塩基配列において、1415番目に11塩基が挿入する変異が挙げられる。
【0041】
また、本発明はbeta-adaptin large subunitを構成するアミノ酸配列に変異を有するトリコデルマ属糸状菌の変異株を培養する工程を含むタンパク質の製造方法に関する。
【0042】
本発明の方法では、菌体外に分泌されるタンパク質を効率的に製造することができる。製造されるタンパク質に制限はないが、好ましくは酵素であり、より好ましくはセルラーゼ、アミラーゼ、インベルターゼ、キチナーゼ、ペクチナーゼ等の糖化酵素であり、特に好ましくはセルラーゼである。
【0043】
本発明で製造されるセルラーゼには、様々な加水分解酵素が含まれており、キシラン、セルロース、ヘミセルロースに対する分解活性を持つ酵素などが含まれている。具体例としては、セルロース鎖の加水分解によりセロビオースを製造するセロビオハイドラーゼ(EC 3.2.1.91)、セルロース鎖の中央部分から加水分解するエンドグルカナーゼ(EC 3.2.1.4)、セロオリゴ糖およびセロビオースを加水分解するβ-グルコシダーゼ(EC 3.2.1.21)、ヘミセルロースや特にキシランに作用することを特徴とするキシラナーゼ(EC 3.2.1.8)、キシロオリゴ糖を加水分解するβ-キシロシダーゼ(EC 3.2.1.37)などが挙げられる。
【0044】
セルラーゼのタンパク質濃度は以下の通り測定を行う。本発明の方法でトリコデルマ属糸状菌を培養することにより得られた培養液を15,000×gで10分間遠心分離し、上清をセルラーゼ溶液とする。Quick Start Bradford プロテインアッセイ(Bio-Rad社製)250μLに希釈したセルラーゼ溶液を5μL添加し、室温で15分間静置後の595nmで用いる吸光度を測定する。牛血清アルブミン溶液を標準液とし、検量線に基づいて糖化酵素溶液に含まれるタンパク質濃度を算出する。
【0045】
本発明でトリコデルマ属糸状菌を培養する培養方法は特に限定されず、例えば遠沈管、フラスコ、ジャーファーメンター、タンクなどを用いた液体培養や、プレートなどを用いた固体培養などで培養することができる。トリコデルマ属糸状菌は、好気的条件で培養することが好ましく、これらの培養方法の中でも、特にジャーファーメンターや、タンク内に通気や撹拌を行いながら培養する深部培養が好ましい。
【0046】
培養工程の培地組成は、トリコデルマ属糸状菌がタンパク質を製造できるような培地組成となっていれば特に制限はなく、トリコデルマ属細菌の周知の培地組成を採用することができる。窒素源としては、例えば、ポリペプトン、肉汁、CSL、大豆かすなどを用いることができる。また、培地にはタンパク質を製造させるための誘導物質を添加してもよい。
【0047】
本発明によりセルラーゼを製造する場合には、培地にラクトース、セルロースおよびキシランからなる群から選択される少なくとも1種類または2種類以上の誘導剤を含む培地で培養することができる。また、セルロースやキシランは、セルロースやキシランを含むバイオマスを誘導物質として添加してもよい。セルロールやキシランを含有するバイオマスの具体例としては、種子植物、シダ植物、コケ植物、藻類、水草などの植物の他、廃建材なども用いることができる。種子植物は、裸子植物と被子植物に分類されるが、どちらも好ましく用いることができる。被子植物はさらに単子葉植物と双子葉植物に分類され、単子葉植物の具体例としてはバガス、スイッチグラス、ネピアグラス、エリアンサス、コーンストーバー、コーンコブ、稲わら、麦わらなどが挙げられ、双子葉植物の具体例としてはビートパルプ、ユーカリ、ナラ、シラカバなどが挙げられる。
【0048】
また、セルロースやキシランを含むバイオマスは、前処理されたものを用いてもよい。前処理方法は特に限定されないが、例えば、酸処理、硫酸処理、希硫酸処理、アルカリ処理、水熱処理、亜臨界処理、微粉砕処理、蒸煮処理、など公知の手法を用いることができる。このような前処理をされたセルロールやキシランを含むバイオマスとして、パルプを用いてもよい。
【0049】
本発明のトリコデルマ属糸状菌の変異株の培養方法は特に限定されず、例えば遠沈管、フラスコ、ジャーファーメンター、タンクなどを用いた液体培養や、プレートなどを用いた固体培養などで培養することができる。Trichoderma reeseiの変異株である場合は、好気的条件で培養することが好ましく、特にジャーファーメンターや、タンク内に通気や撹拌を行いながら培養する深部培養が好ましい。通気量は、0.1~2.0vvm程度が好ましく、0.3~1.5vvmがより好ましく、0.5~1.0vvmが特に好ましい。培養温度は、25~35℃程度が好ましく、25~31℃がより好ましい。培養におけるpHの条件は、pH3.0~7.0が好ましく、pH4.0~6.0がより好ましい。培養時間は、タンパク質が生産される条件で、回収可能な量のタンパク質が蓄積されるまで行える時間であれば特に制限はないが、通常、24~288時間、好ましくは24~240時間、より好ましくは36~240時間、さらに好ましくは36~192時間である。
【0050】
トリコデルマ属糸状菌の変異株を培養した培養液に含まれるタンパク質を回収する方法は特に限定されないが、トリコデルマ属糸状菌の菌体を培養液から除去し、タンパク質を回収することができる。菌体の除去方法としては、遠心分離法、膜分離法、フィルタープレス法などが例として挙げられる。
【0051】
また、トリコデルマ属糸状菌の変異株を培養した培養液から菌体を除去せずに、タンパク質の溶解液として利用する場合には、培養液中でトリコデルマ属糸状菌の菌体が生育できないように処理することが好ましい。菌体が生育できないように処理する方法としては、熱処理、薬剤処理、酸・アルカリ処理、UV処理などが挙げられる。
【0052】
タンパク質がセルラーゼのような酵素の場合には、上記のように菌体を除去又は生育していないように処理した培養液を、そのまま酵素液として利用することができる。
【実施例
【0053】
以下に実施例を挙げて本発明を具体的に説明する。
【0054】
<参考例1>タンパク質濃度測定方法
タンパク質濃度測定試薬(Quick Start Bradfordプロテインアッセイ、Bio-Rad製)を使用した。室温に戻したタンパク質濃度測定試薬250μLに希釈した糸状菌の培養液を5μL添加し、室温で5分間静置後の595nmにおける吸光度をマイクロプレートリーダーで測定した。標準品としてBSAを使用し、検量線に照らし合わせてタンパク質濃度を算出した。
【0055】
<参考例2>溶存酸素飽和度の算出
溶存酸素飽和度は、菌を含まない培地を用いてpHや温度を培養条件に設定し、空気を通気した際の溶存酸素の飽和状態を100%とした場合の、飽和溶存酸素に対する培養期間中の溶存酸素の割合を溶存酸素飽和度として算出した。DO計は密閉型溶存酸素電極SDOC-12F-L120(エイブル株式会社製)を使用した。
【0056】
<参考例3>培養液の粘度の測定
採取した培養液の粘度を測定するため、培養開始39、48、62、72、86、96、111時間後の培養液をデジタル回転粘度計 DV2Tとスピンドル UL ADAPTOR(BROOKFIELD社製)を使用し、回転数を0.3rpmに設定した際の粘度(cP)を求めた。
【0057】
<参考例4>菌体量の測定
培養液中に含まれる菌体量を測定するため、培養液をろ紙で吸引ろ過し、吸引ろ過前後のろ紙の乾燥菌体重量の差を菌体量とした。
【0058】
<実施例1>beta-adaptin large subunitの機能が低下したTrichoderma reesei QM9414変異株Iの作製
beta-adaptin large subunitを構成するアミノ酸配列に変異の入った配列番号2で表されるアミノ酸配列からなるポリペプチドをコードする遺伝子を含むDNA断片として、配列番号15で表される遺伝子配列からなるDNA断片を作製し、当該DNA断片をTrichoderma reeseiQM9414株に形質転換することで、beta-adaptin large subunitの機能が低下したTrichoderma reeseiの変異株を作製した。この方法により、配列番号1において、1080番目のシトシンがアデニンへ変わり、配列番号2において、300番目がグルタミンからリジンへ変異したポリペプチドを有するTrichoderma reeseiの変異株が得られる。DNA断片導入のための選択マーカーとしてアセトアミドおよびアセトアミドを分解することができるアセトアミダーゼ(AmdS)遺伝子(amdS)を使用した。amdSを含むDNA配列の上流および下流に、上記の配列番号15で表される塩基配列からなるDNA断片を導入するために、Trichoderma reeseiQM9414株の遺伝子配列と相同的な部分を付加するように変異導入用プラスミドを作製した。
【0059】
具体的には、配列番号16で示す合成したDNA断片を制限酵素KpnIとNotIで処理したDNA断片を上流DNA断片とした。また、Trichoderma reesei QM9414株から定法に従って抽出したゲノムDNAと配列番号17および18で表されるオリゴDNAを用いてPCRをし、得られた増幅断片を制限酵素MluIとSpeIで処理したDNA断片を下流DNA断片とし、上流及び下流DNA断片をKpnIとNotI、MluIとSpeIの制限酵素をそれぞれ用いてamdSが挿入されたプラスミドへ導入し、変異導入用プラスミドを構築した。そして、変異導入用プラスミドを制限酵素ApaIとAscIで処理し、配列番号15で示す得られたDNA断片でTrichoderma reesei QM9414株(NBRC31329)を形質転換した。得られた変異株をQM9414変異株Iとして以下の実験に用いた。
【0060】
なお、分子生物学的手法は、Molecular cloning,laboratory manual,1st,2nd,3rd(1989)の記載通りに行った。また、形質転換は、標準的な手法であるプロトプラスト-PEG法を用い、具体的にはGene,61,165-176(1987)の記載通りに行った。
【0061】
<実施例2>QM9414変異株Iを用いたタンパク質の製造試験
(前培養)
実施例1で作製したQM9414変異株Iの胞子を1.0×10/mLになるように生理食塩水で希釈し、その希釈胞子溶液2.5mLを表1に示した1Lバッフル付フラスコへ入れた250mLの前培養培地へ接種させ、振盪培養機にて28℃、120rpmの条件にて72時間培養を行った。
【0062】
【表1】
【0063】
(本培養)
Arbocel B800(レッテンマイヤー社)を表2で示した本培養培地に添加し、5Lジャーファーメンター(バイオット社製)を用い、深部培養検討を行った。Trichoderma reesei QM9414株および実施例1で作成したQM9414変異株Iの前培養液250mLをArbocel B800が添加された本培養培地2.5Lに接種した。培養条件は、本培養培地に前培養培地を接種後、28℃、700rpm、通気量100mL/minの培養条件にて、pH5.0に制御しながら深部培養を行った。
【0064】
【表2】
【0065】
(培養液の採取)
培養開始39、48、62、72、86、96、111時間後にそれぞれ20mLの培養液を採取した。採取した培養液の一部を15,000×g、4℃の条件下で10分間遠心分離して上清を得た。その上清を0.22μmのフィルターでろ過し、そのろ液をセルラーゼ溶液として以下の実験に用いた。
【0066】
(タンパク質濃度の測定)
参考例1で記載した手法を用い、培養開始96時間目に採取した培養液におけるセルラーゼのタンパク質濃度を測定した。その結果、Trichoderma reesei QM9414株と比較して、QM9414変異株Iは、相対値でタンパク質濃度は1.3倍高かった。
【0067】
(培養液中の溶存酸素飽和度の測定)
参考例2で記載した手法を用い、培養液中の経時的な溶存酸素飽和度を測定した。その結果、図2に示されるとおりTrichoderma reesei QM9414株は培養開始後60時間前後に培養液中の溶存酸素飽和度が最小値として1.7%まで低下したのに対して、QM9414変異株Iは培養液中の溶存酸素飽和度は最小値として37.6%であった。
【0068】
(培養液の粘度の測定)
参考例3で記載した手法を用い、培養液中の経時的な粘度を測定した。その結果、図3で示されるとおりTrichoderma reesei QM9414株の最大粘度は1,800cP以上であったのに対し、Trichoderma reesei変異株の最大粘度は800cP以下であった。これらの結果から、QM9414変異株Iでは培養液中の粘度を低く保つことが可能であり、溶存酸素飽和度の低下も抑制されることがわかった。
【0069】
(菌体量の測定)
参考例4で記載した手法を用い、実施例2(前培養)の培養にて、培養開始72時間目の培養液中に含まれる菌体量を測定した。その結果、Trichoderma reesei QM9414株の菌体量は11.3g/L、QM9414変異株Iの菌体量は11.0g/Lであり、両株間で菌体量の差は確認できなかった。
【0070】
<実施例3>beta-adaptin large subunitの機能が低下したTrichoderma reesei QM9414変異株IIの作製
beta-adaptin large subunitの機能が低下したTrichoderma reeseiの変異株は、配列番号19で表される遺伝子配列からなるDNA断片を作製し、当該DNA断片をTrichoderma reesei QM9414株に形質転換することで作製した。この方法により、配列番号1において、791番目と792番目の間にamdSが挿入され、beta-adaptin large subunitの機能が低下したTrichoderma reeseiの変異株が得られる。上記の配列番号19からなるDNA断片を導入するために、amdSを含むDNA断片配列の上流および下流に、Trichoderma reesei QM9414株の遺伝子配列と相同的な部分を付加するように変異導入用プラスミドを作製した。
【0071】
具体的には、Trichoderma reesei QM9414株から定法に従って抽出したゲノムDNAと配列番号20および21で表されるオリゴDNAを用いてPCRし、得られた増幅断片を制限酵素AflIIとNotIで処理したDNA断片を上流断片とした。また、ゲノムDNAと配列番号22および23で表されるオリゴDNAを用いてPCRし、得られた増幅断片を制限酵素MluIとSpeIで処理したDNA断片を下流断片とし、上流および下流DNA断片をAflIIとNotI、MluIとSpeIの制限酵素をそれぞれ用いてamdSが挿入されたプラスミドへ導入し、変異導入用プラスミドを構築した。そして、変異導入用プラスミドを制限酵素AflIIとSpeIで処理し、配列番号19で示す得られたDNA断片でTrichoderma reesei QM9414株を実施例1の記載通りに形質転換を行った。得られたTrichoderma reesei変異株をQM9414変異株IIとして以下の実験に用いた。
【0072】
<実施例4>QM9414変異株IIを用いたタンパク質の製造試験
実施例1で作製したQM9414変異株Iの代わりにQM9414変異株IIを用いた以外は、実施例2と同様の操作・条件で培養を行い、培養液中に含まれるタンパク質の濃度、培養液中の溶存酸素飽和度および培養液の粘度を測定した。
【0073】
(タンパク質濃度の測定)
Trichoderma reesei QM9414株を培養した培養液に含まれるタンパク質濃度を1とした場合、QM9414変異株IIの培養液に含まれるタンパク質濃度の相対値は1.4であった。この結果から、beta-adaptin large subunitの機能が低下したTrichoderma reeseiを培養することによって、当該タンパク質の機能を低下させない場合と比べてタンパク質の製造量を向上できることがわかった。
【0074】
(培養液中の溶存酸素飽和度の測定)
参考例2で記載した手法を用い、培養液中の経時的な溶存酸素飽和度を測定した。その結果、図4に示されるとおりTrichoderma reesei QM9414株は培養開始後60時間前後に培養液中の溶存酸素飽和度が最小値として1.9%まで低下したのに対して、QM9414変異株IIは培養液中の溶存酸素飽和度は最小値として27.7%であった。
【0075】
(培養液の粘度の測定)
参考例3で記載した手法を用い、培養液中の経時的な粘度を測定した。その結果、図5に示されるとおりTrichoderma reesei QM9414株の最大粘度は1,900cP以上であったのに対し、QM9414変異株IIの最大粘度は1,000cP以下であった。これらの結果から、QM9414変異株IIでは培養液中の粘度を低く保つことが可能であり、溶存酸素飽和度の低下も抑制されることがわかった。
図1-1】
図1-2】
図2
図3
図4
図5
【配列表】
0007459509000001.app