(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-03-25
(45)【発行日】2024-04-02
(54)【発明の名称】二元冷凍サイクル装置及び二元冷凍サイクル装置の制御方法
(51)【国際特許分類】
F25B 7/00 20060101AFI20240326BHJP
F24F 11/875 20180101ALI20240326BHJP
F24F 11/41 20180101ALI20240326BHJP
F25B 1/00 20060101ALI20240326BHJP
F25B 13/00 20060101ALI20240326BHJP
F25B 47/02 20060101ALI20240326BHJP
F24F 140/00 20180101ALN20240326BHJP
【FI】
F25B7/00 E
F24F11/875
F24F11/41
F25B1/00 321C
F25B13/00 351
F25B47/02 520A
F24F140:00
(21)【出願番号】P 2022145107
(22)【出願日】2022-09-13
【審査請求日】2023-07-27
(73)【特許権者】
【識別番号】000006611
【氏名又は名称】株式会社富士通ゼネラル
(74)【代理人】
【識別番号】100103850
【氏名又は名称】田中 秀▲てつ▼
(74)【代理人】
【識別番号】100066980
【氏名又は名称】森 哲也
(72)【発明者】
【氏名】織田 旺伸
(72)【発明者】
【氏名】前間 慶成
(72)【発明者】
【氏名】仲田 昇平
(72)【発明者】
【氏名】兼井 一樹
【審査官】庭月野 恭
(56)【参考文献】
【文献】中国特許出願公開第110779241(CN,A)
【文献】特開平11-201569(JP,A)
【文献】特開2013-130357(JP,A)
【文献】特開2013-083407(JP,A)
【文献】国際公開第2010/098005(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
F25B 1/00-49/04
F24F 1/00-13/32
(57)【特許請求の範囲】
【請求項1】
高元側圧縮機と、高元側熱交換器と、第1の高元側減圧機構と、カスケード熱交換器が冷媒配管で順次接続され、高元側冷媒が循環する高元側冷媒回路と、
低元側圧縮機と、前記カスケード熱交換器と、第1の低元側減圧機構と、低元側熱交換器が冷媒配管で順次接続され、低元側冷媒が循環する低元側冷媒回路と、
前記高元側圧縮機と、前記高元側熱交換器と、第2の高元側減圧機構と、前記カスケード熱交換器と並列に設けられる蓄熱熱交換器が冷媒配管で順次接続され、前記高元側冷媒が循環する高元側蓄熱回路と、
前記低元側圧縮機と、前記蓄熱熱交換器と、第2の低元側減圧機構と、前記低元側熱交換器が冷媒配管で順次接続され、前記低元側冷媒が循環する低元側蓄熱回路と、
前記低元側圧縮機から吐出された前記低元側冷媒の飽和温度を測定または算出する冷媒温度検出部と、
前記蓄熱熱交換器に設けられる蓄熱材の温度を測定する蓄熱温度センサと、
前記高元側圧縮機、前記低元側圧縮機、前記第1の高元側減圧機構、前記第2の高元側減圧機構、前記第1の低元側減圧機構、及び、前記第2の低元側減圧機構の開度を制御する制御部と、を備え、
前記高元側冷媒と前記低元側冷媒は、前記カスケード熱交換器、或いは、前記蓄熱熱交換器において熱交換を行い、
前記制御部は、
暖房運転と蓄熱運転を並行して行う暖房
・蓄熱運転を行うに当たって、前記飽和温度の情報と前記蓄熱材の温度の情報とを取得し、前記飽和温度と前記蓄熱材の温度との温度差が第1の所定値となるように前記低元側圧縮機を制御することを特徴とする二元冷凍サイクル装置。
【請求項2】
室内空間には、前記高元側熱交換器と前記室内空間の室温を測定する室温センサとを有する室内機が設置され、前記室温が前記室内機において設定されている設定温度に達した場合に、前記制御部は、前記飽和温度と前記蓄熱材の温度との温度差
が第2の所定値となるように前記低元側圧縮機を制御することを特徴とする請求項1に記載の二元冷凍サイクル装置。
【請求項3】
前記制御部は、前記第2の所定値を前記第1の所定値以上となるように設定することを特徴とする請求項2に記載の二元冷凍サイクル装置。
【請求項4】
前記制御部は、前記蓄熱材の温度の情報を取得し、前記蓄熱材の温度が予め定められた温度に達している場合には、前記蓄熱熱交換器への蓄熱を停止することを特徴とする請求項3に記載の二元冷凍サイクル装置。
【請求項5】
前記制御部は、前記第1の所定値、或いは、前記第2の所定値を用いた前記暖房
・蓄熱運転時には、前記第1の高元側減圧機構、前記第1の低元側減圧機構、及び、前記第2の低元側減圧機構を開き、前記第2の高元側減圧機構を閉じる制御を行うことを特徴とする
請求項2ないし請求項4のいずれかに記載の二元冷凍サイクル装置。
【請求項6】
前記制御部は、前記低元側熱交換器に対する除霜運転を行うに当たって、前記第1の低元側減圧機構、及び前記第1の高元側減圧機構を閉じる制御を行うことを特徴とする請求項1に記載の二元冷凍サイクル装置。
【請求項7】
高元側圧縮機と、高元側熱交換器と、第1の高元側減圧機構と、カスケード熱交換器が冷媒配管で順次接続され、高元側冷媒が循環する高元側冷媒回路と、
低元側圧縮機と、前記カスケード熱交換器と、第1の低元側減圧機構と、低元側熱交換器が冷媒配管で順次接続され、低元側冷媒が循環する低元側冷媒回路と、
前記高元側圧縮機と、前記高元側熱交換器と、第2の高元側減圧機構と、前記カスケード熱交換器と並列に設けられる蓄熱熱交換器が冷媒配管で順次接続され、前記高元側冷媒が循環する高元側蓄熱回路と、
前記低元側圧縮機と、前記低元側熱交換器と、第2の低元側減圧機構と、前記蓄熱熱交換器と、前記低元側圧縮機が冷媒配管で順次接続され、前記低元側冷媒が循環する低元側蓄熱回路と、
前記低元側圧縮機から吐出された前記低元側冷媒の飽和温度を測定又は算出する冷媒温度検出部と、
前記蓄熱熱交換器に設けられる蓄熱材の温度を測定する蓄熱温度センサと、
前記高元側圧縮機、前記低元側圧縮機、前記第1の高元側減圧機構、前記第2の高元側減圧機構、前記第1の低元側減圧機構、及び、前記第2の低元側減圧機構の開度を制御する制御部と、を備え、
暖房運転と蓄熱運転を並行して行う暖房
・蓄熱運転を行うに当たって、前記制御部が、前記飽和温度の情報と前記蓄熱材の温度の情報を取得するステップと、
前記飽和温度と前記蓄熱材の温度との温度差が第1の所定値となるように前記低元側圧縮機を制御するステップと、
を備えることを特徴とする二元冷凍サイクル装置の制御方法。
【請求項8】
室内空間には、前記高元側熱交換器と前記室内空間の室温を測定する室温センサとを有する室内機が設置され、前記室温が前記室内機において設定されている設定温度に達したか否かを判定するステップと、
前記室温が前記設定温度に達したと判定された場合に、前記飽和温度の情報と前記蓄熱材の温度の情報を取得するステップと、
前記飽和温度と前記蓄熱材の温度との温度差が第2の所定値となるように前記低元側圧縮機を制御するステップと、を特徴とする請求項7に記載の二元冷凍サイクル装置の制御方法。
【請求項9】
前記制御部は、前記第2の所定値を前記第1の所定値以上となるように設定することを特徴とする請求項8に記載の二元冷凍サイクル装置の制御方法。
【請求項10】
前記蓄熱材の温度の情報を取得するステップと、
前記蓄熱材の温度が予め定められた温度に達しているか否かを判定するステップと、
前記蓄熱材の温度が予め定められた温度に達していると判定された場合に、前記蓄熱熱交換器への蓄熱を停止するステップと、
を備えることを特徴とする請求項8に記載の二元冷凍サイクル装置の制御方法。
【請求項11】
前記第1の所定値、或いは、前記第2の所定値を用いた前記暖房
・蓄熱運転時に、前記第1の高元側減圧機構、前記第1の低元側減圧機構、及び、前記第2の低元側減圧機構を開くステップと、
前記第2の高元側減圧機構を閉じるステップと、
を備えることを特徴とする
請求項8ないし請求項10のいずれかに記載の二元冷凍サイクル装置の制御方法。
【請求項12】
前記低元側熱交換器に対する除霜運転を行うに当たって、前記第1の低元側減圧機構、及び前記第1の高元側減圧機構を閉じるステップを備えていることを特徴とする請求項7に記載の二元冷凍サイクル装置の制御方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明の実施の形態は、二元冷凍サイクル装置及び二元冷凍サイクル装置の制御方法に関する。
【背景技術】
【0002】
近年CO2排出量削減のため、これまでの燃焼型温水空調装置を、例えばヒートポンプに置き換えることが検討されている。ヒートポンプは、一般的に室内に設置される室内機と室外に設置される室外機とから構成され、これら室内機及び室外機を連結して構成される冷凍回路内を水等の冷媒が循環することによって室内の温度や湿度を調整している。
【0003】
燃焼型温水空調装置からヒートポンプへの置き換えに当たっては、「高温での出湯」と「除霜運転時の快適性の確保」が課題になると考えられる。すなわち前者については、燃焼型温水空調装置に比べてヒートポンプの出湯温度は低くなる傾向にあるため、燃焼型温水空調装置と同等の暖房能力を得るためには、ヒートポンプにおいて出湯の温度を上げる構成が必要となる。
【0004】
ヒートポンプを利用した場合に、より高温の出湯温度を確保する方法として、例えば、以下の特許文献1に開示されているような、低段側サイクルと高段側サイクルとをカスケードコンデンサでつないだヒートポンプシステムが提案されている。
【0005】
当該カスケードコンデンサは、低段側サイクルにおいては凝縮器として働き、高段側サイクルにおいては蒸発器として働く。そして、このように多段に冷凍サイクルを組み合わせることによって、1つの段のみの冷凍サイクルの場合に比べてCOPと向上させることができるため、より効率よく高温の湯が出湯できるとされる。
【0006】
一方、後者の除霜運転に関しては通常空気調和機において暖房運転が行われる際、室外熱交換器には低温の冷媒が流れる。外気から吸熱する場合には、冷媒が外気より冷たい必要があるが、例えば、外気温が氷点下となるような状態の場合、外気の露点温度を下回ると、室外熱交換器に霜が付着して外気との間での熱交換がしにくくなる。そのため、暖房運転が行われている場合には、定期的に除霜運転を行う必要がある。
【0007】
このように除霜運転は空気調和機の運転を行う上で必要な運転ではあるが、除霜運転が行われている間、暖房運転は止まる。除霜運転自体が燃焼型温水空調装置において不要な運転である上に、このように除霜運転が行われる間暖房運転が停止してしまうのでは、室内の温度は徐々に低下することになり、快適性を損ないかねない。
【0008】
そこで以下の特許文献2においては、除霜運転中においても暖房運転を継続させることによって、暖房運転が一時的に停止することによる室内温度の低下を防止し、快適性の維持を図ることができる発明が開示されている。
【0009】
特許文献2に開示されている発明においては、冷凍回路内に室内熱交換器とは別に蓄熱装置を配置し、除霜運転の際には蓄熱装置に蓄えられた熱を用いることで暖房運転自体の停止を回避している。
【先行技術文献】
【特許文献】
【0010】
【文献】特開2013-113534号公報
【文献】国際公開2015/128980号
【発明の概要】
【発明が解決しようとする課題】
【0011】
上述した特許文献1及び特許文献2からすれば、例えば、多段の冷凍回路を採用しつつ蓄熱装置を備えた冷凍サイクル回路を用いることができるものと考えられる。このような回路であれば、高温の湯を出湯させることで室内により暖かな空気を供給することができるとともに、除霜運転を行う場合であっても暖房運転を停止させる必要がなく、快適性を損なうことのない空気調和機を提供することができるものと考えられる。
【0012】
しかしながら、多段の冷凍回路を採用しつつ蓄熱装置を備えた冷凍回路を用いる場合、次のような問題が生じかねない。すなわち、通常特許文献1に示されているような多段の冷凍回路の場合、COPを向上させるために高段側の圧力差と低段側の圧力差とが適正になるように運転が行われる。
【0013】
そしてこのような冷凍回路の場合において特許文献2に開示されているような蓄熱装置が備えられている場合、カスケードコンデンサと蓄熱装置には同じ温度の冷媒、つまり高温の冷媒が供給される。蓄熱装置では、圧縮機から流入した気相状態の冷媒が熱交換されて凝縮するが、このときに蓄熱装置の温度が冷媒の温度よりも低い状態にあればある程、蓄熱装置に滞留する液相状態の冷媒の量が増加する。
【0014】
気相状態の冷媒は蓄熱装置で凝縮して液相状態になり、液相状態の冷媒の一部は、膨張弁へ流入するが、他の冷媒は蓄熱装置に留まる。蓄熱装置の温度が冷媒の温度に対して低いほど、冷媒は蓄熱装置内で過冷却され、蓄熱装置内に留まる冷媒の量が増加する。このような状態となると、冷凍回路内を循環する冷媒の量が徐々に少なくなってしまい、カスケードコンデンサに送られるはずの冷媒の量が減る。従ってカスケードコンデンサでの高段側サイクルと低段側サイクルとの間での熱交換の能力が低下し、結果としてヒートポンプの能力が低下する。
【0015】
本発明はこのような多段の冷凍回路を採用しつつ蓄熱装置を備えた冷凍サイクル回路を採用して高温出湯、蓄熱装置で除霜運転時の暖房運転の維持するものであっても、運転中における冷凍サイクル回路内における冷媒量を十分に確保し、暖房能力の低下を抑制し快適性を損なうことがない二元冷凍サイクル装置及び二元冷凍サイクル装置の制御方法を提供することを目的とする。
【課題を解決するための手段】
【0016】
本発明の一態様に係る二元冷凍サイクル装置は、高元側圧縮機と、高元側熱交換器と、第1の高元側減圧機構と、カスケード熱交換器が冷媒配管で順次接続され、高元側冷媒が循環する高元側冷媒回路と、低元側圧縮機と、カスケード熱交換器と、第1の低元側減圧機構と、低元側熱交換器が冷媒配管で順次接続され、低元側冷媒が循環する低元側冷媒回路と、高元側圧縮機と、高元側熱交換器と、第2の高元側減圧機構と、カスケード熱交換器と並列に設けられ蓄熱材を備える蓄熱熱交換器が冷媒配管で順次接続され、高元側冷媒が循環する高元側蓄熱回路と、低元側圧縮機と、蓄熱熱交換器と、第2の低元側減圧機構と、低元側熱交換器が冷媒配管で順次接続され、低元側冷媒が循環する低元側蓄熱回路と、低元側圧縮機から吐出された低元側冷媒の飽和温度を測定または算出する冷媒温度検出部と、蓄熱熱交換器に設けられる蓄熱材の温度を測定する蓄熱温度センサと、高元側圧縮機、低元側圧縮機、第1の高元側減圧機構、第2の高元側減圧機構、第1の低元側減圧機構、及び、第2の低元側減圧機構のそれぞれを制御する制御部と、を備え、高元側冷媒と低元側冷媒は、カスケード熱交換器、または、蓄熱熱交換器において熱交換を行い、制御部は、暖房運転と蓄熱運転を並行して行う暖房・蓄熱運転を行うに当たって、飽和温度と蓄熱材の温度とを取得し、飽和温度と蓄熱材の温度との温度差が第1の所定値となるように低元側圧縮機を制御することを特徴とする。
【0017】
また、本発明の一態様に係る二元冷凍サイクル装置の制御方法は、高元側圧縮機と、高元側熱交換器と、第1の高元側減圧機構と、カスケード熱交換器が冷媒配管で順次接続され、高元側冷媒が循環する高元側冷媒回路と、低元側圧縮機と、カスケード熱交換器と、第1の低元側減圧機構と、低元側熱交換器が冷媒配管で順次接続され、低元側冷媒が循環する低元側冷媒回路と、高元側圧縮機と、高元側熱交換器と、第2の高元側減圧機構と、カスケード熱交換器と並列に設けられ蓄熱材を備える蓄熱熱交換器が冷媒配管で順次接続され、高元側冷媒が循環する高元側蓄熱回路と、低元側圧縮機と、蓄熱熱交換器と、第2の低元側減圧機構と、低元側熱交換器が冷媒配管で順次接続され、低元側冷媒が循環する低元側蓄熱回路と、低元側圧縮機から吐出された低元側冷媒の飽和温度を測定又は算出する冷媒温度検出部と、蓄熱熱交換器に設けられる蓄熱材の温度を測定する蓄熱温度センサと、高元側圧縮機、低元側圧縮機、第1の高元側減圧機構、第2の高元側減圧機構、第1の低元側減圧機構、及び、第2の低元側減圧機構のそれぞれを制御する制御部と、を備え、暖房運転と蓄熱運転を並行して行う暖房・蓄熱運転を行うに当たって、制御部が、飽和温度と蓄熱材の温度を取得するステップと、飽和温度と蓄熱材の温度との温度差が第1の所定値となるように低元側圧縮機を制御するステップと、を備える。
【発明の効果】
【0018】
本発明によれば、多段の冷凍回路を採用しつつ蓄熱装置を備えた冷凍サイクル回路を採用して高温出湯、蓄熱装置で除霜運転時の暖房運転の維持するものであっても、運転中における冷凍サイクル回路内における冷媒量を十分に確保し、暖房能力の低下を抑制することができる。
【図面の簡単な説明】
【0019】
【
図1】本発明の実施の形態に係る二元冷凍サイクル装置の冷媒回路図である。
【
図2】本発明の実施の形態に係る二元冷凍サイクル装置における制御部による暖房・蓄熱運転の制御方法の概念を示す説明図である。
【
図3】本発明の実施の形態に係る二元冷凍サイクル装置が暖房・蓄熱運転を行う際の冷媒の流れを示す冷媒回路図である。
【
図4】本発明の実施の形態に係る二元冷凍サイクル装置が除霜運転を行う際の冷媒の流れを示す冷媒回路図である。
【
図5】本発明の実施の形態に係る二元冷凍サイクル装置において暖房・除霜運転を行う際の制御の流れを示すフローチャートである。
【
図6】本発明の実施の形態に係る二元冷凍サイクル装置において暖房・蓄熱運転を行う際の制御の流れを示すフローチャートである。
【
図7】本発明の実施の形態に係る二元冷凍サイクル装置において除霜運転を行う際の制御の流れを示すフローチャートである。
【発明を実施するための形態】
【0020】
本発明の実施の形態に係る二元冷凍サイクル装置Sの構造を、
図1を参照しながら説明する。
図1は、本発明の実施の形態に係る二元冷凍サイクル装置Sの冷媒回路図である。二元冷凍サイクル装置Sは、後述する高元側熱交換器12を蒸発器として利用する場合には冷房運転に用いられ、高元側熱交換器12を凝縮器として利用する場合には、温水を作る運転、あるいは、暖房運転に用いられることができる冷凍サイクル装置である。
【0021】
なお、以下、温水を作る運転と暖かな空気を室内空間へ提供する運転をまとめて「暖房運転」と表すことがある。そして本発明の実施の形態では、二元冷凍サイクル装置Sを暖房運転、後述する蓄熱熱交換器Hに蓄熱する蓄熱運転、低元側熱交換器23に対する除霜運転に用いる場合について説明する。
【0022】
図1に示されている本発明の実施の形態に係る二元冷凍サイクル装置Sは、高元側及び低元側のそれぞれに冷媒回路が設けられる二元冷凍サイクルを備えている。高元側には高元側冷媒回路1が設けられており、低元側には低元側冷媒回路2が設けられている。
【0023】
高元側冷媒回路1は、高元側圧縮機11と、高元側熱交換器12と、第1の高元側減圧機構13と、カスケード熱交換器Cとが冷媒配管Pで順次接続され、高元側冷媒が循環する。高元側熱交換器12は、室内空間に設置される室内機の内部に配置され、高元側冷媒と図示しない水回路を循環する水との間で熱交換が行われることによって温水が作られる。或いは、高元側冷媒と室内機に流入する空気との間で熱交換が行われて室内空間に暖められた空気が供給される。さらに室内機内には、室内空間の室温を測定する室温センサが備えられている。
【0024】
一方低元側冷媒回路2は、低元側圧縮機21と、カスケード熱交換器Cと、第1の低元側減圧機構22と、低元側熱交換器23とが冷媒配管Pで順次接続され、低元側冷媒が循環する。低元側熱交換器23では、低元側冷媒と外気との間で熱交換が行われる。
【0025】
ここでカスケード熱交換器Cは、高元側冷媒と低元側冷媒とが熱交換する熱交換器である。例えば、二元冷凍サイクル装置Sが暖房運転を行う場合には、高元側冷媒に対して蒸発器として働く。
【0026】
また、本発明の実施の形態に係る二元冷凍サイクル装置Sには、高元側及び低元側それぞれに、高元側蓄熱回路3、低元側蓄熱回路4が設けられている。
【0027】
高元側蓄熱回路3は、高元側圧縮機11と、高元側熱交換器12と、第2の高元側減圧機構31と、蓄熱熱交換器Hが冷媒配管Pで順次接続されて形成され、高元側冷媒が循環する。一方低元側蓄熱回路4は、低元側圧縮機21と、蓄熱熱交換器Hと、第2の低元側減圧機構41と、低元側熱交換器23が冷媒配管Pで順次接続されて形成され、低元側冷媒が循環する。
【0028】
蓄熱熱交換器Hは、内部に充填された蓄熱材と高元側冷媒または低元側冷媒とが熱交換を行う熱交換器である。蓄熱熱交換器Hは、その内部に蓄熱槽が設けられている。この蓄熱槽には、例えば、高元側冷媒が流れる流路が同一面上に蛇行して形成される高元側の熱交換器と、低元側冷媒が流れる流路が同一面上に蛇行して形成される低元側の熱交換器とが互いに面が対向する位置に配置されている。そして高元側の熱交換器には高元側冷媒が流入、流出し、低元側の熱交換器には低元側冷媒が流入、流出することで、蓄熱材と高元側冷媒または低元側冷媒との間で熱交換が行われる。
【0029】
このように蓄熱熱交換器Hの蓄熱槽には、その内部にこれら高元側の熱交換器と低元側の熱交換器が配置され、その周囲を覆うように蓄熱材が充填されている。この蓄熱材には、蓄熱熱交換器Hに供給された熱が蓄えられ、蓄えられた熱は、後述するように高元側においては暖房運転に、低元側においては除霜運転に用いられる。また、後述する蓄熱温度センサHSが、蓄熱材の温度を測定することができる位置に設けられている。
【0030】
さらに、当該蓄熱熱交換器Hは、
図1に示されているように、カスケード熱交換器Cと並列となるように配置されて、上述した高元側蓄熱回路3と低元側蓄熱回路4が形成される。
【0031】
高元側冷媒回路1において、高元側圧縮機11の吐出側には、高元側圧縮機11から吐出された高元側冷媒を高元側熱交換器12の側に流すか、または、カスケード熱交換器Cの側に流すかを切り換える高元側四方弁14が接続されている。
【0032】
同様に低元側冷媒回路2において、低元側圧縮機21の吐出側には、低元側圧縮機21から吐出された低元側冷媒をカスケード熱交換器Cの側に流すか、または、低元側熱交換器23の側に流すかを切り換える低元側四方弁24が接続されている。
【0033】
二元冷凍サイクル装置Sには、低元側冷媒回路2や低元側蓄熱回路4を循環する低元側圧縮機21から吐出された低元側冷媒の飽和温度を測定または算出する冷媒温度検出部5が設けられている。さらに低元側冷媒回路2には、低元側圧縮機21から吐出された低元側冷媒の吐出圧力を測定する圧力センサ51と、低元側冷媒の温度を測定する冷媒温度センサ52とが設けられている。
【0034】
冷媒温度検出部5は、これら圧力センサ51で測定された圧力値を用いて、低元側冷媒の飽和温度を算出する。飽和温度、つまり、飽和蒸気の温度は冷媒種によって定められており、圧力センサ51の検出値である高圧圧力から算出できる。また、低元側冷媒の飽和温度を算出するプログラムについては、冷媒温度検出部5内に記憶されていても、或いは、図示してはいないが別途設けられる記憶部等に記憶されていても良い。冷媒温度検出部5が算出した低元側冷媒の飽和温度の情報は、後述する制御部6に送信される。
【0035】
また蓄熱熱交換器Hには、上述したように蓄熱温度センサHSが設けられており、蓄熱熱交換器Hに設けられる蓄熱材の温度を測定する。換言すれば蓄熱温度センサHSは、蓄熱熱交換器Hに蓄熱された蓄熱量を測定するセンサである。蓄熱温度センサHSにおいて測定された蓄熱材の温度に関する情報は、制御部6に送信される。
【0036】
制御部6は、高元側圧縮機11、第1の高元側減圧機構13、第2の高元側減圧機構31、低元側圧縮機21、第1の低元側減圧機構22、及び、第2の低元側減圧機構41の開度を制御する。
【0037】
特に制御部6が各減圧機構の開度を制御することによって、高元側冷媒回路1、低元側冷媒回路2、高元側蓄熱回路3、低元側蓄熱回路4を流れる高元側冷媒や低元側冷媒の流量を調整することができる。
【0038】
また制御部6は、暖房運転と蓄熱運転を並行して行う暖房・蓄熱運転を行うに当たって、冷媒温度検出部5において算出された飽和温度の情報と蓄熱温度センサHSによって測定された蓄熱材の温度の情報とを用いて、低元側圧縮機21を制御する。また、低元側熱交換器23の除霜運転を行う際の制御についても制御部6が行う。
【0039】
そこで次に、制御部6による制御内容について、さらに詳細に説明する。
図2は、本発明の実施の形態に係る二元冷凍サイクル装置Sにおける制御部6による暖房・蓄熱運転の運転開始直後の制御方法の概念を示す説明図である。なお、暖房・蓄熱運転とは、高元側熱交換器12を凝縮器として利用する暖房運転を行いつつ、蓄熱熱交換器Hにおいて冷媒から蓄熱材へ放熱させることで蓄熱を行う運転である。
【0040】
図2に示す説明図において、横軸は時間(t)であり、縦軸は温度(T)を示している。まず、横向きに点線で示されているのが、室内における設定温度を示している。すなわち、点線は設定温度であることから、縦軸の温度(T)で見ると一定である。そのため横軸と平行となるように直線状に示されている。
【0041】
また、時間の経過に従って左から右に向けて複数の温度を示す曲線が示されているが、そのうち実線で示されているのが、室温である。室温の測定は、上述したように、室内機に設けられる室温センサが行い、制御部6に測定結果が送信される。
【0042】
二元冷凍サイクル装置Sは室温が当該設定温度になるように、或いは、当該設定温度を維持するように制御部6によって制御される。従って、実線で示される室温は、最初は急激に上昇する動きを見せる。これはいち早く設定温度に達するように二元冷凍サイクル装置Sが制御されるからである。
【0043】
そして、室温が一旦設定温度まで達すると、その後は室温が設定温度を維持することができるように室内の暖房が行われる。そのため、
図2に示すように、室温は設定温度に近い温度で設定温度を下回ったり上回ったりしながら徐々に室温と設定温度との差が小さくなる。
【0044】
次に、室温を示す実線と概ねその最初の温度が同じところから破線で示されるのが蓄熱熱交換器Hにおける蓄熱材の温度を示している。当該蓄熱材の温度は、上述したように、蓄熱温度センサHSで測定される温度である。
【0045】
蓄熱材の温度は、
図2では徐々に温度が上がり、概ね時間(t)を示す横軸の半分の時点で設定温度を超え、最後は室温や設定温度よりも高い温度となるような曲線で示されている。なお、
図2に示す蓄熱材の温度変化はあくまでも例示であり、蓄熱材の種類や蓄熱熱交換器Hが置かれた種々の状況により異なり得るものである。
【0046】
一方、始点が蓄熱材の温度を示す破線よりも若干高い温度であり、概ね蓄熱材の温度の上昇と同じような変化を見せるのが、低元側冷媒の第1の飽和温度であり、圧力センサ51の検出値である高圧圧力から算出された値である。第1の飽和温度は、
図2においては一点鎖線の曲線で示されている。そして当該低元側冷媒の第1の飽和温度は、最後に蓄熱材の温度と同等になるように示されている。これは、蓄熱材の温度が設定値に到達し、これ以上熱交換しないようにするためである。
【0047】
ここで、設定温度を示す点線と交わり、縦軸と平行となるように直線状の破線が2本示されている。このうち温度(T)を示す縦軸に近い一方の直線状の破線は、設定温度を示す点線と室温を示す実線とが最初に交わる点を基点として下方に延びており、時間(t)を示す横軸と交わっている。この一方の直線状の破線が時間(t)の横軸と交わった時間を、以下「時刻a」と表す。
【0048】
すなわち、二元冷凍サイクル装置Sによる暖房運転の開始から時刻aまでの期間(時間)は、室温が設定温度に到達するまでの時間を示している。そして時刻a以降は、上述したように室温が設定温度を維持できるように二元冷凍サイクル装置Sの暖房・蓄熱運転を継続する。
【0049】
また、温度(T)を示す縦軸から遠い他方の直線状の破線は、低元側冷媒の温度と蓄熱材の温度が同等になっている。このように、蓄熱材の温度が低元側冷媒の温度と同等になったということは、予め設定された蓄熱材の設定値に到達して蓄熱熱交換器Hに十分蓄熱がされた、ということを示している。当該設定値は、蓄熱熱交換器Hの蓄熱材に応じて適宜設定される。従って、当該他方の直線状の破線と時間(t)が交わる点における時刻(以下、適宜「時刻b」と表す)以降は、低元側冷媒の温度と蓄熱材の温度が同じ温度となるように維持されることでこれ以上の蓄熱が抑制される(以下、蓄熱運転停止と呼ぶ)。
【0050】
最後に、一方の直線状の破線と一点鎖線の曲線で示される低元側冷媒の第1の飽和温度とが交わるところを始点として二点鎖線で示されているのが低元側冷媒の第2の飽和温度である。この低元側冷媒の第2の飽和温度は、低元側冷媒の第1の飽和温度よりもさらに高い温度を示しているが、上述した蓄熱運転が停止される時刻bにおいては、低元側冷媒の第1の飽和温度と同様、蓄熱材の温度を下回る。
【0051】
なお、当該低元側冷媒の第1の飽和温度、及び、第2の飽和温度は、低元側冷媒の凝縮温度を示している。そして
図2においてこれら2種類の低元側冷媒の飽和温度を示しているのは以下の理由からである。
【0052】
上述したように、本発明の実施の形態における二元冷凍サイクル装置Sでは、カスケード熱交換器Cと蓄熱熱交換器Hとが並列に接続されている。従って、低元側圧縮機21から吐出された低元側冷媒は、
図1に示すように分流されて、カスケード熱交換器Cと蓄熱熱交換器Hのそれぞれに流入する。
【0053】
例えば、蓄熱熱交換器Hにあまり熱が蓄えられておらず、蓄熱熱交換器Hにおける蓄熱材の温度が高くない場合に、低元側圧縮機21からカスケード熱交換器Cに流入する低元側冷媒と同じ高い温度の低元側冷媒が蓄熱熱交換器Hに流入すると、蓄熱熱交換器Hに流入した気相状態の低元側冷媒は、蓄熱熱交換器Hで蓄熱材と熱交換されて凝縮してしまう。凝縮した液相状態の低減側冷媒の一部は、下流側の第2の低元側減圧機構41へ流入するが、他の低減側冷媒は蓄熱熱交換器Hに留まる。蓄熱材の温度が低減側冷媒の温度に対して低いほど、低減側冷媒は蓄熱熱交換器H内で過冷却され、蓄熱熱交換器H内に留まる冷媒の量が増加する。
【0054】
このような状態になると、上述したように、蓄熱熱交換器Hに液相状態になった低元側冷媒が多く分布することになり、相対的に循環する低元側冷媒の量が減少する。低元側冷媒の循環量が減少すると、カスケード熱交換器Cにおける高元側冷媒との間の熱交換の量も減少することにつながり、二元冷凍サイクル装置Sの暖房能力が低下することになりかねない。
【0055】
蓄熱熱交換器Hにおいて低元側冷媒が液相状態で多く分布してしまうのは、蓄熱熱交換器Hに流入する低元側冷媒の飽和温度と蓄熱熱交換器Hを構成する蓄熱剤の温度との差が大きいからである。当該温度差が大きいほど低元側冷媒の過冷却度大きくなる。過冷却度が大きいほど蓄熱熱交換器H内の低元側冷媒の経路中の液単相領域が大きくなるため、液相冷媒の留まる量が増える。
【0056】
そこで、制御部6では、低元側冷媒の飽和温度と蓄熱材の温度との差を大きくしないように低元側圧縮機21の回転数を制御する。具体的には、低元側冷媒の飽和温度は、冷媒温度検出部5が、圧力センサ51によって測定された低元側圧縮機21から吐出された低元側冷媒の圧力の値と、冷媒温度センサ52が測定する低元側冷媒の温度とを用いて算出する。
【0057】
すなわち、圧力センサ51と冷媒温度センサ52からの測定結果は、冷媒温度検出部5に入力される。そして、入力された測定結果を用いて冷媒温度検出部5で算出された飽和温度の情報は、制御部6へと送信される。一方、蓄熱材の温度は、上述したように、蓄熱温度センサHSによって測定され、制御部6に入力される。
【0058】
これにより、制御部6は、飽和温度の情報と蓄熱材の温度の情報を取得することができる。二元冷凍サイクル装置Sの運転状況に合わせて制御部6では、飽和温度と蓄熱材の温度との差を基に暖房・蓄熱運転の制御を行う。
【0059】
そこでまず、二元冷凍サイクル装置Sが運転開始したばかりの状況における制御について説明する。この場合、室内空間を暖める必要がある。すなわち、暖房・蓄熱運転において、蓄熱運転よりも暖房運転を優先する必要がある。このとき、第2の低元側減圧機構41は、第2の低元側減圧機構41を通過する冷媒の流量が第1の低元側減圧機構22を通過する冷媒の流量よりも少なくなる開度となるように制御される。具体的には微開状態となるように制御される。
【0060】
そのため制御部6では、低元側冷媒の第1の飽和温度と蓄熱材の温度との差が予め定められた「第1の所定値T1」となるように暖房・蓄熱運転の制御を行う。当該第1の所定値T1については、例えば、試験等によって得られた両者の温度差として適切な値を基に予め定められるものであり、例えば、2℃から3℃といった値である。
【0061】
制御部6では、設定した第1の所定値T1の値を維持するように、低元側圧縮機21の回転数を制御する。すなわち、蓄熱材の温度に対して低元側冷媒の第1の飽和温度が高くなりすぎないように、換言すれば低元側冷媒の第1の飽和温度を蓄熱熱交換器Hにおける蓄熱材の温度に近づけるべく、低元側圧縮機21の回転数を上げないように制御する。
【0062】
このような制御が行われることで、低元側冷媒の第1の飽和温度が急激に上がり蓄熱材の温度との差が開くことで低元側圧縮機21から吐出された低元側冷媒が蓄熱熱交換器Hに流入した際に凝縮されて液相状態の低元側冷媒となる可能性を低減することができる。
【0063】
なお、制御部6の制御に必要な低元側冷媒の飽和温度と蓄熱材の温度については、随時冷媒温度検出部5と蓄熱温度センサHSから制御部6に入力される。或いは、一定時間ごとに低元側冷媒の飽和温度の情報と蓄熱材の温度の情報とが冷媒温度検出部5及び蓄熱温度センサHSから制御部6に送信されるようにされていても良い。
【0064】
上述したように、暖房・蓄熱運転の開始時から時刻aまでは、暖房運転と蓄熱運転のうち、より暖房運転を優先するように制御部6は二元冷凍サイクル装置Sを制御する。つまり低元側冷媒回路2において、蓄熱熱交換器Hよりもカスケード熱交換器Cに冷媒が多く流入するように第1の低元側減圧機構22、及び、第2の低元側減圧機構41の開度を制御する。これにより、室内空間を速やかに暖めることで快適性を提供することができる。
【0065】
そして室温が設定温度に到達すると、室温と設定温度の関係では、今後は室温を設定温度となるように維持する暖房運転が求められる。すなわち、時刻aから時刻bまでの間は、暖房・蓄熱運転開始時から時刻aまでの間よりも二元冷凍サイクル装置Sにおける暖房運転時の負荷は小さくなり、二元冷凍サイクル装置Sの暖房能力の余力を蓄熱運転へと振り向けることができる。このとき、低元側冷媒回路2において、カスケード熱交換器Cよりも蓄熱熱交換器Hに冷媒が多く流入するように第1の低元側減圧機構22、及び、第2の低元側減圧機構41の開度を制御する。
【0066】
そこで、時刻aと時刻bとの間の期間(時間)は、暖房よりも蓄熱を優先するように制御部6は二元冷凍サイクル装置Sを制御する。但し、この期間であっても暖房運転を行わないのではなく、快適性を損なわないように暖房運転を行いつつ蓄熱運転も行うものである。
【0067】
制御部6は室温が設定温度に到達したことを把握すると、制御部6は暖房運転を継続しつつも蓄熱運転を優先するべく、第2の所定値T2を設定する。これは、低元側冷媒の第2の飽和温度と蓄熱材の温度との差の目標値であり、第1の所定値T1以上の値となるように第2の所定値T2が予め定められる。
【0068】
図2においては、当該第2の所定値T2は、低元側冷媒の第2の飽和温度を示す二点鎖線の曲線と蓄熱材の温度を示す破線の曲線との間に示されている両矢印で示される値である。
【0069】
そしてT1≦T2となるように定められた第2の所定値T2を設定することで、低元側圧縮機21の回転数をこれまでよりも上げて低元側冷媒の飽和温度を上昇させることによって、蓄熱熱交換器Hにより多くの蓄熱を行うことができる。すなわち、暖房運転よりも蓄熱運転に優先するよう、蓄熱熱交換器Hの蓄熱能力を上げる。その意味で、第1の所定値T1と第2の所定値T2を設定することは、蓄熱能力を調整するためであるといえる。
【0070】
制御部6では、上述したように、蓄熱温度センサHSから蓄熱材の温度に関する情報を取得している。そして、予め設定した値よりも蓄熱材の温度が高くなった場合、すなわち、蓄熱材に十分な量蓄熱されたと制御部6が判定した場合、蓄熱運転が停止される。蓄熱運転の停止は、第2の低元側減圧機構41の開度が微開となるように制御して蓄熱熱交換器Hへ流入する低元側冷媒の量を制限し、低元側冷媒の温度と蓄熱材の温度が同じ温度となるように維持されることにより行われる。
【0071】
図2においては、時刻bにおいて、蓄熱材の温度が最大値を示しており、低元側冷媒の飽和温度よりも大きな値を示している。従って、この時刻bが示す時刻が蓄熱停止時刻に該当する。
【0072】
なお、暖房・蓄熱運転において、上述した第1の所定値T1、第2の所定値T2がそれぞれ設定されてこれらの値を維持するように制御部6は低元側圧縮機21の制御を行うが、各減圧機構については、以下の通り制御される。
【0073】
すなわち制御部6は、暖房・蓄熱運転時には、第1の高元側減圧機構13、第1の低元側減圧機構22、及び、第2の低元側減圧機構41を開き、第2の高元側減圧機構31を閉じる制御を行う。このように第2の高元側減圧機構31を閉とする制御を行うのは、蓄熱熱交換器Hに蓄えられた熱を、暖房・蓄熱運転時には使用しないようにするためである。
【0074】
図3は、本発明の実施の形態に係る二元冷凍サイクル装置Sが暖房・蓄熱運転を行う際の冷媒の流れを示す冷媒回路図である。上述したように、制御部6は第2の高元側減圧機構31を閉とする制御を行っている。
【0075】
そのため当該回路図においては、その一端が第2の高元側減圧機構31と接続され、蓄熱熱交換器Hを間に挟み、他端がカスケード熱交換器Cと高元側四方弁14との間に接続される冷媒配管Pには高元側冷媒が流れず、これを破線で示している。従って、高元側冷媒は高元側蓄熱回路3を循環しない。なお、低元側冷媒、高元側冷媒が流れる冷媒配管Pについては、実線で示している。
【0076】
高元側において、制御部6は、第1の高元側減圧機構13を開となるように制御する。従って暖房・蓄熱運転が行われる際には、
図3の矢印に示すように、高元側冷媒回路1における高元側圧縮機11から吐出された高元側冷媒は、高元側四方弁14から高元側熱交換器12へと入り、第1の高元側減圧機構13、カスケード熱交換器Cを流れて、高元側圧縮機11に吸入される。
【0077】
一方、低元側の低元側冷媒回路2における低元側圧縮機21から吐出された低元側冷媒は、低元側四方弁24からカスケード熱交換器Cへと入り、第1の低元側減圧機構22、低元側熱交換器23を流れて、低元側圧縮機21に吸入される。
【0078】
この際、カスケード熱交換器Cにおいて、低元側冷媒と高元側冷媒との間で熱交換が行われる。そして当該カスケード熱交換器Cが高元側冷媒に対して蒸発器として機能することによって、高元側冷媒回路1において高元側熱交換器12で高元側冷媒と空気や水とが熱交換する。これにより、室内空間に暖かな空気や温水を供給する。
【0079】
また、制御部6は、第1の低元側減圧機構22、第2の低元側減圧機構41のいずれも開となるように制御する。すなわち、低元側圧縮機から吐出された低元側冷媒は、カスケード熱交換器Cのみならず、当該カスケード熱交換器Cと並列に設けられている蓄熱熱交換器Hにも流れる。
【0080】
上述したように低元側蓄熱回路4は、一端が低元側四方弁24とカスケード熱交換器Cとの間に接続され、他端が第1の低元側減圧機構22と低元側熱交換器23との間に接続されて構成されている。
【0081】
二元冷凍サイクル装置Sにおいて暖房・蓄熱運転が行われる際には、
図3の矢印に示すように、低元側冷媒回路2における低元側圧縮機21から吐出された低元側冷媒は、低元側四方弁24を出て低元側蓄熱回路4を通って蓄熱熱交換器Hへと入る。そして第2の低元側減圧機構41を通過し、低元側熱交換器23を流れて、低元側圧縮機21に吸入される。
【0082】
上述したように、制御部6は暖房運転開始時においては低元側冷媒の第1の飽和温度と蓄熱材の温度の差を第1の所定値T1と設定し、当該第1の所定値T1を維持するように低元側圧縮機21の回転数を制御する。従って、低元側冷媒の第1の飽和温度と蓄熱材の温度の差が開くことのない状態で低元側冷媒が蓄熱熱交換器Hに流入する。
【0083】
従って、蓄熱熱交換器Hにおいて液相状態の低元側冷媒で満たされる領域を少なくすることができる。そのため、蓄熱熱交換器Hに液相状態になった低元側冷媒が多く分布することを抑制できる。蓄熱熱交換器Hを流出した低元側冷媒は、第2の低元側減圧機構41、低元側熱交換器23を通って低元側圧縮機21に吸入される。
【0084】
一方高元側蓄熱回路3は、一端が高元側熱交換器12と第1の高元側減圧機構13との間に接続され、他端がカスケード熱交換器Cと高元側四方弁14との間に接続されるが、上述したように第2の高元側減圧機構31は制御部6によって閉状態となるように制御される。
【0085】
従って、高元側冷媒が高元側蓄熱回路3を流れることはなく、蓄熱熱交換器Hにおいて低元側冷媒との間で熱交換されることもない。また、高元側熱交換器12において高元側冷媒と空気、或いは、水との間で熱交換を行うに当たって、蓄熱熱交換器Hに蓄えられた熱は使用されない。
【0086】
制御部6が第1の低元側減圧機構22、第2の低元側減圧機構41、及び、第1の高元側減圧機構13を開き、第2の高元側減圧機構43を閉じる制御をすることによって、二元冷凍サイクル装置Sは、暖房運転を行うことができるとともに、蓄熱熱交換器Hに対して蓄熱運転を行うことができる。
【0087】
すなわち、カスケード熱交換器Cが高元側冷媒に対して蒸発器として機能し、カスケード熱交換器Cを介して低元側冷媒と高元側冷媒とが熱交換を行う。これに対して、蓄熱熱交換器Hには低元側冷媒は流入するものの、高元側冷媒は流入しない。従って、蓄熱熱交換器Hに蓄えられた熱が暖房運転において使用されることはなく、低元側冷媒の熱が蓄熱熱交換器Hの蓄熱材に蓄熱される。
【0088】
以上が暖房・蓄熱運転における制御部6の制御方法である。また、高元側冷媒、低元側冷媒の流れを示す冷媒回路についても
図3に示した通りである。そこで次に、二元冷凍サイクル装置Sにおいて、除霜運転が行われる場合について説明する。
【0089】
上述したように、暖房運転が行われる場合、定期的に除霜運転を行う必要がある。そして除霜運転が行われる場合、低元側圧縮機21から吐出される暖かな低元側冷媒を低元側熱交換器23に供給するために低元側四方弁24を暖房運転状態から冷房運転状態へと切り替えることになるため、除霜運転の間暖房運転は停止することになる。従って、除霜運転中は室内空間に暖かい空気や温水が提供されないことになり、快適性を損ないかねない。
【0090】
そこで、本発明の実施の形態における二元冷凍サイクル装置Sにおいては、暖房運転を止めることなく除霜運転を行うことで、快適性の確保と二元冷凍サイクル装置Sの暖房能力の維持を図る。
【0091】
図4は、本発明の実施の形態に係る二元冷凍サイクル装置Sが除霜運転を行う際の冷媒の流れを示す冷媒回路図である。上述したように、除霜運転を行う際には、低元側熱交換器23に対して暖かな低元側冷媒を供給する必要があることから、低元側四方弁24を切り替えて低元側冷媒をカスケード熱交換器Cや蓄熱熱交換器Hではなく、低元側熱交換器23へと供給する。
【0092】
すなわち、低元側圧縮機21から吐出された低元側冷媒は、低元側四方弁24を通って、まず低元側熱交換器23に流入する。そして流入した低元側冷媒により低元側熱交換器23に付着した霜が溶融される。
【0093】
そして除霜運転が行われる際には、制御部6が第1の低元側減圧機構22を閉状態となるように、一方、第2の低元側減圧機構41については開状態となるように制御する。このように第1の低元側減圧機構22と第2の低元側減圧機構41を制御することにより、低元側熱交換器23を出た低元側冷媒は低元側冷媒回路2には流入せず、低元側蓄熱回路4に入る。
【0094】
そのため、低元側熱交換器23を出た低元側冷媒は第2の低元側減圧機構41及び蓄熱熱交換器Hを通り、低元側圧縮機21に吸入される。従って、除霜運転においては、低元側冷媒はカスケード熱交換器Cに流入しない。
【0095】
一方、高元側においては、上述したように低元側冷媒がカスケード熱交換器Cに流入せず、そもそも低元側冷媒は低元側熱交換器23の除霜のために低元側熱交換器23において熱交換を行ってしまっているので、カスケード熱交換器Cにおける低元側冷媒と高元側冷媒との間での熱交換はできない。
【0096】
そこで、制御部6では、第1の高元側減圧機構13を閉状態とする制御を行う。但し、カスケード熱交換器Cでの熱交換ができないままでは、室内空間に暖かな空気を供給することができず、室温は徐々に下がってしまうため快適性を損ないかねない。
【0097】
このような状況を避けるため、本発明の実施の形態における二元冷凍サイクル装置Sにおいては、蓄熱熱交換器Hに蓄えられている熱を用いて暖房運転を継続する制御を行う。すなわち、制御部6は第2の高元側減圧機構31を開状態となるように制御し、高元側熱交換器12を出た高元側冷媒を高元側蓄熱回路3に導く。
【0098】
そして、高元側冷媒を蓄熱熱交換器Hに通過させる際に蓄熱熱交換器Hに蓄えられている熱を高元側冷媒に吸熱させ、改めて高元側圧縮機11を介して高元側熱交換器12に流入させることによって、室内空間に暖かな空気を提供することができる。
【0099】
制御部6は上述したように第1の高元側減圧機構13と第1の低元側減圧機構22を閉状態とする制御を行って、
図4において破線で示すように、高元側冷媒回路1と低元側冷媒回路2に高元側冷媒及び低元側冷媒を循環させないことによって、低元側熱交換器23の除霜を行うとともに、蓄熱熱交換器Hに蓄えられている熱を利用して暖房運転を継続することとしている。
【0100】
また、制御部6が第1の低元側減圧機構22も第1の高元側減圧機構13も閉となるように制御することで、カスケード熱交換器Cに低元側冷媒も高元側冷媒も流入せず、両者の間で熱交換は行われない。従って、低元側熱交換器23の除霜に利用された低元側冷媒がカスケード熱交換器Cに流入しないので、高元側に低元側の冷熱が伝達されることを防ぐことができる。
【0101】
[動作]
次に、上述した暖房・蓄熱運転、及び、除霜運転における制御部6による二元冷凍サイクル装置Sの制御の流れについて、
図5ないし
図7を用いて説明する。
図5及び
図6は、本発明の実施の形態に係る二元冷凍サイクル装置Sにおいて暖房・蓄熱運転を行う際の制御の流れを示すフローチャートである。また、
図7は、本発明の実施の形態に係る二元冷凍サイクル装置Sにおいて除霜運転を行う際の制御の流れを示すフローチャートである。
【0102】
まず暖房・蓄熱運転の流れから説明する。
図5に示すように、二元冷凍サイクル装置Sにおいて暖房・蓄熱運転が開始されると(ST1)、制御部6は、低元側圧縮機21から吐出された低元側冷媒がカスケード熱交換器C及び蓄熱熱交換器Hに流入するように、減圧機構の開度が予め定めた初期開度になるように調整する(ST2)。
ここで「減圧機構」とまとめて示しているが、当該減圧機構が示すのは、例えば、
図3に示す第1の低元側減圧機構22及び第2の低元側減圧機構41である。初期開度は、起動時の信頼性を確保するために設定される。第1の低元側減圧機構22は、吐出温度が過昇しないようにしつつ、低元側圧縮機21への液バックを回避できる開度が設定される。第2の低元側減圧機構41は、蓄熱熱交換器Hへの液だまりを回避しつつ、蓄熱熱交換器Hへ流れる冷媒の流量が過剰にならない開度が設定される。
【0103】
また、高元側においては、制御部6は第1の高元側減圧機構13の開度が予め定めた初期開度になるように、一方、第2の高元側減圧機構31については閉状態となるように、それぞれの減圧機構の開度を調整する(ST3、ST4)。初期開度は、起動時の信頼性を確保するために設定される。第1の高元側減圧機構13は、吐出温度が過昇しないようにしつつ、高元側圧縮機11への液バックを回避できる開度が設定される。当該制御により、高元側冷媒は高元側冷媒回路1のみを循環し、高元側蓄熱回路3には流入しない。そのため蓄熱熱交換器Hに蓄えられた熱を暖房運転で使用することがないので、蓄熱運転を行いつつも、暖房運転を優先させた運転を行うことができ、室内空間を暖めることができる。
【0104】
次に、圧力センサ51及び冷媒温度センサ52が測定した結果を用いて冷媒温度検出部5が低元側冷媒の飽和温度を算出する。また、蓄熱熱交換器Hに設けられている蓄熱温度センサHSによって蓄熱材の温度が測定される。算出された飽和温度の情報と蓄熱材の温度の情報は制御部6に入力される(ST5)。
【0105】
制御部6では、第1の所定値T1を、例えば上述した図示しない記憶部から取得する(ST6)。そして、上述したような低元側冷媒の飽和温度と蓄熱材の温度との差が取得した当該第1の所定値T1を維持するように低元側圧縮機21の回転数を制御する(ST7)。
【0106】
なお、ステップST1の暖房・蓄熱運転開始後のステップST7までの制御部6の制御の順序については、説明の都合上、上述した順序で説明したが、その順序は説明した順序に限定されず、その順序を変更することも可能である。また、各減圧機構に対する制御を同時に行うといったことも可能である。
【0107】
暖房・蓄熱運転が行われている間、室内機においては、室温は室温センサによって一定の周期で測定されている(ST8)。これは室温が設定温度に達したか、維持されているか、の確認を行う必要があるからである。
【0108】
制御部6では、室温センサで測定された室温と設定温度とを比較し、室温が設定温度に達したか否かを判定する(ST9)。そしてまだ室温が設定温度に達していない場合には(ST9のNO)、改めてステップST8に戻り、暖房・蓄熱運転が継続され、室温の測定も行われる。そして、新たに測定された室温と設定温度との比較が行われる。
【0109】
一方、室温が設定温度に達した場合には(ST9のYES)、制御部6は改めて算出された飽和温度の情報と蓄熱材の温度の情報を取得する(
図6のST10)。そして、制御部6は、例えば記憶部から試験等によって得られた飽和温度と蓄熱材の温度の温度差を基に予め定められている第2の所定値T2(例えば、5℃)を取得する(ST11)。なお、第2の所定値T2は、第1の所定値T1と第2の所定値T2との関係がT1≦T2となるように設定されている。
【0110】
そして制御部6は、当該第2の所定値T2が維持されるように低元側圧縮機21の制御を行い、蓄熱運転を行う(ST12)。また、制御部6では随時蓄熱温度センサHSから蓄熱材の温度に関する情報を取得する(ST13)。
【0111】
そして取得した蓄熱材の温度が設定値予め定められている設定値以上となったか否かを判定する(ST14)。当該設定値は、蓄熱熱交換器Hの蓄熱材に応じて適宜設定することができる。
【0112】
もし蓄熱材の温度が設定値に達していない場合には(ST14のNO)、ステップST12に戻り、引き続き蓄熱運転が行われる。一方、蓄熱材の温度が設定値に達した場合には(ST14のYES)、蓄熱運転を停止する(ST15)。蓄熱運転の停止は、第2の低元側減圧機構41の開度が微開となるように制御して蓄熱熱交換器Hへ流入する低元側冷媒の量を制限し、低元側冷媒の温度と蓄熱材の温度が同じ温度となるように維持されることにより行われる。以上で、暖房・蓄熱運転は終了である。
【0113】
次に、除霜運転における制御の流れについて
図7を用いて説明する。除霜運転は、上述したように、暖房運転が行われている際に定期的に行われる。例えば外気温が5℃以下で暖房運転を3時間継続させた場合や、低元側熱交換器23の温度が-15℃以下になった場合に除霜運転に切り替えるが、どのタイミングで暖房運転と除霜運転とを切り替えるかは任意に設定することができる。
【0114】
除霜運転が開始されると(ST31)、制御部6は、低元側熱交換器23から流出した低元側冷媒がカスケード熱交換器Cに流入しないように、第1の低元側減圧機構22を閉じるよう開度を調整する(ST32)。さらに、高元側冷媒が高元側熱交換器12からカスケード熱交換器Cに流入しないように、第1の高元側減圧機構13を閉じるよう開度を調整する(ST33)。
【0115】
また制御部6は、低元側冷媒及び高元側冷媒がいずれも蓄熱熱交換器Hに流入するように、第2の低元側減圧機構41、及び、第2の高元側減圧機構31が開状態となるように開度を調整する(ST34、ST35)。なお、上述したように、制御部6による各減圧機構の制御の順序については、上述したようにどのような順序で制御されても、或いは、並列的に制御されても良い。
【0116】
制御部6では、除霜運転を行いつつ、低元側熱交換器23の除霜が完了したか否か、すなわち、除霜運転を終了するか否かについて判定する(ST36)。例えば、除霜運転時間が所定時間を経過した、または、低元側熱交換器23の温度が所定温度に到達した場合に除霜が完了したと判定する。未だ低元側熱交換器23の除霜が完了していないと制御部6が判定した場合には(ST36のNO)、引き続き除霜運転を継続する。
【0117】
一方制御部6は、低元側熱交換器23の除霜が完了したと判定した場合には(ST36のYES)、除霜運転を停止する(ST37)。
【0118】
以上説明してきた冷媒回路を備える二元冷凍サイクル装置及び二元冷凍サイクル装置の制御方法であれば、多段の冷凍回路を採用しつつ蓄熱装置を備えた冷凍サイクル回路を採用した場合であっても、運転中における冷凍サイクル回路内における冷媒量を十分に確保し、暖房能力の低下を抑制し快適性を損なうことなく蓄熱能力も維持することができる。
【0119】
なお、この発明は、上記実施の形態そのままに限定されるものではなく、本発明の一例を示したものである。実施の段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化でき、また、上記実施の形態には種々の変更又は改良を加えることが可能である。また、上記実施の形態に開示されている複数の構成要素を適宜組み合わせることにより種々の発明を形成できる。
【0120】
例えば、実施の形態に示される全構成要素から幾つかの構成要素を削除してもよい。更に、異なる実施の形態に亘る構成要素を適宜組み合わせてもよく、その様な変更又は改良を加えた形態も本発明に含まれ得る。この実施形態やその変形は、発明の範囲や要旨に含まれると共に、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
【符号の説明】
【0121】
1・・・高元側冷媒回路、2・・・低減側冷媒回路、3・・・高元側蓄熱回路、4・・・低減側蓄熱回路、5・・・冷媒温度検出部、11・・・高元側圧縮機、12・・・高元側熱交換器、13・・・第1の高元側減圧機構、14・・・高元側四方弁、21・・・低減側圧縮機、22・・・第1の低元側減圧機構、23・・・低減側熱交換器、24・・・低減側四方弁、31・・・第2の高元側減圧機構、41・・・第2の低元側減圧機構、51・・・圧力センサ、52・・・冷媒温度センサ、C・・・カスケード熱交換器、H・・・蓄熱熱交換器、HS・・・蓄熱温度センサ、P・・・冷媒配管、S・・・二元冷凍サイクル装置