(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-03-25
(45)【発行日】2024-04-02
(54)【発明の名称】免震制動装置
(51)【国際特許分類】
F16F 15/06 20060101AFI20240326BHJP
F16F 1/12 20060101ALI20240326BHJP
E04H 9/02 20060101ALI20240326BHJP
【FI】
F16F15/06 G
F16F1/12 F
E04H9/02 331Z
(21)【出願番号】P 2020213288
(22)【出願日】2020-12-23
【審査請求日】2023-10-20
(73)【特許権者】
【識別番号】593089046
【氏名又は名称】青木あすなろ建設株式会社
(74)【代理人】
【識別番号】100218062
【氏名又は名称】小野 悠樹
(74)【代理人】
【識別番号】100093230
【氏名又は名称】西澤 利夫
(72)【発明者】
【氏名】諸沢 柾治
(72)【発明者】
【氏名】新井 佑一郎
【審査官】杉山 豊博
(56)【参考文献】
【文献】特開2020-153106(JP,A)
【文献】特開2016-138621(JP,A)
【文献】実公昭50-000762(JP,Y1)
【文献】国際公開第2017/056265(WO,A1)
【文献】特許第6694195(JP,B1)
(58)【調査した分野】(Int.Cl.,DB名)
F16F 15/06
F16F 1/12
E04H 9/02
(57)【特許請求の範囲】
【請求項1】
エネルギー吸収部材の両端にエンドプレート及び取付部材が設けられたダンパーと、該ダンパーを移動可能に内設する外筒部材と、該外筒部材の両端近傍の内面に、前記エンドプレートと当接して前記ダンパーの移動を制限させるストッパーを備え、
前記エネルギー吸収部材が引張時に作用するエネルギー吸収部材であり、前記ストッパーが前記エンドプレートの内側に設けられていることを特徴する免震制動装置。
【請求項2】
前記ダンパーの前記エネルギー吸収部材がコイルバネであり、該コイルバネの中心空間内に、該中心空間の円周方向の寸法より小さい寸法の拘束材が内設されており、前記コイルバネの両端軸方向外向きに外力が加わり、前記コイルバネが絞られて内径が小さく変形する際に、内設された前記拘束材により一定以上前記コイルバネの内径が小さく変形しないダンパーであることを特徴とする請求項1に記載の免震制動装置。
【請求項3】
前記コイルバネの伸びに伴う捩れの発生を防止するための、捩れ防止機構が設けられていることを特徴とする請求項2に記載の免震制動装置。
【請求項4】
エネルギー吸収部材の両端にエンドプレート及び取付部材が設けられたダンパーと、該ダンパーを移動可能に内設する外筒部材と、該外筒部材の両端近傍の内面に、前記エンドプレートと当接して前記ダンパーの移動を制限させるストッパーを備え、
前記エネルギー吸収部材が圧縮時に作用するエネルギー吸収部材であり、前記ストッパーが前記エンドプレートの外側に設けられていることを特徴する免震制動装置。
【請求項5】
前記エネルギー吸収部材が、断面が矩形の線材がらせん状に巻かれたコイルバネであることを特徴とする請求項1から4のいずれか一項に記載の免震制動装置。
【請求項6】
前記エネルギー吸収部材が、鋼管材にらせん状のスリットが形成されたコイルバネであることを特徴とする請求項1から4のいずれか一項に記載の免震制動装置。
【請求項7】
前記免震制動装置が、台座に固定されたターンテーブルに設置されるとともに、両端の前記取付け部材と構造物が接続部材を介して接続されていることを特徴とする請求項1から6のいずれか一項に記載の免震制動装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、免震制動装置に関するものである。
【背景技術】
【0002】
免震装置が設置された建造物や橋梁等の免震構造物であっても、設計想定レベルの応答を超える地震動である大振幅地震動が発生した場合、免震装置が過大変形し、上部構造物が擁壁等に衝突するなどして、十分に免震機能が発揮できない可能性が懸念されている。この点について日本建築学会の「免震構造設計指針」には、免震構造設計の基本的な考え方として、大振幅地震動が発生した場合に起こり得る免震構造物の損傷等に対して、安全余裕度を積極的に確保することやフェイルセーフの検討を要請することが示されている。
【0003】
これに対して、免震構造物における免震層の過大変形を抑制するために用いられる、減衰制御が可能なバネ式制震ダンパーが提案されている(特許文献1、2を参照)。これらの提案のバネ式制震ダンパーは、免震層に過大変形が生じた際、一方向に伸縮することにより地震エネルギーを吸収し、免震層の過大変形を抑制する。
【先行技術文献】
【特許文献】
【0004】
【文献】特許第6613443号公報
【文献】特許第6694195号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
しかしながら、上記特許文献1、2のバネ式制震ダンパーは、伸縮部分が圧縮することで生じた弾性反力で地震エネルギーを吸収するため、ダンパーを免震層に設置する場合、少なくとも2基のバネ式制震ダンパーを対向するように設置する必要があり、設置コストがかかるとともに、設置場所の拡大といった問題があった。
【0006】
本発明は以上のような事情に鑑みてなされたものであり、設置コストを低く抑えることができるとともに、建造物や橋梁等の免震構造物が、設計上の想定を超えて変形した場合に間題となる構造物の損傷を最小限に留める機能を有し、さらに、引張・圧縮の両方向からの外力に対しても同等の制動効果を発揮することが可能な免震制動装置を提供することを課題としている。
【課題を解決するための手段】
【0007】
本発明の免震制動装置は、上記の技術的課題を解決するためになされたものであって、以下のことを特徴としている。
【0008】
第1に、本発明の免震制動装置は、エネルギー吸収部材の両端にエンドプレート及び取付部材が設けられたダンパーと、該ダンパーを移動可能に内設する外筒部材と、該外筒部材の両端近傍の内面に、前記エンドプレートと当接して前記ダンパーの移動を制限させるストッパーを備え、前記エネルギー吸収部材が引張時に作用するエネルギー吸収部材であり、前記ストッパーが前記エンドプレートの内側に設けられていることを特徴する。
第2に、上記第1の発明の免震制動装置において、前記ダンパーの前記エネルギー吸収部材がコイルバネであり、該コイルバネの中心空間内に、該中心空間の円周方向の寸法より小さい寸法の拘束材が内設されており、前記コイルバネの両端軸方向外向きに外力が加わり、前記コイルバネが絞られて内径が小さく変形する際に、内設された前記拘束材により一定以上前記コイルバネの内径が小さく変形しないダンパーであることが好ましい。
第3に、上記第2の発明の免震制動装置において、前記コイルバネの伸びに伴う捩れの発生を防止するための、捩れ防止機構が設けられていることが好ましい。
第4に、本発明の免震制動装置は、エネルギー吸収部材の両端にエンドプレート及び取付部材が設けられたダンパーと、該ダンパーを移動可能に内設する外筒部材と、該外筒部材の両端近傍の内面に、前記エンドプレートと当接して前記ダンパーの移動を制限させるストッパーを備え、前記エネルギー吸収部材が圧縮時に作用するエネルギー吸収部材であり、前記ストッパーが前記エンドプレートの外側に設けられていることを特徴する。
第5に、上記第1から第4の発明の免震制動装置において、前記エネルギー吸収部材は、断面が矩形の線材がらせん状に巻かれたコイルバネであることが好ましい。
第6に、上記第1から第4の発明の免震制動装置において、前記エネルギー吸収部材は、鋼管材にらせん状のスリットが形成されたコイルバネであることが好ましい。
第7に、上記第1から第6の発明の免震制動装置において、前記免震制動装置が、台座に固定されたターンテーブルに設置されるとともに、両端の前記取付け部材と構造物が接続部材を介して接続されていることが好ましい。
【発明の効果】
【0009】
本発明の免震制動装置によれば、設置基数を少なくでき、設置コストを低く抑えることができるとともに、建造物や橋梁等の免震構造物が地震動等の外力を受けて、設計上の想定を超えて移動した場合でも、免震構造物の免震層の擁壁の衝突や、橋梁における橋桁の落下等を防止でき、構造物の損傷を最小限に留めることができる。また、左右いずれの方向からの外力に対しても同等の減衰効果を発揮することが可能となる。
【図面の簡単な説明】
【0010】
【
図1】本発明の免震制動装置の実施形態の動作状態を示す概略断面図であり、(A)は静置状態、(B)は左方向から引っ張られた状態を示し、(C)は右方向から引っ張られた状態を示している。
【
図2】(A)、(B)はストッパーの実施形態を示す概略図であり、(C)は(A)、(B)のストッパーを取り付けた免震制動装置の軸方向概略図である。
【
図3】(a)は、本発明のダンパーの一実施形態を示す概略断面図であり、(b)は、この実施形態の概略斜視図である。
【
図4】
図3に示すダンパーの軸方向力-軸方向変位の関係を示すグラフである。
【
図5】本発明の免震制動装置の他の実施形態の動作状態を示す概略断面図であり、(A)は静置状態、(B)は左方向から押された状態を示し、(C)は右方向から押された状態を示している。
【
図6】免震装置を設けた建築物の基礎の台座と上部建築物の間に、本発明の緩衝装置を設置した構成を示す概略図である。
【
図7】本発明の免震制動装置をターンテーブル上に設置した状態を示す概略図であり、(a)は概略側面図であり、(b)は概略上面である。
【発明を実施するための形態】
【0011】
本発明の免震制動装置は、エネルギー吸収部材の両端にエンドプレート及び取付部材が設けられたダンパーと、該ダンパーを移動可能に内設する外筒部材と、該外筒部材の両端近傍の内面に、エンドプレートと当接してダンパーの移動を制限させるストッパーを備えている。また、ダンパーのエネルギー吸収部材として、圧縮時に作用するエネルギー吸収部材又は引張時に作用するエネルギー吸収部材のいずれかを選択的に用いるものである。なお、本発明における引張時に作用するエネルギー吸収部材とは、例えば、エネルギー吸収部材としてバネを用いた場合、比較的ピッチが小さく、バネが伸びるときに反発する弾塑性変形を発現するバネを意味し、本発明における圧縮時に作用するエネルギー吸収部材とは、比較的ピッチが大きく、バネが縮むときに反発する弾塑性変形を発現するバネを意味する。
【0012】
以下、本発明の免震制動装置の実施形態について、図面を用いて詳述する。
図1は、本発明の免震制動装置の一実施形態の動作状態を示す概略断面図である。
図1に示す実施形態の免震制動装置1では、ダンパー3のエネルギー吸収部材30として、引張時に作用するエネルギー吸収部材30を用いている。そして、上記エネルギー吸収部材30の両端部には、バネ径より大きいフランジ状のエンドプレート31が接続されており、さらに、エンドプレート31の中央部に取付部材32が設けられている。また、上記構成のダンパー3は、両端が開口した外筒部材2の内部に移動可能に内設されており、外筒部材2の内面で、ダンパー3に設けられたエンドプレート31の内側にはストッパー20が設けられている。
【0013】
なお、
図1に示す実施形態の免震制動装置1のダンパー3では、エネルギー吸収部材30として、板状の鋼材を一定の内径でらせん状に巻いた形状のものを用いているが、本発明の免震制動装置1のダンパー3におけるエネルギー吸収部材30は、入力された運動エネルギーを吸収できる能力を有するものであればこれに限定されるものではなく、コイルバネ、板バネ、粘弾性体等を用いることができる。また、エネルギー吸収部材30の径や長さ、弾塑性変形は、設置する構造物の大きさや想定する地震動等の大きさに応じて適宜決定することができる。
【0014】
ダンパー3を内設する外筒部材2の形状は、ダンパー3を安定して移動可能に内設できれば特に限定されず、例えば、断面矩形状や円管状等の形状を例示できるが、後述するストッパー20を所定の位置に配設することを考慮した場合、加工性等の観点から、
図2に示すような断面矩形状の形状とするのが望ましい。また、外筒部材2の材質は、土台や構造物に固定され、ダンパー3の伸縮に耐えうる強度を有するものであれば特に限定されるものではなく、例えば、鉄鋼や高強度樹脂等を用いることができる。
【0015】
本発明の免震制動装置1において、外力が加わったときにダンパー3の移動を制御するためのストッパー20はエンドプレート31の内側の所定の位置に設けられるが、通常、ダンパー3を外筒部材2に内設した後にストッパー20をエンドプレート31の内側に配設するのは困難となる。そのため、ストッパー20は、ダンパー3を外筒部材2内に導入後、外筒部材2の外側から配設できる構成とすることが好ましい。具体的には、例えば、外筒部材2にダンパー3を挿入した状態のエンドプレート31に対して内側となる所定の位置に、外筒部材2の内側まで貫通するスリットを設けておき、該スリットに、
図2(A)(B)に示す凸状のストッパー20を
図2(C)に示すように嵌合させ、ボルト21等によって外筒部材2に固定する構成とすることができる。上記構成により、エンドプレート31の内側にストッパー20を配設した後、容易かつ確実にストッパー20を配設することが可能となる。なお、ストッパー20の材質は、確実にダンパー3の移動を制御できれば特に限定されず、外筒部材2と同様の材料を用いることができる。
【0016】
上記実施形態の免震制動装置1の動作は、
図1(A)に示す静置状態から
図1(B)に示すように、地震動等の外力によって左側から矢印方向に引っ張られた場合、ダンパー3の右端のエンドプレート31の内側面は、外筒部材2の右側のストッパー20と当接してダンパー3の移動は阻止されるが、ダンパー3が伸びて、ダンパー3左端のエンドプレート31の内側面は外筒部材2の左側のストッパー20から離れる。この際、免震制動装置1に左側から矢印方向にかかる力は、引張時に作用するエネルギー吸収部材30の弾塑性変形により吸収される。なお、外筒部材2におけるストッパー20から開口端部までの寸法は、ダンパー3が伸びたときに、外筒部材2の開口端部から脱落しないようにダンパー3の変形量を考慮して決定する。
【0017】
また、これとは逆に、
図1(A)に示す静置状態から
図1(C)に示すように、地震動等の外力によって右側から矢印方向に引っ張られた場合には、ダンパー3の左端のエンドプレート31の内側面が外筒部材2の左側のストッパー20と当接してダンパー3の移動は阻止されるが、ダンパー3が伸びて、ダンパー3右端のエンドプレート31の内側面は外筒部材2の右側のストッパー20から離れる。この際、免震制動装置1に右から矢印方向にかかる力は、引張時に作用するエネルギー吸収部材30の弾塑性変形により吸収される。
【0018】
即ち、本実施形態の免震制動装置1によれば、1つのダンパー3により左右いずれから引っ張られる外力に対してもエネルギー吸収部材30の弾塑性変形により構造物にかかる力を同等に吸収させることが可能となる。
【0019】
また、本発明の免震制動装置1においては、引張時に作用するエネルギー吸収部材30を用いたダンパー3として、エネルギー吸収部材としてのコイルバネ30の中心空間に、該中心空間の円周方向の寸法より小さい寸法の拘束材が内設されており、コイルバネ30の両端にエンドプレート31及び取付部材32を設けたダンパー3を用いることもできる。
【0020】
以下、上記実施形態のダンパー3について、図面を用いて詳述する。
図3(a)は、本発明の免震制動装置1で用いるダンパー3の一実施形態の構成を示す概略正面断面図であり、
図3(b)は、その概略斜視図である。
【0021】
図3に示す実施形態のダンパー3では、コイルバネ30として板状の鋼材を一定の内径でらせん状に巻いた形状のものを用いている。すなわち、コイルバネ30のバネ線材の断面は矩形形状となっている。また、鋼材の種類は、通常のバネに用いられる適度な弾性を有する鋼材であれば制限なく用いることができ、例えば、低炭素鋼、バネ鋼(熱間材)である高炭素鋼、シリコンマンガン鋼、マンガンクロム鋼、クロムバナジウム鋼、マンガンクロムボロン鋼、シリコンクロム鋼、クロムモリブデン鋼、ステンレス鋼等を挙げることができる。
【0022】
また、コイルバネ30を構成する鋼材の幅、巻き数は、使用する鋼材の材質や特性、また、取り付ける構造物の大きさや要求される制動性能に応じて適宜設定することができ、特に限定されるものではないが、エネルギー吸収能力を高めるために、断面が幅広の矩形形状の鋼材を用いるのが好ましい。具体的には、十分な制動性能を発現するための設定として、鋼材断面の矩形形状の幅径比(バネ径/線材幅)が0.5~1程度の範囲が望ましい。
【0023】
また、コイルバネ30は、上記の鋼材をらせん状に巻いて製造する他、円筒状の鋼管材の周囲に一定間隔のスリット状の切込みをらせん状に形成して製造することもできる。この、鋼管材にらせん状の切り込みを形成するコイルバネ30の製造方法によれば、鋼管材に形成する切り込みの角度や幅を調整することにより所望のバネ特性を実現することができる。また、らせん部分の角度を部分的に変化させることにより、特定の位置の弾性を変化させることもでき、設計上の応用範囲を広くすることができる。また、鋼管材の任意の部分のみにコイルバネ30を形成することができ、両端を閉じた円筒状とすることができるため、用途の拡張性や加工性の観点から好ましい。また、加工歩留りが高まり、生産を自動化することができるため大量生産が可能となる。
【0024】
本実施形態のダンパー3では、上記のコイルバネ30の中心空間の円周方向の寸法より小さい寸法の拘束材が内設されており、コイルバネ30の内面と拘束材との間には特定の間隔が形成されている。なお、本実施形態のダンパーにおける拘束材の内設は、
図3に示すようにコイルバネ30の内部空間に単に拘束材が載置された構成となっているが、コイルバネ30の中心空間に、長手方向に対して平行に挿入された拘束材34の一端をエンドプレート31に固定して配設してもよい。
【0025】
拘束材34の材質としては、コイルバネ30の内径の変形を防止できる強度を有するものであれば特に制限はなく、例えば、鋼材、非鉄金属、エンジニアリングプラスチック、FRP、硬質ゴム等を用いることができる。
【0026】
また、拘束材34の形状は特に制限はなく、円柱、円筒、多角柱等のものを用いることができる。なお、多角柱のものを用いる場合には、コイルバネ30の内側との接触面積を多くするために角を面取りしたものを用いるのが好ましい。これは、拘束材34に対してコイルバネ30が絡まる際に、拘束材34の角の鋭い部分に接触すると、コイルバネ30の耐力が低下する場合があるためである。
【0027】
また、コイルバネ30の両端には、コイルバネ30の径より大きく、外筒部材2に内設可能な大きさのエンドプレート31が設けられ、エンドプレート31には、免震制動装置1を構造物に取付けるための取付部材32が設けられている。
【0028】
上記実施形態のダンパー3を用いた免震制動装置1の動作については、以下のように説明される。通常のコイルバネを用いたダンパー3が、外力により両端軸方向外向きに伸ばされると、コイルバネが絞られて内径が小さく変形する。このように、コイルバネに外力が加わり続けた場合、絞られた状態で長軸方向に伸び続け、最終的にコイルバネは破断する虞がある。
【0029】
一方、本実施形態のダンパー3を用いた免震制動装置1は、コイルバネ30の両端方向外向きに外力が加わり、コイルバネ30が絞られて内径が小さく変形する際に、コイルバネ30の中に内設された拘束材34により、コイルバネ30の内径は拘束材34の径以下には変形しない。
【0030】
すなわち、コイルバネ30が絞られて内径が小さく変形して、コイルバネ30の内側が拘束材34に接触するまでは引張時に作用するエネルギー吸収部材30として機能し、接触して軸力を受けて、拘束材34に巻きついてコイルバネ30の変形が拘束されると免震制動装置1全体の剛性と強度が上昇する。
【0031】
コイルバネ30の中心空間に内設した拘束材34とコイルバネ30の内側の間隔は、免震制動装置1にかかる外力の荷重とコイルバネ30の変形関係に影響を与える。この間隔は、コイルバネ30の内径を変更することにより、また、拘束材34の径(太さ)を変更することにより調整可能である。即ち、この拘束材34の径を適切に設定することにより、コイルバネ30の伸び量、すなわち、免震制動装置1の制動性能を決定することができる。
【0032】
図4に、
図3に示す免震制動装置1の軸方向力-軸方向変位の関係グラフを示す。
図4のグラフでは、実線が本発明の免震制動装置1の特性を示し、破線が通常のコイルバネの特性を示している。
【0033】
このグラフによれば、本実施形態の免震制動装置1の軸方向力-軸方向変位特性(実線)は、初期は剛性が小さく緩やかに剛性が上昇し、特定のエネルギー以上の入力に対しては所定の耐力を発現している。これにより、構造物の変位が急激に拘束されることによる衝撃的な荷重の伝達を抑制することがわかる。
【0034】
なお、コイルバネ30は、軸方向外向きの外力がかかり軸方向の変形が大きくなるにつれてバネ本体に捩れが生じ、コイルバネ30と拘束材34とが十分接触せずに滑り、コイルバネ30が荷重上昇することなく塑性化による変形が増大し、制動装置が働かなくなる可能性もあるため、コイルバネ30の所定以上の捩れの発生を防止するための捩れ防止機構を設けることができる。
【0035】
このように、上記実施形態のダンパー3を用いた免震制動装置1は、コイルバネ30が拘束材34に巻きつきながら荷重と剛性が上昇する過程で、コイルバネ30の矩形断面の鋼材がせん断降伏しエネルギーを吸収する。すなわち、免震装置の免震許容量を超えて発生する構造物に揺れによる一定の移動寸法までは制動効果を発現し、コイルバネ30の内面と拘束材34が接触した後はストッパー20として機能する。また、本実施形態のダンパー3を用いた免震制動装置1を免震建物に用いた場合、複数回の衝撃に耐えながら、免震建物と他の構造物との衝突防止部材として機能するとともに、確実に免震層に作用する設計想定レベルを超えるエネルギーを吸収する免震制動装置1とすることができる。
【0036】
また、本発明の免震制動装置1においては、
図5に示すように、ダンパー3の圧縮時に作用するエネルギー吸収部材30として、ストッパー20をエンドプレート31の外側に設けた構成とすることもできる。なお、免震制動装置1の大きさや各部材の材質等においては、
図1に示す免震制動装置1と同様とすることができる。
【0037】
以下に、ダンパー3のエネルギー吸収部材30を圧縮時に作用するエネルギー吸収部材30とした実施形態の免震制動装置1の動作について図を用いて説明する。本実施形態の免震制動装置1の動作は、
図5(A)に示す静置状態から
図5(B)に示すように、地震動等により左側から矢印方向に押された場合、ダンパー3の右端のエンドプレート31の外側面は、外筒部材2の右側のストッパー20と当接してダンパー3の移動が阻止され、圧縮時に作用するエネルギー吸収部材30のダンパー3が縮んで、ダンパー3左端のエンドプレート31の外側面は外筒部材2の左のストッパー20から離れる。この際、免震制動装置1に左側から矢印方向に係る力は、圧縮時に作用するエネルギー吸収部材30のダンパー3の弾塑性変形により吸収される。
【0038】
また、これとは逆に、
図5(A)に示す静置状態から
図5(C)に示すように、地震動等により右側から矢印方向に押された場合には、ダンパー3の左端のエンドプレート31の外側面は、外筒部材2の左側のストッパー20と当接してダンパー3の移動が阻止され、圧縮時に作用するエネルギー吸収部材30のダンパー3が縮んで、ダンパー3右端のエンドプレート31の外側面は外筒部材2の右のストッパー20から離れる。この際、免震制動装置1に右側から矢印方向に係る力は、圧縮時に作用するエネルギー吸収部材30のダンパー3の弾塑性変形により吸収される。
【0039】
即ち、本実施形態の免震制動装置1によれば、1つのダンパー3により左右いずれから押される外力に対してもダンパー3の弾塑性変形により構造物にかかる力を同等に吸収させることが可能となる。
【0040】
本発明の免震制動装置1は、免震装置が設置された建築物に設置する場合、
図6に示すように、建築物の基礎の台座63に固定され、両端に設けられた取付部材32と上部建築物を接続部材4を介して接続する。接続部材4は、本発明の免震制動装置1と構造物である建築物とを接合可能な形態であれば特に制限されるものではなく、例えば、ワイヤー、鎖、ロープ、パンタグラフ式接合部材等を例示することができる。また、これらの長さは免震構造物に設置されている免震装置の性能や可動域等に応じて適宜設定することができる。なお、本発明における構造物としては、上記建築物の他、橋脚と橋桁の間に可動支承や免震装置が設置された橋梁等を例示することができる。
【0041】
本発明の免震制動装置1を用いて橋脚と橋桁を繋ぐ場合には、可動支承に対する橋桁の移動許容範囲を考慮して、免震制動装置1の最大伸び幅を設定する必要がある。これにより地震動による橋桁の落橋を確実に防止することが可能となる。このように、本発明の免震制動装置1によれば、免震建物や橋梁といった大きく水平移動する構造物の過大な変位を抑制し、衝突や落下を防止することが可能となる。また、本発明の免震制動装置1は、左右いずれからの外力に対しても同等の制動効果を発揮することができるため、設置基数を少なくすることができ、コストを低く抑えることができる。
【0042】
また、本発明の免震制動装置1を構造物の台座63に固定する場合には、
図7に示すように、台座63にターンテーブル7を設置し、該ターンテーブル7に免震制動装置1を固定するとともに、免震制動装置1の取付け部材と構造物を接続部材4を介して接続する構成とすることができる。
【0043】
上記設置構成とすることにより、地震動の方向に追随してターンテーブル7が平面方向に回転し、XY方向の動きに対応しながら免震制動装置1を作動させることが可能となり、如何なる方向からの複雑な地震動に対しても対応可能な免震制動装置1とすることが可能となる。
【符号の説明】
【0044】
1 免震制動装置
2 外筒部材
20 ストッパー
3 ダンパー
30 エネルギー吸収部材(コイルバネ)
31 エンドプレート
32 取付部材
34 拘束材
35 間隔
36 捩れ防止機構
37 捩れ防止機構
4 接続部材
5 免震装置
6 構造物
61基礎
62 上部構造物
63 台座
7 ターンテーブル