IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 楽天株式会社の特許一覧

特許7460725情報処理装置、情報処理理方法、及び情報処理プログラム
<>
  • 特許-情報処理装置、情報処理理方法、及び情報処理プログラム 図1
  • 特許-情報処理装置、情報処理理方法、及び情報処理プログラム 図2
  • 特許-情報処理装置、情報処理理方法、及び情報処理プログラム 図3
  • 特許-情報処理装置、情報処理理方法、及び情報処理プログラム 図4
  • 特許-情報処理装置、情報処理理方法、及び情報処理プログラム 図5
  • 特許-情報処理装置、情報処理理方法、及び情報処理プログラム 図6
  • 特許-情報処理装置、情報処理理方法、及び情報処理プログラム 図7
  • 特許-情報処理装置、情報処理理方法、及び情報処理プログラム 図8
  • 特許-情報処理装置、情報処理理方法、及び情報処理プログラム 図9
  • 特許-情報処理装置、情報処理理方法、及び情報処理プログラム 図10
  • 特許-情報処理装置、情報処理理方法、及び情報処理プログラム 図11
  • 特許-情報処理装置、情報処理理方法、及び情報処理プログラム 図12
  • 特許-情報処理装置、情報処理理方法、及び情報処理プログラム 図13
  • 特許-情報処理装置、情報処理理方法、及び情報処理プログラム 図14
  • 特許-情報処理装置、情報処理理方法、及び情報処理プログラム 図15
  • 特許-情報処理装置、情報処理理方法、及び情報処理プログラム 図16
  • 特許-情報処理装置、情報処理理方法、及び情報処理プログラム 図17
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-03-25
(45)【発行日】2024-04-02
(54)【発明の名称】情報処理装置、情報処理理方法、及び情報処理プログラム
(51)【国際特許分類】
   G06Q 50/16 20240101AFI20240326BHJP
   G06F 3/0488 20220101ALI20240326BHJP
   G06F 3/0484 20220101ALI20240326BHJP
【FI】
G06Q50/16
G06F3/0488
G06F3/0484
【請求項の数】 7
(21)【出願番号】P 2022165522
(22)【出願日】2022-10-14
(62)【分割の表示】P 2021015038の分割
【原出願日】2021-02-02
(65)【公開番号】P2023002649
(43)【公開日】2023-01-10
【審査請求日】2022-12-06
(73)【特許権者】
【識別番号】399037405
【氏名又は名称】楽天グループ株式会社
(74)【代理人】
【識別番号】110000958
【氏名又は名称】弁理士法人インテクト国際特許事務所
(74)【代理人】
【識別番号】100120189
【弁理士】
【氏名又は名称】奥 和幸
(74)【代理人】
【識別番号】100135518
【弁理士】
【氏名又は名称】青木 隆
(72)【発明者】
【氏名】中村 圭吾
【審査官】貝塚 涼
(56)【参考文献】
【文献】特開2017-142723(JP,A)
【文献】特開2019-197422(JP,A)
【文献】特開2019-145100(JP,A)
【文献】特開2015-001884(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G06Q 10/00 - 99/00
G06F 3/048 - 3/04895
(57)【特許請求の範囲】
【請求項1】
物件の間取図画像に基づいて生成された特徴情報であって、前記物件内の部屋の特徴を示す特徴情報が、前記物件を識別する物件識別情報に関連付けて記憶手段に記憶された複数の前記物件それぞれについて、画面を有する表示部と、前記画面上への接触位置を検出する検出部と、を有する表示装置の前記画面に前記間取図画像を表示させる表示制御手段と、
前記複数の物件それぞれについて、前記表示された間取図画像に対する評価を示す評価情報を取得する評価情報取得手段であって、前記間取図画像が表示された前記画面上において、所定の第1方向への前記接触位置の移動が検出された場合、前記表示された間取図画像に対する正の評価を示す前記評価情報を取得し、前記第1方向とは異なる所定の第2方向への前記接触位置の移動が検出された場合、前記表示された間取図画像に対する負の評価を示す前記評価情報を取得する評価情報取得手段と、
前記複数の物件それぞれについて、前記取得された評価情報を、前記表示装置のユーザを識別するユーザ識別情報及び前記物件を識別する前記物件識別情報に関連付けて、前記記憶手段に記憶させる評価情報記憶制御手段と、
を備えることを特徴とする情報処理装置。
【請求項2】
前記評価情報取得手段は、
前記第1方向への前記接触位置の所定の第1態様の移動が検出された場合、前記画面に前記間取図画像が表示されている前記物件の全体に対する前記正の評価を示す前記評価情報を取得し、
前記第2方向への前記接触位置の前記第1態様の移動が検出された場合、前記画面に前記間取図画像が表示されている前記物件の全体に対する前記負の評価を示す前記評価情報を取得し、
所定の第3方向への前記接触位置の所定の第2態様の移動であって、前記第1態様の移動とは異なる第2態様の移動が検出された場合、前記表示された間取図画像により示される少なくとも一の部屋のうち、前記接触位置にある部屋に対する前記正の評価を示す前記評価情報を取得し、
前記第3方向とは異なる所定の第4方向への前記接触位置の前記第2態様の移動が検出された場合、前記表示された間取図画像により示される少なくとも一の部屋のうち、前記接触位置にある部屋に対する前記負の評価を示す前記評価情報を取得し、
前記評価情報記憶制御手段は、前記接触位置にある前記部屋に対する前記評価を示す前記評価情報が前記評価情報取得手段により取得された場合、前記取得された評価情報を、前記ユーザ識別情報、前記物件識別情報、及び前記接触位置にある前記部屋を識別する部屋識別情報に関連付けて、前記記憶手段に記憶させることを特徴とする請求項1に記載の情報処理装置。
【請求項3】
前記記憶手段は、前記物件内にある少なくとも一の部屋それぞれについて、該部屋の特徴を示す前記特徴情報を、前記物件識別情報、及び前記部屋を識別する部屋識別情報に関連付けて記憶することを特徴とする請求項1又は2に記載の情報処理装置。
【請求項4】
前記記憶手段に記憶された前記評価情報のうち、前記正の評価を示す前記評価情報を取得する正評価情報取得手段と、
前記記憶手段に記憶された前記評価情報のうち、前記負の評価を示す前記評価情報を取得する負評価情報取得手段と、
を更に備えることを特徴とする請求項1乃至3の何れか一項に記載の情報処理装置。
【請求項5】
前記正評価情報取得手段により取得された前記評価情報、及び該評価情報に関連付けられた前記物件識別情報に関連付けられた前記特徴情報に基づいて、前記取得された評価情報が前記正の評価を示す物件内の部屋についての前記特徴情報を確率変数とする確率分布を示す正評価モデルを生成する正評価モデル生成手段と、
前記負評価情報取得手段により取得された前記評価情報、及び該評価情報に関連付けられた前記物件識別情報に関連付けられた前記特徴情報に基づいて、前記取得された評価情報が前記負の評価を示す物件内の部屋についての前記特徴情報を確率変数とする確率分布を示す負評価モデルを生成する負評価モデル生成手段と、
を更に備えることを特徴とする請求項4に記載の情報処理装置。
【請求項6】
コンピュータにより実行される情報処理方法において、
物件の間取図画像に基づいて生成された特徴情報であって、前記物件内の部屋の特徴を示す特徴情報が、前記物件を識別する物件識別情報に関連付けて記憶手段に記憶された複数の前記物件それぞれについて、画面を有する表示部と、前記画面上への接触位置を検出する検出部と、を有する表示装置の前記画面に前記間取図画像を表示させる表示制御ステップと、
前記複数の物件それぞれについて、前記表示された間取図画像に対する評価を示す評価情報を取得する評価情報取得ステップであって、前記間取図画像が表示された前記画面上において、所定の第1方向への前記接触位置の移動が検出された場合、前記表示された間取図画像に対する正の評価を示す前記評価情報を取得し、前記第1方向とは異なる所定の第2方向への前記接触位置の移動が検出された場合、前記表示された間取図画像に対する負の評価を示す前記評価情報を取得する評価情報取得ステップと、
前記複数の物件それぞれについて、前記取得された評価情報を、前記表示装置のユーザを識別するユーザ識別情報及び前記物件を識別する前記物件識別情報に関連付けて、前記記憶手段に記憶させる評価情報記憶制御ステップと、
を含むことを特徴とする情報処理方法。
【請求項7】
コンピュータを、
物件の間取図画像に基づいて生成された特徴情報であって、前記物件内の部屋の特徴を示す特徴情報が、前記物件を識別する物件識別情報に関連付けて記憶手段に記憶された複数の前記物件それぞれについて、画面を有する表示部と、前記画面上への接触位置を検出する検出部と、を有する表示装置の前記画面に前記間取図画像を表示させる表示制御手段と、
前記複数の物件それぞれについて、前記表示された間取図画像に対する評価を示す評価情報を取得する評価情報取得手段であって、前記間取図画像が表示された前記画面上において、所定の第1方向への前記接触位置の移動が検出された場合、前記表示された間取図画像に対する正の評価を示す前記評価情報を取得し、前記第1方向とは異なる所定の第2方向への前記接触位置の移動が検出された場合、前記表示された間取図画像に対する負の評価を示す前記評価情報を取得する評価情報取得手段と、
前記複数の物件それぞれについて、前記取得された評価情報を、前記表示装置のユーザを識別するユーザ識別情報及び前記物件を識別する前記物件識別情報に関連付けて、前記記憶手段に記憶させる評価情報記憶制御手段、
として機能させることを特徴とする情報処理プログラム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、住居や建築物の物件に関する情報を提供する方法に関する。
【背景技術】
【0002】
従来、ウェブサイトやアプリケーションを通じて、不動産に関する情報を提供する不動産情報提供システムが知られている。このようなシステムにおいては、先ずユーザが、希望する物件の条件を入力することが一般的である。この条件の例として、販売価格若しくは賃料、間取りのタイプ(例えば、2LDK、3LDK等)、建築物のタイプ、築年数、専有面積、地域、沿線、駅までの移動時間、特定設備の有無等が挙げられる。そして、不動産情報提供システムは、入力された条件に合致する物件情報を検索して提供する。提供される物件情報は、例えば物件の様々な属性と、間取図とを含む。例えば、特許文献1には、金額、土地面積、建物面積、築年数、部屋数等の検索条件に基づいて、不動産情報を取得する不動産情報検索装置が開示されている。
【先行技術文献】
【特許文献】
【0003】
【文献】特開2015-129980号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
しかしながら、ユーザが指定した検索条件に合致する物件情報が提示されても、その物件情報に含まれる間取図により示される物件の内部の様子、例えば間取り等がユーザの希望に合致しない場合がある。その理由は、間取図には、上述したような検索条件では特定されない様々な特徴が表されていることがあるからである。そのため、ユーザは、指定した検索条件に合致する複数の物件情報から、間取図を見ながらユーザの希望に適う物件の情報を探し出す作業が必要になる。その一方で、ユーザは、物件の内部の様子に関する希望を潜在的に持っていたとしても、それを明確な条件として認識していない場合もある。そのため、物件の内部の様子に関して指定可能な検索条件を新設したとしても、その条件を指定するべきか否かを判断することがユーザにとって困難な場合がある。
【0005】
本発明は以上の点に鑑みてなされてものであり、その課題の一例は、ユーザの好みの物件を識別するために用いる情報として、物件の部屋の特徴とその物件の間取図に対するユーザの評価とを関連付けておくことが可能な情報処理装置、情報処理理方法、及び情報処理プログラムを提供することにある。
【課題を解決するための手段】
【0006】
上記課題を解決するために、請求項1に記載の発明は、物件の間取図画像に基づいて生成された特徴情報であって、前記物件内の部屋の特徴を示す特徴情報が、前記物件を識別する物件識別情報に関連付けて記憶手段に記憶された複数の前記物件それぞれについて、画面を有する表示部と、前記画面上への接触位置を検出する検出部と、を有する表示装置の前記画面に前記間取図画像を表示させる表示制御手段と、前記複数の物件それぞれについて、前記表示された間取図画像に対する評価を示す評価情報を取得する評価情報取得手段であって、前記間取図画像が表示された前記画面上において、所定の第1方向への前記接触位置の移動が検出された場合、前記表示された間取図画像に対する正の評価を示す前記評価情報を取得し、前記第1方向とは異なる所定の第2方向への前記接触位置の移動が検出された場合、前記表示された間取図画像に対する負の評価を示す前記評価情報を取得する評価情報取得手段と、前記複数の物件それぞれについて、前記取得された評価情報を、前記表示装置のユーザを識別するユーザ識別情報及び前記物件を識別する前記物件識別情報に関連付けて、前記記憶手段に記憶させる評価情報記憶制御手段と、を備えることを特徴とする
【0007】
請求項2に記載の発明は、前記評価情報取得手段は、前記第1方向への前記接触位置の所定の第1態様の移動が検出された場合、前記画面に前記間取図画像が表示されている前記物件の全体に対する前記正の評価を示す前記評価情報を取得し、前記第2方向への前記接触位置の前記第1態様の移動が検出された場合、前記画面に前記間取図画像が表示されている前記物件の全体に対する前記負の評価を示す前記評価情報を取得し、所定の第3方向への前記接触位置の所定の第2態様の移動であって、前記第1態様の移動とは異なる第2態様の移動が検出された場合、前記表示された間取図画像により示される少なくとも一の部屋のうち、前記接触位置にある部屋に対する前記正の評価を示す前記評価情報を取得し、前記第3方向とは異なる所定の第4方向への前記接触位置の前記第2態様の移動が検出された場合、前記表示された間取図画像により示される少なくとも一の部屋のうち、前記接触位置にある部屋に対する前記負の評価を示す前記評価情報を取得し、前記評価情報記憶制御手段は、前記接触位置にある前記部屋に対する前記評価を示す前記評価情報が前記評価情報取得手段により取得された場合、前記取得された評価情報を、前記ユーザ識別情報、前記物件識別情報、及び前記接触位置にある前記部屋を識別する部屋識別情報に関連付けて、前記記憶手段に記憶させることを特徴とする
【0008】
請求項3に記載の発明は、前記記憶手段は、前記物件内にある少なくとも一の部屋それぞれについて、該部屋の特徴を示す前記特徴情報を、前記物件識別情報、及び前記部屋を識別する部屋識別情報に関連付けて記憶することを特徴とする。
【0009】
請求項4に記載の発明は、前記記憶手段に記憶された前記評価情報のうち、前記正の評価を示す前記評価情報を取得する正評価情報取得手段と、前記記憶手段に記憶された前記評価情報のうち、前記負の評価を示す前記評価情報を取得する負評価情報取得手段と、を更に備えることを特徴とする。
【0010】
請求項5に記載の発明は、前記正評価情報取得手段により取得された前記評価情報、及び該評価情報に関連付けられた前記物件識別情報に関連付けられた前記特徴情報に基づいて、前記取得された評価情報が前記正の評価を示す物件内の部屋についての前記特徴情報を確率変数とする確率分布を示す正評価モデルを生成する正評価モデル生成手段と、前記負評価情報取得手段により取得された前記評価情報、及び該評価情報に関連付けられた前記物件識別情報に関連付けられた前記特徴情報に基づいて、前記取得された評価情報が前記負の評価を示す物件内の部屋についての前記特徴情報を確率変数とする確率分布を示す負評価モデルを生成する負評価モデル生成手段と、を更に備えることを特徴とする。
【0011】
請求項6に記載の発明は、コンピュータにより実行される情報処理方法において、物件の間取図画像に基づいて生成された特徴情報であって、前記物件内の部屋の特徴を示す特徴情報が、前記物件を識別する物件識別情報に関連付けて記憶手段に記憶された複数の前記物件それぞれについて、画面を有する表示部と、前記画面上への接触位置を検出する検出部と、を有する表示装置の前記画面に前記間取図画像を表示させる表示制御ステップと、前記複数の物件それぞれについて、前記表示された間取図画像に対する評価を示す評価情報を取得する評価情報取得ステップであって、前記間取図画像が表示された前記画面上において、所定の第1方向への前記接触位置の移動が検出された場合、前記表示された間取図画像に対する正の評価を示す前記評価情報を取得し、前記第1方向とは異なる所定の第2方向への前記接触位置の移動が検出された場合、前記表示された間取図画像に対する負の評価を示す前記評価情報を取得する評価情報取得ステップと、前記複数の物件それぞれについて、前記取得された評価情報を、前記表示装置のユーザを識別するユーザ識別情報及び前記物件を識別する前記物件識別情報に関連付けて、前記記憶手段に記憶させる評価情報記憶制御ステップと、を含むことを特徴とする。
【0012】
請求項7に記載の発明は、コンピュータを、物件の間取図画像に基づいて生成された特徴情報であって、前記物件内の部屋の特徴を示す特徴情報が、前記物件を識別する物件識別情報に関連付けて記憶手段に記憶された複数の前記物件それぞれについて、画面を有する表示部と、前記画面上への接触位置を検出する検出部と、を有する表示装置の前記画面に前記間取図画像を表示させる表示制御手段と、前記複数の物件それぞれについて、前記表示された間取図画像に対する評価を示す評価情報を取得する評価情報取得手段であって、前記間取図画像が表示された前記画面上において、所定の第1方向への前記接触位置の移動が検出された場合、前記表示された間取図画像に対する正の評価を示す前記評価情報を取得し、前記第1方向とは異なる所定の第2方向への前記接触位置の移動が検出された場合、前記表示された間取図画像に対する負の評価を示す前記評価情報を取得する評価情報取得手段と、前記複数の物件それぞれについて、前記取得された評価情報を、前記表示装置のユーザを識別するユーザ識別情報及び前記物件を識別する前記物件識別情報に関連付けて、前記記憶手段に記憶させる評価情報記憶制御手段、として機能させることを特徴とする情報処理プログラム。
【発明の効果】
【0031】
本発明によれば、ユーザの好みの物件を識別するために用いる情報として、物件の部屋の特徴とその物件の間取図に対するユーザの評価とを関連付けておくことができる
【図面の簡単な説明】
【0032】
図1】一実施形態に係る物件情報提供システムSの概要構成の一例を示す図である。
図2】一実施形態に係る情報提供サーバ1の概要構成の一例を示すブロック図である。
図3】情報提供サーバ1のデータベースに記憶される情報の例を示す図である。
図4】情報提供サーバ1のシステム制御部11の機能ブロックの一例を示す図である。
図5】(a)は、間取図画面の表示例を示す図である。(b)は、物件詳細画面の表示例を示す図である。
図6】(a)は、間取図画像に対する正の評価の入力例と各部屋に対する評価の例を示す図である。(b)は、間取図画像に対する負の評価の入力例と各部屋に対する評価の例を示す図である。
図7】間取図画像に対する部分評価及び全体評価の入力例と各部屋に対する評価の例を示す図である。
図8】セグメント化間取図情報の生成例を示す図である。
図9】間取図画像から取得された、物件の特徴ベクトルの構成例を示す図である。
図10】物件分類器の構成例を示す図である。
図11】特徴項目スコアの計算例を示す図である。
図12】評価「好き」の特徴量の確率分布と評価「嫌い」の特徴量の確率分布との相違の例を示す図である。
図13】一実施形態に係る情報提供サーバ1のシステム制御部11による間取図解析処理の一例を示すフローチャートである。
図14】一実施形態に係る情報提供サーバ1のシステム制御部11による物件推奨処理の一例を示すフローチャートである。
図15】一実施形態に係る情報提供サーバ1のシステム制御部11による物件選択処理の一例を示すフローチャートである。
図16】一実施形態に係るユーザ端末2のCPUによる間取図表示処理の一例を示すフローチャートである。
図17】一実施形態に係る情報提供サーバ1のシステム制御部11による学習処理の一例を示すフローチャートである。
【発明を実施するための形態】
【0033】
以下、図面を参照して本発明の実施形態について詳細に説明する。
【0034】
[1.物件情報提供システムの構成]
先ず、本実施形態に係る物件情報提供システムSの構成及び機能概要について、図1を用いて説明する。図1は、本実施形態に係る物件情報提供システムSの概要構成の一例を示す図である。
【0035】
図1に示すように、物件情報提供システムSは、情報提供サーバ1と、複数のユーザ端末2と、を備える。情報提供サーバ1と各ユーザ端末2とは、ネットワークNWを介して互いに接続される。ネットワークNWは、例えばインターネット、専用通信回線(例えば、CATV(Community Antenna Television)回線)、移動体通信網(基地局等を含む)、及びゲートウェイ等により構築されている。
【0036】
情報提供サーバ1は、不動産物件の情報をユーザ端末2へ配信するサーバ装置である。情報が提供される物件は、例えば住居(例えば、一軒家、アパートの一室、マンションの一室等)及び事務所の何れであってもよい。また、情報が提供される物件は、例えば新築物件、中古物件及び賃貸物件の何れであってもよい。情報提供サーバ1は、例えばユーザ端末2からの要求に応じて、物件情報を送信してもよい。物件情報は、例えば、物件名、住所、価格、専有面積、間取りタイプ、その他様々な情報を含んでもよい。更に物件情報は、間取図画像を含んでもよい。間取図画像は、対象の物件の間取図を示す画像である。情報提供サーバ1は、例えばウェブページで物件情報を送信してもよい。
【0037】
情報提供サーバ1は、ユーザに対して物件を推奨する処理を実行する。例えば、情報提供サーバ1は、例えば各ユーザがその日のうちで最初に物件情報提供システムSを利用するとき、推奨する複数の物件の物件情報を提供してもよい。情報提供サーバ1は、特に間取図画像をユーザ端末2に表示させる。そして、情報提供サーバ1は、ユーザによりその間取図画像に対する評価を入力させる。情報提供サーバ1は、間取図画像及び入力された評価を用いた学習により、ユーザの好む物件を識別するモデルを生成する。このモデルを、物件分類器という。そして、情報提供サーバ1は、生成された物件分類器に基づいて、ユーザに推奨する物件を決定する。
【0038】
各ユーザ端末2は、物件情報提供システムSを利用可能なユーザが携帯可能な端末装置である。ユーザ端末2の例として、スマートフォン、タブレット式コンピュータ等の携帯情報端末、携帯電話機、PDA(Personal Digital Assistant)等が挙げられる。各ユーザ端末は、画面を有するディスプレイと、その画面への接触位置を検出するセンサと、を備えてもよい。画面への接触とは、ユーザの指やスタイラスペン等を画面に接触させることである。接触位置とは、画面上において、ユーザの指やスタイラスペン等が接触した座標である。このようなセンサとディスプレイとが一体となった装置の一例として、タッチパネルがある。各ユーザ端末2には、物件情報提供システムS専用のアプリケーションがインストールされてもよい。このアプリケーションを利用して、ユーザは物件情報を閲覧することができる。また、各ユーザ端末2には、ウェブブラウザがインストールされてもよい。ウェブブラウザを利用することで物件情報の閲覧が可能であってもよい。ユーザ端末2として、パーソナルコンピュータ等の据え置き型の端末装置が利用可能であってもよい。
【0039】
[2.情報提供サーバの構成]
次に、情報提供サーバ1の構成について、図2及び図3を用いて説明する。図2は、本実施形態に係る情報提供サーバ1の概要構成の一例を示すブロック図である。図2に示すように、情報提供サーバ1は、システム制御部11と、システムバス12と、入出力インタフェース13と、記憶部14と、通信部15と、を備えている。システム制御部11と入出力インタフェース13とは、システムバス12を介して接続されている。
【0040】
システム制御部11は、CPU(Central Processing Unit)11a、ROM(Read Only Memory)11b、RAM(Random Access Memory)11c等により構成されている。
【0041】
入出力インタフェース13は、記憶部14及び通信部15とシステム制御部11との間のインタフェース処理を行う。
【0042】
記憶部14は、例えば、ハードディスクドライブ等により構成されている。この記憶部14には、会員DB14a、物件DB14b、評価情報14c、モデルDB14d等のデータベースが記憶されている。「DB」は、データベースの略語である。
【0043】
図3は、情報提供サーバ1のデータベースに記憶される情報の例を示す図である。会員DB14aには、物件情報提供システムSを利用可能なユーザに関する会員情報が、ユーザごとに記憶される。例えば、会員DB14aには、会員情報として、ユーザID、氏名、性別、生年月日、住所、電話番号、電子メールアドレス、及びその他のユーザの属性が、互いに関連付けて記憶されている。ユーザIDは、ユーザを識別する識別情報である。
【0044】
物件DB14bには、情報提供の対象である物件に関する物件情報が、物件と、その物件を仲介若しくは販売する不動産業者と、の組み合わせごとに記憶される。具体的に、物件DB14bには、物件情報として、物件ID、業者ID、登録日、物件名、詳細情報、物件画像、及び間取図画像等が記憶される。物件IDは、物件と不動産業者との組み合わせを識別する識別情報である。業者IDは、対象の物件を仲介又は販売する不動産業者を識別する識別情報である。登録日は、物件情報が物件情報提供システムSに登録された日を示す。詳細情報は、対象の物件の詳細な情報である。詳細情報は、対象の物件の属性を含む。具体的に、詳細情報は、住所、最寄り駅、最寄り駅までの移動時間、建物タイプ、築年数、間取りタイプ、価格、専有面積、物件のある階、及びその他の属性を含んでもよい。建物タイプは、対象の物件又はその物件がある建物の種類を示す(例えば、一軒家、マンション、アパート等)。間取りタイプは、その物件が有する部屋の種類及び数を示す。間取りタイプの例として、「1R」、「1K」、「1LDK」、「2K」、「2DK」、「2LDK」、「3LDK」、「3SLDK」等が挙げられる。価格は、販売価格又は賃料を示す。その他の属性の例として、管理費、敷金、礼金、バスとトイレが別であるか否か、フローリングの有無、洗濯機置き場の有無、システムキッチンの有無、コンロの種類、浴室乾燥機の有無、風呂の追い炊きが可能であるか否か、独立洗面所の有無、温水洗浄便座の有無、エアコンの有無、床暖房の有無、ウォークインクローゼットの有無、角部屋であるか否か、オートロックの有無、駐車場の有無、宅配ボックスの有無、ペット飼育の可能であるか否か、楽器演奏が可能であるか否か、外国人が入居可能であるか否か、民泊利用が可能であるか否か、コンビニエンスストアまでの距離、スーパーマーケットまでの距離等が挙げられる。物件画像は、物件の内部や外部の写真画像である。
【0045】
更に、物件DB14bには、物件IDに関連付けて、セグメント化間取図情報が記憶されてもよい。セグメント化間取図情報は、対象の物件の間取図画像から得られる情報である。セグメント化間取図情報は、対象の間取図画像を構成する各要素の位置及び範囲を示す情報である。セグメント化間取図情報は、例えば、間取図画像の各ピクセルに対して、そのピクセルの位置に対応する要素を示すラベルを関連付けた情報であってもよい。間取図画像の構成要素は、物件の内部と外部とに分かれる。物件の内部の構成要素は、仕切りと内部空間とに大別されてもよい。仕切りは、物件の内部の空間を分ける何か又は物件の内部と外部とを分ける何かである。仕切りは、物理的に空間を分けるものであってもよいし、イメージ的に空間を分けるものであってもよい。仕切りの例として、壁及び開口部等が挙げられる。開口部の例として、出入口及び窓等が挙げられる。内部空間は、仕切りによって囲まれた空いた場所であってもよい。内部空間は、部屋とその他の空間とに大別されてもよい。本実施形態において、「部屋」というときは、マンションの一室やアパートの一室を示すのではなく、対象の物件の内部空間のうち、生活又は仕事の場として比較的長い時間利用され、その用途によって分類可能な空間であってもよい。部屋の例として、一般部屋、リビングルーム、ダイニングルーム、キッチン、ダイニングキッチン、LDK(リビングルームとダイニングルームとキッチンとが一体になった部屋)、納戸、ロフト等が挙げられる。一般部屋は、リビングルーム、ダイニングルーム、キッチン、ダイニングキッチン、LDK、納戸及びロフトの何れにも該当しない部屋であってもよい。一般部屋は、特段の用途が定められていない部屋であってもよい。一般部屋は、和室又は洋室と呼ばれたり、ベッドルームと呼ばれたりする。その他の空間の例として、洗面所、トイレ、風呂、廊下、玄関、ベランダ等が挙げられる。なお、洗面所、トイレ及び風呂の少なくとも一つは、部屋に含まれてもよい。
【0046】
また更に、物件DB14bには、物件IDに関連付けて、特徴ベクトルが記憶されてもよい。特徴ベクトルは、対象の物件内にある部屋の特徴量の二次元配列であってもよい。例えば、特徴ベクトルは、対象の物件内にある各部屋の特徴量の一次元配列を並べた情報であってもよい。各部屋の特徴量の一次元配列は、例えばその部屋の部屋タイプを示すラベル及びその部屋の番号と関連付けられてもよい。部屋タイプは、部屋の種類を示す。例えば、部屋タイプとして、一般部屋、リビングルーム、ダイニングルーム、キッチン、ダイニングキッチン、LDK、納戸及びロフト等があってもよい。部屋の番号は、その物件にある部屋について、1から順番に付与されてもよい。
【0047】
評価情報DB14cには、ユーザ端末2に表示された間取図画像に対するユーザの評価を示す評価情報が、評価が行われるごとに記憶される。具体的に、評価情報DB14cには、評価情報として、ユーザID、物件ID、表示日及び全体評価が、互いに関連付けて記憶される。ユーザIDは、評価を行ったユーザを示す。表示日は、評価された物件の間取図画像が表示された日付を示す。対象の間取図画像が表示された日と、評価が行われた日とは、通常一致する。全体評価は、間取図画像により示される物件内の全部屋に対する評価である。全体評価として、「好き」及び「嫌い」の何れか一方が設定されてもよい。「好き」は、対象の間取図画像に対する正の評価である。「嫌い」は、対象の間取図画像に対する負の評価である。評価情報DB14cには、更に部分評価情報が一又は複数記憶される場合がある。部分評価情報は、対象の間取図画像により示される物件内の部屋のうち一の部屋に対する評価に関する情報である。ユーザが対象の間取図画像内の一部を指定して評価した場合に、部分評価情報が記憶される。部分評価情報は、対象部屋番号、部屋タイプ及び部分評価を含む。対象部屋番号は、ユーザにより指定された部屋の番号である。部屋タイプは、ユーザにより指定された部屋の種類を示す。部分評価は、指定された部屋に対するユーザの評価を示す。全体評価と同様に、部分評価として、「好き」及び「嫌い」の何れか一方が設定されてもよい。また更に、評価情報DB14cには、アンケート回答が記憶される場合がある。アンケート回答は、全体評価が「嫌い」である場合に、ユーザからの回答として、対象の物件のどこに対してユーザが評価「嫌い」を入力したかを示す情報である。
【0048】
モデルDB14dには、ユーザの好みの物件を識別する物件分類器のパラメータが、ユーザごとに記憶される。具体的に、モデルDB14dには、ユーザID及び物件分類器のパラメータが、互いに関連付けて記憶される。ユーザIDは、その物件分類器により好みが識別されるユーザを示す。例えばモデルとして確率密度関数を用いる場合、パラメータは、その関数の係数を含んでもよい。例えば、正規分布の場合、パラメータは、平均値及び分散を含んでもよい。混合正規分布の場合、パラメータは、混合正規分布を構成する各正規分布の平均値、分散及び重みを含んでもよい。モデルとしてニューラルネットワークが用いられる場合、パラメータは、そのネットワークに含まれる中間層の重みを含んでもよい。
【0049】
記憶部14には、更に、オペレーティングシステム、DBMS(Database Management System)、サーバプログラム等の各種プログラムが記憶されている。サーバプログラムは、物件情報に提供に関する処理、例えば間取図画像の提供、ユーザからの評価の取得、物件分類器の生成、ユーザに推奨する物件の決定等を、システム制御部11に実行させるプログラムである。サーバプログラムは、例えば、他の装置からインターネットNWを介して取得されるようにしてもよいし、磁気テープ、光ディスク、メモリカード等の記録媒体に記録されてドライブ装置を介して読み込まれるようにしてもよい。
【0050】
通信部15は、例えばネットワークインタフェースカード等により構成されている。通信部15は、ネットワークNWを介してユーザ端末2等と接続し、これらの装置との通信状態を制御する。
【0051】
[3.機能概要]
次に、図4乃至図12を用いて、情報提供サーバ1におけるシステム制御部11の機能概要について説明する。図4は、情報提供サーバ1のシステム制御部11の機能ブロックの一例を示す図である。システム制御部11は、CPU11aが、サーバプログラムに含まれる各種プログラムコードを読み出し実行することにより、図4に示すように、表示制御部111、評価情報取得部112、特徴情報取得部113、生成部114、決定部115等として機能する。
【0052】
[3-1.間取図画像の表示]
表示制御部111は、複数の物件それぞれの間取図画像を、ユーザ端末2に表示させる。間取図画像が表示される物件は、対象のユーザに推奨される物件であってもよい。推奨される物件は、後述するように、物件分類器を用いて決定される。しかしながら、物件分類器が生成されていないとき、推奨される物件は、何れの物件であってもよい。例えば、物件の登録日からの経過日数が所定値未満である物件が推奨されてもよい。或いは、ユーザにより、物件の検索条件が予め入力されて保存されてもよい。検索条件として、物件情報の詳細情報に含まれる情報と同じ情報が指定可能であってもよい。例えば、会員DB14a等に、検索条件が記憶されてもよい。そして、保存された検索条件に合致する物件が推奨されてもよい。また、表示制御部111は、間取図画像がそれぞれ一度は表示された複数の物件のうち少なくとも一の物件について、その間取図画像が表示されてから所定日数(例えば、一週間、一ヶ月等)が経過した後でその間取図画像を再表示させてもよい。物件探しをしている間、ユーザは、時間が経過するに従って、又は様々な物件の情報を見ていくに従って、物件の好みが変化する場合がある。そのため、ユーザが一度入力した評価もその後変わる可能性がある。ユーザの好みの変化を物件分類器に反映させるために、間取図画像が再表示されてもよい。ここで、表示制御部111は、後述する正の評価「好き」が対象のユーザにより入力された物件のみについて、その間取図画像を再表示させてもよい。
【0053】
表示制御部111は、例えば対象のユーザがその日に最初に物件情報提供システムSにログインしたときに間取図画像をユーザ端末2に表示させてもよい。また、表示制御部111は、物件の属性を示す詳細情報等の物件情報もユーザ端末2に表示させてもよい。例えば、表示制御部111は、推奨する物件の物件名、詳細情報、物件画像及び間取図画像をユーザ端末2へ送信してもよい。表示制御部111は、更にセグメント化間取図情報をユーザ端末2へ送信してもよい。
【0054】
ユーザ端末2は、情報提供サーバ1から受信した間取図画像を表示する。図5(a)は、間取図画面の表示例を示す図である。図5(a)に示すように、ユーザ端末2は、間取図画面100を表示する。間取図画面100は、間取図画像110を含む。図5(b)は、物件詳細画面の表示例を示す図である。間取図画像110が表示されているときに、ユーザが所定の操作を行うと、図5(b)に示すように、ユーザ端末2は、物件詳細画面200を表示する。例えば、ユーザが、間取図画面100を右又は左へスワイプすることで、物件詳細画面200が表示されてもよい。スワイプとは、ユーザが画面を指で押したまま、その指をスライドさせる操作であってもよい。物件詳細画面200は、物件の詳細な情報を表示する画面である。例えば、物件詳細画面200には、物件画像、詳細情報、対象の物件を取り扱う不動産業者に関する情報が表示されてもよい。例えば、ユーザが物件詳細画面200を上下にスクロールさせることにより、様々な情報が表示されてもよい。また、物件詳細画面200において、対象の物件をユーザのお気に入りに登録することが可能であったり、不動産業者に対する資料請求や問い合わせが可能であったりしてもよい。
【0055】
[3-2.評価の入力]
評価情報取得部112は、ユーザ端末2により間取図画像が表示される複数の物件それぞれについて、その表示された間取図画像に対するユーザからの評価を示す評価情報を取得する。ユーザにより入力可能な評価は、正の評価及び負の評価を少なくとも含んでもよい。正の評価は、間取図画像により示される物件内の部屋又は間取りをユーザが好きであるという評価であってもよい。負の評価は、間取図画像により示される物件の内部又は間取りをユーザが嫌いであるという評価であってもよい。正の評価は負の評価よりも高い評価である。三段階以上の評価の中から、ユーザが何れかの評価を入力可能であってもよい。ユーザは、物件内の部屋又は間取りに関する希望を潜在的に持っていたとしてもユーザ自身が気付いていない場合がある。或いは、ユーザがその希望を思い浮かんではいても、言葉で表現することが難しい場合がある。直感的な評価を入力可能とすることで、どの点が具体的どの理由で良いのか又は悪いのかということを、ユーザは入力しなくてもよい。
【0056】
評価情報取得部112は、間取図画像が表示された画面上において指等が接触した位置の所定の第1方向への移動が検出された場合、正の評価を示す評価情報を取得してもよい。これにより、ユーザは簡単に評価を入力することができる。また、直感的な操作により評価を入力することができる。このときの操作は、例えばフリックであってもよい。フリックとは、ユーザが画面を指等ではじく操作であってもよい。フリックと上述のスワイプとの違いは、指等が移動を開始してから停止するまで又はその指等を画面から離すまでの移動距離及び時間の長さの少なくとも何れか一方であってもよい。例えば、移動距離が所定距離未満であるとき、その操作はフリックであり、移動距離が所定距離以上であるとき、その操作はスワイプであってもよい。また、時間の長さが所定時間未満であるとき、その操作はフリックであり、時間の長さが所定時間以上であるとき、その操作はスワイプであってもよい。第1方向は、上、下、右、左及び斜めの何れであってもよい。本実施形態においては、右方向の移動が正の評価である。
【0057】
また、評価情報取得部112は、間取図画像が表示された画面上において指等が接触した位置の、第1方向とは異なる第2方向への移動が検出された場合、負の評価を示す評価情報を取得してもよい。このときの操作もフリックであってもよい。また、第2方向は、第1方向と異なる何れの方向であってもよい。本実施形態においては、左方向の移動が正の評価である。
【0058】
評価情報取得部112は、上述した操作による評価を、全体評価として取得してもよい。すなわち、間取図画像により示される物件内にある全部屋に対して、入力された評価が関連付けられる。
【0059】
図6(a)は、間取図画像に対する正の評価の入力例と各部屋に対する評価の例を示す図である。図6(a)に示すように、ユーザは、間取図画像110上で右方向へフリックする。これにより正の評価「好き」が入力される。間取図画像110により示される物件は、LDKと、7帖の一般部屋Aと、5.5帖の一般部屋Bと、を有する。この場合の評価は、間取図110全体に対する評価であるので、LDK、一般部屋A及び一般部屋Bそれぞれの全特徴に対して、評価「好き」が設定されてもよい。図6(b)は、間取図画像に対する負の評価の入力例と各部屋に対する評価の例を示す図である。図6(b)に示すように、ユーザは、間取図画像110上で左方向へフリックする。これにより負の評価「嫌い」が入力される。この場合、LDK、一般部屋A及び一般部屋Bそれぞれの全特徴に対して、評価「嫌い」が設定されてもよい。
【0060】
評価情報取得部112は、ユーザ端末2により間取図画像が表示される複数の物件のうち少なくとも一の物件について、その表示された間取図画像内でユーザにより指定された部分に対するそのユーザの評価を示す部分評価情報を更に取得してもよい。これにより、ユーザは、物件内の一部の部屋についてのみ別の評価を入力することができる。ユーザは、物件に対して全体的には特定の評価を入力したいと考えていても、一部については別の評価を入力したいと考える可能性がある。
【0061】
例えば、評価情報取得部112は、全体評価の場合の操作とは異なる態様の操作であって、間取図画像が表示された画面上において指等が接触した位置の所定の第3方向への移動が検出された場合、正の評価を示す部分評価情報を取得してもよい。全体評価の場合の操作とは異なる態様の操作とは、例えば、指等の移動方向が異なることであってもよい。例えば、右方向へのフリックが全体評価としての正の評価である場合において、上方向へのフリックが部分評価としての正の評価であってもよい。或いは、ユーザが画面に指等を接触させてから所定時間以上停止した後で、フリックを行った場合、その操作は部分評価の入力であると判定されてもよい。この場合の第3方向は、例えば右方向であってもよい。このフリックを、溜めフリックと称する。溜めフリックに対して、ユーザが画面に指等を接触させてから所定時間以上停止させずに行うフリックを、通常フリックと称する。通常フリックは、全体評価用入力用の操作である。ユーザが画面に指等の接触を開始したときの指等の位置にある部屋が、部分評価の対象であってもよい。例えば、前述したように、物件情報とともにセグメント化間取図情報がユーザ端末2へ送信されてもよい。ユーザ端末2は、間取図画像において、ユーザが接触した位置にあるピクセルに対応するラベルをセグメント化間取図情報から取得することにより、ユーザがどこを指定したかを判定してもよい。また、評価情報取得部112は、全体評価の場合の操作とは異なる態様の操作であって、間取図画像が表示された画面上において指等が接触した位置の、第3方向とは異なる所定の第4方向への移動が検出された場合、負の評価を示す部分評価情報を取得してもよい。この操作も溜めフリックであってもよい。また、第4方向は左方向であってもよい。
【0062】
図7は、間取図画像に対する部分評価及び全体評価の入力例と各部屋に対する評価の例を示す図である。図7に示すように、ユーザは、表示された間取図画像110上の部分120に指を付けて、右方向へ溜めフリックした。部分120は、LDK上の点である。その後、ユーザは、間取図画像110上で左方向に通常フリックした。この場合、LDKの全特徴に対して評価「好き」が設定され、一般部屋A及び一般部屋Bそれぞれの全特徴に対して、評価「嫌い」が設定されてもよい。
【0063】
ユーザが全体評価として「嫌い」を入力した場合、ユーザ端末2はアンケート画面を表示してもよい。アンケート画面は、対象の物件のどの点が嫌いであるかをユーザが選択するための画面である。選択肢としては、詳細情報に含まれる情報の項目(例えば、住所、最寄り駅、移動時間、建物タイプ、築年数、間取りタイプ、価格、専有面積等)に加えて、「間取り」がある。「間取り」は、間取図画像により示される物件内の部屋又は間取りが気に入らなかった場合の選択肢である。評価情報取得部112は、ユーザによる選択を、アンケート回答としてユーザ端末2から取得してもよい。このアンケートは、間取図画像が表示された物件の情報を、モデルの学習に利用するか否かを判定するために用いられる。
【0064】
評価情報取得部112は、フリック等のスライド操作とは異なる操作がユーザにより行われたときに、評価情報を取得してもよい。例えば、間取図画面100に、評価を選択するためのボタン又はメニュー等の要素が表示されてもよい。評価情報取得部112は、捧持された要素に対するユーザの操作内容に応じた評価を示す表か情報を取得してもよい。
【0065】
[3-3.特徴抽出]
特徴情報取得部113は、ユーザ端末2により間取図画像が表示される複数の物件それぞれについて、その間取図画像に基づいて生成される特徴情報であって、その物件内の部屋の特徴を示す特徴情報を取得する。この特徴は、部屋ごとの特徴であってもよい。また、取得される特徴は、間取図画像から特定可能な特徴であれば、特に限定されない。取得される特徴は、物件情報の詳細情報からは特定することができないか又は特定することが難しい特徴であってもよい。取得される特徴情報は、特徴量であってもよい。
【0066】
特徴情報取得部113は、間取図画像から部屋に相当する領域を特定してもよい。また、対象の物件に含まれる部屋それぞれについて、間取図画像から部屋タイプを特定してもよい。特徴情報取得部113は、間取図画像からセグメント化間取図情報を生成してもよい。例えば、特徴情報取得部113は、セマンティックセグメンテーションを用いて、セグメント化間取図情報を生成してもよい。
【0067】
例えば、特徴情報取得部113は、機械学習を用いてセグメント化間取図情報を生成してもよい。例えば、セグメント化間取図情報を生成するモデルとして、セマンティックセグメンテーションに利用可能な畳み込みニューラルネットワーク(CNN)が用いられてもよい。このモデルに間取図画像を入力することにより、このモデルからセグメント化間取図情報が出力されることになる。例えば、学習段階においては、訓練データとして、間取図画像及びセグメント化間取図情報が用意されてもよい。この場合のセグメント化間取図情報は、例えば人手により作成されてもよい。特徴情報取得部113は、前処理として、例えば文字認識により、間取図画像から部屋等の内部空間の面積を示す文字を認識する。例えば、「7帖」、「5畳」、「20m2」等の文字は、面積を示す。特徴情報取得部113は、間取図画像から面積を示す文字を除去してもよい。そして、特徴情報取得部113は、前処理が施された間取図画像を入力データとし、用意されたセグメント化間取図情報をグランドトゥルースとして、モデルを訓練する。そして、特徴情報取得部113は、訓練されたモデルを用いて、間取図画像からセグメント化間取図情報を生成する。このときに生成されるセグメント化間取図情報においては、同じ種類の部屋が複数存在した場合、それらの部屋全てに同じラベルが付されている場合がある。その場合、特徴情報取得部113は、部屋ごとに別々のラベルを付け直してもよい(例えば、「一般部屋A」、「一般部屋B」、「一般部屋C」等のラベル)。
【0068】
特徴情報取得部113は、例えばルールベースで間取図画像からセグメント化間取図情報を生成してもよい。例えば、特徴情報取得部113は、間取図画像から面積を示す文字を除去してもよい。また、特徴情報取得部113は、間取図画像に対してモルフォロジー変換を施したり二値化を施したりすることにより、必要なエッジを強調し、不必要なエッジを除去してもよい。特徴情報取得部113は、このように処理された間取図画像から、パターン認識により、各内部空間の種類を特定してもよい。例えば、特徴情報取得部113は、文字認識により種類を特定してもよい。例えば、キッチンには、「キッチン」、「K」等の文字が付されている。ダイニングルームには、例えば「ダイニング」、「D」等の文字が付されている。一般部屋には、例えば「洋室」、「和室」、「洋」、「和」、「ベッドルーム」等の文字が付されている。LDKには、例えば「LDK」等の文字が付されている。玄関には、例えば「玄関」、「玄」等の文字が付されている。収納には、例えば「物入」、「収納」、「クローゼット」等の文字が付されている。また、特徴情報取得部113は、物体検出等の画像認識により、種類を特定してもよい。例えば、キッチンには、流し台の絵が描かれている。トイレには、便器の絵が描かれている。風呂には、風呂釜の絵が描かれている。その後、特徴情報取得部113は、間取図画像から認識された文字及び絵を除去してもよい。また、特徴情報取得部113は、間取図画像から扇形を除去してもよい。間取図画像に描かれた扇形は、通常開き戸が開く方向を示す。また、特徴情報取得部113は、間取図画像からそれぞれ線分で形成される図形を特定してもよい。そして、特徴情報取得部113は、各図形で囲まれる領域に対してラベル付けを行ってもよい。前述の文字又は絵が認識された箇所を含む図形は、通常物件の内部空間に相当する。特徴情報取得部113は、認識された文字又は絵から特定される種類を示すラベルを、その内部空間に相当する領域内の全ピクセルに関連付けてもよい。文字及び絵の何れも認識されなかった図形も内部空間に相当する場合がある。例えば、玄関に接し、且つ、他の内部空間と開口部で通じる箇所は、廊下である可能性が高い。内部空間に相当する図形に接する他の図形であって、比較的に細い形状のものは、通常仕切りである。仕切りに相当する図形のうち、一方の長辺が一つの内部空間のみに接し、他方の長辺は一つの内部空間のみに接するか又は物件の外部に接する長方形は、通常開口部に相当する。開口部に相当する長方形のうち、何れの長辺も一つの内部空間のみに接する長方形は、出入口に相当する。その他の開口部は窓である。但し、玄関から物件の外部に通じる開口部は出入口であり、バルコニーに通じる開口部は窓である。また、収納に通じる開口部は、収納戸である。こうして、特徴情報取得部113は、ラベル付けを行ってセグメント化間取図情報を生成する。
【0069】
図8は、セグメント化間取図情報の生成例を示す図である。図8に示すように、間取図画像110から、セグメント化間取図情報300が生成される。セグメント化間取図情報300は、物件の外部310、壁320-1~320-5、出入口330-1~330-7、収納戸330-8~330-10、窓340-1~340-4、部屋350-1~350-3、玄関360-1、洗面所360-2、トイレ360-3、風呂360-4、ベランダ360-5、及び収納370-1~370-3等で構成される。部屋350-1は、LDKであり、部屋350-2は、部屋Aであり、部屋350-3は、部屋Bである。
【0070】
こうして間取図画像から部屋に相当する領域を特定すると、特徴情報取得部113は、その特定された領域に基づいて、部屋の特徴を特定してもよい。例えば、特徴情報取得部113は、その領域の特徴に基づいて、部屋の特徴を特定してもよい。特徴情報取得部113は、その部屋の特徴として、特徴量を抽出してもよい。例えば、特徴情報取得部113は、その領域(を形成する図形)の面積、頂点の数、辺の長さ、内角の角度(例えば劣角のみ)等を特定してもよい。そして、特徴情報取得部113は、部屋の面積、頂点の数、辺の長さ、部屋の隅の角度等を、部屋の特徴量として特定してもよい。部屋の面積、頂点、辺及び内角とは、例えば物件の内部を上から見下ろした場合に、その物件においてその部屋が占める範囲に相当する図形の面積、頂点、辺及び内角である。この場合、仕切の側面が、その図形の辺又は辺の一部に相当する。例えば、セグメント化間取図情報の生成の段階で、文字認識により少なくとも一の内部空間の面積が特定される。特徴情報取得部113は、間取図画像において、その内部空間に相当する領域の面積と、他の内部空間に相当する領域の面積と、の比を計算してもよい。そして、特徴情報取得部113は、その内部空間の面積と計算された比とに基づいて、他の内部空間の面積を計算してもよい。また、特徴情報取得部113は、各部屋に相当する領域を囲む図形の辺の長さを計算してもよい。また、特徴情報取得部113は、その領域の面積と、その領域に対応する部屋の面積と、の比の平方根を計算してもよい。そして、特徴情報取得部113は、領域の辺の長さと計算された平方根とに基づいて、その部屋を囲む辺の長さを計算してもよい。特徴情報取得部113は、例えば部屋を囲む辺のうち、最短の辺及び最小の辺にのみについて長さを計算してもよい。特徴情報取得部113は、領域の頂点の数及び辺間の角度を、それぞれ部屋の頂点の数及び辺間の角度として特定してもよい。特徴情報取得部113は、最小の角度及び最大の角度のみを特定してもよい。特徴情報取得部113は、部屋の面積、頂点、辺及び内角のうち少なくとも何れか一つを特定してもよい。或いは、特徴情報取得部113は、頂点、辺及び内角のうち少なくとも何れか一つを特定してもよい。
【0071】
また、特徴情報取得部113は、対象の部屋に相当する領域と、他の領域との隣接状況を特定してもよい。そして、特徴情報取得部113は、特定された隣接状況に基づいて、その対象の部屋に対する他の内部空間又は仕切りの隣接状況を、その部屋の特徴量として特定してもよい。ここで、特徴情報取得部113は、対象の部屋について設けられた開口部に関連した特徴を特定してもよい。例えば、特徴情報取得部113は、その部屋にある窓の数や出入口の数を、特徴量として特定してもよい。間取図画像において、部屋に接する窓は、その部屋の窓である。例えば、セグメント化間取図情報300において、部屋350-1には、窓340-1及び340-2に接する。従って、窓の数は2である。間取図画像において、部屋に接する出入口は、その部屋の出入口である。例えば、部屋350-1には、出入口330-2、330-6及び330-7接する。従って、出入口の数は3である。特徴情報取得部113は、その部屋に隣接する部屋の数を、特徴量として特定してもよい。間取図画像において、対象の部屋と仕切りを挟んで隣接する他の部屋は、その対象の部屋に隣接する。部屋と部屋とが出入口で繋がっているか否かは考慮されなくてもよい。例えば、セグメント化間取図情報300において、部屋350-2は、出入口330-7を挟んで部屋350-1に隣接し、壁320-6を挟んで部屋350-3に隣接する。従って、隣接する部屋の数は2である。特徴情報取得部113は、その部屋にある収納の面積を、特徴量として特定してもよい。間取図画像において、対象の部屋に収納戸を挟んで隣接する収納は、その部屋にある収納である。例えば、部屋350-2は、収納戸330-9を挟んで収納370-2に隣接する。従って、部屋350-2は収納370-2を有する。収納370-2の面積が部屋350-2の収納の面積として特定されてもよい。複数の収納を有する部屋の場合、特徴情報取得部113は、それらの収納の面積の合計を、その部屋の収納の面積として計算してもよい。
【0072】
また、特徴情報取得部113は、対象の部屋に相当する領域と他の内部空間に相当する領域との位置関係を特定してもよい。そして、特徴情報取得部113は、対象の部屋と他の内部空間との位置関係を、その部屋の特徴として特定してもよい。例えば、特徴情報取得部113は、部屋が廊下に繋がっているか否か、部屋がリビング又はLDKに繋がっているか否か、部屋がベランダに繋がっているか否か等を、特徴として特定してもよい。間取図画像において、対象の部屋と出入口を挟んで隣接する内部空間は、その部屋に繋がっている。また、特徴情報取得部113は、部屋から玄関に行くまでに廊下以外の内部空間を通る必要があるか否かを特定してもよい。この特徴は、例えばダイクストラ法等の経路探索アルゴリズムにより特定可能である。また、特徴情報取得部113は、部屋の出入口が開き戸であるか又は引き戸であるかを、その部屋の特徴として特定してもよい。間取図画像において、出入口に相当する領域が扇形と接しているその出入口は、開き戸であってもよい。その他の出入口は引き戸であってもよい。こうした所定条件に該当するか否かで示される特徴については、例えば条件に該当する場合には特徴量として1が設定され、条件に該当しない場合には特徴量として0が設定されてもよい。
【0073】
特徴情報取得部113は、全種類の部屋について、互いに同じ項目の特徴量を取得してもよい。特徴量の項目とは、例えば「部屋の面積」、「頂点の数」等、部屋の特徴を名称で分けたときの各区分である。或いは、特徴情報取得部113は、部屋タイプに応じて、取得する特徴量の項目の全部又は一部を、他の部屋で取得される特徴量の項目とは異ならせてもよい。
【0074】
図9は、間取図画像から取得された、物件の特徴ベクトルの構成例を示す図である。特徴情報取得部113は、抽出された特徴量で構成される特徴ベクトルを生成してもよい。ここでは例として、部屋の特徴量として、面積、頂点の数、最長の辺の長さ、最短の辺の長さ、最大角度、最小角度、窓の数、出入口の数、隣接している部屋の数、及び収納の面積が抽出されるものとする。図9に示すように、特徴ベクトル400においては、部屋ごとに、その部屋についての10項目分の特徴量が格納される。図9では、間取図画像110から特定されたLDK、一般部屋A及びBについて、特徴量が格納される。ここで、面積は、その部屋の居住性や家具等をどれだけ置くことができるかに影響する。頂点の数は、角の多さを示す。最長の辺の長さは、ベッド、机、テレビ台等、比較的長い家具が設置可能であるか否かに影響する。最短の辺の長さは、最大角度が、90度よりも大きく且つ90度から離れているほど、家具等を設置した場合にデッドスペースが生じやすい。最小角度が、90度よりも小さく且つ90度から離れているほど、家具等を設置した場合にデッドスペースが生じやすい。窓の数は、採光性に影響する。出入口の数が多いほど、その部屋に出入りするための導線が多くなる一方で、家具等の設置スペースが制限される。隣接している部屋数が少ないほど、物件の中で角にある部屋であるということができる。収納の面積は、物の収納量に影響する。
【0075】
特徴情報取得部113は、セグメント化間取図情報及び特徴ベクトルを、対象の物件の間取図画像が表示されるとき又はその後に生成してもよい。或いは、特徴情報取得部113は、セグメント化間取図情報及び特徴ベクトルを予め生成しておき、それらの情報を物件DB14bに記憶させておいてもよい。
【0076】
なお、特徴情報取得部113自体は、特徴情報を生成しなくてもよい。例えば、情報提供サーバ1と異なる装置が特徴情報を生成し、特徴情報取得部113は、その装置から特徴情報を取得してもよい。
【0077】
[3-4.モデルの生成]
生成部114は、評価情報取得部112により取得された評価情報及び特徴情報取得部113により取得された特徴情報に基づいて、ユーザが好む物件を識別するモデルの一例である物件分類器を生成する。生成される物件分類器は、物件の全部屋の特徴情報を入力データとし、その物件に対してユーザが入力すると推定される評価を示す推定評価情報を出力データとする分類器であってもよい。出力される推定評価情報は、正の評価「好き」及び負の評価「嫌い」の何れかを示してもよいし、ユーザがその物件を好きである度合い又は確率を示してもよい。また、生成される物件分類器は、評価情報及び特徴情報を学習データ又は訓練データとして用いるモデルであれば、統計モデル及び機械学習モデルの何れであってもよい。
【0078】
生成部114は、ユーザが好む特徴が相対的に多く有し、またユーザが好まない特徴が相対的に少ない物件を、ユーザが好む物件として識別するように、物件分類器を生成してもよい。生成部114は、評価「好き」を与えられる特徴に或る特徴が占める割合が、評価「嫌い」を与えられる特徴にその或る特徴が占める割合よりも高いその或る特徴を有する部屋がある物件の中からユーザが好む物件を識別する物件分類器を生成してもよい。或る物件内の部屋のうち特定種類の部屋の或る項目の特定の特徴を気に入ったとしても、ユーザは必ずしもその物件の間取図画像に対して評価「好き」を入力するとは限らない。他の特徴又は他の部屋を気に入らなければ、ユーザは評価「嫌い」を入力する場合もある。しかしながら、ユーザが評価した物件数が増えていくに従って、特定種類の部屋のその特徴項目について評価「好き」が与えられた特徴のうち、その特定の特徴の割合は例えば第1の割合に収束する。それに伴い、特定種類の部屋のその特徴項目について評価「嫌い」が与えられた特徴のうち、その特定の特徴の割合は例えば第2の割合に収束してく。ここで、第1の割合は第2の割合よりも高くなる。例えば、ユーザは、2個の窓を有する一般部屋を気に入っているとする。しかしながら、1個の窓を有する部屋に比べて、2個の窓を有する部屋は少ない。従って、評価「好き」が与えられた一般部屋の窓数に2個の窓が占める割合は、1個の窓が占める割合よりも小さい可能が高い。同様に、評価「嫌い」が与えられた一般部屋の窓数に2個の窓が占める割合も、1個の窓が占める割合よりも小さい可能が高い。そこで、評価「好き」と「嫌い」との間で比較すると、評価「好き」の窓数に2個の窓が占める割合は、評価「嫌い」の窓数に2個の窓が占める割合よりも大きくなる。その一方で、評価「好き」の窓数に1個の窓が占める割合は、評価「嫌い」の窓数に1個の窓が占める割合よりも小さくなる。このことから、ユーザは、2個の窓を有する一般部屋を相対的に「好き」であり、1個の窓を有する一般部屋を相対的に「嫌い」であることが推認される。少なくとも一つの特徴はこのような条件を満たさなければ、ユーザはその物件を好みではないと考えられる。物件分類器として統計モデルを用いる場合、そうした物件分類器を設計することは比較的容易である。物件分類器として機械学習モデルを用いる場合、学習の段階でパラメータが最適化されることにより、物件分類器がその点を自動的に学習することになるものと考えられる。
【0079】
また、生成部114は、評価「好き」及び「嫌い」を含む複数の評価それぞれに対応する複数の確率分布であって、その確率分布に対応する評価を示す評価情報が取得された物件の特徴情報をそれぞれ確率変数とする複数の確率分布を示す物件分類器を生成してもよい。この場合の物件分類器は、それら複数の確率分布に基づいて、ユーザが好む物件を識別するモデルである。各確率分布は、その確率分布に対応する評価が付けられた特徴の中におけるそれぞれの特徴の割合を示す情報と言うことができる。
【0080】
図10は、物件分類器の構成例を示す図である。図10に示すように、物件分類器500は、複数の部屋用モデル510を含んでもよい。各部屋用モデル510は、その部屋用モデル510に対応するタイプの部屋に対するユーザの評価を推定するためのモデルである。部屋タイプごとにモデルを生成することで、各部屋に対するユーザの評価を、物件分類器の出力に反映させることができる。図10には、部屋用モデル510として、一般部屋用のモデル、リビングルーム用のモデル、ダイニングルーム用のモデル、キッチン用のモデル、LDK用のモデル、ダイニングキッチン用のモデル、納戸用のモデル、及びロフト用のモデルが示されている。物件分類器500は、更に評価スコア計算部520を含んでもよい。評価スコア計算部520は、全部屋用モデル510それぞれから出力された部屋の評価を示す情報に基づいて、ユーザが好む物件の識別に用いられる推定評価情報を生成する。
【0081】
各部屋用モデル510は、複数の特徴項目用モデル530を含んでもよい。各特徴項目用モデル530は、その特徴項目用モデルに対応する項目の特徴量に対するユーザの評価を推定するためのモデルである。各部屋用モデル510は、後述する複数の特徴項目用モデル530それぞれから出力される複数の特徴項目スコアを、評価スコア計算部520へ出力する。各特徴量は、他の特徴量との関連がないか又は関連性が低い。そこで、特徴量ごとにモデルを生成することで、モデルの構造をシンプルにすることができる。図10には、特徴項目用モデル530として、部屋の面積用のモデル、頂点数用の用のモデル、最長の辺の長さ用のモデル、最短の辺の長さ用のモデル、最大角度用のモデル、最小角度用のモデル、窓数用のモデル、出入口数用のモデル、隣接する部屋数用のモデル、及び収納面積用のモデルが示されている。
【0082】
各特徴項目用モデル530は、好き用モデル540及び嫌い用モデル550を含んでもよい。好き用モデル540は、ユーザが対象の部屋タイプの対象の特徴項目の特徴量に対して評価「好き」を入力すると推定される度合いを示す好きスコアを出力してもよい。嫌い用モデル550は、ユーザが対象の部屋タイプの対象の特徴項目の特徴量に対して評価「嫌い」を入力すると推定される度合いを示す嫌いスコアを出力してもよい。各特徴項目用モデル530は、更に特徴項目スコア計算部560を含んでもよい。特徴項目スコア計算部560は、好き用モデル540及び嫌い用モデル550からの出力である好きスコア及び嫌いスコアを統合して、特徴項目用モデル530の出力である特徴項目スコアを出力してもよい。
【0083】
生成部114は、複数の部屋用モデル510それぞれについて、その部屋用モデル510に対応する種類の部屋の特徴量及びその部屋を含む物件に対応する評価情報に基づいて、部屋用モデル510を生成してもよい。例えば、生成部114は、部屋タイプと特徴項目との組み合わせごとに、ユーザが評価「好き」を入力したその種類の部屋のその項目の特徴量を学習データとして、好き用モデル540を生成してもよい。また、特徴情報取得部113は、部屋タイプと特徴項目との組み合わせごとに、ユーザが評価「嫌い」を入力したその種類の部屋のその項目の特徴量を学習データとして、嫌い用モデル550を生成してもよい。但し、生成部114は、評価「嫌い」が入力されたアンケート回答として、「間取り」以外の回答が入力されている物件についての特徴量は、学習データから除外してもよい。この場合、ユーザは間取図画像に対しては何らの評価も付けていないと考えられる。そうした物件の情報は、学習に用いない方が適切である。好き用モデル540及び嫌い用モデル550として、正規分布又は混合正規分布を用いる場合、特徴情報取得部113は、例えば最尤推定法を用いてモデルを生成してもよい。混合正規分布を構成する正規分布の数は特に限定されない。全ての好き用モデル540及び全ての嫌い用モデル550が生成される結果、全特徴項目用モデル530が生成されて、全部屋用モデル510が生成される。その結果、物件分類器500が生成される。
【0084】
ユーザにより部分評価が入力された物件について、生成部114は、その物件に含まれる部屋のうち、ユーザが指定した部屋について、評価情報に含まれる部分評価を用い、その物件に含まれる部屋のうち、ユーザが指定した部屋以外の部屋については、評価情報に含まれる全体評価を用いて、物件分類器を生成してもよい。例えば、生成部114は、ユーザが指定した部屋に対応する部屋用モデル510の全特徴項目用モデル530について、好き用モデル540及び嫌い用モデル550のうち、部分評価に対応するモデルの生成に、その部屋の特徴量を用いてもよい。一方、生成部114は、ユーザが指定しなかった部屋に対応する部屋用モデル510の全特徴項目用モデル530について、好き用モデル540及び嫌い用モデル550のうち、全体評価に対応するモデルの生成に、その部屋の特徴量を用いてもよい。これにより、一部の部屋に対する評価が全体に対する評価が異なる物件について、その部屋に対する評価を物件分類器500に反映させることができる。
【0085】
生成部114は、ユーザごとに物件分類器500を生成してもよい。これにより、ユーザにどの物件を推奨するかをパーソナライズすることができる。
【0086】
なお、物件分類器としてニューラルネットワークを用いる場合、その物件分類器は、例えば中間層として複数の全結合層を含んでもよい。生成部114は、特徴情報をこの物件分類器に入力して推定評価情報を出力させる。生成部114は、評価情報取得部112により取得された評価情報をグランドトゥルースとして用いて、誤差逆伝播法により物件分類器を訓練してもよい。
【0087】
[3-5.推奨する物件の決定]
決定部115は、生成部114により生成された物件分類器500に基づいて、ユーザに提示する物件を決定する。決定部115は、例えば所定の条件に従って、候補となる物件を選択する。例えば、決定部115は、ランダムに候補を選択してもよいし、物件の登録日からの経過日数が所定値未満である物件を候補として選択してもよい。また、決定部115は、保存された検索条件に合致する物件を候補として選択してもよい。決定部115は、選択された候補の特徴情報、例えば特徴ベクトルを取得する。決定部115は、特徴ベクトルに含まれる特徴量を、その特徴量に対応する部屋用モデル510の特徴項目用モデル530における好き用モデル540及び嫌い用モデル550それぞれに入力する。そして、決定部115は、好き用モデル540及び嫌い用モデル550それぞれから、好きスコア及び嫌いスコアを取得する。なお、候補の物件が特定の種類の部屋を有さない場合、その種類に対応する部屋用モデル510の全ての好き用モデル540及び全ての嫌い用モデル550は、それぞれスコアとして0を出力してもよい。
【0088】
決定部115は、各特徴項目用モデル530の特徴項目スコア計算部560として、例えば好きスコアから嫌いスコアを減算することにより、特徴項目スコアを計算してもよい。図11は、特徴項目スコアの計算例を示す図である。図11において、グラフ610は、学習済みの好き用モデル540により示される確率分布を示す。グラフ620は、学習済みの嫌い用モデル550により示される確率分布を示す。グラフ610及び620のそれぞれは、2個の正規分布で構成される混合正規分布を示す。混合正規分布において、確率密度の積分は1となる。特徴量xの確率密度yは、0<y<1を満たす。グラフ610及び620は、例えばリビングルームの面積に対応する確率分布を示すものと仮定する。ここで、リビングルーム用のモデルに含まれる部屋面積用のモデルに、特徴量として、或る物件のリビングルームの面積xが入力される。グラフ610において、面積xの確率密度は0.3である。好き用モデル540は、この確率密度を、好きスコアとして出力してもよい。好きスコアが高いほど、ユーザがそのリビングの面積を好きである可能性が高い。グラフ620において、面積xの確率密度は0.1である。嫌い用モデル550は、この確率密度を、嫌いスコアとして出力してもよい。嫌いスコアが高いほど、ユーザがそのリビングの面積を嫌いである可能性が高い。決定部115は、これらのスコアから、リビングルームの面積に対する特徴項目スコアとして0.2を決定する。
【0089】
特徴項目スコアが0よりも大きい場合、ユーザが対象の部屋の対象の特徴を好きである可能性がある。一方、特徴項目スコアが0よりも小さい場合、ユーザが対象の部屋の対象の特徴を嫌いである可能性がある。特徴項目スコアの絶対値が大きいほど、ユーザが対象の部屋の対象の特徴を好き又は嫌いである可能性が高い。従って、その絶対値が小さいほど、ユーザが対象の部屋の対象の特徴を好きでもなく嫌いでもない可能性が高い。
【0090】
評価「好き」が入力された特徴量の確率分布と評価「嫌い」が入力された特徴量の確率分布との間で、確率密度の差(好きスコアと嫌いスコアとの差)が全体的に大きいほど、ユーザが対象の部屋の対象の特徴を重視して評価を入力した可能性が高い。例えば、好きスコアが最大値となる特徴量でのその好きスコアと嫌いスコアとの差が大きいほど、又は嫌いスコアが最大値となる特徴量での好きスコアとその嫌いスコアとの差が大きいほど、ユーザは重視している可能性が高い。図12は、評価「好き」の特徴量の確率分布と評価「嫌い」の特徴量の確率分布との相違の例を示す図である。図12の上部は、リビングの面積に対応する確率密度をそれぞれ示すグラフ610とグラフ620とを重ね合わせて示している。図13の上部は、一般部屋の収納面積に対応する確率密度をそれぞれ示すグラフ630とグラフ640とを重ね合わせて示している。グラフ630は、一般部屋用のモデルにおいて、収納面積用のモデルに含まれる好き用モデル540により示される確率分布を示す。グラフ640は、一般部屋用のモデルにおいて、収納面積用のモデルに含まれる嫌い用モデル550により示される確率分布を示す。一般部屋の収納面積についての好きスコアと嫌いスコアとの差と比較して、リビングルームの面積についての好きスコアと嫌いスコアとの差は全体的に大きい。従って、ユーザは、リビングルームの面積を、一般部屋の収納面積よりも重視している可能性が高い。
【0091】
決定部115は、評価スコア計算部520として、全部屋用モデルの全特徴項目用モデルから出力された特徴項目スコアを統合して、推定評価情報としての評価スコアを計算してもよい。例えば、評価スコア計算部520は、全特徴項目スコアの合計値又は平均値を、評価スコアとして計算してもよい。或いは、評価スコア計算部520は、特徴項目スコアを計算する前の好きスコア及び嫌いスコアの少なくとも何れか一方が第1の所定値以上であって、且つ、その特徴項目スコアの絶対値が第2の所定値以上である特徴項目スコアを抽出してもよい。そして、評価スコア計算部520は、抽出された特徴項目スコアのみの合計値又は平均値を、評価スコアとして計算してもよい。これは、ユーザが重視していない特徴についての評価を、最終的な評価スコアに反映させないようにするための措置である。
【0092】
決定部115は、評価スコアが所定の閾値以上である場合、選択された候補の物件を、ユーザの好みの物件であると識別し、その物件をユーザに提示すると決定してもよい。閾値は、例えば0であってもよいし、0よりも大きい値であってもよい。閾値が0以上に設定されることで、評価「好き」を与えられる特徴に或る特徴が占める割合が、評価「嫌い」を与えられる特徴にその或る特徴が占める割合よりも高いその或る特徴を有する部屋がある物件の中から、ユーザが好む物件が識別されることが確保される。
【0093】
決定部115は、対象のユーザの属性と同じ属性を有する他のユーザについて生成された物件分類器500に基づいて、対象のユーザに提示する物件を決定してもよい。属性が同じユーザ間においては、物件の好みが一致し又は類似する可能性がある。例えば、対象のユーザに対応する物件分類器500が生成されていないとき、又は対象のユーザにより評価が入力された物件の数が少ないことにより物件分類器500による推定精度が低いときに、同じ属性を有するユーザに対応する物件分類器500を用いることで、対象のユーザが好む物件を適切に識別することができる。例えば、決定部115は、既に評価された物件の特徴情報とその評価情報を用いて、生成された物件分類器500による推定精度を計算してもよい。すなわち、決定部115は、物件分類器500に特徴情報を入力して、推定評価情報を取得してもよい。決定部115は、推定評価情報と評価情報とが一致する割合を推定精度として計算してもよい。決定部115は、推定精度が所定値未満である場合、他のユーザについて生成された物件分類器500を用いてもよい。
【0094】
決定部115は、例えば会員DB14aに記憶された性別、生年月日、住所等の属性を用いて、どのユーザの物件分類器500を用いるかを決定してもよい。また、決定部115は、物件情報システムSと異なるシステムに登録されている対象のユーザの属性に基づいて、どのユーザの物件分類器500を用いるかを決定してもよい。例えば、物件情報システムSを利用するユーザは、そのユーザのユーザIDと同じユーザIDを用いて他のシステムも利用可能であってもよい。この場合、決定部115は、ユーザIDを含む要求をそのシステムへ送信することにより、対象のユーザの属性と同じ属性を有する他のユーザの情報を取得してもよい。他のシステムは、例えばウェブサイトであってもよいし、ユーザ端末2にインストール可能な専用のアプリケーションを通じて利用可能なシステムであってもよい。そのようなシステムの例として、オンラインショッピングモール、ホテル予約システム、就職活動支援システム、結婚活動支援システム、ウェブ検索、フリーマーケット、チケット販売サイト等が上げられる。例えば、対象のユーザは、就職活動支援システムを利用しているとする。そこで、決定部115は、対象のユーザと同じ大学で同じキャンパスであり、且つ応募している企業の業種が同じであって、尚且つ応募している企業の立地が同じユーザを特定してもよい。決定部115は、例えばユーザ自身がそのシステムに登録した属性と同じ属性を有する他のユーザを示す情報を、そのシステムから取得してもよい。また、決定部115は、例えば対象のユーザがそのシステムでとった行動を示す情報又はとった行動の履歴から特定されるその対象のユーザの属性と同じ属性を有する他のユーザを示す情報を、そのシステムから取得してもよい。
【0095】
決定部115は、表示制御部111により複数の物件の間取図画像をユーザ端末2に表示させるときに、その間取図画像を表示させる物件を決定してもよい。或いは、決定部115は、例えば所定時間が経過するごとに(例えば12時間ごと、1日ごと、3日ごと等)、ユーザへ提示する物件を決定してもよい。
【0096】
システム制御部11は、ユーザに提示される物件として決定部115により決定された物件の情報を、何らかの方法で対象のユーザに対して提示する。決定された物件は、そのユーザに対して推奨される物件として提示されてもよい。例えば前述したように、表示制御部111が、その日の最初にユーザがログインしたときに、決定された物件の間取図画像や物件情報をそのユーザのユーザ端末2に表示させてもよい。或いは、表示制御部111は、そのユーザによる物件情報提供システムSへのログイン後の何れかのタイミングで、又はユーザが推奨物件を要求する操作を行ったときに、決定された物件の物件情報や間取図画像をそのユーザ端末2に表示させたり、決定された物件の一覧をそのユーザ端末2に表示させたりしてもよい。或いは、システム制御部11は、決定された物件の物件情報や間取図画像を含む電子メールを、そのユーザ宛てに送信してもよい。或いは、システム制御部11は、ユーザへ提示する物件が見つかったタイミングで、プッシュ通知により、推奨される物件が存在する旨のメッセージを、そのユーザ端末2へ送信してもよい。ユーザが、ユーザ端末2に表示されたそのメッセージを選択すると、ユーザ端末2は物件情報提供システムS専用のアプリケーションを起動し、これに応じて、システム制御部11は、決定された物件の物件情報や間取図画像をユーザ端末2に表示させてもよい。
【0097】
[4.物件情報提供システムの動作]
次に、物件情報提供システムSの動作について、図13乃至図17用いて説明する。情報提供サーバ1のシステム制御部11が、サーバプログラムに含まれる各種プログラムコードに従って、図13図14図15及び図17に示す処理を実行する。
【0098】
図13は、本実施形態に係る情報提供サーバ1のシステム制御部11による間取図解析処理の一例を示すフローチャートである。例えば、システム制御部11は、不動産業者により入力された物件情報が物件DB14bに記憶されたときに、その物件情報について間取図解析処理を実行してもよい。
【0099】
図13に示すように、特徴情報取得部113は、物件情報から間取図画像を取得する(ステップS101)。次いで、特徴情報取得部113は、間取図画像に基づいて、セグメント化間取図情報を生成する(ステップS102)。次いで、特徴情報取得部113は、セグメント化間取図情報により示される物件内の部屋のうち、一つを選択する(ステップS103)。次いで、特徴情報取得部113は、予め定められた複数の特徴項目のうち、一つを選択する(ステップS104)。次いで、特徴情報取得部113は、セグメント化間取図情報から、選択された部屋に相当する領域を特定する。例えば、特徴情報取得部113は、選択された部屋のラベルが付された全ピクセルの位置を特定する。そして、特徴情報取得部113は、特定された領域に基づいて、選択された特徴項目に対応する特徴量を取得する(ステップS105)。次いで、特徴情報取得部113は、予め定められ複数の特徴項目のうち、まだ選択されていない特徴項目があるか否かを判定する(ステップS106)。まだ選択されていない特徴項目がある場合(ステップS106:YES)、処理はステップS104に進み、特徴情報取得部113は、まだ選択されていない特徴項目の中から一つを選択する。一方、まだ選択されていない特徴項目がない場合(ステップS106:NO)、特徴情報取得部113は、セグメント化間取図情報により示される物件内の部屋のうち、まだ選択されていない部屋があるか否かを判定する(ステップS107)。まだ選択されていない部屋がある場合(ステップS107:YES)、処理はステップS103に進み、特徴情報取得部113は、まだ選択されていない部屋の中から一つを選択する。一方、まだ選択されていない部屋がない場合(ステップS107:NO)、特徴情報取得部113は、特徴ベクトルを生成する(ステップS108)。例えば、特徴情報取得部113は、部屋ごとに、予め定められ複数の特徴項目の特徴量で構成される一次元配列を生成する。このとき、特徴情報取得部113は、各一次元配列に対して、対応する部屋の部屋番号及び部屋タイプを関連付ける。そして、特徴情報取得部113は、一次元配列を並べて、特徴ベクトルを生成する。次いで、特徴情報取得部113は、生成されたセグメント化間取図情報及びセグメント化特徴ベクトルを、物件情報に関連付けて、物件DB14bに記憶させると(ステップS109)、間取図解析処理は終了する。
【0100】
図14は、本実施形態に係る情報提供サーバ1のシステム制御部11による物件推奨処理の一例を示すフローチャートである。例えば、対象のユーザは、物件情報提供システムS専用のアプリケーションを起動する。これに応じて、ユーザ端末2は、例えばユーザ端末2に記憶されているユーザID及びパスワードを含むログイン要求を、情報提供サーバ1へ送信する。ログイン要求に基づいてログインが成功したと判定すると、システム制御部11は、対象のユーザによる今回のログインが、今日の中では最初のログインであるか否かを判定する。今回のログインが最初のログインである場合、システム制御部11は物件推奨処理を実行してもよい。
【0101】
図14に示すように、決定部115は、対象のユーザのユーザIDに関連付けて、物件分類器500のパラメータがモデルDB14dに記憶されているか否かを判定する(ステップS201)。パラメータが記憶されていない場合(ステップS201:NO)、決定部115は、対象のユーザの属性と同じ属性を有する他のユーザを特定する(ステップS202)。例えば、決定部115は、会員DB14aに記憶されている対象のユーザの属性うち少なくとも一つの属性を、検索条件として取得してもよい。そして、決定部115は、検索条件に合致する属性を有するユーザを、会員DB14aから検索してもよい。或いは、決定部115は、物件情報提供システムSとは異なるシステムのサーバ装置へ、対象のユーザの属性と同じ属性を有するユーザのユーザIDのリストを要求してもよい。このとき、決定部115は、検索条件としての属性の項目を指定してもよい。次いで、決定部115は、特定された他のユーザのユーザIDに関連付けて、物件分類器500のパラメータがモデルDB14dに記憶されているか否かを判定する(ステップS203)。対象のユーザの物件分類器500のパラメータ又は他のユーザの物件分類器500のパラメータが記憶されている場合(ステップS201:YES、又は、ステップS203:YES)、決定部115は、そのパラメータをモデルDB14dから取得する(ステップS204)。ステップS204の後、又は他のユーザの物件分類器500のパラメータが記憶されていない場合(ステップS203:NO)、決定部115は、物件数iを0に設定する(ステップS205)。次いで、決定部115は、物件選択処理を実行する(ステップS206)。
【0102】
図15は、本実施形態に係る情報提供サーバ1のシステム制御部11による物件選択処理の一例を示すフローチャートである。図15に示すように、決定部115は、物件推奨処理で物件分類器500のパラメータが取得されたか否かを判定する(ステップS301)。すなわち、決定部115は、ステップS204が実行されたか否かを判定する。パラメータが取得されていない場合(ステップS301:NO)、決定部115は、物件DB14bに物件情報が記憶された何れかの物件を、表示物件として選択して(ステップS302)、物件選択処理は終了する。例えば、決定部115は、表示物件の物件IDを取得する。このとき、決定部115は、評価情報DB14cを参照して、対象のユーザが既に評価を入力した物件を、表示物件から除外する。
【0103】
一方、パラメータが取得された場合(ステップS301:YES)、決定部115は、取得されたパラメータが、対象のユーザの物件分類器500のパラメータであるか否かを判定する(ステップS303)。取得されたパラメータが、対象のユーザの物件分類器500のパラメータである場合(ステップS303:YES)、決定部115は、対象のユーザに対して間取図画像が表示された日から所定日数以上経過している物件があるか否かを判定する(ステップS304)。例えば、決定部115は、評価情報DB14cから、対象ユーザのユーザIDに関連付けて記憶された評価情報を抽出する。決定部115は、抽出された評価情報から、間取図画像の表示日から今日までの経過日数が所定日数以上である評価情報を検索する。ここで、決定部115は、全体評価が「好き」に設定されている評価情報のみを検索してもよい。該当する評価情報が検索された場合、決定部115は、間取図画像が表示された日から所定日数以上経過している物件があると判定する(ステップS304:YES)。この場合、決定部115は、例えば0から100までの範囲内で疑似乱数を生成する(ステップS305)。次いで、決定部115は、生成された疑似乱数が所定確率未満であるか否かを判定する(ステップS306)。この確率は、ユーザに提示する物件の中に、ユーザが過去に評価を入力した物件を何割含ませるかに基づいて予め設定されてもよい。疑似乱数が所定確率未満である場合(ステップS306:YES)、決定部115は、間取図画像が表示された日から所定日数以上経過している物件の何れかを、表示物件として選択して(ステップS307)、物件選択処理は終了する。例えば、決定部115は、検索された何れかの評価情報から、表示物件の物件IDを取得する。
【0104】
取得されたパラメータが、対象のユーザの物件分類器500のパラメータではない場合(ステップS303:NO)、間取図画像が表示された日から所定日数以上経過している物件がない場合(ステップS304:NO)、又は疑似乱数が所定確率以上である場合(ステップS306:NO)、決定部115は、物件DB14bに物件情報が記憶された何れかの物件を、候補物件として選択する(ステップS308)。このとき、決定部115は、評価情報DB14cを参照して、対象のユーザが既に評価を入力した物件を、候補物件から除外する。
【0105】
次いで、特徴情報取得部113は、物件DB14bから、候補物件の特徴ベクトルを取得する。決定部115は、取得された特徴ベクトルに含まれる各特徴量を、その特徴量に対応する種類の部屋用のモデル510において、その特徴量に対応する特徴項目用のモデル530に含まれる好き用モデル540及び嫌い用モデル550にそれぞれ入力して、好きスコア及び嫌いスコアを取得する(ステップS309)。例えば、決定部115は、取得されたパラメータの中から、その好き用モデル540のパラメータを使用して、その特徴量の確率密度を、好きスコアとして計算する。また、決定部115は、その嫌い用モデル550のパラメータを使用して、その特徴量の確率密度を、嫌いスコアとして計算する。
【0106】
次いで、決定部115は、好きスコア及び嫌いスコアの何れもが第1所定値未満である部屋タイプと特徴項目との組み合わせを、特徴項目スコアが計算される組み合わせから除外する(ステップS310)。次いで、決定部115は、部屋タイプと特徴項目との組み合わせのうち、ステップS310で除外されなかった組み合わせそれぞれについて、好きスコアから嫌いスコアを減算して、特徴項目スコアを計算する(ステップS311)。次いで、決定部115は、特徴項目スコアが計算された組み合わせのうち、特徴項目スコアの絶対値が第2所定値未満である組み合わせを、評価スコアの計算にその特徴項目スコアが用いられる組み合わせから除外する(ステップS312)。次いで、決定部115は、部屋タイプと特徴項目との組み合わせのうち、ステップS312で除外されなかった組み合わせの特徴項目スコアを足し合わせて、評価スコアを計算する(ステップS313)。
【0107】
次いで、決定部115は、評価スコアが閾値以上であるか否かを判定する(ステップS314)。評価スコアが閾値未満である場合(ステップS314:NO)、処理はステップS303に進む。一方、評価スコアが閾値以上である場合(ステップS313:YES)、決定部115は、候補物件を表示物件として選択して(ステップS315)、物件選択処理は終了する。
【0108】
図14に示すように、物件選択処理が終了すると、表示制御部111は、物件DB14bから、表示物件の物件情報、間取図情報及びセグメント化間取図情報を取得する。そして、表示制御部111は、取得されたこれらの情報を、対象のユーザのユーザ端末2へ送信する(ステップS207)。次いで、評価情報取得部112は、対象のユーザのユーザ端末2から送信されてくる評価情報を受信する(ステップS208)。次いで、評価情報取得部112は、受信された評価情報に、対象のユーザのユーザID、表示物件の物件ID、及び今日の日付を示す表示日を追加する。そして、評価情報取得部112は、評価情報を評価情報DB14cに記憶させる(ステップS209)。表示物件の評価情報が既に評価情報DB14cに記憶されている場合、評価情報取得部112は、その評価情報を新しい評価情報で書き換えてもよい。
【0109】
次いで、表示制御部111は、物件数iが、予め定められた物件の上限数N未満であるか否かを判定する(ステップS210)。物件数iが上限数N未満である場合(ステップS2120:YES)、表示制御部111は、物件数iを1増加させて(ステップS211)、処理はステップS206に進む。一方、物件数iが上限数N以上である場合(ステップS2120:NO)、物件推奨処理は終了する。
【0110】
図16は、本実施形態に係るユーザ端末2のCPUによる間取図表示処理の一例を示すフローチャートである。例えば、対象のユーザが物件情報提供システムS専用のアプリケーションを起動した後、情報提供サーバ1がそのユーザのユーザ端末2へ物件情報、間取図情報及びセグメント化間取図情報を送信する。ユーザ端末2は、情報提供サーバ1からこれらの情報を受信したときに、間取図表示処理を実行してもよい。
【0111】
図16に示すように、ユーザ端末2は、受信された間取図画像をディスプレイに表示する(ステップS401)。次いで、ユーザ端末2は、例えばそのユーザ端末2に備えられるタッチパネルから、画面上に接触があるピクセルの座標を、所定時間間隔で取得する。ユーザ端末2は、取得された座標の情報に基づいて、ユーザによる操作を判定する。
【0112】
そして、ユーザ端末2は、ユーザ操作が、右方向又は左方向への溜めフリックであるか否かを判定する(ステップS402)。ユーザ操作が溜めフリックである場合(ステップS402:YES)、ユーザ端末2は、ユーザにより指定された部屋を特定する(ステップS403)。例えば、ユーザ端末2は、溜めフリック操作において、最初に接触があったピクセルの座標を特定する。ユーザ端末2は、セグメント化間取図情報から、特定された座標のピクセルのラベルを取得する。ユーザ端末2は、取得したラベルに基づいて、指定された部屋の部屋番号及び部屋タイプを特定する。次いで、ユーザ端末2は、溜めフリックの方向が右方向であるか否かを判定する(ステップS404)。溜めフリックの方向が右方向である場合(ステップS404:YES)、ユーザ端末2は、指定された部屋の部屋番号及び部屋タイプ並びに部分評価「好き」を含む部分評価情報を生成して(ステップS405)、処理はステップS402に進む。一方、溜めフリックの方向が右方向ではない場合(ステップS404:NO)、ユーザ端末2は、指定された部屋の部屋番号及び部屋タイプ並びに部分評価「嫌い」を含む部分評価情報を生成して(ステップS406)、処理はステップS402に進む。
【0113】
ユーザ操作が溜めフリックではない場合(ステップS402:NO)、ユーザ端末2は、ユーザ操作が、右方向又は左方向への通常フリックであるか否かを判定する(ステップS407)。ユーザ操作が通常フリックではない場合(ステップS407:NO)、ユーザ端末2は、ユーザ操作が、その他の有効な操作であるか否かを判定する(ステップS408)。ユーザ操作がその他の操作である場合(ステップS408:YES)、ユーザ端末2はその操作に応じた処理を実行して(ステップS409)、処理はステップS401に進む。例えば、ユーザ操作が右方向又は左方向へのスワイプである場合、ユーザ端末2は、物件詳細画面に物件名、物件画像、詳細情報等の物件情報を表示する。そして、ユーザが再度右方向又は左方向へスワイプすると、処理はステップS401に進む。
【0114】
ユーザ操作が通常フリックである場合(ステップS407:YES)、ユーザ端末2は、通常フリックの方向が右方向であるか否かを判定する(ステップS410)。通常フリックの方向が右方向である場合(ステップS410:YES)、ユーザ端末2は、全体評価を「好き」を設定する(ステップS411)。一方、通常フリックの方向が右方向ではない場合(ステップS410:NO)、ユーザ端末2は、全体評価を「嫌い」を設定する(ステップS412)。次いで、ユーザ端末2は、アンケート画面を表示する(ステップS413)。次いで、ユーザ端末2は、アンケート画面に対してユーザにより入力されたアンケート回答を取得する(ステップS414)。
【0115】
ステップS411又はステップS414の後、ユーザ端末2は、全体評価を含む評価情報を生成する。ステップS405又はS406で部分評価情報が生成されている場合、ユーザ端末2は、その部分評価情報を評価情報に追加する。また、ステップS414でアンケート回答が取得されている場合、ユーザ端末2は、そのアンケート回答を評価情報に追加する。そして、ユーザ端末2は、生成された評価情報を情報提供サーバ1へ送信して(ステップS415)、間取図表示処理は終了する。
【0116】
図17は、本実施形態に係る情報提供サーバ1のシステム制御部11による学習処理の一例を示すフローチャートである。例えば、システム制御部11は、物件推奨処理が終了した後に、物件の提示先であった対象のユーザについて学習処理を実行してもよい。
【0117】
図17に示すように、生成部114は、評価情報DB14cから、対象ユーザのユーザIDに関連付けられた評価情報を全て取得する(ステップS501)。次いで、特徴情報取得部113は、取得された各評価情報に含まれる物件IDに関連付けられた特徴ベクトルを、物件DB14bから取得する(ステップS502)。次いで、生成部114は、予め定められた複数の部屋タイプのうち、1つを選択する(ステップS503)。次いで、生成部114は、予め定められ複数の特徴項目のうち、一つを選択する(ステップS504)。
【0118】
次いで、生成部114は、ステップS501で取得された評価情報の中から、選択された部屋タイプと部分評価「好き」とが設定された部分評価情報を取得する。そして、生成部114は、取得された各部分評価情報について、その部分評価情報に対応する物件の特徴ベクトルから、部分評価情報に含まれる部屋番号と選択された特徴項目との組み合わせに対応する特徴量を取得する(ステップS505)。次いで、生成部114は、ステップS501で取得された評価情報の中から、全体評価「好き」が設定された評価情報を取得する。特徴情報取得部113は、ここで取得された各評価情報に対応する物件について、選択された部屋タイプの部屋を特定する。特徴情報取得部113は、特定された部屋のうち、その部屋について部分評価情報がない物件について、その部屋番号と選択された特徴項目との組み合わせに対応する特徴量を取得する(ステップS506)。次いで、生成部114は、ステップS505及びS506で取得された特徴量を用いて、好き用モデル540のパラメータを決定する(ステップS507)。例えば、生成部114は、最尤推定により、取得された特徴量の確率分布を示す混合正規分布を構成する各正規分布の平均値、分散及び重みを計算してもよい。
【0119】
次いで、生成部114は、ステップS501で取得された評価情報の中から、選択された部屋タイプと部分評価「嫌い」とが設定された部分評価情報を取得する。そして、生成部114は、取得された各部分評価情報について、その部分評価情報に対応する物件の特徴ベクトルから、部分評価情報に含まれる部屋番号と選択された特徴項目との組み合わせに対応する特徴量を取得する(ステップS508)。次いで、生成部114は、ステップS501で取得された評価情報の中から、全体評価「嫌い」が設定された評価情報を取得する。特徴情報取得部113は、ここで取得された各評価情報に対応する物件について、選択された部屋タイプの部屋を特定する。特徴情報取得部113は、特定された部屋のうち、その部屋について部分評価情報がない物件について、その部屋番号と選択された特徴項目との組み合わせに対応する特徴量を取得する(ステップS509)。次いで、生成部114は、ステップS508及びS509で取得された特徴量を用いて、ステップS507と同様の方法で、嫌い用モデル550のパラメータを決定する(ステップS510)。
【0120】
次いで、生成部114は、予め定められ複数の特徴項目のうち、まだ選択されていない特徴項目があるか否かを判定する(ステップS511)。まだ選択されていない特徴項目がある場合(ステップS511:YES)、処理はステップS504に進み、生成部114は、まだ選択されていない特徴項目の中から一つを選択する。一方、まだ選択されていない特徴項目がない場合(ステップS511:NO)、特徴情報取得部113は、予め定められた複数の部屋タイプのうち、まだ選択されていない部屋タイプがあるか否かを判定する(ステップS512)。まだ選択されていない部屋タイプがある場合(ステップS512:YES)、処理はステップS503に進み、生成部114は、まだ選択されていない部屋タイプの中から一つを選択する。一方、まだ選択されていない部屋タイプがない場合(ステップS512:NO)、生成部114は、決定されたパラメータを、対象のユーザのユーザIDに関連付けてモデルDB14dに記憶させて(ステップS513)、学習処理は終了する。このとき、生成部114は、部屋タイプと特徴項目との組み合わせごとに、その組み合わせに関連付けてパラメータを記憶させる。
【0121】
以上説明したように、本実施形態によれば、情報提供サーバ1が、複数の物件それぞれの間取図画像を表示させる。また、情報提供サーバ1が、複数の物件それぞれについて、表示された間取図画像に対するユーザからの評価を示す評価情報を取得する。また、情報提供サーバ1が、複数の物件それぞれについて、間取図画像に基づいて生成される特徴情報であって、物件内の部屋の特徴を示す特徴情報を取得する。また、情報提供サーバ1が、取得された評価情報及び取得された特徴情報に基づいて、物件分類器を生成する。また、情報提供サーバ1が、生成された物件分類器に基づいて、ユーザへ提示する物件を決定する。従って、間取図から把握される物件の条件をユーザが入力しなくても、そのユーザが好む物件の情報を提供することができる。
【0122】
ここで、情報提供サーバ1が、画面を有するディスプレイと、画面上への接触位置を検出するセンサと、を有するタッチパネルの画面に間取図画像を表示させてもよい。また、情報提供サーバ1が、間取図画像が表示された画面上において接触位置の所定方向への移動が検出された場合、所定の評価を示す評価情報を取得してもよい。この場合、簡単な操作で評価を入力することができる。
【0123】
また、情報提供サーバ1が、ユーザごとに、物件分類器を生成してもよい。この場合、パーソナライズされた物件の情報を提供することができる。
【0124】
また、情報提供サーバ1が、対象のユーザの属性と同じ属性を有する他のユーザについて生成された物件分類器に基づいて、対象のユーザへ提示する物件を決定してもよい。この場合、物件が提示されるユーザについて適切な精度の物件分類器が生成されていなくても、そのユーザに提示する物件を適切に決定することができる。
【0125】
また、情報提供サーバ1が、複数の物件のうち少なくとも一の物件について、表示された間取図画像内でユーザにより指定された部分に対するユーザの評価を示す部分評価情報を更に取得してもよい。また、情報提供サーバ1が、その物件内の部屋のうち、指定された部分に対応する部屋について、取得された部分評価情報を用い、その物件内の部屋のうち、指定された部分に対応する部屋と異なる部屋について、取得された評価情報の全体評価を用いて、物件分類器を生成してもよい。この場合、全体的には物件に対しては特定の評価を付けられる場合であっても、その物件の一部の部屋については別の評価をユーザが付けたい場合に、それぞれの評価を物件分類器の生成に反映させることができる。
【0126】
また、情報提供サーバ1が、間取図画像がそれぞれ表示された複数の物件のうち少なくとも一の物件について、間取図画像が表示されてから所定日数が経過した後で間取図画像を再表示させてもよい。また、情報提供サーバ1が、再表示された間取図画像に対するユーザからの再評価を示す価情報を更に取得してもよい。また、情報提供サーバ1が、複数の物件のうち、間取図画像が再表示された物件について、後で取得された方の再評価情報を用い、その物件と異なる物件について、取得された評価情報を用いて、物件分類器を生成してもよい。この場合、時間の経過することで、又は様々な物件の情報を見ていくことで変化するユーザの好みを反映した物件分類器を生成することができる。
【0127】
また、情報提供サーバ1が、間取図画像から部屋に相当する領域を特定してもよい。また、情報提供サーバ1が、特定された領域に基づいて、部屋の特徴を特定してもよい。ここで、情報提供サーバ1が、特定された領域の特徴に基づいて、部屋の特徴を特定してもよい。この場合、物件内の部屋について間取図画像から得られる視覚的な特徴に対する評価を、物件分類器に反映することができる。
【0128】
また、情報提供サーバ1が、部屋の面積、物件においてその部屋が占める範囲に相当する図形の辺の長さ、その図形の内角及びその図形の頂点の数のうち少なくとも一つを示す特徴情報を取得してもよい。この場合、間取図から特定可能な部屋の特徴についてのユーザの好みに応じた物件の情報を提供することができる。
【0129】
また、情報提供サーバ1が、評価「好き」が与えられる特徴に或る特徴が占める割合が
、評価「嫌い」が与えられる特徴にその或る特徴が占める割合よりも大きいその或る特徴を有する部屋がある物件の中からユーザが好む物件を識別する物件分類器を生成してもよい。この場合、少なくともユーザが好む特徴を有する部屋がある物件を、ユーザが好む物件として識別することができる。
【0130】
また、情報提供サーバ1が、ユーザが好む物件を、複数の評価それぞれに対応する複数の確率分布であって、その確率分布に対応する評価を示す評価情報が取得された特徴情報をそれぞれ確率変数とする複数の確率分布に基づいて識別する物件分類器を生成してもよい。この場合、複数の評価それぞれにおいてその評価が与えられる特徴における占有率又は出現確率に基づいてユーザが好む物件を識別する物件分類器が生成される。
【0131】
また、情報提供サーバ1が、物件に含まれる部屋それぞれについて、間取図画像から部屋の種類を特定し、複数の部屋用モデルそれぞれについて、その部屋用モデルに対応する種類の部屋の特徴を示す特徴情報及び評価情報に基づいて、部屋用モデルを生成してもよい。この場合、ユーザの好みを、部屋の種類ごとに物件分類器に反映させることができる。
【符号の説明】
【0132】
1 情報提供サーバ
2 ユーザ端末
11 システム制御部
12 システムバス
13 入出力インタフェース
14 記憶部
14a 会員DB
14b 物件DB
14c 評価情報DB
14d モデルDB
15 通信部
111 表示制御部
112 評価情報取得部
113 特徴情報取得部
114 生成部
115 決定部
NW ネットワーク
S 物件情報提供システム
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16
図17