(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-03-25
(45)【発行日】2024-04-02
(54)【発明の名称】New Radioにおける半永続的スケジューリング管理
(51)【国際特許分類】
H04W 72/11 20230101AFI20240326BHJP
H04W 72/0457 20230101ALI20240326BHJP
H04W 36/06 20090101ALI20240326BHJP
H04W 72/232 20230101ALI20240326BHJP
【FI】
H04W72/11
H04W72/0457
H04W36/06
H04W72/232
【外国語出願】
(21)【出願番号】P 2023053850
(22)【出願日】2023-03-29
(62)【分割の表示】P 2020522832の分割
【原出願日】2018-10-26
【審査請求日】2023-03-31
(32)【優先日】2017-10-26
(33)【優先権主張国・地域又は機関】US
(32)【優先日】2017-11-06
(33)【優先権主張国・地域又は機関】US
(32)【優先日】2018-10-25
(33)【優先権主張国・地域又は機関】US
【早期審査対象出願】
(73)【特許権者】
【識別番号】507364838
【氏名又は名称】クアルコム,インコーポレイテッド
(74)【代理人】
【識別番号】100108453
【氏名又は名称】村山 靖彦
(74)【代理人】
【識別番号】100163522
【氏名又は名称】黒田 晋平
(72)【発明者】
【氏名】ワンシ・チェン
(72)【発明者】
【氏名】ピーター・プイ・ロク・アン
(72)【発明者】
【氏名】ピーター・ガール
(72)【発明者】
【氏名】フアン・モントジョ
(72)【発明者】
【氏名】タオ・ルオ
(72)【発明者】
【氏名】ヒチュン・リ
(72)【発明者】
【氏名】リンハイ・ヘ
【審査官】伊東 和重
(56)【参考文献】
【文献】国際公開第2019/062837(WO,A1)
【文献】特表2021-500770(JP,A)
【文献】Samsung,Impact of Bandwidth Parts on SPS Scheduling[online],3GPP TSG RAN WG2 #99bis,3GPP,2017年10月13日,R2-1711289,[検索日 2023.11.10],インターネット:<URL:http://www.3gpp.org/ftp/tsg_ran/WG2_RL2/TSGR2_99bis/Docs/R2-1711289.zip>
(58)【調査した分野】(Int.Cl.,DB名)
H04B 7/24-7/26
H04W 4/00-99/00
3GPP TSG RAN WG1-4
SA WG1-4
CT WG1,4
(57)【特許請求の範囲】
【請求項1】
ワイヤレス通信のための方法であって、
コンポーネントキャリア(CC)を使用して基地局との接続を確立するステップであって、前記CCが複数の帯域幅部分(BWP)を有し、各BWPが前記CCの周波数帯域幅の一部分を有する、ステップと、
前記複数のBWPのうちの少なくとも第1のBWPと関連付けられる半永続スケジューリング(SPS)構成または他のタイプのあらかじめ構成されたリソースを示すシグナリングを受信するステップと、
少なくとも前記第1のBWPと関連付けられる前記SPS構成または他のタイプのあらかじめ構成されたリソースに従って少なくとも前記第1のBWPを使用して送信または受信するステップと、
前記第1のBWPから第2のBWPに切り替えるステップと、
前記第2のBWPがSPS構成または他のタイプのあらかじめ構成されたリソースと関連付けられないことを決定するステップと、
前記第2のBWPを使用して、かつアクティブなSPS構成を伴わずに、送信または受信するステップと、を備え、
前記第1のBWPは第1の周波数範囲を含むように構成され、前記第2のBWPは第2の周波数範囲を含むように構成され、前記第1の周波数範囲が前記第2の周波数範囲と部分的に重複する、方法。
【請求項2】
前記シグナリングが、ダウンリンク制御情報(DCI)メッセージまたは無線リソース制御(RRC)メッセージを備える、請求項1に記載の方法。
【請求項3】
ワイヤレス通信のための装置であって、
プロセッサと、
前記プロセッサと電子的に通信するメモリと、
前記メモリに格納され前記プロセッサによって実行可能な命令であって、前記装置に、
コンポーネントキャリア(CC)を使用して基地局との接続を確立することであって、前記CCが複数の帯域幅部分(BWP)を有し、各BWPが前記CCの周波数帯域幅の一部分を有する、ことと、
前記複数のBWPのうちの少なくとも第1のBWPと関連付けられる半永続スケジューリング(SPS)構成または他のタイプのあらかじめ構成されたリソースを示すシグナリングを受信することと、
少なくとも前記第1のBWPと関連付けられる前記SPS構成または他のタイプのあらかじめ構成されたリソースに従って少なくとも前記第1のBWPを使用して送信または受信することと、
前記第1のBWPから第2のBWPに切り替えることと、
前記第2のBWPがSPS構成または他のタイプのあらかじめ構成されたリソースと関連付けられないことを決定することと、
前記第2のBWPを使用して、かつアクティブなSPS構成を伴わずに、送信または受信することと
を行われせる前記命令と、を備え、
前記第1のBWPは第1の周波数範囲を含むように構成され、前記第2のBWPは第2の周波数範囲を含むように構成され、前記第1の周波数範囲が前記第2の周波数範囲と部分的に重複する、装置。
【請求項4】
前記シグナリングが、ダウンリンク制御情報(DCI)メッセージまたは無線リソース制御(RRC)メッセージを備える、請求項
3に記載の装置。
【請求項5】
前記少なくとも第1のBWPが1つのBWPを構成する、請求項
3に記載の装置。
【請求項6】
シグナリングを受信することのための前記プロセッサによって実行可能な前記命令が、前記装置に、他のタイプのあらかじめ構成されたリソースを示すシグナリングを受信することをさらに行わせ、
送信または受信することのための前記プロセッサによって実行可能な前記命令が、前記装置に、少なくとも前記第1のBWPと関連付けられる他のタイプのあらかじめ構成されたリソースに従って少なくとも前記第1のBWPを使用して送信することをさらに行わせる、請求項
3に記載の装置。
【請求項7】
シグナリングを受信することのための前記プロセッサによって実行可能な前記命令が、前記装置に、前記SPS構成を示すシグナリングを受信することをさらに行わせ、
送信または受信することための前記プロセッサによって実行可能な前記命令が、前記装置に、少なくとも前記第1のBWPに関連付けられる前記SPS構成に従って少なくとも前記第1のBWPを使用して受信することをさらに行わせる、請求項
3に記載の装置。
【請求項8】
前記少なくとも第1のBWPが1つのBWPを構成する、請求項1に記載の方法。
【請求項9】
シグナリングを受信するステップが他のタイプのあらかじめ構成されたリソースを示すシグナリングを受信するステップをさら備え、
送信または受信するステップが少なくとも前記第1のBWPと関連付けられる他のタイプのあらかじめ構成されたリソースに従って少なくとも前記第1のBWPを使用して送信するステップさら備える、請求項1に記載の方法。
【請求項10】
シグナリングを受信するステップが前記SPS構成を受信することを示すシグナリングを受信するステップをさらに備え、
送信または受信するステップが少なくとも前記第1のBWPに関連付けられる前記SPS構成に従って少なくとも前記第1のBWPを使用して受信するステップをさらに備える、請求項1に記載の方法。
【発明の詳細な説明】
【技術分野】
【0001】
相互参照
本特許出願は、各々が本出願の譲受人に譲渡される、2017年11月6日に出願された「Semi-Persistent Scheduling Management in New Radio」と題するChenらによる米国仮特許出願第62/582,007号、ならびに2017年10月26日に出願された「Semi-Persistent Scheduling Management in New Radio」と題するChenらによる米国仮特許出願第62/577,696号、および2018年10月25日に出願された「Semi-Persistent Scheduling Management in New Radio」と題するChenらによる米国特許出願第16/171,035号の利益を主張する。
【0002】
以下は、全般にワイヤレス通信に関し、より具体的には、New Radio(NR)における半永続スケジューリング(SPS)管理に関する。
【背景技術】
【0003】
ワイヤレス通信システムは、音声、ビデオ、パケットデータ、メッセージング、ブロードキャストなどの、様々なタイプの通信コンテンツを提供するために広く展開されている。これらのシステムは、利用可能なシステムリソース(たとえば、時間、周波数、および電力)を共有することによって複数のユーザとの通信をサポートすることが可能であることがある。そのような多元接続システムの例には、Long Term Evolution(LTE)システムまたはLTE-Advanced(LTE-A)システムなどの第4世代(4G)システム、およびNRシステムと呼ばれることがある第5世代(5G)システムがある。これらのシステムは、符号分割多元接続(CDMA)、時分割多元接続(TDMA)、周波数分割多元接続(FDMA)、直交周波数分割多元接続(OFDMA)、または離散フーリエ変換-拡散-OFDM(DFT-S-OFDM)などの技法を利用し得る。ワイヤレス多元接続通信システムは、場合によってはユーザ機器(UE)として知られていることがある複数の通信デバイスのための通信を各々が同時にサポートする、いくつかの基地局またはネットワークアクセスノードを含み得る。
【0004】
基地局は、予備のSPSリソース上である周期でアップリンクメッセージを送信するようにUEをスケジューリングすることによって、SPS通信のためにUEを構成することができる。UEは、ハイブリッド自動再送要求(HARQ)によって記述されるタイミングレイテンシに従って、ダウンリンク送信と関連付けられるフィードバックを送信するように構成され得る。NRシステムでは、HARQタイミングは、各ダウンリンク送信によって動的に示され得る。より具体的には、ダウンリンク送信をスケジューリングするダウンリンク制御情報(DCI)は、ダウンリンク送信と関連付けられるHARQタイミングを示すように構成され得る。しかしながら、スケジューリングDCIを伴わないダウンリンク送信が存在すると、UEはHARQタイミングを受信しないことがある。
【発明の概要】
【課題を解決するための手段】
【0005】
説明される技法は、New Radio(NR)における半永続スケジューリング(SPS)管理をサポートする改善された方法、システム、デバイス、または装置に関する。たとえば、説明される技法は、アップリンク通信およびダウンリンク通信のためのSPSをサポートし得るワイヤレス通信ネットワークを可能にする。いくつかの場合、SPSは、予備のSPSリソース上である周期でメッセージを送信するようにユーザ機器(UE)をスケジューリングするために、基地局によって使用され得る。NRシステムでは、UEは、動的なHARQタイミングに従ったダウンリンク送信に応答して、肯定応答(ACK)/否定応答(NACK)を送信するように構成され得る。たとえば、NRシステムにおいて、HARQタイミングは、スケジューリングダウンリンク制御情報(DCI)においてUEに動的に示され得る。いくつかの例では、HARQタイミングは、DCIの中の2ビットのフィールドを使用して示され得る。しかしながら、SPSをサポートするNRシステムでは、一部のSPS送信に対するスケジューリングDCIがない。そのような場合、スケジューリングDCIを伴わない送信のために、HARQタイミングを効率的に決定する必要がある。
【0006】
一例では、UEは、スケジューリングDCIを伴わないSPS送信のためのHARQタイミングをあらかじめ決定するように構成され得る。いくつかの実装形態では、UEは、SPS構成に従って送信を開始するための指示を受信し得る。たとえば、SPS構成の一部として、基地局は、SPS送信のための周期およびリソースを示し得る。SPS構成を受信すると、UEは所定のHARQタイミングを想定するように構成され得る。いくつかの例では、所定のHARQタイミングは、UE能力に依存し得る。たとえば、UEの能力は、受信されたダウンリンク送信を復号するためのUEの能力であり得る。
【0007】
別の例では、スケジューリングDCIを伴わないSPS送信のためのHARQタイミングは、無線リソース制御(RRC)シグナリングによって構成され得る。いくつかの実装形態では、UEは、RRCを介して受信されたSPS構成に従って送信を開始するための指示を受信し得る。いくつかの例では、RRCシグナリングを受信すると、UEは、UEと関連付けられるRRCシグナリングおよび能力に基づいて、HARQタイミングを設定するように構成され得る。加えて、または代替として、スケジューリングDCIを伴わないSPS送信のためのHARQタイミングは、SPSをアクティブ化する直近のDCIによって構成され得る。たとえば、UEは、基地局とUEとの間の送信のためのSPS構成のアクティブ化を示すDCIを基地局から受信し得る。いくつかの場合、UEは、DCIと関連付けられるダウンリンク送信のためだけではなく、スケジューリングDCIを伴わない後続の送信のためにも、DCIに含まれるHARQタイミングを使用し得る。
【0008】
NRにおける一部のワイヤレス通信システムでは、UEは、コンポーネントキャリア(CC)を使用して基地局との接続を確立し得る。CCは複数の帯域幅部分(BWP)を含むことがあり、各BWPはCCの周波数帯域幅の一部分を有する。いくつかの例では、UEはBWPをアクティブ化するための指示を受信し得る。アクティブなBWPが、SPSリソースを含む1つのBWPからSPSリソースを含まない1つのBWPへと切り替えられるときに、効率的にSPS構成を管理するために、UEおよび基地局は、BWPに依存するSPS構成および/またはアクティブ化を使用し得る。いくつかの場合、UEは、第1のBWPと関連付けられるSPS構成または他のタイプのあらかじめ構成されたリソースを示すシグナリングを受信するように構成され得る。UEは次いで、受信されたSPS構成または他のタイプのあらかじめ構成されたリソースに従って、第1のBWPを使用して送信または受信し得る。いくつかの例では、BWPをアクティブ化すると、UEは、アクティブなBWPと関連付けられるSPS構成をアクティブ化するDCIを受信し得る。
【0009】
ワイヤレス通信の方法が説明される。方法は、UEからの送信のためのSPS構成をアクティブ化するために基地局からシグナリングを受信するステップと、SPS構成がアクティブ化されていることに基づいてダウンリンク送信のためのHARQタイミングを受信するステップとを含み得る。
【0010】
ワイヤレス通信のための装置が説明される。装置は、UEからの送信のためのSPS構成をアクティブ化するために基地局からシグナリングを受信するための手段と、SPS構成がアクティブ化されていることに基づいて、ダウンリンク送信のためのHARQタイミングを受信するための手段とを含み得る。
【0011】
ワイヤレス通信のための別の装置が説明される。装置は、プロセッサと、プロセッサと電子的に通信しているメモリと、メモリに記憶された命令とを含み得る。命令は、プロセッサに、UEからの送信のためのSPS構成をアクティブ化するために基地局からシグナリングを受信させ、SPS構成がアクティブ化されていることに基づいてダウンリンク送信のためのHARQタイミングを受信させるように動作可能であり得る。
【0012】
ワイヤレス通信のための非一時的コンピュータ可読媒体が説明される。非一時的コンピュータ可読媒体は、プロセッサに、UEからの送信のためのSPS構成をアクティブ化するために基地局からシグナリングを受信させ、SPS構成がアクティブ化されていることに基づいてダウンリンク送信のためのHARQタイミングを受信させるように動作可能な命令を含み得る。
【0013】
上で説明された方法、装置、および非一時的コンピュータ可読媒体のいくつかの例はさらに、スケジューリングDCIを伴わないダウンリンク送信を受信するためのプロセス、特徴、手段、または命令を含み得る。上で説明された方法、装置、および非一時的コンピュータ可読媒体のいくつかの例はさらに、受信されたHARQタイミングによって示されるタイミングレイテンシに従って、ダウンリンク送信に応答してACK/NACKを送信するためのプロセス、特徴、手段、または命令を含み得る。
【0014】
上で説明された方法、装置、および非一時的コンピュータ可読媒体のいくつかの例では、HARQタイミングを受信することは、基地局からのRRCシグナリングを介してHARQタイミングを受信することを含み得る。
【0015】
上で説明された方法、装置、および非一時的コンピュータ可読媒体のいくつかの例はさらに、UEからの送信の第2のセットのための第2のSPS構成をアクティブ化するために、基地局からのシグナリングを受信するためのプロセス、特徴、手段、または命令を含み得る。上で説明された方法、装置、および非一時的コンピュータ可読媒体のいくつかの例はさらに、RRCシグナリングを介して第2のHARQタイミングを受信するためのプロセス、特徴、手段、または命令を含むことがあり、第2のHARQタイミングは第2のSPS構成と関連付けられる。
【0016】
上で説明された方法、装置、および非一時的コンピュータ可読媒体のいくつかの例では、HARQタイミングはUEの能力に基づき得る。上で説明された方法、装置、および非一時的コンピュータ可読媒体のいくつかの例では、UEと関連付けられる能力は、UEについての能力プロファイルに基づき得る。いくつかの場合、能力プロファイルは、UEによってサポートされるHARQタイミングの最小値を示す。
【0017】
上で説明された方法、装置、および非一時的コンピュータ可読媒体のいくつかの例では、SPS構成をアクティブ化するためのシグナリングはアクティブ化DCIを含み得る。
【0018】
上で説明された方法、装置、および非一時的コンピュータ可読媒体のいくつかの例はさらに、アクティブ化DCIを介してHARQタイミングを受信するためのプロセス、特徴、手段、または命令を含むことがあり、アクティブ化DCIはPDSCHを含む。
【0019】
上で説明された方法、装置、および非一時的コンピュータ可読媒体のいくつかの例では、受信されたHARQタイミングは、アクティブ化DCIを伴うPDSCHおよびDCIを伴わないPDSCHの後続の送信に適用され得る。上で説明された方法、装置、および非一時的コンピュータ可読媒体のいくつかの例はさらに、第2のHARQタイミングを含む第2のアクティブ化DCIを受信するためのプロセス、特徴、手段、または命令を含むことがあり、第2のHARQタイミングが以前に受信されたHARQタイミングを置き換える。
【0020】
上で説明された方法、装置、および非一時的コンピュータ可読媒体のいくつかの例では、HARQタイミングは、スロット構造、もしくはBWP切り替え手順、またはこれらの組合せのうちの少なくともに応じたものであり得る。
【0021】
上で説明された方法、装置、および非一時的コンピュータ可読媒体のいくつかの例では、スロット構造は、ダウンリンク送信に応答してACK/NACKを送信するためのアップリンク送信機会を含み得る。
【0022】
上で説明された方法、装置、および非一時的コンピュータ可読媒体のいくつかの例では、スロット構造は、少なくとも1つのスロットフォーマットインジケータ(SFI)によって動的に示され得る。
【0023】
ワイヤレス通信の方法が説明される。方法は、UEからの送信のためのSPS構成をアクティブ化するために基地局からシグナリングを受信するステップと、UEによって、UEと関連付けられる能力に基づいてダウンリンク送信のためのHARQタイミングを決定するステップとを含み得る。
【0024】
ワイヤレス通信のための装置が説明される。装置は、UEからの送信のためのSPS構成をアクティブ化するために基地局からシグナリングを受信するための手段と、UEによって、UEと関連付けられる能力に基づいてダウンリンク送信のためのHARQタイミングを決定するための手段とを含み得る。
【0025】
ワイヤレス通信のための別の装置が説明される。装置は、プロセッサと、プロセッサと電子的に通信しているメモリと、メモリに記憶された命令とを含み得る。命令は、プロセッサに、UEからの送信のためのSPS構成をアクティブ化するために基地局からシグナリングを受信させ、UEと関連付けられる能力に基づいてダウンリンク送信のためのHARQタイミングを決定させるように動作可能であり得る。
【0026】
ワイヤレス通信のための非一時的コンピュータ可読媒体が説明される。非一時的コンピュータ可読媒体は、プロセッサに、UEからの送信のためのSPS構成をアクティブ化するために基地局からシグナリングを受信させ、UEと関連付けられる能力に基づいてダウンリンク送信のためのHARQタイミングを決定させるように動作可能な命令を含み得る。
【0027】
上で説明された方法、装置、および非一時的コンピュータ可読媒体のいくつかの例はさらに、スケジューリングDCIを伴わないダウンリンク送信を受信するためのプロセス、特徴、手段、または命令を含み得る。上で説明された方法、装置、および非一時的コンピュータ可読媒体のいくつかの例はさらに、受信されたHARQタイミングによって示されるタイミングレイテンシに従ったダウンリンク送信に応答してACK/NACKを送信するためのプロセス、特徴、手段、または命令を含み得る。
【0028】
上で説明された方法、装置、および非一時的コンピュータ可読媒体のいくつかの例では、UEと関連付けられる能力は静的であり得る。上で説明された方法、装置、および非一時的コンピュータ可読媒体のいくつかの例では、SPS構成をアクティブ化するための受信されたシグナリングはアクティブ化DCIを含み得る。
【0029】
上で説明された方法、装置、および非一時的コンピュータ可読媒体のいくつかの例では、UEと関連付けられる能力は、UEについての能力プロファイルに基づき得る。いくつかの場合、能力プロファイルは、UEによってサポートされるHARQタイミングの最小値を示す。
【0030】
上で説明された方法、装置、および非一時的コンピュータ可読媒体のいくつかの例では、HARQタイミングは、スロット構造およびBWP切り替え手順のうちの少なくとも1つに応じたものであり得る。
【0031】
上で説明された方法、装置、および非一時的コンピュータ可読媒体のいくつかの例では、スロット構造は、ダウンリンク送信に応答してACK/NACKを送信するためのアップリンク送信機会を含み得る。上で説明された方法、装置、および非一時的コンピュータ可読媒体のいくつかの例では、スロット構造は、少なくとも1つのSFIによって動的に示され得る。
【0032】
ワイヤレス通信の方法が説明される。方法は、CCを使用して基地局との接続を確立するステップであって、CCが複数のBWPを有し、各BWPがCCの周波数帯域幅の一部分を有する、ステップと、複数のBWPのうちの少なくとも第1のBWPと関連付けられるSPS構成または他のタイプのあらかじめ構成されたリソースを示すシグナリングを受信するステップと、少なくとも第1のBWPと関連付けられるSPS構成または他のタイプのあらかじめ構成されたリソースに従って、少なくとも第1のBWPを使用して送信または受信するステップとを含み得る。
【0033】
ワイヤレス通信のための装置が説明される。装置は、CCを使用して基地局との接続を確立するための手段であって、CCが複数のBWPを有し、各BWPがCCの周波数帯域幅の一部分を有する、手段と、複数のBWPのうちの少なくとも第1のBWPと関連付けられるSPS構成または他のタイプのあらかじめ構成されたリソースを示すシグナリングを受信するための手段と、少なくとも第1のBWPと関連付けられるSPS構成または他のタイプのあらかじめ構成されたリソースに従って、少なくとも第1のBWPを使用して送信または受信するための手段とを含み得る。
【0034】
ワイヤレス通信のための別の装置が説明される。装置は、プロセッサと、プロセッサと電子的に通信しているメモリと、メモリに記憶された命令とを含み得る。命令は、プロセッサに、CCを使用して基地局との接続を確立させ、CCが複数のBWPを有し、各BWPがCCの周波数帯域幅の一部分を有し、複数のBWPのうちの少なくとも第1のBWPと関連付けられるSPS構成または他のタイプのあらかじめ構成されたリソースを示すシグナリングを受信させ、少なくとも第1のBWPと関連付けられるSPS構成または他のタイプのあらかじめ構成されたリソースに従って、少なくとも第1のBWPを使用して送信または受信させるように動作可能であり得る。
【0035】
ワイヤレス通信のための非一時的コンピュータ可読媒体が説明される。非一時的コンピュータ可読媒体は、プロセッサに、CCを使用して基地局との接続を確立させ、CCが複数のBWPを有し、各BWPがCCの周波数帯域幅の一部分を有し、複数のBWPのうちの少なくとも第1のBWPと関連付けられるSPS構成または他のタイプのあらかじめ構成されたリソースを示すシグナリングを受信させ、少なくとも第1のBWPと関連付けられるSPS構成または他のタイプのあらかじめ構成されたリソースに従って、少なくとも第1のBWPを使用して送信または受信させるように動作可能な命令を含み得る。
【0036】
上で説明された方法のいくつかの例はさらに、複数のBWPのうちの少なくとも第2のBWPと関連付けられるSPS構成または他のタイプのあらかじめ構成されたリソースを示すシグナリングを受信するためのプロセス、特徴、手段、または命令を含み得る。上で説明された方法のいくつかの例はさらに、第1のBWPから第2のBWPに切り替えるためのプロセス、特徴、手段、または命令を含み得る。上で説明された方法のいくつかの例はさらに、少なくとも第2のBWPと関連付けられるSPS構成または他のタイプのあらかじめ構成されたリソースに従って少なくとも第2のBWPを使用して送信または受信するためのプロセス、特徴、手段、または命令を含み得る。
【0037】
上で説明された方法のいくつかの例はさらに、第1のBWPから第2のBWPに切り替えるためのプロセス、特徴、手段、または命令を含み得る。上で説明された方法のいくつかの例はさらに、第2のBWPがSPS構成または他のタイプのあらかじめ構成されたリソースと関連付けられない可能性があると決定するためのプロセス、特徴、手段、または命令を含み得る。上で説明された方法のいくつかの例はさらに、第2のBWPを使用して、かつアクティブなSPS構成を伴わずに送信または受信するためのプロセス、特徴、手段、または命令を含み得る。上で説明された方法のいくつかの例では、シグナリングはDCIメッセージまたはRRCメッセージを含み得る。
【0038】
ワイヤレス通信の方法が説明される。方法は、CCを使用してUEとの接続を確立するステップであって、CCが2つ以上のBWPを有し、各BWPがプライマリCCの周波数帯域幅の一部分を有する、ステップと、複数のBWPのうちの少なくとも第1のBWPと関連付けられるSPS構成または他のタイプのあらかじめ構成されたリソースを示すシグナリングを送信するステップと、少なくとも第1のBWPと関連付けられるSPS構成または他のタイプのあらかじめ構成されたリソースに従って、少なくとも第1のBWPを使用して受信または送信するステップとを含み得る。
【0039】
ワイヤレス通信のための装置が説明される。装置は、CCを使用してUEとの接続を確立するための手段であって、CCが2つ以上のBWPを有し、各BWPがプライマリCCの周波数帯域幅の一部分を有する、手段と、複数のBWPのうちの少なくとも第1のBWPと関連付けられるSPS構成または他のタイプのあらかじめ構成されたリソースを示すシグナリングを送信するための手段と、少なくとも第1のBWPと関連付けられるSPS構成または他のタイプのあらかじめ構成されたリソースに従って、少なくとも第1のBWPを使用して受信または送信するための手段とを含み得る。
【0040】
ワイヤレス通信のための別の装置が説明される。装置は、プロセッサと、プロセッサと電子的に通信しているメモリと、メモリに記憶された命令とを含み得る。命令は、プロセッサに、CCを使用してUEとの接続を確立させ、CCが2つ以上のBWPを有し、各BWPがプライマリCCの周波数帯域幅の一部分を有し、複数のBWPのうちの少なくとも第1のBWPと関連付けられるSPS構成または他のタイプのあらかじめ構成されたリソースを示すシグナリングを送信させ、少なくとも第1のBWPと関連付けられるSPS構成または他のタイプのあらかじめ構成されたリソースに従って、少なくとも第1のBWPを使用して受信または送信させるように動作可能であり得る。
【0041】
ワイヤレス通信のための非一時的コンピュータ可読媒体が説明される。非一時的コンピュータ可読媒体は、プロセッサに、CCを使用してUEとの接続を確立させ、CCが2つ以上のBWPを有し、各BWPがプライマリCCの周波数帯域幅の一部分を有し、複数のBWPのうちの少なくとも第1のBWPと関連付けられるSPS構成または他のタイプのあらかじめ構成されたリソースを示すシグナリングを送信させ、少なくとも第1のBWPと関連付けられるSPS構成または他のタイプのあらかじめ構成されたリソースに従って、少なくとも第1のBWPを使用して受信または送信させるように動作可能な命令を含み得る。
【0042】
上で説明された方法のいくつかの例はさらに、SPS構成と関連付けられるべきであり得る複数のBWPからBWPのサブセットを特定するためのプロセス、特徴、手段、または命令を含み得る。上で説明された方法のいくつかの例では、シグナリングはDCIメッセージまたはRRCメッセージを含み得る。
【図面の簡単な説明】
【0043】
【
図1】本開示の態様による、New Radio(NR)における半永続スケジューリング(SRS)管理をサポートする、ワイヤレス通信のためのシステムの例を示す図である。
【
図2】本開示の態様による、NRにおけるSPS管理をサポートするワイヤレス通信システムの例を示す図である。
【
図3】本開示の態様による、NRにおけるSPS管理をサポートするワイヤレス通信システムの例を示す図である。
【
図4】本開示の態様による、NRにおけるSPS管理をサポートするプロセスフローの例を示す図である。
【
図5】本開示の態様による、NRにおけるSPS管理をサポートするプロセスフローの例を示す図である。
【
図6】本開示の態様による、NRにおけるSPS管理をサポートするデバイスのブロック図である。
【
図7】本開示の態様による、NRにおけるSPS管理をサポートするデバイスのブロック図である。
【
図8】本開示の態様による、NRにおけるSPS管理をサポートするデバイスのブロック図である。
【
図9】本開示の態様による、NRにおけるSPS管理をサポートするUEを含むシステムのブロック図である。
【
図10】本開示の態様による、NRにおけるSPS管理をサポートするデバイスのブロック図である。
【
図11】本開示の態様による、NRにおけるSPS管理をサポートするデバイスのブロック図である。
【
図12】本開示の態様による、NRにおけるSPS管理をサポートするデバイスのブロック図である。
【
図13】本開示の態様による、NRにおけるSPS管理をサポートする基地局を含むシステムのブロック図である。
【
図14】本開示の態様による、NRにおけるSPS管理のための方法を示す図である。
【
図15】本開示の態様による、NRにおけるSPS管理のための方法を示す図である。
【
図16】本開示の態様による、NRにおけるSPS管理のための方法を示す図である。
【
図17】本開示の態様による、NRにおけるSPS管理のための方法を示す図である。
【
図18】本開示の態様による、NRにおけるSPS管理のための方法を示す図である。
【
図19】本開示の態様による、NRにおけるSPS管理のための方法を示す図である。
【発明を実施するための形態】
【0044】
ワイヤレス通信ネットワークは、アップリンク通信およびダウンリンク通信のための半永続スケジューリング(SPS)をサポートし得る。ユーザ機器(UE)が割り振られたリソース上でメッセージを送信して受信し得るように、基地局はUEのためにリソースをスケジューリングして割り振り得る。いくつかの例では、スケジューリングされ割り振られたリソースは、基地局から送信されるサブフレームにおいて搬送されるスケジューリンググラントにおいてUEに示され得る。いくつかの例では、スケジューリンググラントは、たとえばサブフレームのセットの各サブフレーム内で、物理ダウンリンク制御チャネル(PDCCH)を介して搬送される制御情報の一部として定期的に送信され得る。各サブフレーム内でスケジューリンググラントを提供することによって、基地局(ネットワークを含む)は、UEにリソースを割り当てる際に、あらゆるサブフレームの中のPDCCH上でリソース割振り情報を送信するという代償を払って、より高い柔軟性を有し得る。しかしながら、ボイスオーバーIP(VoIP)などのサービスでは、パケットサイズは通常は小さく、パケットの到着と到着の間の時間は一定である。そのような動作におけるオーバーヘッドを減らすために、リソースを定期的に割り振る代わりに、基地局はSPSを使用してリソースを一度にUEへ割り振り得る。UEは次いで、設定された周期でこれらのリソースを使用するように構成され得る。
【0045】
Long Term Evolution(LTE)などの第4世代(4G)システムでは、SPSは、ダウンリンク制御情報(DCI)によってアクティブ化または非アクティブ化され得る。いくつかの実装形態では、DCIはPDCCH上で基地局によって送信され得る。PDCCHは、物理ダウンリンク共有チャネル(PDSCH)に含まれ得る。いくつかの場合、PDCCHは、ダウンリンクサブフレームにおいて複数の直交周波数分割多重化(OFDM)シンボルにマッピングされ得る。いくつかの場合、PDCCHは、あらゆるダウンリンクサブフレームの中の所定の数のOFDMシンボルにマッピングされ得る。たとえば、PDCCHのためのOFDMシンボルの所定の数は、1、2、または3であり得る。いくつかの場合、基地局(evolved Node B(eNB)など)は、物理制御フォーマットインジケータチャネル(PCFICH)を使用してOFDMシンボルの所定の数をUEに知らせ得る。いくつかの実装形態では、DCIは、トランスポートフォーマット、リソース割振り、およびハイブリッド自動再送要求(HARQ)に関する情報を含むように構成され得る。いくつかの例では、PDCCH上で送信されるDCIは、巡回冗長検査(CRC)によって保護され得る。SPSの例では、CRCは、SPSセル無線ネットワーク一時識別子(SPS C-RNTI)によってスクランブリングされ得る。
【0046】
SPSがサポートされるいくつかの実装形態では、UEは、PDCCHを受信することができ、PDCCHに含まれるスケジューリングDCIに従って、基地局とUEとの間の送信のためのSPSをアクティブ化することができる。いくつかの場合、第1のSPS送信の後で、後続のSPS送信タイミングは、送信周期に依存することがあり、スケジューリングDCIなしで実行されることがある。より具体的には、アクティブ化の後で、サブフレームの中の後続のSPS送信は、構成されたSPS周期に基づくことがあり、スケジューリングDCIなしでスケジューリングされることがある。LTEでは、UEは、肯定応答(ACK)/否定応答(NACK)を使用してフィードバック情報を基地局に送信するように構成され得る。ACK/NACKは、HARQタイミングに従って送信され得る。いくつかの場合、HARQタイミングは、PDSCHと対応するHARQ応答との間のタイミングレイテンシを示し得る。いくつかの場合、HARQタイミングはあらかじめ決定され得る。たとえば、周波数分割複信(FDD)において、HARQタイミングは4msのレイテンシに従うことがあり、時分割複信(TDD)において、HARQタイミングは4msより長いレイテンシに従うことがある。いくつかの例では、TDDにおけるHARQタイミングは、TDDダウンリンク(DL)/アップリンク(UL)サブフレーム構成に基づき得る。
【0047】
第5世代(5G)またはNew Radio(NR)システムでは、UEは、動的なHARQタイミングに従ってACK/NACKを送信するように構成され得る。たとえば、NRシステムでは、PDSCHとHARQ応答との間のレイテンシはパラメータ(たとえば、k1)に基づき得る。NRシステムのいくつかの実装形態では、HARQタイミングは、スケジューリングDCIにおいてUEに動的に示され得る。たとえば、HARQタイミングは、DCIの中の2ビットのフィールドを使用して示され得る。いくつかの場合、DCIの中の2ビットのフィールドは、4つの異なる値を示すように構成され得る。たとえば、DCIは、HARQ応答が同じスロットにおいて送信され得ること、HARQ応答が後続のスロットにおいて送信され得ること、HARQ応答が次に利用可能なULスロットにおいて送信され得ること、またはこれらの組合せを示し得る。いくつかの例では、HARQタイミングは、基地局(たとえば、giga Node B(gNB))によって動的に構成され得る。いくつかの場合、gNBは、UEの動作条件、UEと関連付けられる能力に基づいて、HARQタイミングを選び得る。たとえば、UEの性能が高いことが可能である場合、gNBはUEを低減されたHARQタイミングへと構成し得る。前に論じられたように、gNBは、DCIを使用してHARQタイミングを動的に示し得る。しかしながら、SPSをサポートするNRシステムでは、スケジューリングDCIを伴わない送信のために、HARQタイミングを効率的に決定する必要がある。
【0048】
NRシステムにおいて動的なHARQタイミングを効率的に決定することの問題に対処するために、いくつかの場合、スケジューリングDCIを伴わないSPS送信のためのHARQタイミングは、あらかじめ決定され得る。いくつかの実装形態では、UEは、受信されたSPS構成に従って送信を開始するための指示を受信し得る。SPS構成を受信すると、UEは所定のHARQタイミングを想定するように構成され得る。たとえば、UEは、ダウンリンク送信に応答してACK/NACKを送信するための単一のレイテンシ値を想定するように構成され得る。そのような場合、UEは、初期のDCI(またはSPS構成と関連付けられるDCI)において初期のHARQタイミングを受信し得る。UEは、初期のDCIと関連付けられるACK/NACKを送信するためのHARQタイミング指示を初期のDCIにおいて使用し得る。たとえば、UEは、DCIの中のHARQタイミングによって示されるタイミングレイテンシの後で、初期のDCIの復号が成功したかどうかを示す、フィードバックを基地局に送信し得る。いくつかの場合、スケジューリングDCIを伴わない後続のSPS送信のために、UEは、所定のHARQタイミング値を使用するように構成され得る。いくつかの例では、所定のHARQタイミング値は、UE能力に依存し得る。たとえば、UEの能力は、(PDSCHを介して受信される)受信されたダウンリンク送信を復号するためのUEの能力であり得る。いくつかの実装形態では、UEは所定のHARQタイミングを基地局に示すように構成されることがあり、基地局は受信されたHARQタイミングを採用することがある。一例として、UEはHARQタイミング値を4(たとえば、k1=4)と想定し得る。この例では、UEはスロットにおいてPDSCHと関連付けられるフィードバック(ACK/NACKなど)を送信することができ、これはPDSCHを受信してから4スロット後に送信される。
【0049】
別の例では、スケジューリングDCIを伴わないSPS送信のためのHARQタイミングは、無線リソース制御(RRC)シグナリングによって構成され得る。いくつかの実装形態では、UEは、RRCを介して受信されたSPS構成に従って送信を開始するための指示を受信し得る。いくつかの実装形態では、UEは、RRCシグナリングにおいてHARQタイミングを受信し得る。いくつかの例では、RRCシグナリングを受信すると、UEは、UEと関連付けられるRRCシグナリングおよび能力に基づいて、HARQタイミングを設定するように構成され得る。いくつかの場合、UE能力は静的であり得る。いくつかの場合、UEは、HARQ応答タイミングレイテンシ(またはHARQタイミング)を準静的に決定するように構成され得る。いくつかの場合、UEは能力プロファイルを維持し得る。たとえば、能力プロファイルは、UEによってサポートされるHARQタイミング値(k1値など)の最小の数を示し得る。いくつかの例では、gNBは、UEの能力プロファイルに基づいてHARQタイミングを決定し得る。いくつかの例では、UEの能力プロファイルは、動的なシグナリングの選択肢がUEによって使用されないときに準静的に構成され得る。いくつかの場合、動的なシグナリングの選択肢は、DCIにおいて2ビットを使用して示され得る。加えて、または代替として、UEは、基地局との初期のシグナリング手順に基づいて能力プロファイルを決定するように構成され得る。いくつかの場合、2つ以上のSPSの事例がある場合、SPS構成およびHARQタイミングは、各々のSPSの事例に対して別個であり得る。
【0050】
加えて、または代替として、スケジューリングDCIを伴わないSPS送信のためのHARQタイミングは、SPSをアクティブ化する直近のDCIによって構成され得る。たとえば、UEは、基地局とUEとの間の送信のためのSPS構成のアクティブ化を示すDCIを基地局から受信し得る。いくつかの場合、UEは、DCIにおいて初期のHARQタイミングを受信し得る。UEは、スケジューリングDCIを伴わない後続の送信のために受信されたHARQタイミングを使用するように構成され得る。いくつかの例では、基地局(gNBなど)は、HARQタイミング値を更新するために別のアクティブ化DCIを送信するように構成され得る。いくつかの例では、アクティブ化DCIは、アクティブ化と関連付けられるPDSCH送信のためだけではなく、スケジューリングDCIを伴わないすべての後続のPDSCH送信のためにも、HARQタイミングを示し得る。いくつかの実装形態では、スケジューリングDCIを伴わないPDSCH送信のためのHARQタイミングは、加えて、または代替として、1つまたは複数の他のパラメータに応じたものであり得る。たとえば、HARQタイミングは、スロット構造、帯域幅部分(BWP)切り替え手順、またはこれらの組合せのうちの少なくとも1つに応じたものであり得る。いくつかの例では、スロット構造は、DL送信スロット構造に応答してACK/NACKを送信するためのUL送信機会を含み得る。いくつかの場合、スロット構造は、少なくとも1つのスロットフォーマットインジケータ(SFI)によって動的に示され得る。たとえば、スロットがDL送信として指定または指示されることをスロット構造が示す場合、HARQ応答は飛ばされることがあり、または次の機会へと延期されることがある。
【0051】
NRにおけるいくつかのワイヤレス通信システムでは、UEは、コンポーネントキャリア(CC)を使用して基地局との接続を確立し得る。CCは複数のBWPを含むことがあり、各BWPはCCの周波数帯域幅の一部分を有する。いくつかの例では、UEは2つ以上のBWPを用いて構成され得る。いくつかの実装形態では、BWPは、所与の時間においてUEの動作帯域幅を制限するための方法であり得る。低帯域幅の動作の場合、帯域幅を節約することが有益であり得る。たとえば、CCは100MHzであることがあり、UEは20MHz以内で動作することがある。そのような例では、帯域幅を節約して電力を省くために、UEはCC上のBWPに対して動作するように構成され得る。いくつかの例では、第1のBWPは第1の周波数範囲を含むように構成されることがあり、第2のBWPは第2の周波数範囲を含むように構成されることがある。いくつかの場合、第1の周波数帯域幅は、第2の周波数と重複しておらず、または部分的に重複している。いくつかの場合、UEは、あるBWPから別のBWPへ動的に切り替えられ得る。あるBWPから別のBWPへのそのような切り替えはDCIを使用して実行され得る。現在のNRシステムでは、ある時間において、1つのBWPがUEのサービング基地局に対してアクティブである。構成されたSPSを伴うNRシステムでは、2つ以上のBWPがサービングセル(基地局またはgNB)のために構成されるとき、およびUEがBWP間で動的に切り替わるとき、BWPを切り替えるとともにSPS構成を管理するための効率的な方法がない。
【0052】
アクティブなBWPが、SPSリソースを含む1つのBWPからSPSリソースを含まない1つのBWPへと切り替えられるときに、効率的にSPS構成を管理するために、UEおよび基地局は、BWPに依存するSPS構成および/またはアクティブ化を使用し得る。一例では、SPSの周期およびオフセットが、各BWPに対して別々に構成され得る。いくつかの場合、UEは、第1のBWPと関連付けられるSPS構成または他のタイプのあらかじめ構成されたリソースを示すシグナリングを受信するように構成され得る。UEは次いで、受信されたSPS構成または他のタイプのあらかじめ構成されたリソースに従って、第1のBWPを使用して送信または受信し得る。
【0053】
SPSの可用性の中断を避けるために、基地局は、SPS構成がサポートされ得るBWPまたは他のリソースのセットを構成し得る。いくつかの場合、基地局は、SPS構成をサポートするためにすべてのBWPを構成し得る。いくつかの場合、BWP上のSPS構成のためのリソースは、あらかじめ構成され得る。これは、UEが第1のBWPから第2のBWPに切り替わるとき、UEがそれでも中断なしで第2のBWPと関連付けられるSPSリソースを使用するように構成され得るからである。いくつかの例では、SPSリソースは、1つのBWPに含まれることがあるが、別のBWPに含まれないことがある。そのような場合には、アクティブなBWPがSPSをサポートするようにあらかじめ構成されない場合、UEはSPSが暗黙的に解放されると見なし得る。
【0054】
いくつかの例では、アクティブなBWPのために、UEは、それぞれのSPS構成に基づいて対応するSPSスロットを決定するように構成され得る。いくつかの例では、BWPをアクティブ化すると、UEは、SPSをアクティブ化するDCIを受信し得る。UEは、1つまたは複数の追加のBWPのためのPDSCHリソースをアクティブ化するために、DCIからの情報を使用し得る。
【0055】
本開示の態様は、最初にワイヤレス通信システムの文脈で説明される。本開示の態様はさらに、NRにおけるSPS管理に関する、装置図、システム図、およびフローチャートによって示され、それらを参照して説明される。
【0056】
図1は、本開示の態様による、ワイヤレス通信システム100の例を示す。ワイヤレス通信システム100は、基地局105と、UE115と、コアネットワーク130とを含む。いくつかの例では、ワイヤレス通信システム100は、LTEネットワーク、LTE-Advanced(LTE-A)ネットワーク、またはNRネットワークであり得る。いくつかの場合、ワイヤレス通信システム100は、拡張ブロードバンド通信、超高信頼性(たとえば、ミッションクリティカル)通信、低レイテンシ通信、または低コストで低複雑度のデバイスとの通信をサポートし得る。
【0057】
基地局105は、1つまたは複数の基地局アンテナを介してUE115とワイヤレスに通信し得る。本明細書で説明される基地局105は、基地トランシーバ局、無線基地局、アクセスポイント、無線トランシーバ、NodeB、eNB、(そのいずれもgNBと呼ばれることがある)次世代NodeBもしくはgiga-nodeB、Home NodeB、Home eNodeB、または何らかの他の好適な用語を含むことがあり、あるいは、そのように当業者によって呼ばれることがある。ワイヤレス通信システム100は、異なるタイプの基地局105(たとえば、マクロセル基地局またはスモールセル基地局)を含み得る。本明細書で説明されるUE115は、マクロeNB、スモールセルeNB、gNB、リレー基地局などを含む、様々なタイプの基地局105およびネットワーク機器と通信することが可能であり得る。
【0058】
各基地局105は、様々なUE115との通信がサポートされる特定の地理的カバレッジエリア110と関連付けられ得る。各基地局105は、通信リンク125を介してそれぞれの地理的カバレッジエリア110のための通信カバレッジを提供することができ、基地局105とUE115との間の通信リンク125は、1つまたは複数のキャリアを利用することができる。ワイヤレス通信システム100に示された通信リンク125は、UE115から基地局105へのアップリンク送信、または基地局105からUE115へのダウンリンク送信を含み得る。ダウンリンク送信は、順方向リンク送信と呼ばれることもあり、アップリンク送信は、逆方向リンク送信と呼ばれることもある。
【0059】
基地局105のための地理的カバレッジエリア110は、地理的カバレッジエリア110の一部分のみを構成するセクタへと分割されることがあり、各セクタはセルと関連付けられることがある。たとえば、各基地局105は、マクロセル、スモールセル、ホットスポット、もしくは他のタイプのセル、またはそれらの様々な組合せのための通信カバレッジを提供し得る。いくつかの例では、基地局105は可動であり、したがって、移動している地理的カバレッジエリア110のための通信カバレッジを提供し得る。いくつかの例では、異なる技術と関連付けられる異なる地理的カバレッジエリア110は、重複することがあり、異なる技術と関連付けられる重複する地理的カバレッジエリア110は、同じ基地局105によって、または異なる基地局105によってサポートされることがある。ワイヤレス通信システム100は、たとえば、異なるタイプの基地局105が様々な地理的カバレッジエリア110のためのカバレッジを提供する異種LTE/LTE-AまたはNRネットワークを含み得る。
【0060】
「セル」という用語は、(たとえば、キャリア上での)基地局105との通信のために使用される論理通信エンティティを指し、同じまたは異なるキャリアを介して動作する近隣のセルを区別するための識別子(たとえば、物理セル識別子(PCID)、仮想セル識別子(VCID))と関連付けられ得る。いくつかの例では、キャリアは、複数のセルをサポートすることができ、異なるセルは、異なるタイプのデバイスのためのアクセスを提供し得る異なるプロトコルタイプ(たとえば、マシンタイプ通信(MTC)、狭帯域Internet-of-Things(NB-IoT)、拡張モバイルブロードバンド(eMBB)、またはその他)に従って構成され得る。いくつかの場合、「セル」という用語は、その上で論理エンティティが動作する地理的カバレッジエリア110の一部分(たとえば、セクタ)を指し得る。
【0061】
UE115は、ワイヤレス通信システム100全体にわたって分散していることがあり、各UE115は固定式または移動式であることがある。UE115は、モバイルデバイス、ワイヤレスデバイス、リモートデバイス、ハンドヘルドデバイス、もしくは加入者デバイス、または何らかの他の好適な用語で呼ばれることもあり、ここで、「デバイス」は、ユニット、局、端末、またはクライアントと呼ばれることもある。UE115はまた、携帯電話、携帯情報端末(PDA)、タブレットコンピュータ、ラップトップコンピュータ、またはパーソナルコンピュータなどの、パーソナル電子デバイスであり得る。いくつかの例では、UE115はまた、器具、車両、メーターなど、様々な物品において実装され得る、ワイヤレスローカルループ(WLL)局、Internet of Things(IoT)デバイス、Internet of Everything(IoE)デバイス、またはMTCデバイスなどを指し得る。
【0062】
いくつかの場合、UE115は、UE115と基地局105との間の送信のためのSPS構成をアクティブ化するために、基地局105からシグナリングを受信し得る。UE115は次いで、SPS構成がアクティブ化されていることに基づいて、ダウンリンク送信のためのHARQタイミングを受信し得る。いくつかの場合、UE115は、UE115と関連付けられる能力に基づいて、HARQタイミング値を決定するように構成され得る。いくつかの場合、HARQタイミング値はあらかじめ決定され得る。
【0063】
いくつかの例では、UE115は、CCを使用して基地局105との接続を確立し得る。いくつかの場合、CCは複数のBWPを有することがあり、各BWPはCCの周波数帯域幅の一部分を有する。UE115は、複数のBWPのうちの少なくとも第1のBWPと関連付けられるSPS構成または他のタイプのあらかじめ構成されたリソースを示すシグナリングを受信し得る。SPS構成を受信すると、少なくとも第1のBWPと関連付けられるSPS構成または他のタイプのあらかじめ構成されたリソースに従って少なくとも第1のBWPを使用して送信または受信し得る。
【0064】
いくつかの例では、基地局105は、CCを使用してUE115との接続を確立し得る。基地局105は、少なくとも第1のBWPと関連付けられるSPS構成または他のタイプのあらかじめ構成されたリソースを示すシグナリングを送信し得る。基地局105は次いで、少なくとも第1のBWPと関連付けられるSPS構成または他のタイプのあらかじめ構成されたリソースに従って少なくとも第1のBWPを使用して受信または送信し得る。
【0065】
MTCデバイスまたはIoTデバイスなどの、いくつかのUE115は、低コストまたは低複雑度のデバイスであることがあり、マシン間の自動化された通信(たとえば、マシンツーマシン(M2M)通信を介した)を可能にすることがある。M2M通信またはMTCは、人が介在することなく、デバイスが互いにまたは基地局105と通信することを可能するデータ通信技術を指すことがある。いくつかの例では、M2M通信またはMTCは、センサーまたはメーターを統合して情報を測定または捕捉し、その情報を利用できる中央サーバもしくはアプリケーションプログラムにその情報を中継するか、またはプログラムもしくはアプリケーションと対話する人に情報を提示するデバイスからの通信を含み得る。いくつかのUE115は、情報を収集し、またはマシンの自動化された挙動を可能にするように設計され得る。MTCデバイスの用途の例は、スマートメータリング、在庫モニタリング、水位モニタリング、機器モニタリング、医療モニタリング、野生生物モニタリング、天候および地質学的事象モニタリング、船団管理および追跡、リモートセキュリティ感知、物理的アクセス制御、ならびにトランザクションベースのビジネス課金を含む。
【0066】
一部のUE115は、半二重通信(たとえば、送信または受信を介した一方向通信をサポートするが、同時の送信および受信をサポートしないモード)などの、電力消費を減らす動作モードを利用するように構成され得る。いくつかの例では、半二重通信は、低減されたピークレートで実行され得る。UE115のための他の電力節約技法は、アクティブな通信に関与しないとき、または(たとえば、狭帯域通信に従って)限られた帯域幅にわたって動作しているとき、電力を節約する「ディープスリープ」モードに入ることを含む。いくつかの場合、UE115は、重要な機能(たとえば、ミッションクリティカル機能)をサポートするように設計されることがあり、ワイヤレス通信システム100はこれらの機能のために超高信頼性通信を提供するように構成されることがある。
【0067】
いくつかの場合、UE115はまた、(たとえば、ピアツーピア(P2P)またはデバイスツーデバイス(D2D)プロトコルを使用して)他のUE115と直接通信することが可能であり得る。D2D通信を利用するUE115のグループのうちの1つまたは複数が、基地局105の地理的カバレッジエリア110内にあり得る。そのようなグループ中の他のUE115は、基地局105の地理的カバレッジエリア110の外にあるか、または別様に基地局105からの送信を受信できないことがある。いくつかの場合には、D2D通信を介して通信するUE115のグループは、各UE115がグループ中のあらゆる他のUE115に送信する1対多(1:M)システムを利用し得る。いくつかの場合、基地局105が、D2D通信のためのリソースのスケジューリングを促進する。他の場合には、D2D通信は、基地局105が関与することなくUE115間で行われる。
【0068】
基地局105は、コアネットワーク130および互いと通信し得る。たとえば、基地局105は、バックホールリンク132を通じて(たとえば、S1または他のインターフェースを介して)コアネットワーク130とインターフェースし得る。基地局105は、バックホールリンク134上で(たとえば、X2または他のインターフェースを介して)、直接(たとえば、基地局105間で直接)または間接的に(たとえば、コアネットワーク130を介して)のいずれかで互いと通信し得る。
【0069】
コアネットワーク130は、ユーザ認証、アクセス許可、トラッキング、インターネットプロトコル(IP)接続性、および他のアクセス機能、ルーティング機能、またはモビリティ機能を提供し得る。コアネットワーク130は、evolved packet core(EPC)であることがあり、EPCは、少なくとも1つのモビリティ管理エンティティ(MME)と、少なくとも1つのサービングゲートウェイ(S-GW)と、少なくとも1つのパケットデータネットワーク(PDN)ゲートウェイ(P-GW)とを含むことがある。MMEは、EPCと関連付けられる基地局105によってサービスされるUE115のためのモビリティ、認証、およびベアラ管理など、非アクセス層(たとえば、制御プレーン)機能を管理し得る。ユーザIPパケットは、それ自体がP-GWと結合され得るS-GWを通じて転送され得る。P-GWは、IPアドレス割振りならびに他の機能を提供し得る。P-GWは、ネットワーク事業者のIPサービスと結合され得る。事業者のIPサービスは、インターネット、イントラネット、IPマルチメディアサブシステム(IMS)、またはパケット交換(PS)ストリーミングサービスへのアクセスを含み得る。
【0070】
基地局105などのネットワークデバイスのうちの少なくともいくつかは、アクセスネットワークエンティティなどのサブコンポーネントを含むことがあり、アクセスネットワークエンティティは、アクセスノードコントローラ(ANC)の例であることがある。各アクセスネットワークエンティティは、無線ヘッド、スマート無線ヘッド、または送信/受信ポイント(TRP)と呼ばれ得る、いくつかの他のアクセスネットワーク送信エンティティを通じてUE115と通信し得る。いくつかの構成では、各アクセスネットワークエンティティまたは基地局105の様々な機能は、様々なネットワークデバイス(たとえば、ラジオヘッドおよびアクセスネットワークコントローラ)にわたって分散されることがあり、または単一のネットワークデバイス(たとえば、基地局105)に統合されることがある。
【0071】
ワイヤレス通信システム100は、一般に300MHzから300GHzの範囲にある、1つまたは複数の周波数帯域を使用して動作し得る。一般に、300MHzから3GHzの領域は、超高周波(UHF)領域またはデシメートル帯域として知られているが、これは、波長の長さが、およそ1デシメートルから1メートルに及ぶからである。UHF波は、建物および環境特性によって遮断され得るか、または方向変換され得る。しかしながら、これらの波は、マクロセルが屋内に位置するUE115にサービスを提供するのに十分に構造を貫通し得る。UHF波の送信は、300MHz未満のスペクトルの高周波(HF)部分または超高周波(VHF)部分のより低い周波数およびより長い波を使用する送信と比較して、より小型のアンテナおよびより短い距離(たとえば、100km未満)と関連付けられ得る。
【0072】
ワイヤレス通信システム100はまた、センチメートル帯域としても知られている、3GHzから30GHzまでの周波数帯域を使用する超高周波(SHF)領域において動作し得る。SHF領域は、他のユーザからの干渉を許容し得るデバイスによって機会主義的に使用され得る、5GHz産業科学医療(ISM)帯域などの帯域を含む。
【0073】
ワイヤレス通信システム100は、ミリメートル帯域としても知られている、(たとえば、30GHzから300GHzの)スペクトルの極高周波(EHF)領域内で動作することもできる。いくつかの例では、ワイヤレス通信システム100は、UE115と基地局105との間のミリメートル波(mmW)通信をサポートすることができ、それぞれのデバイスのEHFアンテナは、UHFアンテナよりさらに小さいことがあり、より密に間隔が空けられることがある。いくつかの場合、これは、UE115内のアンテナアレイの使用を容易にし得る。しかしながら、EHF送信の伝搬は、SHF送信またはUHF送信よりもさらに大きい大気減衰を受け、距離がより短いことがある。本明細書で開示される技法は、1つまたは複数の異なる周波数領域を使用する送信にわたって利用されることがあり、これらの周波数領域にわたる帯域の指定される使用は、国ごとにまたは規制団体ごとに異なり得る。
【0074】
いくつかの場合、システム100は、免許無線周波数スペクトル帯域と免許不要無線周波数スペクトル帯域の両方を利用し得る。たとえば、ワイヤレス通信システム100は、5GHz ISM帯域などの免許不要帯域において、License Assisted Access(LAA)、LTE-Unlicensed(LTE-U)無線アクセス技術、またはNR技術を利用し得る。免許不要無線周波数スペクトル帯域において動作するとき、基地局105およびUE115などのワイヤレスデバイスは、データを送信する前に周波数チャネルがクリアであることを保証するために、リッスンビフォアトーク(LBT)手順を利用し得る。いくつかの場合、免許不要帯域における動作は、免許帯域において動作するCCとともにCA構成に基づいてよい(たとえば、LAA)。免許不要スペクトルにおける動作は、ダウンリンク送信、アップリンク送信、ピアツーピア送信、またはこれらの組合せを含み得る。免許不要スペクトルにおける複信は、周波数分割複信(FDD)、時分割複信(TDD)、またはその両方の組合せに基づき得る。
【0075】
いくつかの例では、基地局105またはUE115は複数のアンテナを装備することがあり、これらは、送信ダイバーシティ、受信ダイバーシティ、多入力多出力(MIMO)通信、またはビームフォーミングなどの技法を利用するために使用されることがある。たとえば、ワイヤレス通信システム100は、送信デバイス(たとえば、基地局105)と受信デバイス(たとえば、UE115)との間である送信方式を使用することができ、ここで、送信デバイスは複数のアンテナを装備し、受信デバイスは1つまたは複数のアンテナを装備する。MIMO通信は、異なる空間レイヤを介して複数の信号を送信または受信することによってスペクトル効率を高めるためにマルチパス信号伝搬を利用することがあり、これは空間多重化と呼ばれることがある。複数の信号が、たとえば、異なるアンテナまたはアンテナの異なる組合せを介して送信デバイスによって送信され得る。同様に、複数の信号が、異なるアンテナまたはアンテナの異なる組合せを介して受信デバイスによって受信され得る。複数の信号の各々が、別個の空間ストリームと呼ばれることがあり、同じデータストリーム(たとえば、同じコード語)または異なるデータストリームと関連付けられるビットを搬送することがある。異なる空間レイヤが、チャネル測定および報告のために使用される異なるアンテナポートと関連付けられることがある。MIMO技法は、複数の空間レイヤが同じ受信デバイスに送信されるシングルユーザMIMO(SU-MIMO)、および複数の空間レイヤが複数のデバイスに送信されるマルチユーザMIMO(MU-MIMO)を含む。
【0076】
空間フィルタリング、指向性送信、または指向性受信とも呼ばれることがあるビームフォーミングは、送信デバイスと受信デバイスとの間の空間経路に沿ってアンテナビーム(たとえば、送信ビームまたは受信ビーム)をシェーピングまたはステアリングするために送信デバイスまたは受信デバイス(たとえば、基地局105またはUE115)において使用され得る、信号処理技法である。ビームフォーミングは、アンテナアレイに関して特定の方向に伝播する信号が強め合う干渉を受ける一方で、他の信号が弱め合う干渉を受けるように、アンテナアレイのアンテナ要素を介して通信される信号を合成することによって達成され得る。アンテナ要素を介して通信される信号の調整は、送信デバイスまたは受信デバイスが、デバイスと関連付けられるアンテナ要素の各々を介して搬送される信号に振幅および位相のオフセットを適用することを含み得る。アンテナ要素の各々と関連付けられる調整は、(たとえば、送信デバイスもしくは受信デバイスのアンテナアレイに対する、または何らかの他の向きに対する)特定の向きと関連付けられるビームフォーミング重みセットによって定義され得る。
【0077】
一例では、基地局105は、UE115との指向性通信のためのビームフォーミング動作を行うために、複数のアンテナまたはアンテナアレイを使用し得る。たとえば、一部の信号(たとえば、同期信号、基準信号、ビーム選択信号、または他の制御信号)は、基地局105によって異なる方向に複数回送信されることがあり、これは、信号が異なる送信方向と関連付けられる異なるビームフォーミング重みセットに従って送信されることを含むことがある。異なるビーム方向への送信は、基地局105による後続の送信および/または受信のためのビーム方向を(たとえば、基地局105またはUE115などの受信デバイスによって)特定するために使用され得る。特定の受信デバイスと関連付けられるデータ信号などの一部の信号は、単一のビーム方向(たとえば、UE115などの受信デバイスと関連付けられる方向)に基地局105によって送信され得る。いくつかの例では、単一のビーム方向に沿った送信と関連付けられるビーム方向は、異なるビーム方向に送信された信号に基づいて決定され得る。たとえば、UE115は、基地局105によって異なる方向に送信された信号のうちの1つまたは複数を受信することができ、UE115は、それが最高の信号品質で受信した信号の指示、または別様に許容可能な信号品質を基地局105に報告することができる。これらの技法は基地局105によって1つまたは複数の方向に送信される信号に関して説明されるが、UE115は、異なる方向に複数回信号を送信するために(たとえば、UE115による後続の送信または受信のためのビーム方向を特定するために)、または単一の方向に信号を送信するために(たとえば、データを受信デバイスに送信するために)同様の技法を利用することができる。
【0078】
受信デバイス(たとえば、mmW受信デバイスの例であり得るUE115)は、同期信号、基準信号、ビーム選択信号、または他の制御信号などの、様々な信号を基地局105から受信するとき、複数の受信ビームを試みることができる。たとえば、受信デバイスは、異なるアンテナサブアレイを介して受信することによって、異なるアンテナサブアレイに従って、受信された信号を処理することによって、アンテナアレイの複数のアンテナ要素において受信された信号に適用された異なる受信ビームフォーミング重みセットに従って受信することによって、またはアンテナアレイの複数のアンテナ要素において受信された信号に適用された異なる受信ビームフォーミング重みセットに従って、受信された信号を処理することによって、複数の受信方向を試みることができ、それらのいずれもが、異なる受信ビームまたは受信方向に従った「聴取」と呼ばれることがある。いくつかの例では、受信デバイスは、(たとえば、データ信号を受信するとき)単一のビーム方向に沿って受信するために単一の受信ビームを使用することができる。単一の受信ビームは、異なる受信ビーム方向に従った聴取に基づいて決定されたビーム方向(たとえば、複数のビーム方向に従った聴取に基づいて、最高の信号強度、最高の信号対雑音比、または別様に許容可能な信号品質を有すると決定されたビーム方向)に揃えられ得る。
【0079】
いくつかの場合、基地局105またはUE115のアンテナは、MIMO動作をサポートし得る、または送信ビームフォーミングもしくは受信ビームフォーミングをサポートし得る、1つまたは複数のアンテナアレイ内に配置され得る。たとえば、1つもしくは複数の基地局アンテナまたはアンテナアレイは、アンテナタワーなどのアンテナアセンブリにおいて一緒に置かれ得る。いくつかの場合、基地局105と関連付けられるアンテナまたはアンテナアレイは、多様な地理的位置に位置し得る。基地局105は、基地局105がUE115との通信のビームフォーミングをサポートするために使用し得るアンテナポートのいくつかの行および列を伴うアンテナアレイを有し得る。同様に、UE115は、様々なMIMO動作またはビームフォーミング動作をサポートし得る1つまたは複数のアンテナアレイを有し得る。
【0080】
いくつかの場合、ワイヤレス通信システム100は、階層化プロトコルスタックに従って動作するパケットベースネットワークであり得る。ユーザプレーンでは、ベアラまたはパケットデータコンバージェンスプロトコル(PDCP)レイヤにおける通信は、IPベースであり得る。無線リンク制御(RLC)レイヤは、いくつかの場合、論理チャネルを介して通信するためにパケットセグメント化および再アセンブリを実行し得る。媒体アクセス制御(MAC)レイヤは、優先処理、およびトランスポートチャネルへの論理チャネルの多重化を実行し得る。MACレイヤはまた、MACレイヤにおける再送信を行ってリンク効率を改善するために、HARQを使用し得る。制御プレーンでは、RRCプロトコルレイヤが、ユーザプレーンデータのための無線ベアラをサポートする、UE115と基地局105またはコアネットワーク130との間のRRC接続の確立、構成、および保守を行い得る。物理(PHY)レイヤにおいて、トランスポートチャネルが物理チャネルにマッピングされ得る。
【0081】
いくつかの場合、UE115および基地局105は、データの受信に成功する可能性を高めるためにデータの再送信をサポートし得る。HARQフィードバックは、データが通信リンク125上で正しく受信される可能性を高める1つの技法である。HARQは、(たとえば、CRCを使用する)誤り検出、前方誤り訂正(FEC)、および再送信(たとえば、自動再送要求(ARQ))の組合せを含み得る。HARQは、劣悪な無線条件(たとえば、信号対雑音条件)においてMACレイヤにおけるスループットを改善し得る。いくつかの場合、ワイヤレスデバイスが同一スロットHARQフィードバックをサポートすることがあり、同一スロットHARQフィードバックにおいて、デバイスは、特定のスロット中の前のシンボルにおいて受信されたデータに対するHARQフィードバックを、そのスロットにおいて提供し得る。他の場合には、デバイスは、後続のスロット中で、または何らかの他の時間間隔に従ってHARQフィードバックを提供し得る。
【0082】
LTEまたはNRにおける時間間隔は、たとえば、Ts=1/30,720,000秒というサンプリング周期を基準とし得る、基本時間単位の倍数で表され得る。通信リソースの時間間隔は、10ミリ秒(ms)の時間長を各々有する無線フレームに従って編成されることがあり、ここでフレーム期間はTf=307,200Tsと表されることがある。無線フレームは、0から1023にわたるシステムフレーム番号(SFN)によって特定され得る。各フレームは0から9の番号が付けられた10個のサブフレームを含むことがあり、各サブフレームは1msの時間長を有することがある。サブフレームはさらに、各々0.5msの時間長を有する2つのスロットへと分割されることがあり、各スロットが、6個または7個の変調シンボル期間(各シンボル期間の先頭に追加される巡回プレフィックスの長さに依存する)を含むことがある。巡回プレフィックスを除いて、各シンボル期間は2048個のサンプリング期間を含み得る。いくつかの場合、サブフレームは、ワイヤレス通信システム100の最小のスケジューリング単位であることがあり、送信時間間隔(TTI)と呼ばれることがある。他の場合には、ワイヤレス通信システム100の最小のスケジューリング単位は、サブフレームより短いことがあり、または(たとえば、短縮TTI(sTTI)のバーストにおいて、またはsTTIを使用する選択されたコンポーネントキャリアにおいて)動的に選択されることがある。
【0083】
一部のワイヤレス通信システムにおいて、スロットはさらに、1つまたは複数のシンボルを含む複数のミニスロットへと分割され得る。いくつかの事例では、ミニスロットのシンボルまたはミニスロットがスケジューリングの最小単位であり得る。各シンボルは、たとえば、サブキャリア間隔または動作周波数帯域に依存して、時間長が変動し得る。さらに、一部のワイヤレス通信システムは、UE115と基地局105との間の通信のために複数のスロットまたはミニスロットが一緒に集約されて使用される、スロットアグリゲーションを実装し得る。
【0084】
「キャリア」という用語は、通信リンク125上で通信をサポートするための定義された物理レイヤ構造を有する無線周波数スペクトルリソースのセットを指す。たとえば、通信リンク125のキャリアは、所与の無線アクセス技術のための物理レイヤチャネルに従って動作する無線周波数スペクトル帯域の一部分を含み得る。各物理レイヤチャネルは、ユーザデータ、制御情報、または他のシグナリングを搬送することができる。キャリアは、事前に定義された周波数チャネル(たとえば、E-UTRA絶対無線周波数チャネル番号(EARFCN))と関連付けられることがあり、UE115による発見のためにチャネルラスタに従って配置されることがある。キャリアは、ダウンリンクまたはアップリンク(たとえば、FDDモードの)であることがあり、またはダウンリンク通信およびアップリンク通信を(たとえば、TDDモードで)搬送するように構成されることがある。いくつかの例では、キャリア上で送信される信号波形は、(たとえば、OFDMまたはDFT-s-OFDMなどのマルチキャリア変調(MCM)技法を使用して)複数のサブキャリアから構成され得る。
【0085】
キャリアの組織構造は、異なる無線アクセス技術(たとえば、LTE、LTE-A、NRなど)に対して異なり得る。たとえば、キャリアを介した通信は、TTIまたはスロットに従って編成されることがあり、それらの各々が、ユーザデータの復号をサポートするために、ユーザデータならびに制御情報またはシグナリングを含むことがある。キャリアはまた、専用の取得シグナリング(たとえば、同期信号またはシステム情報など)と、キャリアのための動作を協調させる制御シグナリングとを含み得る。いくつかの例(たとえば、キャリアアグリゲーション構成における)では、キャリアはまた、他のキャリアのための動作を協調させる取得シグナリングまたは制御シグナリングを有し得る。
【0086】
物理チャネルは、様々な技法に従ってキャリア上で多重化され得る。物理制御チャネルおよび物理データチャネルは、ダウンリンクチャネル上で、たとえば、時分割多重化(TDM)技法、周波数分割多重化(FDM)技法、またはハイブリッドTDM-FDM技法を使用して多重化され得る。いくつかの例では、物理制御チャネルにおいて送信される制御情報は、異なる制御領域の間に(たとえば、共通制御領域または共通探索空間と1つまたは複数のUE固有の制御領域またはUE固有の探索空間との間に)カスケード方式で分散され得る。
【0087】
キャリアは、無線周波数スペクトルの特定の帯域幅と関連付けられることがあり、いくつかの例では、キャリア帯域幅は、キャリアまたはワイヤレス通信システム100の「システム帯域幅」と呼ばれることがある。たとえば、キャリア帯域幅は、特定の無線アクセス技術のキャリアのためのいくつかの所定の帯域幅(たとえば、1.4、3、5、10、15、20、40、または80MHz)のうちの1つであり得る。いくつかの例では、各々のサービスされるUE115は、キャリア帯域幅の部分またはすべてにわたって動作するために構成され得る。他の例では、一部のUE115は、キャリア内のあらかじめ定義された部分または範囲(たとえば、サブキャリアまたはRBのセット)と関連付けられる狭帯域プロトコルタイプを使用した動作のために構成され得る(たとえば、狭帯域プロトコルタイプの「帯域内」展開)。
【0088】
MCM技法を利用するシステムでは、リソース要素は、1つのシンボル期間(たとえば、1つの変調シンボルの時間長)および1つのサブキャリアを含むことがあり、シンボル期間およびサブキャリア間隔は反比例する。各リソース要素によって搬送されるビットの数は、変調方式(たとえば、変調方式の次数)に依存し得る。したがって、UE115が受信するリソース要素が多いほど、かつ変調方式の次数が高いほど、UE115に対するデータレートは高くなり得る。MIMOシステムでは、ワイヤレス通信リソースは、無線周波数スペクトルリソース、時間リソース、および空間リソース(たとえば、空間レイヤ)の組合せを指すことがあり、複数の空間レイヤの使用はさらに、UE115との通信のデータレートを上げることができる。
【0089】
ワイヤレス通信システム100のデバイス(たとえば、基地局105またはUE115)は、特定のキャリア帯域幅を介した通信をサポートするハードウェア構成を有することがあり、または、キャリア帯域幅のセットのうちの1つを介した通信をサポートするように構成可能であってもよい。いくつかの例では、ワイヤレス通信システム100は、2つ以上の異なるキャリア帯域幅と関連付けられるキャリアを介した同時の通信をサポートすることができる、基地局105および/またはUEを含み得る。
【0090】
ワイヤレス通信システム100は、複数のセルまたはキャリア上でのUE115との通信、すなわち、キャリアアグリゲーション(CA)またはマルチキャリア動作と呼ばれることがある特徴をサポートし得る。UE115は、キャリアアグリゲーション構成に従って、複数のダウンリンクCCと1つまたは複数のアップリンクCCとで構成され得る。キャリアアグリゲーションは、FDDコンポーネントキャリアとTDDコンポーネントキャリアの両方とともに使用され得る。
【0091】
いくつかの場合、ワイヤレス通信システム100は拡張コンポーネントキャリア(eCC)を利用し得る。eCCは、より広いキャリアもしくは周波数チャネル帯域幅、より短いシンボル時間長、より短いTTI時間長、または修正された制御チャネル構成を含む、1つまたは複数の特徴によって特徴付けられ得る。いくつかの場合、eCCは、(たとえば、複数のサービングセルが準最適または理想的でないバックホールリンクを有するとき)キャリアアグリゲーション構成またはデュアル接続性構成と関連付けられ得る。eCCはまた、(2つ以上の事業者が、スペクトルを使用することを許可された場合)免許不要スペクトルまたは共有スペクトルにおいて使用するために構成され得る。広いキャリア帯域幅によって特徴付けられるeCCは、全キャリア帯域幅を監視することが可能でないか、または(たとえば、電力を節約するために)限られたキャリア帯域幅を使用するように別様に構成される、UE115によって利用され得る1つまたは複数のセグメントを含み得る。
【0092】
いくつかの場合、eCCは、他のCCとは異なるシンボル時間長を利用することがあり、このことは、他のCCのシンボル時間長と比較して短縮されたシンボル時間長の使用を含むことがある。より短いシンボル時間長は、隣接するサブキャリア間の間隔の増大と関連付けられ得る。eCCを利用するUE115または基地局105などのデバイスは、短縮されたシンボル時間長(たとえば、16.67マイクロ秒)で、広帯域信号(たとえば、20、40、60、80MHzなどの周波数チャネルまたはキャリア帯域幅に従った)を送信し得る。eCC中のTTIは、1つまたは複数のシンボル期間を含み得る。いくつかの場合、TTI時間長(すなわち、TTI中のシンボル期間の数)は可変であり得る。
【0093】
NRシステムなどのワイヤレス通信システムは、とりわけ、免許スペクトル帯域、共有スペクトル帯域、および免許不要スペクトル帯域の任意の組合せを利用し得る。eCCシンボル時間長およびサブキャリア間隔の柔軟性によって、複数のスペクトルにわたるeCCの使用が可能になり得る。いくつかの例では、特にリソースの動的な垂直方向(たとえば、周波数にわたる)および水平方向(たとえば、時間にわたる)の共有によって、NR共有スペクトルは、スペクトル利用率およびスペクトル効率を高め得る。
【0094】
図2は、本開示の態様による、NRにおけるSPS管理をサポートするワイヤレス通信システム200の例を示す。いくつかの例では、ワイヤレス通信システム200は、ワイヤレス通信システム100の態様を実装し得る。
【0095】
図2の例では、ワイヤレスデバイス(たとえば、UE115-a)は、キャリア205を介した通信をサポートし得る。ワイヤレス通信システム200は、アップリンク送信およびダウンリンク送信のためのSPSをサポートする5GまたはNRシステムであり得る。基地局105-aは、予備のリソース上でアップリンクメッセージを送信するようにUE115-aをスケジューリングし得る。以前に説明された様々な技法によれば、UE115-aはPDCCH上でリソース割振り情報を受信し得る。より具体的には、UE115-aはPDSCHに含まれるPDCCHを受信し得る。いくつかの実装形態では、UE115-aは、SPS構成をアクティブ化するための指示を受信し得る。いくつかの場合、SPSをアクティブ化するための指示は、DCIを介して受信され得る。いくつかの場合、DCIはキャリア205を介して基地局105-aによって送信され得る。SPS構成をアクティブ化するための信号を受信すると、UE115-aは、基地局105-aとUE115-aとの間の送信のためのSPS構成をアクティブ化し得る。いくつかの例では、SPS構成は、PDCCHに含まれるスケジューリングDCIに従ってアクティブ化され得る。いくつかの実装形態では、SPS構成を(PDCCHの中のDCIを介して)受信すると、UE115-aは、HARQタイミングを決定するように構成され得る。いくつかの場合、HARQタイミングはあらかじめ決定され得る。いくつかの実装形態では、UE115-aは、ダウンリンク送信に応答してACK/NACKを送信するためのレイテンシ値(またはHARQタイミング)を想定するように構成され得る。
【0096】
いくつかの実装形態では、UE115-aは、SPS構成のアクティブ化を命令する初期DCIを基地局105-aから受信し得る。前に論じられたように、初期DCIはPDCCHの一部であり得る。いくつかの場合、初期DCIは初期HARQタイミングを含み得る。UE115-aはしたがって、DCIを受信することができ、DCIによって示されるHARQタイミングを特定することができる。いくつかの場合、UE115-aは、初期DCIと関連付けられるACK/NACKを送信するための決定されたHARQタイミングを使用し得る。ある例として、UE115-aは、初期DCIの復号に成功したかどうかを示すフィードバック(ACKまたはNACKの形態の)を基地局105-aに送信し得る。このフィードバックは、初期DCIの中のHARQタイミングによって示されるタイミングレイテンシの後で送信され得る。
【0097】
いくつかの場合、SPS構成をアクティブ化した後で、UE115-aは、SPS構成によって設定される周期性に従って、アップリンクメッセージを基地局105-aに送信するように構成され得る。そのような場合、UE115-aは、1つ1つの後続の送信に対してスケジューリングDCIを受信しないことがある。いくつかの例では、スケジューリングDCIを伴わない後続の送信のために、UE115-aは、所定のHARQタイミング値を使用し得る。いくつかの例では、所定のHARQタイミング値は、UE能力に依存し得る。前に論じられたように、UE能力は能力プロファイルに基づき得る。
【0098】
第2の例によれば、SPS送信と関連付けられるフィードバックを送信するためのHARQタイミング値は、RRCシグナリングによって構成され得る。たとえば、UE115-aは基地局105-aからRRC信号を受信し得る。RRC信号は、受信されたSPS構成に従って送信の開始を示し得る。いくつかの実装形態では、UE115-aは、RRCシグナリングにおいてHARQタイミングを受信し得る。HARQタイミング値を受信すると、UE115-aは、フィードバックを基地局105-aに提供するために、HARQタイミング値によって示されるタイミングレイテンシを使用し得る。いくつかの例では、RRCシグナリングを受信すると、UE115-aは、UE115-aと関連付けられるRRCシグナリングおよび能力に基づいて、HARQタイミングを設定するように構成され得る。いくつかの場合、この能力は、UE115-aによってサポートされるHARQタイミングの最小値に基づき得る。いくつかの場合、UE115-aの能力は静的であり得る。
【0099】
さらなる例では、スケジューリングDCIを伴わないSPS送信のためのHARQタイミングは、SPSをアクティブ化する直近のDCIによって構成され得る。たとえば、前に論じられたように、UE115-aは、基地局とUEとの間の送信のためのSPS構成のアクティブ化を示すDCIを基地局105-aから受信し得る。いくつかの例では、UE115-aは、SPS構成をアクティブ化するDCIにおいて初期のHARQタイミングを受信し得る。UE115-aは次いで、スケジューリングDCIを伴わない後続の送信のために受信されたHARQタイミングを使用するように構成され得る。いくつかの例では、UE115-aは、HARQタイミング値が基地局105-aによって更新されるまでHARQタイミング値を使用し続け得る。たとえば、HARQタイミング値は、第2のアクティブ化DCIによって基地局105-aによって更新され得る。
【0100】
図3は、本開示の態様による、NRにおけるSPS管理をサポートするワイヤレス通信システム300の例を示す。いくつかの例では、ワイヤレス通信システム300は、
図1および
図2を参照して説明されたように、ワイヤレス通信システム100およびワイヤレス通信システム200の態様を実装し得る。
【0101】
図3の例では、基地局105-bおよびUE115-bは接続(図示されず)を確立し得る。いくつかの場合、接続は1つまたは複数の広帯域CCを有し得る。上で示されたように、いくつかの場合、CCのうちの1つまたは複数は1つまたは複数のBWPを含み得る。たとえば、CCは2つ以上のBWPを含み得る。いくつかの場合、基地局105-aは、2つ以上のBWPを用いて接続305を構成することができ、DCIシグナリングを通じてBWPのうちの1つまたは複数をアクティブ化して非アクティブ化することができる。いくつかの場合、UE115-bは第1のBWPをアクティブ化するために信号を受信することができ、第2のBWPはデフォルトで非アクティブであり得る。いくつかの実装形態では、基地局105-bは、第2のBWPがアクティブ化されるべきであることを示すDCIをUE115-aへ送信することを通じて、第2のBWPをアクティブ化し得る。UE115-bは、DCIを受信し、いくつかの場合、DCIの受信に肯定応答し得る。いくつかの場合、UE115-bは、HARQタイミングによって示されるタイミングレイテンシの後で、DCIの受信に肯定応答し得る。
【0102】
上で論じられたように、いくつかの場合、1つまたは複数のBWPは、UE115-bに送信されるスケジューリングDCIを介して基地局105-bによってアクティブ化され得る。そのような場合、複数のBWPが構成されることがあり、DCIは、どのBWPが特定の送信に対してアクティブであるか、または所定の期間に対してアクティブであるかの指示を含み得る。UE115-bは、DCIを受信すると、アクティブであるものとして示されるBWPをアクティブ化し、アクティブであるものとしてもはや示されないあらゆる以前にアクティブであったBWPを非アクティブ化し得る。いくつかの例では、基地局105-bは、ビームフォーミングされた送信320を介してアクティブなビーム上でBWP DCIをUE115-bに送信し得る。
【0103】
いくつかの例では、UE115は、アクティブなBWPと関連付けられるSPSリソースの指示を受信し得る。たとえば、基地局105-bは、SPS構成およびSPS構成と関連付けられるべきいくつかのBWPを決定するように構成され得る。たとえば、基地局105-bは、SPS構成がサポートされ得るBWPまたは他のリソースのセットを構成し得る。いくつかの例では、基地局105-bは、SPS構成をサポートするようにすべてのBWPを構成し得る。いくつかの例では、基地局105-bは、SPS構成をサポートするようにBWPのサブセットを構成し得る。いくつかの場合、基地局105-bは、BWP上のSPS構成のためのリソースをあらかじめ構成し得る。いくつかの例では、SPSリソースは、1つのBWPに含まれることがあるが、別のBWPに含まれないことがある。そのような場合には、アクティブなBWPがSPSをサポートするようにあらかじめ構成されない場合、UE115-bはSPSが暗黙的に解放されると見なし得る。
【0104】
いくつかの例では、基地局105-bは、BWPを切り替えるための指示をUE115-bに送信し得る。いくつかの場合、アクティブなBWPが第1のBWPから第2のBWPに切り替えられる場合、UE115-bは第2のBWPと関連付けられるSPS構成を使用して送信または受信し得る。たとえば、基地局105-bは、BWPの切り替えを示す信号においてSPS構成と関連付けられる情報を示し得る。一例では、SPSの周期およびオフセットが、各BWPに対して別々に構成され得る。
【0105】
図4は、本開示の態様による、NRにおけるSPS管理をサポートするプロセスフロー400の例を示す。いくつかの例では、プロセスフロー400は、ワイヤレス通信システム100の態様を実装し得る。基地局105-cは、
図1を参照して説明されたような基地局105の例であり得る。UE115-cは、
図1を参照して説明されたようなUE115の例であり得る。
【0106】
プロセスフロー400の以下の説明では、基地局105-cとUE115-cとの間の動作は、示される例示的な順序とは異なる順序で送信されることがあり、または、基地局105-cおよびUE115-cによって実行される動作は、異なる順序で、もしくは異なる時間に実行されることがある。いくつかの動作がプロセスフロー400からなくされることもあり、または他の動作がプロセスフロー400に追加されることがある。
【0107】
405において、基地局105-cは、
図1および
図2を参照して説明されたように、基地局105-cとUE115-cとの間の送信のためのSPS構成をアクティブ化するために信号を送信し得る。いくつかの例では、信号は、SPS構成と関連付けられる情報を示すDCIを含むPDCCH信号であり得る。いくつかの場合、DCIは、SPS構成の開始、次に来るSPS送信の周期などを示し得る。
【0108】
410において、UE115-cは信号に含まれるDCIを決定し得る。いくつかの例では、UE115-cは、シグナリングの一部として初期HARQタイミングを受信し得る。いくつかの場合、HARQタイミングは、DCIと関連付けられるフィードバックを送信するためのものであり得る。いくつかの場合、HARQタイミングは、スケジューリングDCIを伴わない後続のダウンリンク送信に応答してフィードバックを送信するためにUE115-cによって使用され得る。415において、SPS構成信号を受信してDCIを決定すると、UE115-cは、基地局105-cとUE115-cとの間の送信のためのSPS構成をアクティブ化し得る。
【0109】
420において、UE115-cは基地局105-cからダウンリンク送信を受信し得る。425において、UE115-cは、ダウンリンク送信と関連付けられるフィードバックを提供するためにHARQタイミングを決定し得る。一例では、HARQタイミング値はあらかじめ決定され得る。たとえば、UE115-cは、UE能力に基づいてHARQタイミング値をあらかじめ決定し得る。別の例では、HARQタイミング値は、RRCシグナリング(図示されず)によって示され得る。さらなる例では、HARQタイミング値は、405においてUE115-cによって受信されるDCIにおいて示される値であり得る。そのような場合、UE115-cは、DCIが更新されるまでDCIと関連付けられるHARQタイミング値を使用し続け得る。
【0110】
425において、UE115-cは、受信されたHARQタイミングによって示されるタイミングレイテンシに従って、ダウンリンク送信に応答してACK/NACKを送信し得る。
【0111】
図5は、本開示の態様による、NRにおけるSPS管理をサポートするプロセスフロー500の例を示す。いくつかの例では、プロセスフロー500は、ワイヤレス通信システム100の態様を実装し得る。基地局105-dは、
図1を参照して説明されたような基地局105の例であり得る。UE115-dは、
図1を参照して説明されたようなUE115の例であり得る。
【0112】
プロセスフロー500の以下の説明では、基地局105-dとUE115-dとの間の動作は、示される例示的な順序とは異なる順序で送信されることがあり、または、基地局105-dおよびUE115-dによって実行される動作は、異なる順序で、もしくは異なる時間に実行されることがある。いくつかの動作がプロセスフロー500からなくされることもあり、または他の動作がプロセスフロー500に追加されることがある。
【0113】
505において、基地局105-dは複数のBWPを特定し得る。いくつかの例では、各BWPは、プライマリCCの周波数帯域の一部分を含み得る。いくつかの場合、第1のBWPは周波数の第1の範囲を含むことがあり、第2のBWPは周波数の第2の範囲を含むことがあり、周波数の第1の範囲は周波数の第2の範囲と重複しない。510において、基地局105-dは、複数のBWPからBWPのサブセットを特定し、BWPのサブセットをSPS構成と関連付け得る。515において、基地局105-dおよびUE115-dは、CCを使用して互いに接続を確立し得る。いくつかの場合、CCは複数のBWPを有する。いくつかの場合、UE115-dは、BWPと関連付けられるSPS構成または他のタイプのあらかじめ構成されたリソースを示すシグナリングを受信し得る。いくつかの例では、シグナリングはDCIメッセージまたはRRCメッセージを含み得る。
【0114】
525において、接続を確立すると、UE115-dは、BWPをアクティブ化することができ、アクティブ化されたBWPと関連付けられるSPS構成を決定することができる。いくつかの場合、UE115-dは、アクティブ化されたBWPと関連付けられる他のタイプのあらかじめ構成されたリソースを決定し得る。530において、UE115-dおよび基地局105-dは、アクティブ化されたBWPを使用して、アクティブ化されたBWPと関連付けられるSPS構成または他のタイプのあらかじめ構成されたリソースに従って、送信または受信し得る。
【0115】
535において、UE115-dは第1のBWPから第2のBWPに切り替え得る。いくつかの場合、切り替えは、第2のBWP(図示されず)と関連付けられるSPS構成または他のタイプのあらかじめ構成されたリソースを示すシグナリングに応答するものであり得る。540において、UE115-dは、第2のBWPと関連付けられるSPS構成情報を決定し得る。いくつかの場合、UE115-dは、第2のBWPと関連付けられる他のタイプのあらかじめ構成されたリソースを決定し得る。545において、UE115-dは、第2のBWPを使用して、第2のBWPと関連付けられる決定されたSPS構成または他のタイプのあらかじめ構成されたリソースに従って、送信または受信し得る。
【0116】
図6は、本開示の態様による、NRにおけるSPS管理をサポートするワイヤレスデバイス605のブロック
図600を示す。ワイヤレスデバイス605は、本明細書で説明されるようなUE115の態様の例であり得る。ワイヤレスデバイス605は、受信機610、UE通信マネージャ615、および送信機620を含み得る。ワイヤレスデバイス605はプロセッサも含み得る。これらの構成要素の各々は、(たとえば、1つまたは複数のバスを介して)互いに通信していることがある。
【0117】
受信機610は、パケット、ユーザデータ、または様々な情報チャネル(たとえば、制御チャネル、データチャネル、およびNRにおけるSPS管理に関する情報など)と関連付けられる制御情報などの情報を受信することができる。情報はデバイスの他の構成要素に受け渡され得る。受信機610は、
図9を参照して説明されるトランシーバ935の態様の例であり得る。受信機610は、単一のアンテナまたはアンテナのセットを利用し得る。受信機610はスケジューリングDCIを伴わないダウンリンク送信を受信し得る。
【0118】
UE通信マネージャ615は、
図9を参照して説明されるUE通信マネージャ915の態様の例であり得る。UE通信マネージャ615および/またはその様々な副構成要素のうちの少なくともいくつかは、ハードウェア、プロセッサによって実行されるソフトウェア、ファームウェア、またはそれらの任意の組合せで実装され得る。プロセッサによって実行されるソフトウェアで実装される場合、UE通信マネージャ615、および/またはその様々な副構成要素のうちの少なくともいくつかの機能は、汎用プロセッサ、デジタル信号プロセッサ(DSP)、特定用途向け集積回路(ASIC)、フィールドプログラマブルゲートアレイ(FPGA)もしくは他のプログラマブル論理デバイス、個別ゲートもしくはトランジスタ論理、個別ハードウェア構成要素、または本開示で説明する機能を実行するように設計されたそれらの任意の組合せによって実行され得る。UE通信マネージャ615、および/またはその様々な副構成要素のうちの少なくともいくつかは、機能の部分が1つまたは複数の物理デバイスによって異なる物理的位置において実装されるように分散されることを含めて、様々な場所に物理的に配置され得る。いくつかの例では、UE通信マネージャ615、および/またはその様々な副構成要素のうちの少なくともいくつかは、本開示の様々な態様による別個のおよび異なる構成要素であり得る。他の例では、UE通信マネージャ615および/またはその様々な副構成要素のうちの少なくともいくつかは、限定はされないが、I/O構成要素、トランシーバ、ネットワークサーバ、別のコンピューティングデバイス、本開示で説明された1つまたは複数の他の構成要素、または本開示の様々な態様によるそれらの組合せを含む、1つまたは複数の他のハードウェア構成要素と組み合わされ得る。
【0119】
UE通信マネージャ615は、基地局とUEとの間の送信のためのSPS構成をアクティブ化するために基地局からシグナリングを受信し、SPS構成がアクティブ化されていることに基づいてダウンリンク送信のためのHARQタイミングを受信することができる。UE通信マネージャ615はまた、基地局とUEとの間の送信のためのSPS構成をアクティブ化するために基地局からシグナリングを受信し、UEと関連付けられる能力に基づいてダウンリンク送信のためのHARQタイミングを決定し得る。UE通信マネージャ615はまた、CCを使用して基地局との接続を確立することができ、CCはBWPのセットを有し、各BWPはCCの周波数帯域幅の一部分を有する。いくつかの場合、UE通信マネージャ615は、BWPのセットのうちの少なくとも第1のBWPと関連付けられるSPS構成または他のタイプのあらかじめ構成されたリソースを示すシグナリングを受信し、少なくとも第1のBWPと関連付けられるSPS構成または他のタイプのあらかじめ構成されたリソースに従って、少なくとも第1のBWPを使用して送信または受信し得る。
【0120】
送信機620は、デバイスの他の構成要素によって生成された信号を送信することができる。いくつかの例では、送信機620は、トランシーバモジュールにおいて受信機610と一緒に置かれ得る。たとえば、送信機620は、
図9を参照して説明されるトランシーバ935の態様の例であり得る。送信機620は、単一のアンテナまたはアンテナのセットを利用し得る。送信機620は、受信されたHARQタイミングによって示されるタイミングレイテンシに従って、ダウンリンク送信に応答してACK/NACKを送信し得る。
【0121】
図7は、本開示の態様による、NRにおけるSPS管理をサポートするワイヤレスデバイス705のブロック
図700を示す。ワイヤレスデバイス705は、
図6を参照して説明されたようなワイヤレスデバイス605またはUE115の態様の例であり得る。ワイヤレスデバイス705は、受信機710、UE通信マネージャ715、および送信機720を含み得る。ワイヤレスデバイス705はプロセッサも含み得る。これらの構成要素の各々は、(たとえば、1つまたは複数のバスを介して)互いに通信していることがある。
【0122】
受信機710は、パケット、ユーザデータ、または様々な情報チャネル(たとえば、制御チャネル、データチャネル、およびNRにおけるSPS管理に関する情報など)と関連付けられる制御情報などの情報を受信することができる。情報はデバイスの他の構成要素に受け渡され得る。受信機710は、
図9を参照して説明されるトランシーバ935の態様の例であり得る。受信機710は、単一のアンテナまたはアンテナのセットを利用し得る。
【0123】
UE通信マネージャ715は、
図9を参照して説明されるUE通信マネージャ915の態様の例であり得る。UE通信マネージャ715はまた、SPS構成要素725、HARQ構成要素730、接続構成要素735、SPS構成構成要素740、およびBWP構成要素745を含み得る。
【0124】
SPS構成要素725は、基地局とUEとの間の送信のためのSPS構成をアクティブ化するために基地局からシグナリングを受信し、基地局とUEとの間の送信の第2のセットのための第2のSPS構成をアクティブ化するために基地局からシグナリングを受信し得る。
【0125】
HARQ構成要素730は、SPS構成がアクティブ化されていることに基づいてダウンリンク送信のためのHARQタイミングを受信し、RRCシグナリングを介して第2のHARQタイミングを受信し得る。いくつかの場合、第2のHARQタイミングは第2のSPS構成と関連付けられ得る。HARQ構成要素はまた、アクティブ化DCIを介してHARQタイミングを受信し、アクティブ化DCIがPDSCHを含み、UE(UE115など)と関連付けられる能力に基づいてダウンリンク送信のためのHARQタイミングを決定し得る。いくつかの場合、受信されたHARQタイミングは、アクティブ化DCIを伴うPDSCHおよびDCIを伴わないPDSCHの後続の送信に適用される。いくつかの場合、HARQタイミングは、スロット構造、もしくはBWP切り替え手順、またはこれらの組合せのうちの少なくとも1つに応じたものである。いくつかの場合、HARQタイミングは、スロット構造およびBWP切り替え手順のうちの少なくとも1つに応じたものである。
【0126】
接続構成要素735は、CCを使用して基地局との接続を確立することができ、CCはBWPのセットを有し、各BWPはCCの周波数帯域幅の一部分を有する。
【0127】
SPS構成構成要素740は、BWPのセットのうちの少なくとも第1のBWPと関連付けられるSPS構成または他のタイプのあらかじめ構成されたリソースを示すシグナリングを受信し得る。SPS構成構成要素740は、BWPのセットのうちの少なくとも第2のBWPと関連付けられるSPS構成または他のタイプのあらかじめ構成されたリソースを示すシグナリングを受信し得る。SPS構成構成要素740は、第2のBWPがSPS構成または他のタイプのあらかじめ構成されたリソースと関連付けられないことを決定し得る。いくつかの場合、シグナリングはDCIメッセージまたはRRCメッセージを含む。
【0128】
BWP構成要素745は、少なくとも第1のBWPと関連付けられるSPS構成または他のタイプのあらかじめ構成されたリソースに従って少なくとも第1のBWPを使用して送信または受信し得る。いくつかの場合、BWP構成要素745は、少なくとも第2のBWPと関連付けられるSPS構成または他のタイプのあらかじめ構成されたリソースに従って少なくとも第2のBWPを使用して送信または受信し得る。いくつかの場合、BWP構成要素は、第2のBWPを使用して、かつアクティブなSPS構成を伴わずに、送信または受信し得る。
【0129】
送信機720は、デバイスの他の構成要素によって生成された信号を送信することができる。いくつかの例では、送信機720は、トランシーバモジュールにおいて受信機710と一緒に置かれ得る。たとえば、送信機720は、
図9を参照して説明されるトランシーバ935の態様の例であり得る。送信機720は、単一のアンテナまたはアンテナのセットを利用し得る。
【0130】
図8は、本開示の態様による、NRにおけるSPS管理をサポートするUE通信マネージャ815のブロック
図800を示す。UE通信マネージャ815は、
図6、
図7、および
図9を参照して説明される、UE通信マネージャ615、UE通信マネージャ715、またはUE通信マネージャ915の態様の例であり得る。UE通信マネージャ815は、SPS構成要素820、HARQ構成要素825、接続構成要素830、SPS構成構成要素835、BWP構成要素840、RRC構成要素845、UE能力構成要素850、DCI構成要素855、スロット構造構成要素860、および切り替え構成要素865を含み得る。これらのモジュールの各々は、(たとえば、1つまたは複数のバスを介して)互いと直接的または間接的に通信し得る。
【0131】
SPS構成要素820は、基地局とUEとの間の送信のためのSPS構成をアクティブ化するために基地局からシグナリングを受信することができ、基地局とUEとの間の送信の第2のセットのための第2のSPS構成をアクティブ化するために基地局からシグナリングを受信することができる。
【0132】
HARQ構成要素825は、SPS構成がアクティブ化されていることに基づいて、ダウンリンク送信のためのHARQタイミングを受信し得る。いくつかの場合、HARQ構成要素825は、RRCシグナリングを介して第2のHARQタイミングを受信することができ、第2のHARQタイミングは第2のSPS構成と関連付けられる。いくつかの実装形態では、HARQ構成要素825は、アクティブ化DCIを介してHARQタイミングを受信し、アクティブ化DCIがPDSCHを含み、UEと関連付けられる能力に基づいてダウンリンク送信のためのHARQタイミングを決定し得る。いくつかの場合、受信されたHARQタイミングは、アクティブ化DCIを伴うPDSCHおよびDCIを伴わないPDSCHの後続の送信に適用される。いくつかの場合、HARQタイミングは、スロット構造、BWP切り替え手順、またはこれらの組合せのうちの少なくとも1つに応じたものである。
【0133】
接続構成要素830は、CCを使用して基地局との接続を確立することができ、CCはBWPのセットを有し、各BWPはCCの周波数帯域幅の一部分を有する。
【0134】
SPS構成構成要素835は、BWPのセットのうちの少なくとも第1のBWPと関連付けられるSPS構成または他のタイプのあらかじめ構成されたリソースを示すシグナリングを受信し、BWPのセットのうちの少なくとも第2のBWPと関連付けられるSPS構成または他のタイプのあらかじめ構成されたリソースを示すシグナリングを受信し、第2のBWPがSPS構成または他のタイプのあらかじめ構成されたリソースと関連付けられないことを決定し得る。いくつかの場合、シグナリングはDCIまたはRRCメッセージを含む。
【0135】
BWP構成要素840は、少なくとも第1のBWPと関連付けられるSPS構成または他のタイプのあらかじめ構成されたリソースに従って少なくとも第1のBWPを使用して送信または受信し得る。いくつかの場合、BWP構成要素840は、少なくとも第2のBWPと関連付けられるSPS構成または他のタイプのあらかじめ構成されたリソースに従って少なくとも第2のBWPを使用して送信または受信し得る。いくつかの場合、BWP構成要素840は、第2のBWPを使用して、かつアクティブなSPS構成を伴わずに、送信または受信し得る。
【0136】
RRC構成要素845は、基地局からRRCシグナリングを受信し得る。いくつかの場合、HARQタイミングを受信することは、基地局からRRCシグナリングを介してHARQタイミングを受信することを含み得る。
【0137】
UE能力構成要素850は、UE(UE115など)の能力を決定し得る。いくつかの場合、HARQタイミングはUEの能力に基づく。いくつかの場合、UEと関連付けられる能力はUEについての能力プロファイルに基づき、能力プロファイルはUEによってサポートされるHARQタイミングの最小値を示す。いくつかの場合、UEと関連付けられる能力は静的である。
【0138】
DCI構成要素855は、第2のHARQタイミングを含む第2のアクティブ化DCIを受信することができ、第2のHARQタイミングは以前に受信されたHARQタイミングを置き換える。いくつかの場合、SPS構成をアクティブ化するためのシグナリングは、アクティブ化DCIを含む。いくつかの場合、SPS構成をアクティブ化するための受信されるシグナリングは、アクティブ化DCIを含む。
【0139】
スロット構造構成要素860はスロット構造を決定し得る。いくつかの場合、スロット構造は、ダウンリンク送信に応答してACK/NACKを送信するためのアップリンク送信機会を含む。いくつかの場合、スロット構造は、少なくとも1つのSFIによって動的に示される。切り替え構成要素865は、第1のBWPから第2のBWPに切り替わり、第1のBWPから第2のBWPに切り替わり得る。
【0140】
図9は、本開示の態様による、NRにおけるSPS管理をサポートするデバイス905を含むシステム900の図を示す。デバイス905は、たとえば、
図6および
図7を参照して上で説明されたような、ワイヤレスデバイス605、ワイヤレスデバイス705、またはUE115の構成要素の例であり得るか、またはその構成要素を含み得る。デバイス905は、UE通信マネージャ915と、プロセッサ920と、メモリ925と、ソフトウェア930と、トランシーバ935と、アンテナ940と、I/Oコントローラ945とを含む、通信を送信および受信するための構成要素を含む双方向の音声とデータの通信のための構成要素を含み得る。これらの構成要素は、1つまたは複数のバス(たとえば、バス910)を介して電子的に通信していることがある。デバイス905は、1つまたは複数の基地局105とワイヤレスに通信し得る。
【0141】
プロセッサ920は、インテリジェントハードウェアデバイス(たとえば、汎用プロセッサ、DSP、中央処理装置(CPU)、マイクロコントローラ、ASIC、FPGA、プログラマブル論理デバイス、個別ゲートもしくはトランジスタ論理構成要素、個別ハードウェア構成要素、またはそれらの任意の組合せ)を含み得る。いくつかの場合、プロセッサ920は、メモリコントローラを使用して、メモリアレイを動作させるように構成され得る。他の場合、メモリコントローラは、プロセッサ920に統合され得る。プロセッサ920は、様々な機能(たとえば、NRにおけるSPS管理をサポートする機能またはタスク)を実行するために、メモリに記憶されたコンピュータ可読命令を実行するように構成され得る。
【0142】
メモリ925は、ランダムアクセスメモリ(RAM)と読取り専用メモリ(ROM)とを含み得る。メモリ925は、実行されると、プロセッサに、本明細書で説明される様々な機能を実行させる命令を含む、コンピュータ可読のコンピュータ実行可能ソフトウェア930を記憶し得る。いくつかの場合、メモリ925は、特に、周辺構成要素または周辺デバイスとの相互作用などの、基本的なハードウェア動作またはソフトウェア動作を制御し得る基本入出力システム(BIOS)を含み得る。
【0143】
ソフトウェア930は、NRにおけるSPS管理をサポートするためのコードを含む、本開示の態様を実装するためのコードを含み得る。ソフトウェア930は、システムメモリまたは他のメモリなどの、非一時的コンピュータ可読媒体に記憶され得る。いくつかの場合、ソフトウェア930は、プロセッサによって直接実行可能ではないことがあるが、(たとえば、コンパイルされ、実行されると)本明細書で説明される機能をコンピュータに実行させることができる。
【0144】
トランシーバ935は、上で説明されたような1つまたは複数のアンテナ、有線リンク、またはワイヤレスリンクを介して双方向に通信し得る。たとえば、トランシーバ935は、ワイヤレストランシーバを表すことがあり、別のワイヤレストランシーバと双方向に通信し得る。トランシーバ935はまた、送信のためにパケットを変調し、変調されたパケットをアンテナに提供し、かつアンテナから受信されたパケットを復調するためのモデムを含み得る。
【0145】
いくつかの場合、ワイヤレスデバイスは、単一のアンテナ940を含み得る。しかしながら、いくつかの場合、デバイスは、複数のワイヤレス送信を同時に送信または受信することが可能であり得る複数のアンテナ940を有し得る。
【0146】
I/Oコントローラ945は、デバイス905のための入力信号および出力信号を管理し得る。I/Oコントローラ945はまた、デバイス905に統合されていない周辺装置を管理し得る。いくつかの場合、I/Oコントローラ945は、外部周辺装置への物理接続またはポートを表し得る。いくつかの場合、I/Oコントローラ945は、iOS(登録商標)、ANDROID(登録商標)、MS-DOS(登録商標)、MS-WINDOWS(登録商標)、OS/2(登録商標)、UNIX(登録商標)、LINUX(登録商標)、または別の知られているオペレーティングシステムなどの、オペレーティングシステムを利用し得る。他の場合には、I/Oコントローラ945は、モデム、キーボード、マウス、タッチスクリーン、もしくは類似のデバイスを表すことがあり、またはそれらと相互作用することがある。いくつかの場合、I/Oコントローラ945は、プロセッサの一部として実装され得る。いくつかの場合、ユーザは、I/Oコントローラ945を介して、またはI/Oコントローラ945によって制御されたハードウェア構成要素を介して、デバイス905と対話することがある。
【0147】
図10は、本開示の態様による、NRにおけるSPS管理をサポートするワイヤレスデバイス1005のブロック
図1000を示す。ワイヤレスデバイス1005は、本明細書で説明されるような基地局105の態様の例であり得る。ワイヤレスデバイス1005は、受信機1010、基地局通信マネージャ1015、および送信機1020を含み得る。ワイヤレスデバイス1005はプロセッサも含み得る。これらの構成要素の各々は、(たとえば、1つまたは複数のバスを介して)互いに通信していることがある。
【0148】
受信機1010は、パケット、ユーザデータ、または様々な情報チャネル(たとえば、制御チャネル、データチャネル、およびNRにおけるSPS管理に関する情報など)と関連付けられる制御情報などの情報を受信することができる。情報はデバイスの他の構成要素に受け渡され得る。受信機1010は、
図13を参照して説明されるトランシーバ1335の態様の例であり得る。受信機1010は、単一のアンテナまたはアンテナのセットを利用し得る。
【0149】
基地局通信マネージャ1015は、
図13を参照して説明される基地局通信マネージャ1315の態様の例であり得る。基地局通信マネージャ1015および/またはその様々な副構成要素のうちの少なくともいくつかは、ハードウェア、プロセッサによって実行されるソフトウェア、ファームウェア、またはそれらの任意の組合せで実装され得る。プロセッサによって実行されるソフトウェアで実装される場合、基地局通信マネージャ1015および/またはその様々な副構成要素のうちの少なくともいくつかの機能は、汎用プロセッサ、DSP、ASIC、FPGAもしくは他のプログラマブル論理デバイス、個別ゲートもしくはトランジスタ論理、個別ハードウェア構成要素、または本開示で説明される機能を実行するように設計されたそれらの任意の組合せによって実行され得る。基地局通信マネージャ1015および/またはその様々な副構成要素のうちの少なくともいくつかは、機能の一部が1つまたは複数の物理デバイスによって異なる物理的位置において実装されるように分散されることを含めて、様々な場所に物理的に位置し得る。いくつかの例では、基地局通信マネージャ1015および/またはその様々な副構成要素のうちの少なくともいくつかは、本開示の様々な態様による別個の異なる構成要素であり得る。他の例では、基地局通信マネージャ1015および/またはその様々な副構成要素の少なくともいくつかは、限定はされないが、I/O構成要素、トランシーバ、ネットワークサーバ、別のコンピューティングデバイス、本開示で説明された、1つもしくは複数の他の構成要素、または本開示の様々な態様によるそれらの組合せを含む、1つまたは複数の他のハードウェア構成要素と組み合わされ得る。
【0150】
基地局通信マネージャ1015は、CCを使用してUEとの接続を確立することができ、CCは2つ以上のBWPを有する。いくつかの例では、各BWPは、プライマリCCの周波数帯域の一部分を有し得る。基地局通信マネージャ1015は、BWPのセットのうちの少なくとも第1のBWPと関連付けられるSPS構成または他のタイプのあらかじめ構成されたリソースを示すシグナリングを送信し、少なくとも第1のBWPと関連付けられるSPS構成または他のタイプのあらかじめ構成されたリソースに従って、少なくとも第1のBWPを使用して受信または送信し得る。
【0151】
送信機1020は、デバイスの他の構成要素によって生成された信号を送信することができる。いくつかの例では、送信機1020は、トランシーバモジュールの中の受信機1010と一緒に置かれ得る。たとえば、送信機1020は、
図13を参照して説明されるトランシーバ1335の態様の例であり得る。送信機1020は、単一のアンテナまたはアンテナのセットを利用し得る。
【0152】
図11は、本開示の態様による、NRにおけるSPS管理をサポートするワイヤレスデバイス1105のブロック
図1100を示す。ワイヤレスデバイス1105は、
図10を参照して説明されたようなワイヤレスデバイス1005または基地局105の態様の例であり得る。ワイヤレスデバイス1105は、受信機1110、基地局通信マネージャ1115、および送信機1120を含み得る。ワイヤレスデバイス1105はまた、プロセッサを含み得る。これらの構成要素の各々は、(たとえば、1つまたは複数のバスを介して)互いに通信していることがある。
【0153】
受信機1110は、パケット、ユーザデータ、または様々な情報チャネル(たとえば、制御チャネル、データチャネル、およびNRにおけるSPS管理に関する情報など)と関連付けられる制御情報などの情報を受信することができる。情報はデバイスの他の構成要素に受け渡され得る。受信機1110は、
図13を参照して説明されるトランシーバ1335の態様の例であり得る。受信機1110は、単一のアンテナまたはアンテナのセットを利用し得る。
【0154】
基地局通信マネージャ1115は、
図13を参照して説明される基地局通信マネージャ1315の態様の例であり得る。
【0155】
基地局通信マネージャ1115はまた、接続構成要素1125、SPS構成構成要素1130、およびBWP構成要素1135を含み得る。
【0156】
接続構成要素1125は、CCを使用してUEとの接続を確立することができ、CCは2つ以上のBWPを有し、各BWPはプライマリCCの周波数帯域幅の一部分を有する。SPS構成構成要素1130は、BWPのセットのうちの少なくとも第1のBWPと関連付けられるSPS構成または他のタイプのあらかじめ構成されたリソースを示すシグナリングを送信し得る。いくつかの場合、シグナリングはDCIメッセージまたはRRCメッセージを含む。
【0157】
BWP構成要素1135は、少なくとも第1のBWPと関連付けられるSPS構成または他のタイプのあらかじめ構成されたリソースに従って少なくとも第1のBWPを使用して受信または送信し、SPS構成と関連付けられるべきBWPのセットからBWPのサブセットを特定し得る。
【0158】
送信機1120は、デバイスの他の構成要素によって生成された信号を送信することができる。いくつかの例では、送信機1120は、トランシーバモジュールの中で受信機1110と一緒に置かれ得る。たとえば、送信機1120は、
図13を参照して説明されるトランシーバ1335の態様の例であり得る。送信機1120は、単一のアンテナまたはアンテナのセットを利用し得る。
【0159】
図12は、本開示の態様による、NRにおけるSPS管理をサポートする基地局通信マネージャ1215のブロック
図1200を示す。基地局通信マネージャ1215は、
図10、
図11、および
図13を参照して説明される基地局通信マネージャ1315の態様の例であり得る。基地局通信マネージャ1215は、接続構成要素1220、SPS構成構成要素1225、およびBWP構成要素1230を含み得る。これらのモジュールの各々は、直接または間接的に、(たとえば、1つまたは複数のバスを介して)互いと通信し得る。
【0160】
接続構成要素1220は、CCを使用してUEとの接続を確立することができ、CCは2つ以上のBWPを有し、各BWPはプライマリCCの周波数帯域幅の一部分を有する。SPS構成構成要素1225は、BWPのセットのうちの少なくとも第1のBWPと関連付けられるSPS構成または他のタイプのあらかじめ構成されたリソースを示すシグナリングを送信し得る。いくつかの場合、シグナリングはDCIメッセージまたはRRCメッセージを含む。
【0161】
BWP構成要素1230は、少なくとも第1のBWPと関連付けられるSPS構成または他のタイプのあらかじめ構成されたリソースに従って少なくとも第1のBWPを使用して受信または送信し、SPS構成と関連付けられるべきBWPのセットからBWPのサブセットを特定し得る。
【0162】
図13は、本開示の態様による、NRにおけるSPS管理をサポートするデバイス1305を含むシステム1300の図を示す。デバイス1305は、たとえば、
図1を参照して上記で説明されたような基地局105の構成要素の例であり得るか、またはその構成要素を含み得る。デバイス1305は、基地局通信マネージャ1315、プロセッサ1320、メモリ1325、ソフトウェア1330、トランシーバ1335、アンテナ1340、ネットワーク通信マネージャ1345、および局間通信マネージャ1350を含めて、通信を送信および受信するための構成要素を含む、双方向の音声およびデータ通信のための構成要素を含み得る。これらの構成要素は、1つまたは複数のバス(たとえば、バス1310)を介して電子的に通信していることがある。デバイス1305は、1つまたは複数のUE115とワイヤレスに通信し得る。
【0163】
プロセッサ1320は、インテリジェントハードウェアデバイス(たとえば、汎用プロセッサ、DSP、CPU、マイクロコントローラ、ASIC、FPGA、プログラマブル論理デバイス、個別ゲートもしくはトランジスタ論理構成要素、個別ハードウェア構成要素、またはそれらの任意の組合せ)を含み得る。いくつかの場合、プロセッサ1320は、メモリコントローラを使ってメモリアレイを動作させるように構成され得る。他の場合、メモリコントローラは、プロセッサ1320に統合され得る。プロセッサ1320は、様々な機能(たとえば、NRにおけるSPS管理をサポートする機能またはタスク)を実行するために、メモリに記憶されたコンピュータ可読命令を実行するように構成され得る。
【0164】
メモリ1325は、RAMとROMとを含み得る。メモリ1325は、実行されると、プロセッサに、本明細書で説明される様々な機能を実行させる命令を含む、コンピュータ可読のコンピュータ実行可能ソフトウェア1330を記憶し得る。いくつかの場合、メモリ1325は、とりわけ、周辺構成要素またはデバイスとの相互作用などの、基本的なハードウェアまたはソフトウェア動作を制御し得る、BIOSを含み得る。
【0165】
ソフトウェア1330は、NRにおけるSPS管理をサポートするためのコードを含む、本開示の態様を実装するためのコードを含み得る。ソフトウェア1330は、システムメモリまたは他のメモリなどの、非一時的コンピュータ可読媒体に記憶され得る。いくつかの場合、ソフトウェア1330は、プロセッサによって直接実行可能ではないことがあるが、(たとえば、コンパイルされ、実行されると)本明細書で説明される機能をコンピュータに実行させることがある。
【0166】
トランシーバ1335は、上で説明されたような1つもしくは複数のアンテナ、有線リンク、またはワイヤレスリンクを介して双方向に通信し得る。たとえば、トランシーバ1335は、ワイヤレストランシーバを表すことがあり、別のワイヤレストランシーバと双方向に通信することができる。トランシーバ1335はまた、送信のためにパケットを変調し、変調されたパケットをアンテナに提供し、かつアンテナから受信されたパケットを復調するためのモデムを含み得る。
【0167】
いくつかの場合、ワイヤレスデバイスは、単一のアンテナ1340を含み得る。しかしながら、いくつかの場合、デバイスは、複数のワイヤレス送信を同時に送信または受信することが可能であり得る複数のアンテナ1340を有し得る。
【0168】
ネットワーク通信マネージャ1345は、(たとえば、1つまたは複数の有線バックホールリンクを介して)コアネットワークとの通信を管理し得る。たとえば、ネットワーク通信マネージャ1345は、1つまたは複数のUE115などの、クライアントデバイスのためのデータ通信の転送を管理し得る。
【0169】
局間通信マネージャ1350は、他の基地局105との通信を管理することができ、他の基地局105と協働してUE115との通信を制御するためのコントローラまたはスケジューラを含み得る。たとえば、局間通信マネージャ1350は、ビームフォーミングまたはジョイント送信などの様々な干渉緩和技法のために、UE115への送信のスケジューリングを協調させ得る。いくつかの例では、局間通信マネージャ1350は、基地局105間の通信を行うために、LTE/LTE-Aワイヤレス通信ネットワーク技術内のX2インターフェースを提供し得る。
【0170】
図14は、本開示の態様による、NRにおけるSPS管理のための方法1400を示すフローチャートを示す。方法1400の動作は、本明細書で説明されたように、UE115またはその構成要素によって実施され得る。たとえば、方法1400の動作は、
図6~
図9を参照して説明されたようなUE通信マネージャによって実行され得る。いくつかの例では、UE115は、以下で説明される機能を実行するようにデバイスの機能要素を制御するためのコードのセットを実行し得る。加えて、または代替として、UE115は、専用ハードウェアを使用して、以下で説明される機能の態様を実行し得る。
【0171】
1405において、UE115は、基地局とUEとの間の送信のためのSPS構成をアクティブ化するために、基地局からシグナリングを受信し得る。1405の動作は、本明細書で説明される方法に従って実行され得る。いくつかの例では、1405の動作の態様は、
図6~
図9を参照して説明されたように、SPS構成要素によって実行され得る。
【0172】
1410において、UE115は、SPS構成がアクティブ化されていることに基づいて、ダウンリンク送信のためのHARQタイミングを受信し得る。1410の動作は、本明細書で説明される方法に従って実行され得る。いくつかの例では、1410の動作の態様は、
図6~
図9を参照して説明されたように、HARQ構成要素によって実行され得る。
【0173】
図15は、本開示の態様による、NRにおけるSPS管理のための方法1500を示すフローチャートを示す。方法1500の動作は、本明細書で説明されたように、UE115またはその構成要素によって実施され得る。たとえば、方法1500の動作は、
図6~
図9を参照して説明されたようなUE通信マネージャによって実行され得る。いくつかの例では、UE115は、以下で説明される機能を実行するようにデバイスの機能要素を制御するためのコードのセットを実行し得る。加えて、または代替として、UE115は、専用ハードウェアを使用して、以下で説明される機能の態様を実行し得る。
【0174】
1505において、UE115は、基地局とUEとの間の送信のためのSPS構成をアクティブ化するために、基地局からシグナリングを受信し得る。1505の動作は、本明細書で説明される方法に従って実行され得る。いくつかの例では、1505の動作の態様は、
図6~
図9を参照して説明されたように、SPS構成要素によって実行され得る。
【0175】
1510において、UE115は、スケジューリングDCIを伴わないダウンリンク送信を受信し得る。1510の動作は、本明細書で説明される方法に従って実行され得る。いくつかの例では、1510の動作の態様は、
図6~
図9を参照して説明されたような、受信機によって実行され得る。
【0176】
1515において、UE115は、SPS構成がアクティブ化されていることに基づいて、ダウンリンク送信のためのHARQタイミングを受信し得る。1515の動作は、本明細書で説明される方法に従って実行され得る。いくつかの例では、1515の動作の態様は、
図6~
図9を参照して説明されたように、HARQ構成要素によって実行され得る。
【0177】
1520において、UE115は、受信されたHARQタイミングによって示されるタイミングレイテンシに従って、ダウンリンク送信に応答してACK/NACKを送信し得る。1520の動作は、本明細書で説明される方法に従って実行され得る。いくつかの例では、1520の動作の態様は、
図6~
図9を参照して説明されたような、送信機によって実行され得る。
【0178】
図16は、本開示の態様による、NRにおけるSPS管理のための方法1600を示すフローチャートを示す。方法1600の動作は、本明細書で説明されたように、UE115またはその構成要素によって実施され得る。たとえば、方法1600の動作は、
図6~
図9を参照して説明されたようなUE通信マネージャによって実行され得る。いくつかの例では、UE115は、以下で説明される機能を実行するようにデバイスの機能要素を制御するためのコードのセットを実行し得る。加えて、または代替として、UE115は、専用ハードウェアを使用して、以下で説明される機能の態様を実行し得る。
【0179】
1605において、UE115は、基地局とUEとの間の送信のためのSPS構成をアクティブ化するために、基地局からシグナリングを受信し得る。1605の動作は、本明細書で説明される方法に従って実行され得る。いくつかの例では、1605の動作の態様は、
図6~
図9を参照して説明されたように、SPS構成要素によって実行され得る。
【0180】
1610において、UE115は、UEと関連付けられる能力に基づいて、ダウンリンク送信のためのHARQタイミングを決定し得る。1610の動作は、本明細書で説明される方法に従って実行され得る。いくつかの例では、1610の動作の態様は、
図6~
図9を参照して説明されたようなHARQ構成要素によって実行され得る。
【0181】
図17は、本開示の態様による、NRにおけるSPS管理のための方法1700を示すフローチャートを示す。方法1700の動作は、本明細書で説明されたように、UE115またはその構成要素によって実施され得る。たとえば、方法1700の動作は、
図6~
図9を参照して説明されたようなUE通信マネージャによって実行され得る。いくつかの例では、UE115は、以下で説明される機能を実行するようにデバイスの機能要素を制御するためのコードのセットを実行し得る。加えて、または代替として、UE115は、専用ハードウェアを使用して、以下で説明される機能の態様を実行し得る。
【0182】
1705において、UE115は、CCを使用して基地局との接続を確立することができ、CCは複数のBWPを有し、各BWPはCCの周波数帯域幅の一部分を有する。1705の動作は、本明細書で説明される方法に従って実行され得る。いくつかの例では、1705の動作の態様は、
図6~
図9を参照して説明されたように、接続構成要素によって実行され得る。
【0183】
1710において、UE115は、複数のBWPのうちの少なくとも第1のBWPと関連付けられるSPS構成または他のタイプのあらかじめ構成されたリソースを示すシグナリングを受信し得る。1710の動作は、本明細書で説明される方法に従って実行され得る。いくつかの例では、1710の動作の態様は、
図6~
図9を参照して説明されたように、SPS構成構成要素によって実行され得る。
【0184】
1715において、UE115は、少なくとも第1のBWPと関連付けられるSPS構成または他のタイプのあらかじめ構成されたリソースに従って少なくとも第1のBWPを使用して送信または受信し得る。1715の動作は、本明細書で説明される方法に従って実行され得る。いくつかの例では、1715の動作の態様は、
図6~
図9を参照して説明されたように、BWP構成要素によって実行され得る。
【0185】
図18は、本開示の態様による、NRにおけるSPS管理の方法1800を示すフローチャートを示す。方法1800の動作は、本明細書で説明されたように、UE115またはその構成要素によって実施され得る。たとえば、方法1800の動作は、
図6~
図9を参照して説明されたようなUE通信マネージャによって実行され得る。いくつかの例では、UE115は、以下で説明される機能を実行するようにデバイスの機能要素を制御するためのコードのセットを実行し得る。加えて、または代替として、UE115は、専用ハードウェアを使用して、以下で説明される機能の態様を実行し得る。
【0186】
1805において、UE115は、CCを使用して基地局との接続を確立することができ、CCは複数のBWPを有し、各BWPはCCの周波数帯域幅の一部分を有する。1805の動作は、本明細書で説明される方法に従って実行され得る。いくつかの例では、1805の動作の態様は、
図6~
図9を参照して説明されたように、接続構成要素によって実行され得る。
【0187】
1810において、UE115は、複数のBWPのうちの少なくとも第1のBWPと関連付けられるSPS構成または他のタイプのあらかじめ構成されたリソースを示すシグナリングを受信し得る。1810の動作は、本明細書で説明される方法に従って実行され得る。いくつかの例では、1810の動作の態様は、
図6~
図9を参照して説明されたように、SPS構成構成要素によって実行され得る。
【0188】
1815において、UE115は、少なくとも第1のBWPと関連付けられるSPS構成または他のタイプのあらかじめ構成されたリソースに従って少なくとも第1のBWPを使用して送信または受信し得る。1815の動作は、本明細書で説明される方法に従って実行され得る。いくつかの例では、1815の動作の態様は、
図6~
図9を参照して説明されたように、BWP構成要素によって実行され得る。
【0189】
1820において、UE115は、複数のBWPのうちの少なくとも第2のBWPと関連付けられるSPS構成または他のタイプのあらかじめ構成されたリソースを示すシグナリングを受信し得る。1820の動作は、本明細書で説明される方法に従って実行され得る。いくつかの例では、1820の動作の態様は、
図6~
図9を参照して説明されたように、SPS構成構成要素によって実行され得る。
【0190】
1825において、UE115は第1のBWPから第2のBWPに切り替わり得る。1825の動作は、本明細書で説明される方法に従って実行され得る。いくつかの例では、1825の動作の態様は、
図6~
図9を参照して説明されたように、切り替え構成要素によって実行され得る。
【0191】
1830において、UE115は、少なくとも第2のBWPと関連付けられるSPS構成または他のタイプのあらかじめ構成されたリソースに従って少なくとも第2のBWPを使用して送信または受信し得る。1830の動作は、本明細書で説明される方法に従って実行され得る。いくつかの例では、1830の動作の態様は、
図6~
図9を参照して説明されたように、BWP構成要素によって実行され得る。
【0192】
図19は、本開示の態様による、NRにおけるSPS管理の方法1900を示すフローチャートを示す。方法1900の動作は、本明細書で説明されるように、基地局105またはその構成要素によって実施され得る。たとえば、方法1900の動作は、
図10~
図13を参照して説明されたように、基地局通信マネージャによって実行され得る。いくつかの例では、基地局105は、下で説明される機能を実行するようにデバイスの機能要素を制御するためのコードのセットを実行し得る。加えて、または代替として、基地局105は、専用ハードウェアを使用して以下で説明される機能の態様を実行し得る。
【0193】
1905において、基地局105は、CCを使用してUEとの接続を確立することができ、CCは2つ以上のBWPを有し、各BWPはプライマリCCの周波数帯域幅の一部分を有する。1905の動作は、本明細書で説明される方法に従って実行され得る。いくつかの例では、1905の動作の態様は、
図10~
図13を参照して説明されたように、接続構成要素によって実行され得る。
【0194】
1910において、基地局105は、複数のBWPのうちの少なくとも第1のBWPと関連付けられるSPS構成または他のタイプのあらかじめ構成されたリソースを示すシグナリングを送信し得る。1910の動作は、本明細書で説明される方法に従って実行され得る。いくつかの例では、1910の動作の態様は、
図10~
図13を参照して説明されたように、SPS構成構成要素によって実行され得る。
【0195】
1915において、基地局105は、少なくとも第1のBWPと関連付けられるSPS構成または他のタイプのあらかじめ構成されたリソースに従って少なくとも第1のBWPを使用して受信または送信し得る。1915の動作は、本明細書で説明される方法に従って実行され得る。いくつかの例では、1915の動作の態様は、
図10~
図13を参照して説明されたように、BWP構成要素によって実行され得る。
【0196】
上で説明された方法は可能な実装形態について説明すること、動作およびステップは再構成され、または別様に修正され得ること、ならびに他の実装形態が可能であることに留意されたい。さらに、方法のうちの2つ以上からの態様が組み合わされ得る。
【0197】
本明細書で説明される技法は、符号分割多元接続(CDMA)、時分割多元接続(TDMA)、周波数分割多元接続(FDMA)、直交周波数分割多元接続(OFDMA)、シングルキャリア周波数分割多元接続(SC-FDMA)、および他のシステムなどの、様々なワイヤレス通信システムのために使用され得る。CDMAシステムは、CDMA2000、Universal Terrestrial Radio Access(UTRA)などの無線技術を実装し得る。CDMA2000は、IS-2000、IS-95およびIS-856規格をカバーする。IS-2000リリースは、通常、CDMA2000 1X、1Xなどと呼ばれることがある。IS-856(TIA-856)は、通常、CDMA2000 1xEV-DO、High Rate Packet Data(HRPD)などと呼ばれる。UTRAは、Wideband CDMA(WCDMA(登録商標))、およびCDMAの他の変形を含む。TDMAシステムは、Global System for Mobile Communications(GSM)などの無線技術を実装し得る。
【0198】
OFDMAシステムは、Ultra Mobile Broadband(UMB)、Evolved UTRA(E-UTRA)、米国電気電子技術者協会(IEEE) 802.11(Wi-Fi)、IEEE 802.16(WiMAX)、IEEE 802.20、Flash-OFDMなどの無線技術を実装し得る。UTRAおよびE-UTRAは、Universal Mobile Telecommunications System(UMTS)の一部である。LTEおよびLTE-Aは、E-UTRAを使用するUMTSのリリースである。UTRA、E-UTRA、UMTS、LTE、LTE-A、NR、およびGSMは、「第3世代パートナーシッププロジェクト」(3GPP)という名称の組織からの文書に記載されている。CDMA2000およびUMBは、「第3世代パートナーシッププロジェクト2」(3GPP2)と称する組織からの文書に記載されている。本明細書で説明された技法は、上述のシステムおよび無線技術、ならびに他のシステムおよび無線技術に使用され得る。LTEシステムまたはNRシステムの態様が例として説明されることがあり、説明の大部分においてLTE用語またはNR用語が使用されることがあるが、本明細書で説明された技法はLTE適用例またはNR適用例以外に適用可能である。
【0199】
マクロセルは、一般に、比較的大きい地理的エリア(たとえば、半径数キロメートル)をカバーし、ネットワークプロバイダのサービスに加入しているUE115による無制限アクセスを可能にし得る。スモールセルは、マクロセルと比較して低電力の基地局105と関連付けられることがあり、スモールセルは、マクロセルと同じまたはマクロセルとは異なる(たとえば、免許、免許不要など)周波数帯域において動作することがある。スモールセルは、様々な例によれば、ピコセル、フェムトセル、およびマイクロセルを含み得る。ピコセルは、たとえば、小さい地理的エリアをカバーすることができ、ネットワークプロバイダのサービスに加入しているUE115による無制限アクセスを可能にし得る。フェムトセルも、小さい地理的エリア(たとえば、自宅)をカバーすることがあり、フェムトセルとの関連付けを有するUE115(たとえば、限定加入者グループ(CSG)の中のUE115、自宅内のユーザのUE115など)による制限付きアクセスを提供し得る。マクロセルのためのeNBは、マクロeNBと呼ばれることがある。スモールセルのためのeNBは、スモールセルeNB、ピコeNB、フェムトeNB、またはホームeNBと呼ばれ得る。eNBは、1つまたは複数の(たとえば、2つ、3つ、4つなどの)セルをサポートすることができ、1つまたは複数のコンポーネントキャリアを使用する通信もサポートすることができる。
【0200】
本明細書で説明される1つまたは複数のワイヤレス通信システム100は、同期動作または非同期動作をサポートし得る。同期動作の場合、基地局105は、同様のフレームタイミングを有することがあり、異なる基地局105からの送信は時間的に概ね揃えられ得る。非同期動作の場合、基地局105は異なるフレームタイミングを有することがあり、異なる基地局105からの送信は時間的に揃えられないことがある。本明細書で説明される技法は、同期動作または非同期動作のいずれかのために使用され得る。
【0201】
本明細書で説明された情報および信号は、多種多様な技術および技法のいずれかを使用して表されてもよい。たとえば、上記の説明全体にわたって言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボルおよびチップは、電圧、電流、電磁波、磁場もしくは磁性粒子、光場もしくは光学粒子、またはそれらの任意の組合せによって表され得る。
【0202】
本明細書の本開示に関して説明される様々な例示的なブロックおよびモジュールは、汎用プロセッサ、DSP、ASIC、FPGAもしくは他のプログラマブル論理デバイス(PLD)、個別ゲートもしくはトランジスタ論理、個別ハードウェア構成要素、または本明細書で説明される機能を実行するように設計されたそれらの任意の組合せを用いて実装または実行され得る。汎用プロセッサはマイクロプロセッサであってもよいが、代替として、プロセッサは、任意の従来のプロセッサ、コントローラ、マイクロコントローラ、またはステートマシンであってもよい。プロセッサはまた、コンピューティングデバイスの組合せ(たとえば、DSPとマイクロプロセッサの組合せ、複数のマイクロプロセッサ、DSPコアと連携する1つもしくは複数のマイクロプロセッサ、または任意の他のそのような構成)として実装され得る。
【0203】
本明細書で説明された機能は、ハードウェア、プロセッサによって実行されるソフトウェア、ファームウェア、またはそれらの任意の組合せとして実装され得る。プロセッサによって実行されるソフトウェアにおいて実装される場合、機能は、1つもしくは複数の命令またはコードとして、コンピュータ可読媒体上に記憶され、あるいはコンピュータ可読媒体を介して送信され得る。他の例および実装形態が、本開示および添付の特許請求の範囲の範囲内に入る。たとえば、ソフトウェアの性質に起因して、上で説明された機能は、プロセッサ、ハードウェア、ファームウェア、ハードワイヤリング、またはこれらのうちのいずれかの組合せによって実行されるソフトウェアを使用して実装され得る。機能を実装する特徴はまた、機能の部分が異なる物理的位置において実装されるように分散されることを含めて、様々な場所に物理的に配置され得る。
【0204】
コンピュータ可読媒体は、ある場所から別の場所へのコンピュータプログラムの移送を容易にする任意の媒体を含む、非一時的コンピュータ記憶媒体と通信媒体の両方を含む。非一時的記憶媒体は、汎用コンピュータまたは専用コンピュータによってアクセスされ得る任意の利用可能な媒体であり得る。限定ではなく例として、非一時的コンピュータ可読媒体は、RAM、ROM、電気的消去可能プログラマブル読取り専用メモリ(EEPROM)、フラッシュメモリ、コンパクトディスク(CD)ROMまたは他の光ディスクストレージ、磁気ディスクストレージまたは他の磁気ストレージデバイス、あるいは、命令またはデータ構造の形態の所望のプログラムコード手段を搬送または記憶するために使用され、汎用もしくは専用コンピュータまたは汎用もしくは専用プロセッサによってアクセスされ得る任意の他の非一時的媒体を含み得る。また、いかなる接続もコンピュータ可読媒体と適切に呼ばれる。たとえば、ソフトウェアが、同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(DSL)、または赤外線、無線、およびマイクロ波などのワイヤレス技術を使用してウェブサイト、サーバ、または他のリモートソースから送信される場合、同軸ケーブル、光ファイバケーブル、ツイストペア、DSL、または赤外線、無線、およびマイクロ波などのワイヤレス技術は、媒体の定義に含まれる。本明細書で使用されるディスク(disk)およびディスク(disc)は、CD、レーザーディスク(登録商標)(disc)、光ディスク(disc)、デジタル多用途ディスク(disc)(DVD)、フロッピーディスク(disk)、およびBlu-ray(登録商標)ディスク(disc)を含み、ディスク(disk)は、通常、データを磁気的に再生し、ディスク(disc)は、データをレーザーで光学的に再生する。上記の組合せもコンピュータ可読媒体の範囲内に含まれる。
【0205】
特許請求の範囲内を含めて本明細書で使用される場合、項目のリスト(たとえば、「のうちの少なくとも1つ」または「のうちの1つまたは複数」などの句で終わる項目のリスト)において使用される「または」は、たとえば、A、B、またはCのうちの少なくとも1つのリストがAまたはBまたはCまたはABまたはACまたはBCまたはABC(すなわち、AおよびBおよびC)を意味するような包括的リストを示す。また、本明細書で使用される、「に基づいて」という句は、条件の閉集合を指すものと解釈されるべきではない。たとえば、「条件Aに基づいて」として説明された例示的なステップは、本開示の範囲から逸脱することなく、条件Aと条件Bの両方に基づき得る。言い換えれば、本明細書で使用される「に基づいて」という句は、「に少なくとも一部基づいて」という句と同様にして解釈されるものとする。
【0206】
添付の図では、同様の構成要素または特徴は同じ参照ラベルを有し得る。さらに、同じタイプの様々な構成要素は、参照ラベルの後、ダッシュと、それらの同様の構成要素を区別する第2のラベルとを続けることによって区別され得る。第1の参照ラベルのみが本明細書で使用される場合、説明は、第2の参照ラベル、または他の後続の参照ラベルにかかわらず、同じ第1の参照ラベルを有する同様の構成要素のうちのいずれにも適用可能である。
【0207】
添付の図面に関して本明細書に記載される説明は、例示的な構成について説明しており、実装され得るかまたは特許請求の範囲内に入るすべての例を表すとは限らない。本明細書で使用される「例示的」という用語は、「例、事例、または例示の働きをすること」を意味し、「好ましい」または「他の例よりも有利な」を意味しない。発明を実施するための形態は、説明される技法の理解をもたらすための具体的な詳細を含む。しかしながら、これらの技法は、これらの具体的な詳細なしに実践され得る。いくつかの事例では、説明される例の概念を不明瞭にすることを回避するために、よく知られている構造およびデバイスがブロック図の形式で示される。
【0208】
本明細書の説明は、当業者が本開示を作成または使用することを可能にするように与えられる。本開示への様々な変更は当業者には容易に明らかとなり、本明細書で定義された一般原理は、本開示の範囲から逸脱することなく他の変形形態に適用され得る。したがって、本開示は、本明細書で説明される例および設計に限定されず、本明細書で開示される原理および新規の特徴に合致する最も広い範囲を与えられるべきである。
【符号の説明】
【0209】
100 ワイヤレス通信システム
105 基地局
105-a 基地局
105-b 基地局
105-c 基地局
105-d 基地局
110 地理的カバレッジエリア
115 UE
115-a UE
115-b UE
115-c UE
115-d UE
125 通信リンク
130 コアネットワーク
132 バックホールリンク
134 バックホールリンク
200 ワイヤレス通信システム
205 キャリア
300 ワイヤレス通信システム
305 接続
320 送信
400 プロセスフロー
500 プロセスフロー
600 ブロック図
605 ワイヤレスデバイス
610 受信機
615 UE通信マネージャ
620 送信機
700 ブロック図
705 ワイヤレスデバイス
710 受信機
715 UE通信マネージャ
720 送信機
725 SPS構成要素
730 HARQ構成要素
735 接続構成要素
740 SPS構成構成要素
745 BWP構成要素
800 ブロック図
815 UE通信マネージャ
820 SPS構成要素
825 HARQ構成要素
830 接続構成要素
835 SPS構成構成要素
840 BWP構成要素
845 RRC構成要素
850 UE能力構成要素
855 DCI構成要素
860 スロット構造構成要素
865 切り替え構成要素
900 システム
905 デバイス
910 バス
915 UE通信マネージャ
920 プロセッサ
925 メモリ
930 ソフトウェア
935 トランシーバ
940 アンテナ
945 I/Oコントローラ
1000 ブロック図
1005 ワイヤレスデバイス
1010 受信機
1015 基地局通信マネージャ
1020 送信機
1100 ブロック図
1105 ワイヤレスデバイス
1110 受信機
1115 基地局通信マネージャ
1120 送信機
1125 接続構成要素
1130 SPS構成構成要素
1135 BWP構成要素
1200 ブロック図
1215 基地局通信マネージャ
1220 接続構成要素
1225 SPS構成構成要素
1230 BWP構成要素
1300 システム
1305 デバイス
1310 バス
1315 基地局通信マネージャ
1320 プロセッサ
1325 メモリ
1330 ソフトウェア
1335 トランシーバ
1340 アンテナ
1345 ネットワーク通信マネージャ
1350 局間通信マネージャ
1400 方法
1500 方法
1600 方法
1700 方法
1800 方法
1900 方法