(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-03-26
(45)【発行日】2024-04-03
(54)【発明の名称】呼吸早期警告スコアリングシステムおよび方法
(51)【国際特許分類】
A61B 10/00 20060101AFI20240327BHJP
A61B 5/00 20060101ALI20240327BHJP
A61B 5/087 20060101ALI20240327BHJP
A61B 5/0535 20210101ALI20240327BHJP
A61B 5/256 20210101ALI20240327BHJP
【FI】
A61B10/00 L
A61B5/00 102A
A61B5/087
A61B5/0535
A61B5/256 200
(21)【出願番号】P 2022105554
(22)【出願日】2022-06-30
(62)【分割の表示】P 2019523842の分割
【原出願日】2017-11-02
【審査請求日】2022-07-29
(32)【優先日】2016-11-02
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】514016740
【氏名又は名称】レスピラトリー・モーション・インコーポレイテッド
(74)【代理人】
【識別番号】110001173
【氏名又は名称】弁理士法人川口國際特許事務所
(72)【発明者】
【氏名】ジェニー・イー・フリーマン
(72)【発明者】
【氏名】ジョーダン・ブライヤノフ
【審査官】高松 大
(56)【参考文献】
【文献】特開2016-179187(JP,A)
【文献】米国特許出願公開第2016/0135706(US,A1)
【文献】特開2008-065836(JP,A)
【文献】国際公開第2016/162838(WO,A1)
【文献】国際公開第2016/073604(WO,A1)
【文献】米国特許出願公開第2012/0136221(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
A61B 10/00
A61B 5/00
A61B 5/087
A61B 5/0535
A61B 5/256
(57)【特許請求の範囲】
【請求項1】
早期警告スコアリングシステムであって、
獲得回路を有するコンピューティングデバイスと、
獲得回路に機能的に接続されて
おり、患者の胸部に1つ以上の4極構成で設置されるように適合されている、患者から
生体電気インピーダンス信号を獲得するための複数のセンサと、
早期警告スコア(EWS)が所定のレベルを超えるとアラートを出力するように構成されている少なくとも1つのアラームと、
を含み、
コンピューティングデバイスは、
生体電気インピーダンス信号をセンサから受け取り、
生体電気インピーダンス信号と、患者の人口統計学的情報とに基づいて、較正係数を決定し、
生体電気インピーダンス信号を較正し、
較正された生体電気インピーダンス信号を分析し、
分析された信号に基づいて早期警告スコアを計算し、
早期警告スコアを所定の限界値と比較し、スコアが限界値の外側にある場合には、
少なくとも1つのアラームをトリガするか、または、治療もしくは医学的介入を作動させるかもしくは修正する、早期警告スコアリングシステム。
【請求項2】
コンピューティングデバイスが、生体電気インピーダンス信号に基づいて、患者の、分時換気量、1回換気量、および/または呼吸速度の査定を提供する、請求項1に記載の早期警告スコアリングシステム。
【請求項3】
EWS計算が、患者の、分時換気量、1回換気量、および/または呼吸速度のうちの少なくとも1つを含む、請求項2に記載の早期警告スコアリングシステム。
【請求項4】
EWS計算が、分時換気量を含み、呼吸速度を含まない、請求項2に記載の早期警告スコアリングシステム。
【請求項5】
EWSが、呼吸不全、敗血症、心不全、鬱血性心不全、腎不全、水分量過剰、肺浮腫、代謝亢進状態、過剰運動、外傷性脳損傷、肺塞栓症、オピオイド誘発性呼吸抑制、過剰鎮静のうちの少なくとも1つを示す、請求項
1に記載の早期警告スコアリングシステム。
【請求項6】
センサが、分時換気量、1回換気量、呼吸速度、酸素飽和度、温度、血圧、パルスまたは心拍数、血液酸素レベル、および脳活動のうちの少なくとも1つに関する患者データを取得する、請求項
1に記載の早期警告スコアリングシステム。
【請求項7】
少なくとも1つのアラームが、可聴式または視覚式のうちの少なくとも1つである、請求項
1に記載の早期警告スコアリングシステム。
【請求項8】
少なくとも2つのセンサが、患者の胴体の上に設置されており、生理学的な生体電気インピーダンス信号が、経胸郭的に測定される、請求項
1に記載の早期警告スコアリングシステム。
【請求項9】
コンピューティングデバイスが、さらに、
患者の、覚醒、声、痛み、および無反応(AVPU)を含む患者データを取得し、
EWS計算が、患者のAVPUデータを含む、請求項
1に記載の早期警告スコアリングシステム。
【請求項10】
システムが、非侵襲性である、請求項
1に記載の早期警告スコアリングシステム。
【請求項11】
EWS計算が、患者の疾患状態および/または状況を含む、請求項
1に記載の早期警告スコアリングシステム。
【請求項12】
EWS計算が、患者の年齢、人口統計、条件、および/または、患者の電子健康記録からのデータを含む、請求項
1に記載の早期警告スコアリングシステム。
【請求項13】
システムが、トリアージシステム、モビライゼーションプロトコルシステム、トレーニングプロトコルシステム、または、活動および/もしくは栄養レジメンシステム
に統合される、請求項
1に記載の早期警告スコアリングシステム。
【請求項14】
早期警告スコア(EWS)を計算
および評価する方法であって、
生体電気インピーダンス信号を獲得するための複数のセンサを
、患者の胸部に1つ以上の4極構成で患者に連結するステップと、
生体電気インピーダンス信号をセンサから受け取るステップと、
生体電気インピーダンス信号と、患者の人口統計学的情報とに基づいて、較正係数を決定するステップと、
生体電気インピーダンス信号を較正するステップと、
較正された生体電気インピーダンス信号を分析するステップと、
分析された信号に基づいてEWSを計算するステップと、
コンピューティングデバイスによって、早期警告スコアを所定の限界値と比較し、スコアが限界値の外側にある場合には、アラームをトリガするか、または、治療もしくは医学的介入を作動させるかもしくは修正するステップと
を含む、方法。
【請求項15】
方法が、生体電気インピーダンス信号に基づいて、患者の、分時換気量、1回換気量、および/または呼吸速度の査定をさらに提供する、請求項14に記載の方法。
【請求項16】
EWS計算が、患者の、分時換気量、1回換気量、および/または呼吸速度のうちの少なくとも1つを含む、請求項15に記載の方法。
【請求項17】
EWS計算が、分時換気量を含み、呼吸速度を含まない、請求項15に記載の方法。
【請求項18】
EWSが、呼吸不全、敗血症、心不全、鬱血性心不全、腎不全、水分量過剰、肺浮腫、代謝亢進状態、過剰運動、外傷性脳損傷、肺塞栓症、オピオイド誘発性呼吸抑制、過剰鎮静のうちの少なくとも1つを示す、請求項
14に記載の方法。
【請求項19】
センサが、分時換気量、1回換気量、呼吸速度、酸素飽和度、温度、血圧、パルスまたは心拍数、血液酸素レベル、および脳活動のうちの少なくとも1つに関する患者データを取得する、請求項
14に記載の方法。
【請求項20】
少なくとも1つのアラームが、可聴式または視覚式のうちの少なくとも1つである、請求項
14に記載の方法。
【請求項21】
少なくとも2つのセンサが、患者の胴体の上に設置されており、生理学的な生体電気インピーダンス信号が、経胸郭的に測定される、請求項
14に記載の方法。
【請求項22】
患者の、覚醒、声、痛み、および無反応(AVPU)を含む患者データを取得するステップであって、EWS計算が、患者のAVPUデータを含む、ステップをさらに含む、請求項
14に記載の方法。
【請求項23】
方法が非侵襲性である、請求項
14に記載の方法。
【請求項24】
EWS計算が、患者の疾患状態および/または状況を含む、請求項
14に記載の方法。
【請求項25】
EWS計算が、患者の年齢、人口統計、条件、および/または、患者の電子健康記録からのデータを含む、請求項
14に記載の方法。
【請求項26】
方法が、トリアージ方法、モビライゼーションプロトコル方法、トレーニングプロトコル方法、または、活動および/もしくは栄養レジメン方法
に統合される、請求項
14に記載の方法。
【発明の詳細な説明】
【技術分野】
【0001】
本出願は、2016年11月2日に出願された「Respiratory Early Warning Scoring Systems and Methods」という標題の米国仮出願第62/416,416号明細書の優先権を主張し、それは、その全体が組み込まれている。
【0002】
本発明は、非侵襲性の換気療法を改善するための方法およびデバイスに関する。具体的には、本発明は、患者のインピーダンス測定値に基づいて、非侵襲性の換気療法を調節するための方法およびデバイスに関する。
【背景技術】
【0003】
生理学的なモニタリング-歴史および進化
患者モニタリングは必須である。その理由は、それが、患者悪化に対する警告を提供し、早期の介入の機会を可能にし、患者アウトカムを大きく改善するからである。たとえば、現代のモニタリングデバイスは、心拍リズム、血液酸素飽和度、および体温の異常を検出することが可能であり、それは、そうでなければ見過ごされることになる悪化を臨床医にアラートすることが可能である。
【0004】
患者モニタリングの最も早い記録は、早くも1550BCに、古代エジプト人が末梢血管脈拍と心臓の鼓動との間の相関関係を知っていたことを明らかにしている。脈拍数を測定するために振り子を使用したGalileoによって、モニタリングに関して次の重要な進歩がなされる前に、3千年が経過した。1887年には、Wallerは、彼が電極を使用することによって胸部を横切る電気的な活動を受動的に記録することが可能であることを決定し、また、心臓からの活動に信号を相関させた。Wallerの発見は、生理学的な信号を測定するための方法として電気信号を使用することへの道を開いた。しかし、科学者が臨床的環境において生理学的な信号をモニタリングすることの利点を認識するまでには、依然として時間がかかることになった。
【0005】
1925年には、MacKenzieは、脈拍数および血圧などのような、生理学的な信号の連続的な記録およびモニタリングの重要性を強調した。具体的には、彼は、これらの信号のグラフィカルな表現図が患者の条件の査定において重要であることを強調した。1960年代には、コンピュータの出現に伴い、同時に記録されている複数のバイタルサインのリアルタイムグラフィカルディスプレイの追加によって、患者モニタが改善した。また、アラームが、モニタの中へ組み込まれ、また、脈拍数または血圧などのような信号が特定の閾値に到達したときにトリガされた。
【0006】
最初の患者モニタは、外科手術の間に患者につけて使用された。患者アウトカムが改善することが示されたので、バイタルサインのモニタリングは、集中治療室および緊急部門などのような、病院の他のエリアに広がった。たとえば、パルスオキシメトリは、非侵襲的に患者の酸素化を連続的に測定する方法として、手術室において最初に幅広く使用された。パルスオキシメトリは、急速に、一般的な麻酔薬の投与のためのケアの標準となり、その後に、回復室および集中治療室を含む、病院の他の部分に広がった。
【0007】
改善された患者モニタリングへの高まる必要性
緊急部門に提供する重病患者の数は、高い割合で増加しており、これらの患者は、緊密なモニタリングを要求する。緊急部門の中の患者の1-8%の間で、心臓血管処置、または、胸郭および呼吸処置(機械的な換気、カテーテル挿入、動脈カニューレ法)などのような、クリティカルケア処置が実施されることを要求していることが推定されてきた。
【0008】
生理学的なスコア、たとえば、Mortality Probability Model(MPM)、Acute Physiology and Chronic Health Education(APACHE)、Simplified Acute Physiological Score(SAPS)、および、Therapeutic Intervention Scoring System(TISS)などが、患者アウトカムにおいて重大な改善を示した。臓器不全またはショックの前でも、病気の早期段階において、生理学的なスコアおよびバイタルサインを使用することによって病気の患者をモニタリングすることは、アウトカムを改善する。患者の緊密なモニタリングは、患者の変性の認識および妥当な療法の投与を可能にする。
【0009】
しかし、現在のスコアリング方法は、ICU患者のおおよそ15%において、患者アウトカムを正確に予測せず、また、それは、呼吸集中治療室、これは病院において急性呼吸不全を患う多数の患者にケアを提供するのであるが、における患者に関して、さらに悪くなる可能性がある。そのうえ、たとえば、血液酸素化など、現在モニタリングされているバイタルサインの差は、呼吸障害または循環器障害の進行において、後期に起こる。多くの場合に、患者悪化の最も早いサインは、患者の呼吸努力または呼吸パターンの変化である。
【0010】
呼吸速度は、患者健康のバイタルインジケータとして認識されており、患者状態を査定するために使用される。しかし、呼吸速度は、単独で、呼吸体積の変化などのような、重要な生理学的な変化を示すことができない。連続的な体積測定から導出されるメトリクスは、広範囲の臨床的用途において患者状態を決定するために大きな可能性を有することが示されてきた。しかし、現在では、呼吸体積を正確に、および便利に決定することができる十分なシステムが存在しておらず、それは、呼吸体積の変化をトレースすることができる非侵襲性の呼吸モニタの必要性を動機付けする。
【0011】
現在の方法の欠点
現在では、患者の呼吸状態は、肺活量測定および呼気終末CO2測定などのような方法によってモニタリングされる。これらの方法は、使用するのが不便であり、および、不正確であることが多い。呼気終末CO2モニタリングは、さまざまな環境の中において挿管されている患者の評価において、および麻酔の間に有用であるが、それは、換気されていない患者に関して不正確である。スパイロメータおよびニューモタコメータは、それらの測定において限定されており、患者努力および臨床医による適正なコーチングに高度に依存している。効果的なトレーニングおよび品質保証は、肺活量測定の成功にとって必要なものである。しかし、これらの2つの必要条件は、それらが調査研究および肺機能研究にあるときのような臨床的業務において、必ずしも強制されるわけではない。したがって、品質保証は、間違った結果を導くことを防止するために必須である。
【0012】
肺活量測定は、最も一般的に実施される肺機能テストである。スパイロメータおよびニューモタコメータは、呼吸体積の直接的な測定を与えることが可能である。それは、患者の身体に進入するおよび患者の身体を離れるときの空気の体積または流量を測定することによって、患者の呼吸パターンを査定することを伴う。肺活量測定処置および操作は、米国胸部学会(ATS)および欧州呼吸器学会(ERS)によって標準化されている。肺活量測定は、呼吸健康を評価するための、および、呼吸の病変を診断するための、重要なメトリクスを提供することが可能である。メインストリームスパイロメータの主な欠点は、患者の呼吸の体積および/または流量が測定され得るように、チューブを通して呼吸することを患者に要求するということである。装置を通して呼吸することは、呼吸のフローに対する抵抗を導入し、患者の呼吸パターンを変化させる。したがって、患者の通常の呼吸を正確に測定するために、これらのデバイスを使用することは不可能である。装置を通して呼吸することは、意識のある従順な患者を要求する。また、ATSおよびERSによって提案されているメトリクスを記録するために、患者は、負担の掛かる呼吸操作を受けなければならず、それは、そのような試験を受け得ることから、ほとんどの高齢者、新生児患者、およびCOPD患者を排除してしまう。また、処置のアウトカムは、患者努力およびコーチング、ならびに、オペレータの技能および経験に高度に変わりやすく依存する。また、ATSは、肺活量測定を実践するヘルスケア専門家のための広範囲なトレーニングを推奨している。また、多くの医師は、肺機能テストから得られたデータを正確に解釈するために必要とされる技能を有していない。米国胸部学会によれば、被験者内変動の最大の供給源は、テストの不適正な実施である。したがって、肺機能検査の患者内のおよび患者間の変動のほとんどは、ヒューマンエラーによって作り出される。インピーダンスベースの呼吸モニタリングは、重要な空隙を埋めるが、その理由は、現在の肺活量測定は、患者の協力およびチューブを通した呼吸に関する要件に起因して、連続的な測定を提供することができないからである。したがって、誘発テストまたは診療介入に関連する呼吸の変化を示す可能性がある、挿管されていない患者において、長期の時間期間にわたって(それに対して、肺活量測定テストは1分以下にわたって続く)、ほぼリアルタイムの情報を提供するデバイスに対する必要性が存在している。
【0013】
ATS規格によって指定されているような、許容可能な肺活量測定値を獲得するために、ヘルスケア専門家は、広範囲なトレーニングをおこない、リフレッシャーコースをとらなければならない。許容可能な肺活量測定値の量が、トレーニングワークショップを行った人に関して、著しく大きかったことをあるグループは示した(41%対17%)。許容可能な肺活量測定値を用いても、主治医によるデータの解釈は、呼吸器科医によって、50%の確率で正しくないとみなされた。しかし、コンピュータアルゴリズムからの支援が、十分な肺活量測定値が収集されたときに、スパイログラムを解釈する際の改善を示したことが留意された。
【0014】
プライマリーケア診療所が許容可能な肺活量測定値を獲得し、正確な解釈を行うために、厳格なトレーニングが必要とされる。しかし、多数の人々をトレーニングし、満足のいく品質保証を強化するための資源は、不合理、および非効率的である。専用調査セッティングにおいても、技術者のパフォーマンスは、時間の経過とともに降下する。
【0015】
患者およびヘルスケア提供者に起因するヒューマンエラーに加えて、肺活量測定は、呼吸変動測定を損なうシステマティックなエラーを含む。呼吸ごとのパターンおよび変動の有用な測定が、フェイスマスクまたはマウスピースなどのような、気道取り付け具によって悪化することが示されてきた。また、これらのデバイスによる測定の間に伴われる不快感および不便さは、ルーチン測定のためにまたは長期間モニタとして使用されることを妨げる。サーミスタまたは歪みゲージなどのような、利より侵入的でない他の技法は、体積の変化を予測するために使用されてきたが、これらの方法は、呼吸体積について貧弱な情報を提供する。また、呼吸ベルトは、呼吸体積を測定するのに有望であることが示されてきたが、それらが、インピーダンスニューモグラフィからの測定よりも正確性が低く、大きい変動を有することを、グループが示してきた。したがって、最小患者および臨床医相互作用によって、長い時間期間にわたって、体積を測定することができるシステムが必要とされている。
【0016】
肺機能検査、および、手術前ケア、手術後ケア
手術前ケアは、手術の間に何の患者特性が患者を危険な状態におく可能性があるかを識別し、それらのリスクを最小化することに集中される。医療歴、喫煙歴、年齢、および、他のパラメータが、手術前ケアにおいてとられるステップを指定する。具体的には、高齢者患者および肺疾患を患う患者は、外科手術に関してベンチレータ下に置かれるときに、呼吸器合併症に関して危険な状態になる可能性がある。外科手術に関してこれらの患者をクリアするために、肺活量測定などのような肺機能テストが実施され、それは、患者がベンチレータを利用することができるかどうかを決定するために、より多くの情報を与える。また、胸部X線が撮られ得る。しかし、これらのテストは、外科手術の中間に、または、麻酔をかけられた患者において、もしくは、協調することができないかまたは協調することにならない患者において、反復されることができない。検査は、手術後セッティングにおいて快適でない可能性があり、また、患者の回復に悪影響を及ぼす可能性がある。
【0017】
呼気終末CO2および患者モニタリング
呼気終末CO2は、患者の肺の状態を決定するための別の有用なメトリクスである。その値は、パーセンテージまたは分圧として提示され、カプノグラフモニタを使用して連続的に測定され、それは、他の患者モニタリングデバイスと連結され得る。これらの器具は、カプノグラムを作り出し、それは、CO2濃度の波形を表す。カプノグラフィは、呼気された空気の中の二酸化炭素濃度と動脈血液の中の二酸化炭素濃度とを比較する。次いで、カプノグラムは、過換気および低換気などのような、呼吸に伴う問題を診断するために分析される。呼気終末CO2のトレンドは、ベンチレータパフォーマンスを評価するために、および、薬物活動、挿管に伴う技術的問題、および気道障害物を識別するために、とりわけ有用である。米国麻酔学会(ASA)は、呼気終末CO2が、気管内チューブまたは喉頭のマスクが使用されるときはいつでもモニタリングされるべきであり、また、一般的な麻酔を必要とする任意の治療に関しても高度に奨励されることを命じている。また、カプノグラフィは、患者換気のモニタリングに関するパルスオキシメトリよりも有用であることが分かった。残念なことに、換気されていない患者に実現することは、一般的に不正確および困難であり、また、他の相補的な呼吸モニタリング方法が、大きな有用性を有することになる。
【0018】
心エコー図
Fenichelらは、呼吸運動が、心エコー図との干渉を引き起こす可能性があることを決定した(それが、制御されない場合には)。呼吸運動は、肺の膨張を通して前方へのエコーを遮断する可能性があり、それが、心臓に対するトランスデューサレイの入射の角度を偶然生じさせる。心エコー検査信号に対するこれらの影響は、心エコー図から記録または推察される測定の精度を減少させる可能性がある。心エコー検査を呼吸サイクルの正確な測定と組み合わせることは、イメージングデバイスが呼吸運動を補償することを可能にすることができる。
【0019】
インピーダンスニューモグラフィ
インピーダンスニューモグラフィは、空気フローを妨げることなく呼吸体積のトレーシングをもたらすことができ、空気ストリームとの接触を要求せず、身体の移動を制限しない、簡単な方法である。そのうえ、それは、肺の機能的残気量を反映する測定を行うことができる可能性がある。
【0020】
心臓の活動を測定することを試みる間に、AtzlerおよびLehmannは、経胸郭的電気インピーダンスが呼吸とともに変化することに気付いた。彼らは、呼吸インピーダンスの変化をアーチファクトであると考え、測定が行われている間に呼吸を止めるように患者に求めた。1940年に、また、心臓インピーダンスを研究している間に、Nyboerは、自身の測定の中の同じ呼吸インピーダンスアーチファクトに気付いた。彼は、スパイロメータを使用して、経胸郭的インピーダンスの変化および体積の変化の両方を同時に記録することにより、経胸郭的インピーダンスの変化を体積の変化に関連付ける最初の人となることによって、アーチファクトの原因を確認した。GoldensohnおよびZablowは、呼吸体積および経胸郭的インピーダンスを定量的に関係付ける最初の調査者となることによって、さらなるステップとしてインピーダンスニューモグラフィを利用した。彼らは、心臓信号アーチファクトを分離する際の困難を報告し、また、身体の移動の間のアーチファクトにも気付いた。しかし、最小二乗回帰によるインピーダンスの変化および呼吸体積の変化を比較した後に、彼らは、重要なことには、この2つが線形に関係していることを決定した。他のグループが、経胸郭的インピーダンスの変化と呼吸量との間の線形の関係を確認し、スパイロメトリ信号のおおよそ90%が胸郭インピーダンス信号によって説明され得ることを発見した。その関係が線形であることを示された一方で、多くのグループは、患者内および患者間に関する較正定数が、試行間で高度に変わりやすいことを発見した。これらの較正定数の差は、さまざまな生理学的なおよび電極特性に起因する可能性があり、それは、考慮に入れられなければならない。
【0021】
経胸郭的インピーダンスの理論
電気インピーダンスは、抵抗(R)(実数成分)およびリアクタンス(X)(虚数成分)の合計として定義される複素量である(Z=R+jX=|Z|ejΘ)。それは、交流電流の抵抗の測定値として使用される。数学的には、インピーダンスは、オームの法則に類似した以下の式によって測定される。
【0022】
Z=V/I (1)
ここで、電圧=V、電流=I、およびインピーダンス=Zである。未知のインピーダンスによって電気を導く物体が、簡単な回路から決定され得る。物体を横切って既知の交流電流を印加すると同時に、物体を横切る電圧を測定し、等式(1)を使用することは、インピーダンスをもたらす。胸郭が、体積導電体を表し、それに起因して、イオン導電体を支配する法則が適用され得る。それに加えて、呼吸の間の器官の移動および胸郭の拡大は、導電率の変化を生成させ、それは、測定され得る。既知の電流を導入することによって、および、電極によって胸郭を横切る電圧の変化を測定することによって、胸郭を横切るインピーダンスが測定され得る。
【0023】
経胸郭的インピーダンス信号の原因
胸郭および腹部を構成する組織層のすべては、経胸郭的インピーダンスの測定に影響を及ぼす。それぞれの組織は、電極間の電流フローの方向に影響を及ぼす異なる導電率を有している。最も外側の層から出発して、身体の表面は、皮膚によってカバーされ、皮膚は、高い抵抗率を示すが、単に約1mmの厚さに過ぎない。皮膚の下には脂肪の層があり、脂肪は、また、高い抵抗率を有している。しかし、この層の厚さは、高度に変わりやすく、被験者の身体の場所および体型に依存する。後側から前側へと進むと、皮膚および脂肪の層の下方には姿勢筋があり、姿勢筋は、異方性である。それらは、長手方向には低い抵抗率を有するが、すべての他の方向には高い抵抗率を有しており、それは、皮膚に対して平行の方向に電流を導く傾向につながる。筋肉の下方には肋骨があり、肋骨は、骨として、高度に絶縁性である。したがって、胸郭を通る電流は、骨と骨との間だけを流れることが可能である。電流が肺に到達すると、電流が血液を通って伝わることが仮定され、血液は、任意の身体の組織の最も低い抵抗のうちの1つを有している。肺の通気は、肺のサイズおよび電流フローの経路を変化させ、抵抗またはインピーダンスの変化として現れ、それは、測定され得る。
【0024】
組織の異方性の属性に起因して、胸部を通る半径方向の電流フローは、予期されることになるものよりもはるかに小さい。電流のほとんどは、胸部を通るというよりもむしろ、胸部の周りを進む。結果として、インピーダンスの変化は、胸郭の外周の変化、肺のサイズの変化、および、横隔膜-肝臓のマスの移動から来る。より低い胸郭レベルにおける測定値は、横隔膜および肝臓の移動に起因し、より高い胸郭レベルにおいて、それらは、肺の通気および膨張に起因する。したがって、インピーダンス信号は、肺の膨張および通気、ならびに、横隔膜-肝臓のマスの移動の変化の合計である。腹腔成分および胸郭成分の両方が、通常の呼吸信号を観察するために必要とされる。それに加えて、上側および下側の胸郭におけるインピーダンス変化の異なる原因は、何故、より高い胸郭レベルにおいて、より大きい線形性が観察されるかを説明することが可能である。
【0025】
電極設置の影響
経胸郭的インピーダンスは、患者の皮膚に取り付けられた電極によって測定される。Geddesらは、生理学的な組織の考慮事項に起因して、電極刺激周波数が20kHzを下回るべきではないことを決定した。それは、安全性および生体電気現象からの干渉の排除の問題である。それに加えて、被験者のインピーダンス測定値が、座位、背臥位、および立位を含む、被験者位置に応じて異なることが発見された。体積の所与の変化に関して、寝た背臥位になることが、呼吸の間に最大の信号振幅および最小の信号対ノイズをもたらすことが示された。
【0026】
別の潜在的な信号アーチファクトは、被験者の移動から来ており、被験者の移動は、電極を移動させ、較正を乱す可能性がある。そのうえ、電極の移動は、肥満患者および高齢者患者においてより頻繁に起こる可能性があり、それは、長期間モニタリングの期間の間に繰り返しのリード線の再較正を要求する可能性がある。試行と試行との間の較正変動に起因して、較正が、所与の被験者姿勢および電極設置に関して、それぞれの個人に対して実施されるべきであることが、一部では提案されている。しかし、あるグループは、注意深い患者内の電極設置が、測定と測定との間のインピーダンスの差をおおよそ1%まで低減させることができることを示すことができた。
【0027】
同じ電極設置を有するにもかかわらず、異なるサイズの個人に関する較正定数および信号振幅は、変動を示した。体積の所与の変化に関するインピーダンスの変化が、胸部の薄い人々に関して最も大きくなっており、より十分なサイズの人々に関してより小さくなっていることが決定された。観察されたこれらの差は、より大きい被験者の中の電極および肺の間に、脂肪組織および筋肉などのような、抵抗性の組織がより多量にあり、より大きい被験者に関する体積の所与の変化に関して、全体的にはより小さいインピーダンスのパーセント変化をもたらすことに起因している可能性がある。他方では、子供においては、インピーダンストレースの心臓成分が成人のものよりも大きいことに気付くことができる。これは、子供よりも成人において、心臓の周りにより大きい脂肪の堆積があり、それが、心臓がインピーダンス測定に組み込まれないように遮蔽する役割を果たすことに起因する可能性がある。
【0028】
第6肋骨のレベルにおいて中腋窩線に取り付けられた電極が、呼吸の間の最大インピーダンス変化をもたらした。しかし、2つの変数の間の最大の線形性は、胸郭の上のより高い位置に電極を設置することによって達せられた。報告された線形性の高い程度にかかわらず、呼吸の間のインピーダンス変化の大きい標準偏差が報告されている。しかし、インピーダンス測定において観察された変動は、血圧などのような、他のバイタルサインの測定において見られるものに匹敵する。いくつかのグループは、インピーダンスニューモグラフィ方法が臨床的目的のために十分に正確であることを示した。そのうえ、これらの研究以後の40年において、インピーダンス測定の電極材料および信号処理が大きく改善され、さらにより信頼性の高い測定値をもたらしている。デジタル信号処理は、リアルタイムインピーダンス測定値のほぼ瞬時のフィルタリングおよびスムージングを可能にし、それは、アーチファクトおよびノイズの最小化を可能にする。より最近では、呼吸インピーダンスが、長期間の患者モニタリングにおいて成功裏に使用されている。電極が比較的に移動させられずに留まる限りにおいて、体積の変化に対するインピーダンスの変化の関係は、長い時間期間にわたって安定している。
【0029】
アクティブ音響システム
肺に関係した音響の最も一般的な使用は、聴診器の使用によって獲得される肺において生じる音を評価することである。見過ごされることが多い肺組織の1つの属性は、音響フィルタとして作用するその能力である。それは、それを通過する音のさまざまな周波数を異なる程度に減衰させる。減衰のレベルと肺の中の空気の量との間の関係が存在している。また、胸部壁部の運動は、胸郭を通過する音響信号の周波数シフトを結果として生じさせる。
【0030】
異常を検出する潜在力
努力肺活量(FVC)および1秒間努力呼気容量(FEV1)などのような、多くの有用なインジケータが、インピーダンスニューモグラフィによる患者の呼吸の体積トレースをモニタリングすることから抽出され得る。FVCおよびFEV1は、スパイロメータによって典型的に測定される2つのベンチマークインジケータであり、COPD、喘息、および気腫などのような、疾患を診断およびモニタリングするために使用される。呼吸をモニタリングすることに加えて、インピーダンスニューモグラフィは、同じ電極から心電図を同時に記録することも可能である。
【0031】
呼吸ごとの変動
呼吸ごとの変動、分散係数、標準偏差、および、1回換気量ヒストグラムの対称性などのような、計算が、年齢および呼吸健康に依存することが示されている。正常な被験者と比較して、これらのパラメータのうちのいくつか、とりわけ、分散係数が、結核、肺炎、気腫、および喘息を患う患者において著しく異なることが示されている。そのうえ、電極が患者の上で移動しない限りにおいて、インピーダンス測定値が満足のいくものであったことが、文献において注目されている。一般に、健康な被験者が、肺疾患状態にある被験者よりも大きい呼吸パターンの変動を示すことが、多くのグループによって決定されている。
【0032】
呼吸波形の非線形分析が、多様な用途において使用されている。非線形の生理学的データの規則性の調査において、肺疾患状態において、患者が呼吸ごとの複雑性の減少を見せることが、研究によって示されている。この複雑性の減少は、慢性閉塞性肺疾患、拘束性肺疾患、および、機械的な換気からの抜管に失敗した患者において実証されている。また、低減された変動は、鎮静および鎮痛の結果であることが決定されている。大きく見ると、正常な患者は、何らかの形態の肺疾患または障害によって悩まされている患者よりも大きい呼吸ごとの変動を有している。
【0033】
呼吸パターンは、体内の多数の制御因子によって影響を受けるので、任意の生理学的データのように、非線形になっている。呼吸ごとの変動の分析において、さまざまなエントロピーメトリクスが、信号の中の不規則性および再現性の量を測定するために使用される。これらのメトリクスは、呼吸ごとの変化だけでなく、連続呼気採取法(intrabreath)の変動、ならびに、曲線の大きさ、周期性、および空間的場所を査定する際に、RVM1回換気量トレーシングの分析の中で使用され得る。
【0034】
標準化された患者特徴的なデータ(Crapo)の基づくシステムの普遍的な較正は、複雑性インデックスの生成を可能にし、また、単一の患者と、複雑性の通常のレベルとして定義されるものとの比較を可能にする。このインデックスは、抜管するための妥当な時間を決定する際に、心肺の疾患の深刻性を決定する際に、および、治療法の査定内においても、臨床医を補助するために使用されることになる。このインデックスは、インピーダンスベースのデバイス、加速度計、ベンチレータ、またはイメージングデバイスのいずれによるかなど、データが収集される方法から独立していることになる。また、システムは、特定の患者に対して較正され、呼吸パラメータのいずれかの中の急激な変化を検出しながら、被験者内の変動に焦点を合わせることも可能である。
【0035】
呼吸間の間隔の非線形分析
変動メトリクスに加えて、いくつかのグループは、瞬時の呼吸間の間隔の非線形分析が、機械的なベンチレータからのウィーニングの成功に高度に相関付けされることを発見した。これらのメトリクスは、肺の健康の有用なインジケータであり、臨床的決定を支援することが可能である。患者が機械的なベンチレータから分離することができないことは、患者のおおよそ20%において起こり、分離の成功を予測するための現在の方法は、貧弱で、ほとんど医師の決定の助けにならない。24時間よりも長きにわたって機械的な換気の下にある33名の被験者による研究において、24名の被験者は、換気から成功裏にウィーニングされたが、一方、8名の被験者は失敗した(1名の被験者からのデータは除去された)ことが見出された。失敗の理由は、5名の被験者においては低酸素症が挙げられ、残りの3名に関しては、頻呼吸、高炭酸症、および上気道浮腫が挙げられ、これらのすべては、潜在的にインピーダンスニューモグラフィシステムによって識別され得る疾患である。この研究における主要な発見は、機械的なベンチレータから分離することを失敗した者に関する瞬時の呼吸の間隔の非線形分析が、成功裏に分離した者よりも著しく規則的であることであった。そのうえ、呼吸速度が2つのグループの間で異ならないことが示された。インピーダンスニューモグラフィ測定値の非線形分析から導出されるメトリクスは、患者アウトカムを成功裏に予測することが可能である。それに加えて、これらのメトリクスは、ロバストであることが示されており、咳などのようなアーチファクトが導入されたときに著しく変化しない。
【0036】
減少した換気状態の検出
インピーダンスニューモグラフィによって作り出される呼吸トレース、および、被験者の平均インピーダンスは、減少した換気の状態、または、胸郭の中の流体体積の変化を示すことが可能である。このタイプのモニタリングは、麻酔された患者のケアに関して有用であることになる。麻酔中のまたは動けない患者におけるインピーダンスニューモグラフィによる呼吸モニタリングが、長い期間にわたって、特に、外科手術後の回復室における重篤期間の間に、正確で信頼性が高いことが示されている。胸郭または肺の中の流体は、インピーダンスの測定可能な変化につながる可能性があり、それは、肺浮腫または肺炎などのような、回復室の中の患者に関する共通の問題を決定するために使用され得ることを、調査者は決定した。
【0037】
胸郭の中の流体体積の変化を測定することに加えて、1回換気量および上気道抵抗の変化は、インピーダンス測定値において即座に明らかである。麻酔中の患者の気管内クランピングは、呼吸するための患者の努力にかかわらず依然として小さなインピーダンス信号を作り出し、それによって、換気の正しいインジケーションを与えることを、調査者は発見した。また、インピーダンス測定値は、それぞれの肺の換気の定量的な査定を提供することが示されている。片方だけの肺の病巣を有する患者において、胸郭の傷ついた側にある1対の電極が正常な側よりも明白さが劣る信号を作り出し、インピーダンス測定値の差が観察された。
【0038】
呼吸モニタ
これまでのところ、特定の接触プローブが呼吸速度を記録する一方で、呼吸パターンもしくは変動を記録もしくは分析し、呼吸パターンもしくは変動を生理学的条件もしくは生存度と相関付けし、または、呼吸パターンもしくは変動を使用して、差し迫る衰弱を予測するためのデバイスまたは方法は、具体的には考案されていない。心拍数の変動アルゴリズムは、心拍ごとの心拍数の変化について報告するに過ぎない。呼吸強度、呼吸速度、および、呼吸運動の場所の変動を組み込むために、呼吸速度変動アルゴリズムを使用することが望ましい。強度の変化、呼吸速度の変化、呼吸努力の局在性の変化、または、これらのパラメータのいずれかの変動の変化によって指摘されるような呼吸の著しい異常が、呼吸不全または心臓血管不全の早期警告を提供し、また、早期介入の機会を提示することが可能である。これらの変化を記録するためのデバイスの開発、および、これらの呼吸変化を病気または損傷の深刻性と相関付けするアルゴリズムの生成は、有用なバトルフィールドツールだけでなく、重病患者を評価および治療することを助けるために、病院のクリティカルケアのセッティングにおける重要性のうちの1つを提供することになる。診療所または家庭のセッティングにおける使用は、重病でない患者の役に立ち、彼らはそれでもなおそのようなモニタリングから利益を得ることになることが可能である。たとえば、患者が過剰に麻酔をかけられている場合には、呼吸速度が降下し、呼吸が「浅く」なる。呼吸速度および呼吸努力は、肺浮腫または肺コンプライアンスの喪失に関する他の理由に起因して、硬い肺および貧弱な空気の交換によって上昇する。しかし、客観的にモニタリングされる唯一のパラメータである速度の意味合いは、多くの場合に、患者を最良に治療するのに十分な早さで識別されない。呼吸仕事量のリアルタイムの定量的な査定を提供することが可能であり、および、これらのパラメータのいずれかまたはすべての呼吸速度、強度、局在性、または変動のトレンドを分析することが可能なシステムが、早期の診断および介入、ならびに、治療モニタリングのために必要とされる。そのようなシステムは、麻酔の深さ、または、麻酔剤もしくは他の痛み軽減薬の適性もしくは過剰服用を判断するために必要とされる。
【0039】
PCAおよびフィードバック制御
患者管理鎮痛法(PCA)は、患者フィードバックを含む手術後痛み制御の方法である。オピエートの投与は、呼吸、心拍数、および血圧を抑制する可能性があり、したがって、注意深いおよび緊密なモニタリングの必要性がある。システムは、コンピュータ化されたポンプを含み、コンピュータ化されたポンプは、鎮痛薬を含んでおり、鎮痛薬は、患者のIVラインの中へポンプ送りされ得る。一般的に、鎮痛薬の一定の服用量に加えて、患者は、追加的な薬物の形態のケアを受けるために、ボタンを押すことが可能である。しかし、患者は、患者が過度の眠気を催している場合には、これがより速やかな回復のための療法を妨げる可能性があるので、ボタンを押すことを思いとどまらせられる。過剰服用を防止するために、所与の量の時間に、患者に与えられる薬物の量を制限する、安全防護対策も適切な場所に存在している。パルスオキシメータ、呼吸速度、およびカプノグラフモニタが、鎮痛薬によって引き起こされる呼吸低下を警告し、PCAの服用をカットオフするために使用され得るが、しかし、それぞれは、少なくとも精度、妥当性、および実施形態に関して深刻な限界を有している。
【0040】
呼吸支援デバイス
慢性閉塞性肺疾患(「COPD」)、気腫、および他の病気は、患者が空気の効率的な交換を提供し、適切な呼吸を提供する能力を低下させる影響を有している。COPDは、呼吸することを困難にする肺の疾患である。それは、通常は喫煙からの多年にわたる肺への損傷によって引き起こされる。COPDは、2つの疾患、すなわち:慢性の気管支炎および気腫の混合であることが多い。慢性の気管支炎では、空気を肺へ運搬する気道が炎症を起こし、多量の粘液を作る。これは、気道を狭くするかまたは遮断し、呼吸することを困難にする可能性がある。健康な人では、肺の中の小さな気嚢は、バルーンのようになっている。人が息を吸ったり吐いたりするときに、気嚢は、肺を通して空気を移動させるために、より大きくなったり小さくなったりする。しかし、気腫のときには、これらの気嚢が、損傷を受けており、それらの伸縮性を喪失している。より少ない空気が肺の中に入ったり出たりし、それは、呼吸不足を引き起こす。COPD患者は、十分な酸素化および/またはCO2除去を得ることが困難であることが多く、彼らの呼吸は、困難であり、非常な努力を伴う可能性がある。
【0041】
嚢胞性線維症(「CF」)(ムコビシドーシスとしても知られる)は、主に肺に影響を与えるだけでなく、膵臓、肝臓、腎臓、および腸にも影響を与える遺伝的疾病である。長期間の問題は、頻繁な肺の感染症の結果として、呼吸することおよび咳をして痰を吐き出すことの困難性を含む。他の症状は、なかでも、副鼻腔感染症、成長不良、脂肪便、指やつま先のばち指、および、男性の不妊を含む。
【0042】
COPD、CF、気腫、および他の呼吸問題の症状を緩和することを助けるために使用される多数の療法が存在している。たとえば、患者は、高頻度胸壁振動法(「HFCWO」)ベストまたはオシレーターを着用することが可能である。HFCWOベストは、高い周波数でそれを振動させるマシンに取り付けられた膨張可能なベストである。ベストは、胸部を振動させ、粘液を緩くして薄くする。代替的に、患者は、持続的気道陽圧(「CPAP」)またはバイレベル気道陽圧(「BiPAP」)デバイスを使用し、継続的に穏やかな空気圧力を提供し、自分自身で自発的に呼吸することができる患者の中で、気道を持続的に開いた状態に維持することが可能である。他の機械的な換気療法は、カフアシストシステム、酸素療法、吸引療法、CHFO(「持続的高頻度振動」)、ベンチレータ、薬用エーロゾル送達システム、および、他の非侵襲性の換気方法を、限定ではなく、含む。
【0043】
これらの療法方法のそれぞれは、共通の欠点を有しており、どれくらいの量の空気が実際に肺の中へ入っているかを知る方法が存在しない。いくつかの療法は、時間効果的な酸素療法への空気圧力フィードバックを使用する。これは、不正確である可能性があり、酸素換気の直接的な測定ではない。そのうえ、マスクを使用する療法は、漏出およびマスク設置に関連付けられる問題に起因して、不正確である可能性がある。追加的に、空気圧式の気道回路の中のねじれおよび機能不全は、肺の中へ入っている空気の量の不正確な測定値を提供する可能性がある。
【発明の概要】
【発明が解決しようとする課題】
【0044】
本発明は、現在の戦略および設計に関連付けられる問題および不利益を克服し、患者をモニタリングする新しいシステムおよび方法を提供する。
【課題を解決するための手段】
【0045】
本発明の1つの実施形態は、早期警告スコアリングシステムに関する。システムは、コンピューティングデバイスと、コンピューティングデバイスに機能的に接続されている、患者から生理学的な信号を獲得するための複数のセンサと、早期警告スコア(EWS)が所定のレベルを超えるとアラートを出力するように構成されている少なくとも1つのアラームと、を含む。コンピューティングデバイスは、生理学的な信号をセンサから受け取り、生理学的な信号を分析し、分析された信号に基づいて、早期警告スコアを計算し、早期警告スコアを所定の限界値と比較し、スコアが限界値の外側にある場合には、アラームをトリガするか、または、治療もしくは医学的介入を作動させるかもしくは修正する。
【0046】
好ましくは、少なくとも1つのセンサが、生体電気インピーダンスセンサであり、コンピューティングデバイスが、生体電気インピーダンス信号に基づいて、患者の、分時換気量、1回換気量、および/または呼吸速度の査定を提供する。好ましくは、EWS計算が、患者の、分時換気量、1回換気量、および/または呼吸速度のうちの少なくとも1つを含む。好適な実施形態では、EWS計算が、分時換気量を含み、呼吸速度を含まない。好ましくは、EWSが、呼吸不全、敗血症、心不全、鬱血性心不全、腎不全、水分量過剰、肺浮腫、代謝亢進状態、過剰運動、外傷性脳損傷、肺塞栓症、オピオイド誘発性呼吸低下、過剰鎮静のうちの少なくとも1つを示す。
【0047】
センサが、好ましくは、分時換気量、1回換気量、呼吸速度、酸素飽和度、温度、血圧、パルスまたは心拍数、血液酸素レベル、および脳活動のうちの少なくとも1つに関する患者データを取得する。好ましくは、少なくとも1つのアラームが、可聴式または視覚式のうちの少なくとも1つである。好適な実施形態では、少なくとも2つのセンサが、患者の胴体の上に設置されており、生理学的な生体電気インピーダンス信号が、経胸郭的に測定される。好ましくは、コンピューティングデバイスが、さらに、患者の、覚醒、声、痛み、および無反応(AVPU)を含む患者データを取得し、EWS計算が、患者のAVPUデータを含む。好ましくは、システムが、非侵襲性である。
【0048】
好ましくは、EWS計算が、患者の疾患状態および/または状況を含む。好適な実施形態では、EWS計算が、患者の年齢、人口統計、条件、および/または、患者の電子健康記録からのデータを含む。好ましくは、システムが、トリアージシステム、モビライゼーション(mobilization)プロトコルシステム、トレーニングプロトコルシステム、または、活動および/もしくは栄養レジメンシステムである。
【0049】
本発明の別の実施形態は、早期警告スコア(EWS)を計算する方法に関する。方法は、生理学的な信号を獲得するための複数のセンサを患者に連結するステップと、生理学的な信号をセンサから受け取るステップと、生理学的な信号を分析するステップと、分析された信号に基づいて、EWSを計算するステップと、早期警告スコアを所定の限界値と比較し、スコアが限界値の外側にある場合には、アラームをトリガするか、または、治療もしくは医学的介入を作動させるかもしくは修正するステップとを含む。
【0050】
好適な実施形態では、少なくとも1つのセンサが、生体電気インピーダンスセンサであり、方法が、生体電気インピーダンス信号に基づいて、患者の、分時換気量、1回換気量、および/または呼吸速度の査定をさらに提供する。好ましくは、EWS計算が、患者の、分時換気量、1回換気量、および/または呼吸速度のうちの少なくとも1つを含む。好ましくは、EWS計算が、分時換気量を含み、呼吸速度を含まない。好適な実施形態では、EWSが、呼吸不全、敗血症、心不全、鬱血性心不全、腎不全、水分量過剰、肺浮腫、代謝亢進状態、過剰運動、外傷性脳損傷、肺塞栓症、オピオイド誘発性呼吸抑制、過剰鎮静のうちの少なくとも1つを示す。
【0051】
好ましくは、センサが、分時換気量、1回換気量、呼吸速度、酸素飽和度、温度、血圧、パルスまたは心拍数、血液酸素レベル、および脳活動のうちの少なくとも1つに関する患者データを取得する。好ましくは、アラートが、可聴式または視覚式のうちの少なくとも1つである。好ましくは、少なくとも2つのセンサが、患者の胴体の上に設置されており、生理学的な生体電気インピーダンス信号が、経胸郭的に測定される。
【0052】
方法が、好ましくは、患者の、覚醒、声、痛み、および無反応(AVPU)を含む患者データを取得するステップであって、EWS計算が、患者のAVPUデータを含む、ステップをさらに含む。好ましくは、方法が、非侵襲性である。好ましくは、EWS計算が、患者の疾患状態および/または状況を含む。好適な実施形態では、EWS計算が、患者の年齢、人口統計、条件、および/または、患者の電子健康記録からのデータを含む。好ましくは、方法が、トリアージ方法、モビライゼーションプロトコル方法、トレーニングプロトコル方法、または、活動および/もしくは栄養レジメン方法である。
【0053】
本発明の他の実施形態および利点は、次に続く説明の中に部分的に記載されており、部分的に、この説明から明らかになり得、または、本発明の実践から学習され得る。
【0054】
本発明が、単なる例として、および、添付の図面を参照して、より詳細に説明されている。
【図面の簡単な説明】
【0055】
【
図1】本発明の4つのリード線の実施形態の斜視図である。
【
図3】後側右垂直方向の電極構成のダイアグラムである。
【
図4】前側から後側の電極構成のダイアグラムである。
【
図5】前側右垂直方向の電極構成のダイアグラムである。
【
図6】マルチプレクサによって互いに接続されている2つの4リード線構成の斜視図である。
【
図8】スパイロメータに接続されている本発明の4リード線の実施形態の斜視図である。
【
図9】ベンチレータに接続されている本発明の4リード線の実施形態の斜視図である。
【
図10】ゆっくりとした呼吸動作、通常の呼吸動作、および不安定な呼吸動作に関する、RVM測定(インピーダンス)対体積のプロットである。
【
図11】通常の呼吸に関して、時間に対するRVMおよび体積のプロットのセットを示す図である。
【
図12】ゆっくりとした呼吸に関して、時間に対するRVMおよび体積のプロットのセットを示す図である。
【
図13】不安定な呼吸に関して、時間に対するRVMおよび体積のプロットのセットを示す図である。
【
図14】4つの異なる電極構成に関して、BMIに対する較正係数のプロットである。
【
図15】体積ドリフトを表す肺活量測定のプロットである。
【
図16】体積ドリフトによって影響を与えられた体積対インピーダンスのプロットである。
【
図17】体積ドリフトに関して補正された肺活量測定のプロットである。
【
図18】体積ドリフトに関して補正されていないデータと補正されたデータを比較する、体積対インピーダンスのプロットである。
【
図19】本発明に関するデータ分析を説明するフローチャートである。
【
図20】スピーカおよびマイクロホンを利用する本発明の好適な実施形態である。
【
図21】スピーカおよびマイクロホンのアレイを利用する本発明の好適な実施形態である。
【
図22】スピーカのアレイおよびマイクロホンを利用する本発明の好適な実施形態である。
【
図23】センサのためのベストを利用する本発明の好適な実施形態である。
【
図24】センサのための布片の中へ組み込まれたアレイを利用する本発明の好適な実施形態である。
【
図25】センサのネットを利用する本発明の好適な実施形態である。
【
図26】ワイヤレス送信機および受信機を利用する本発明の好適な実施形態である。
【
図27】同時に記録されるデータに関して、インピーダンス対時間、および体積対時間のグラフである。
【
図28】本発明のシステムの実施形態を図示する図である。
【
図29】本発明のデバイスの実施形態を図示する図である。
【
図30】本発明のデバイスの好適な実施形態を図示する図である。
【
図31】本発明のデバイスの好適な実施形態を図示する図である。
【
図32】本発明のデバイスの好適な実施形態を図示する図である。
【
図33】リード線の設置の異なる実施形態を示す図である。
【
図34】リード線の設置の異なる実施形態を示す図である。
【
図35】リード線の設置の異なる実施形態を示す図である。
【
図36】リード線の設置の異なる実施形態を示す図である。
【
図37】リード線の設置の異なる実施形態を示す図である。
【
図38】リード線の設置の異なる実施形態を示す図である。
【
図39】寄生キャパシタンスを補償するための修正されたHowland回路の実施形態を示す図である。
【
図40】インピーダンス測定デバイスがHFCWOベストとデータ通信している、本発明の実施形態を示す図である。
【
図41】インピーダンス測定デバイスが機械的な換気療法デバイスとデータ通信している、本発明の実施形態を示す図である。
【
図42】インピーダンス測定デバイスが酸素化療法デバイスとデータ通信している、本発明の実施形態を示す図である。
【
図43】インピーダンス測定デバイスが吸引療法デバイスとデータ通信している、本発明の実施形態を示す図である。
【
図44】インピーダンス測定デバイスがカフアシストデバイスとデータ通信している、本発明の実施形態を示す図である。
【発明を実施するための形態】
【0056】
本明細書で具現化され、幅広く説明されているように、ここでの本開示は、ここで、本発明の詳述された実施形態を提供する。しかし、開示されている実施形態は、単に、本発明の例示的なものに過ぎず、それは、さまざまなおよび代替的な形態で具現化され得る。したがって、特定の構造的なおよび機能的な詳細は、限定するものであるべきであるという意図はなく、むしろ、その意図は、それらが、特許請求の範囲の基礎を提供し、また、本発明をさまざまに用いることを当業者に教示するための代表的な基礎として提供することである。
【0057】
本発明の1つの実施形態は、患者、個人、または動物を査定するためのデバイスに関し、それは、複数の電極リード線ならびに/またはスピーカおよびマイクロホンを身体の上に設置することによって、インピーダンス測定値を収集する。好ましくは、少なくとも1つのインピーダンス測定エレメントおよびマイクロホン/スピーカは、プログラマブルエレメントに機能的に接続されており、プログラマブルエレメントは、被験者の少なくとも1つの呼吸パラメータの査定を提供するようにプログラムされている。
【0058】
好ましくは、インピーダンス測定は、複数の遠隔プローブデータセットに基づいており、プログラマブルエレメントは、複数の遠隔プローブデータセットのうちの少なくとも1つを強化するように;または、複数の遠隔プローブデータセットのうちの少なくとも1つを安定化させるように;または、ダイナミックレンジおよび信号対ノイズ比(SNR)値に関する複数の遠隔プローブデータセットのそれぞれを分析するように、さらにプログラムされている。好ましくは、デバイスプローブは、いくつかのリード線構成で維持されている。1つの実施形態では、リード線構成の変形は、被験者および実施されているテストに応じた柔軟性を可能にする。他の実施形態では、リード線構成の変形は、患者の解剖学的構造の変動を可能にする。好ましくは、デバイスは、有効なリード線構成を識別するためのセッティングを維持する。好ましくは、デバイスは、有効なリード線取り付けを識別するためのセッティングを維持する。
【0059】
好ましくは、マシンの中に埋め込まれているプロトコルの中に記載されているようなデバイスまたは方法が、リード線の設置に関して指示する。好ましくは、妥当なリード線の接触が、デバイスによって確認される。好ましくは、デバイスは、不十分なまたは不適当なリード線の設置に関してオペレータにアラートする。
【0060】
好ましくは、デバイスは、連続的にまたは間欠的にモニタリングし、呼吸パラメータが換気または他の生体機能の喪失を反映するときを示すためのアラームを維持する。アラームは、呼吸充足度インデックス、分時換気量、呼吸速度、1回換気量、吸気体積またはフローパラメータ、呼気体積またはフローパラメータ、呼吸速度、体積、フロー、または発生させられる他のパラメータの変動に基づいて設定される。たとえば、モニタが、低換気に関連付けられる呼吸周波数または深さまたは分時換気量のいずれかの減少を検出する場合には、または、過換気を示唆することになるこれらのパラメータのいずれかもしくはすべての増加を検出する場合には、アラームが発せられる。アラームは、病院のフロアにおいて、患者の現在の呼吸状態とベンチレータまたはスパイロメータに対する特定の個人の較正に基づくベースラインレベルとを比較する際に使用される。好ましくは、アラームは、ベンチレータまたはスパイロメータからの所与の個人からとられたパラメータに基づいて設定される。より好ましくは、ベースラインレベルは、以下のもの、すなわち:人口統計学的、生理学的、および体型のパラメータのうちの1つまたは複数に基づいている。また、アラームは、患者にとって有害になると決定されるポイントにおいて、麻酔剤によって誘発される呼吸抑制をアラートするために使用される。好ましくは、値の範囲であって、アラームがそれを超えるとトリガされることになる値の範囲は、以下のもの、すなわち:呼吸速度、1回換気量、分時換気量、呼吸充足度インデックス、呼吸曲線の形状、エントロピー、フラクタル、または、呼吸変動もしくは複雑性に関連付けられる他の分析パラメータのうちの1つまたは複数に関して、医師または介護人によって選択される。
【0061】
別の実施形態では、任意の所与の時点においてとられたRVM測定値が、ベースラインとして記録される。これらの記録された値は、医師または他のヘルスケア作業者による患者状態の主観的な印象に相関付けされる。その後に、RVMがモニタリングされ、呼吸体積、分時換気量曲線特性、または変動に、10%、20%、または他の選択されたパーセンテージの変化が見られた場合には、アラームがヘルスケアスタッフにアラートするように設定される。
【0062】
以下は、本発明の実施形態を図示しているが、本発明の範囲を限定するものとして見られるべきではない。
【0063】
インピーダンスプレチスモグラフ
本明細書で具現化され、幅広く説明されているように、本発明の詳述された実施形態が提供される。実施形態は、単に、本発明の例示的なものに過ぎず、それは、さまざまなおよび代替的な形態で具現化され得る。したがって、特定の構造的なおよび機能的な詳細は、限定するものであるべきであるという意図はなく、むしろ、その意図は、それらが、特許請求の範囲の基礎を提供し、また、本発明をさまざまに用いることを当業者に教示するための代表的な基礎として提供することである。
【0064】
本発明は、好ましくは、測定されたインピーダンス値を体積へ変換し、データの数値的なまたはグラフィカルな表現を用いて、電子インターフェースまたは印刷されたレポートを通して体積をエンドユーザに対して表示するために、一体化された電子機器をともなうインピーダンスニューモグラフを含む。インピーダンス測定デバイスは、回路、少なくとも1つのマイクロプロセッサ、および、好ましくは、少なくとも4つのリード線を含む。好ましくは、少なくとも2つのリード線が、被験者の身体の中へ電流を注入するために使用され、少なくとも2つは、前記患者の身体の電圧応答を読み取るために使用される。
【0065】
1つの実施形態では、デバイスは、好ましくは、患者をシミュレートし、自動化されたシステム検査およびデモンストレーションを可能にするために、一体化されたモジュールを含む。自動化されたシステムのテストは、デバイスのパフォーマンスを改善し、それが使用前に正しく機能していることを保証する。
【0066】
好適な実施形態では、デバイスは、注入された電流の中のわずかな偏差を補償するために、および、獲得されるデータの精度を向上させるために、アナログディバイダを利用する。好適な実施形態では、アナログディバイダは、復調器の後に、および、整流器の前に設置されることになる。他の実施形態では、アナログディバイダは、精密整流器の後、または、復調器の前を、限定ではなく、含む、回路の他の場所に設置され得る。
【0067】
好適な実施形態では、デバイスは、信号が範囲外になることを防止するように、回路の中の異なる増幅器の上に妥当なゲインを維持するために、マイクロプロセッサによって駆動される適応型の電子機器を利用する。マイクロプロセッサは、ハードウェア増幅器のそれぞれにおいて設定されたゲインをトラッキングし、それが常に妥当な値を出力するように、その計算の間に適切に補償する。
【0068】
インピーダンス測定デバイスは、好ましくは、デジタルインターフェース(たとえば、USB、Fire wire、シリアル、パラレル、または他の種類のデジタルインターフェース)を介して、コンピュータに接続されている。デジタルインターフェースは、転送の間にデータが破損することを防止するために使用される。このインターフェースによる通信は、好ましくは、データの完全性をさらに保証するために、および、偽造モジュール(測定デバイスまたはコンピュータのいずれか)の使用から本発明を保護するために暗号化される。
【0069】
ここで、本発明の好適な実施形態をより詳細に参照すると、
図1では、インピーダンスプレチスモグラフが示されており、インピーダンスプレチスモグラフは、無線周波数インピーダンスメータ1と、メータにリンクされたPCの上に含まれているプログラマブルエレメント2とを含み、無線周波数インピーダンスメータ1は、4つのリード線、すなわち、第1のリード線3、第2のリード線4、第3のリード線5、および第4のリード線6によって、患者に接続されている。それぞれのリード線は、好ましくは、表面電極、すなわち、第1の表面電極、第2の表面電極、第3の表面電極、および第4の表面電極に接続されている。
【0070】
さらに詳細には、
図1の実施形態をさらに参照すると、電極は、ヒドロゲルまたは親水コロイドなどのような接着性の導電性材料によってコーティングされた、AgClなどのような導電性材料から作製され得る。リード線は、銅ワイヤなどのような任意の導電性材料から作製され得、好ましくは、ゴムなどのような絶縁材料によってコーティングされ得る。好適な実施形態では、電流を提供するために、ならびに、データを収集および送信するために、ワイヤレス電極が利用される。好ましくは、このリード線の構成体は、Bluetooth技術および受信機と連結されている。
【0071】
リード線1および4は、生物学的な信号伝達と干渉することを回避するのに十分に大きい一定の周波数(好ましくは、20KHzよりも大きい)の電流源に接続されている。電流源の振幅は、好ましくは、50mA未満であり、また、選択された周波数において細動を引き起こすことになるレベルを下回っている。リード線2とリード線3との間の差動電圧が、オームの法則に従ってインピーダンスを計算するために使用される。インピーダンスメータによってとられる電圧測定値をサンプリングすることによって、プログラマブルエレメント(たとえば、PCなど)は、心拍および呼吸などのような生物学的機能に対応する胸郭インピーダンスの変化をトラッキングおよびプロットする。次いで、インピーダンスの変化が、肺機能をモニタリングするために使用される。好ましくは、デバイスは、肺の体積を計算してそれをオペレータへ表示するために、本明細書に記載された方法によって較正される。
【0072】
図28を参照すると、例示的で好適なシステムは、少なくとも1つの汎用コンピューティングデバイス100を含み、少なくとも1つの汎用コンピューティングデバイス100は、処理ユニット(CPU)120と、システムバス110とを含み、システムバス110は、読出し専用メモリ(ROM)140およびランダムアクセスメモリ(RAM)150などのような、システムメモリを含むさまざまなシステムコンポーネントを処理ユニット120に連結している。他のシステムメモリ130も、同様の使用のために利用可能であり得る。本発明は、好ましくは、2つ以上のCPU120を備えたコンピューティングデバイスの上で動作するか、または、ネットワーク接続されたコンピューティングデバイスのグループもしくはクラスタの上で動作して、より高い処理能力を提供する。システムバス110は、メモリバスまたはメモリコントローラ、ペリフェラルバス、および、さまざまなバスアーキテクチャのいずれかを使用するローカルバスを含む、いくつかのタイプのバス構造体のうちのいずれかであることが可能である。ROM140などの中に記憶されている基本入力/出力(BIOS)は、好ましくは、基本ルーチンを提供し、基本ルーチンは、たとえば、起動の間などに、コンピューティングデバイス100の中のエレメント間で情報を転送することを助ける。好ましくは、コンピューティングデバイス100は、ハードディスクドライブ160、磁気ディスクドライブ、光ディスクドライブ、またはテープドライブなどのような、ストレージデバイスをさらに含む。ストレージデバイス160は、ドライブインターフェースによってシステムバス110に接続されている。ドライブおよび関連のコンピュータ可読媒体は、コンピュータ可読命令、データ構造、プログラムモジュール、および、コンピューティングデバイス100のための他のデータの不揮発性記憶装置を提供する。これらの基本コンポーネントは、当業者に知られており、妥当な変形例が、デバイスのタイプに応じて企図され、たとえば、デバイスが小型のハンドヘルド式のコンピューティングデバイス、デスクトップコンピュータ、ラップトップコンピュータ、コンピュータサーバ、ワイヤレスデバイス、ウェブ対応のデバイス、またはワイヤレスフォンなどのいずれであるかなどに応じて企図される。
【0073】
いくつかの実施形態では、システムは、好ましくは、単一のCPUによって制御されるが、しかし、他の実施形態では、システムの1つまたは複数のコンポーネントは、1つまたは複数のマイクロプロセッサ(MP)によって制御される。追加的に、CPUおよびMPの組合せも使用され得る。好ましくは、MPは、組み込み型のマイクロコントローラであるが、しかし、コマンドを処理することができる他のデバイスも使用され得る。
【0074】
本明細書で説明されている例示的な環境は、ハードディスクを用いているが、磁気カセット、フラッシュメモリカード、デジタル多用途ディスク、カートリッジ、ランダムアクセスメモリ(RAM)、読出し専用メモリ(ROM)、および、ビットストリームを含むケーブル信号またはワイヤレス信号などのような、コンピュータによってアクセス可能なデータを記憶することができる他のタイプのコンピュータ可読媒体も、例示的な動作環境において使用され得ることが当業者によって認識されるべきである。コンピューティングデバイス100とのユーザ相互作用を可能にするために、入力デバイス190は、たとえば、スピーチ用のマイクロホン、ジェスチャーまたはグラフィカル入力のためのタッチ感応式スクリーン、電気信号センサ、キーボード、マウス、モーション入力、およびスピーチなど、任意の数の入力メカニズムを表している。デバイス出力170は、たとえば、プリンタ、モニタ、プロジェクタ、スピーカ、およびプロッタなど、当業者に知られている複数の出力メカニズムのうちの1つまたは複数であることが可能である。いくつかの実施形態では、出力は、たとえば、ウェブサイトへアップロードすること、電子メールすること、他の電子ファイルの中に添付または設置されること、および、SMSまたはMMSメッセージを送信することなど、ネットワークインターフェースを介することが可能である。いくつかの事例では、マルチモーダルシステムが、コンピューティングデバイス100と通信するために、ユーザが複数のタイプの入力を提供することを可能にする。通信インターフェース180が、一般的に、ユーザ入力およびシステム出力を支配および管理する。任意の特定のハードウェア構成体の上で動作する本発明に制限はなく、したがって、ここでの基本的特徴は、改善されたハードウェアまたはファームウェア構成体が開発されるにしたがって、それらと容易に置換され得る。
【0075】
また、本発明の範囲内の実施形態は、コンピュータ実行可能命令を担持するかもしくは有するコンピュータ可読媒体、または、コンピュータ可読媒体の上に記憶されたデータ構造を含むことが可能である。そのようなコンピュータ可読媒体は、汎用コンピュータまたは専用コンピュータによってアクセスされ得る任意の利用可能な媒体であることが可能である。例として、および、限定としてではないが、そのようなコンピュータ可読媒体は、RAM、ROM、EEPROM、CD-ROM、または、他の光ディスクストレージ、磁気ディスクストレージ、もしくは他の磁気ストレージデバイス、または、コンピュータ実行可能命令の形態もしくはデータ構造の形態の所望のプログラムコード手段を担持もしくは記憶するために使用され得る任意の他の媒体を含むことが可能である。情報がネットワークまたは別の通信接続(ハードワイヤード、ワイヤレス、またはそれらの組合せのいずれでも)を介してコンピュータへ転送されるかまたは提供されるときに、コンピュータは、その接続をコンピュータ可読媒体として適正にみなす。したがって、任意のそのような接続は、適正にコンピュータ可読媒体と称される。また、上記の組合せも、コンピュータ可読媒体の範囲内に含められるべきである。
【0076】
コンピュータ実行可能命令可能命令は、たとえば、汎用コンピュータ、専用コンピュータ、または専用処理デバイスに特定の機能または機能のグループを実施させる、命令およびデータを含む。また、コンピュータ実行可能命令は、スタンドアロンまたはネットワーク環境のコンピュータによって実行されるプログラムモジュールを含む。一般的に、プログラムモジュールは、特定のタスクを実施するか、または特定の抽象データ型を実装する、ルーチン、プログラム、オブジェクト、コンポーネント、およびデータ構造などを含む。コンピュータ実行可能命令、関連のデータ構造、およびプログラムモジュールは、本明細書で開示されている方法のステップを実行するためのプログラムコード手段の例を表している。そのような実行可能命令または関連のデータ構造の特定のシーケンスは、そのようなステップの中に説明されている機能を実装するための対応する行為の例を表している。
【0077】
本発明の他の実施形態は、パーソナルコンピュータ、ハンドヘルド式のデバイス、マルチプロセッサシステム、マイクロプロセッサベースのまたはプログラマブルのコンシューマ電子機器、ネットワークPC、ミニコンピュータ、およびメインフレームコンピュータなどを含む、多くのタイプのコンピュータシステム構成をともなうネットワークコンピューティング環境において実践され得ることを、当業者は理解することになる。ネットワークは、インターネット、1つまたは複数のローカルエリアネットワーク(「LAN」)、1つまたは複数のメトロポリタンエリアネットワーク(「MAN」)、1つまたは複数のワイドエリアネットワーク(「WAN」)、1つまたは複数のイントラネットなどを含むことが可能である。また、実施形態は、分散型コンピューティング環境において実践され得、分散型コンピューティング環境では、タスクが、ローカルおよび遠隔の処理デバイスによって実施され、ローカルおよび遠隔の処理デバイスは、(ハードワイヤードリンクによって、ワイヤレスリンクによって、または、それらの組合せのいずれかによって)通信ネットワークを通してリンクされている。分散型コンピューティング環境において、プログラムモジュールは、ローカルおよび遠隔の両方のメモリストレージデバイスの中に位置し得る。
【0078】
図2は、本発明のシステム200の実施形態の概略図である。電気ソース(electrical source)が、信号源205から生じている。好ましくは、調節可能な関数発生器210(たとえば、XR2206チップ)が、電気ソースを発生させるために使用される。関数発生器210は、好ましくは、マイクロプロセッサ(MP)275を介して、または、手動で調節可能である。いくつかの実施形態では、関数発生器は、信号を改善するためにチューニングされ得る。チューニングは、1回または複数回起こることが可能である。生体インピーダンススペクトロスコピが、異なる周波数における水分量(hydration)のレベルを検出するために使用され得、それは、関数発生器210を較正するために使用され得る。同様に、体脂肪パーセンテージが計算され得る。また、信号源205は、電流発生器215(たとえば、Howland回路)を含む。電流発生器215は、好ましくは、パッド接触の変化にかかわらず(接触が完全に断たれていない限り)、ソース電流を一定に維持する。好適な実施形態では、電流発生器215は、パフォーマンスを改善するためにチューニングされ得、それは、手動で行われ得るか、または、MP275によって自動的に行われ得る。インピーダンス測定サブシステムは、1つまたは複数の周波数において、電流発生コンポーネントを利用することが可能であり、それは、同時に、またはシーケンシャルに、アクティブになることが可能である。電圧測定コンポーネントは、1つまたは複数の電極に機能的に接続され得る。インピーダンス測定サブシステムは、幅の狭い電流パルスなどのような、非正弦波の電流を利用することが可能である。システムは、加速度計、湿度および音響センサ、カプノグラフィまたはオキシメトリセンサなどのような、追加的なセンサを一体化することが可能である。
【0079】
好適な実施形態では、パッド接触の品質がモニタリングされており、また、パッド接触が、断たれているか、または、電子機器が補償するにはあまりに貧弱な品質であるときは、警告が作り出される。信号源205は、インピーダンスを計算するために電流モニタ220を含むことも可能である。好適な実施形態では、信号源205は、患者シミュレータ225も含む。患者シミュレータ225は、実際の患者と同様のパラメータによって、インピーダンスの変化をシミュレートすることが可能である。患者シミュレータ225は、システム200を検査するために、および、回路の較正のために使用され得る。
【0080】
信号源205からの信号は、患者230を通過し、センサ235によって受信される。好ましくは、センサ230は、入力増幅器240を含む。入力増幅器240は、貧弱なまたは変わりやすいパッド接触が測定に及ぼす影響を抑制する。入力増幅器240のゲインは、好ましくは、MP275によって制御され、強化された信号を他のモジュールに提供する。また、センサ230は、好ましくは、信号フィルタ245を含み、パワーグリッドなどから干渉を除去する。信号フィルタ245は、標準的なハイパスフィルタ(
図30にあるようなもの)、復調器(
図31にあるようなもの)、または別の信号フィルタであることが可能である。同期復調器が、生体インピーダンス変化を検出するために、および、信号の中のモーションアーチファクトを取り除くために使用されることが多い。
【0081】
好適な実施形態では、信号は、2つの経路へと分割される(
図32にあるようなもの)。第1の経路は、発生器信号をキャリアとして使用して、測定された信号を復調させる。第2の経路は、復調の前に、90度の位相回転回路を使用する。復調させられた両方の信号は、電圧-RMSコンバータを使用して、RMS値へと変換され得る。別々に測定されるので、信号が合計され、次いで、平方根が計算される。これは、被験者における任意の位相シフトに関する補償、ならびに、抵抗およびリアクタンスの別々の測定を可能にし、それは、モーションアーチファクト補償、ならびに、水分量レベル、脂肪率、および較正係数計算に関して、価値のある情報を提供する。
【0082】
追加的に、センサ230は、アナログディバイダ250を含むことが可能であり、アナログディバイダ250は、電流モニタリング回路からの信号によって、測定された電圧信号を割り、インピーダンスを計算する。センサ230は、好ましくは、キャリア周波数を除去するためのローパスフィルタを伴う精密整流器または二乗平均平方根-直流電流(RMS-to-DC)チップ255も含む。センサ230の出力は、好ましくは、患者のインピーダンスに比例したDC信号である。センサ230は、バンドパスフィルタ260も含み、呼吸に対応しない信号の部分をフィルタリングして除去することによって、呼吸速度だけを選択することが可能である。バンドパスフィルタ260は、手動で較正され得るか、または、MP275によって自動的に較正され得る。好ましくは、センサ230は、複数のプローブペアに対応するために、MP275によって制御されるマルチプレクサ265を含む。好ましくは、2つのプローブペアが存在しているが、より多くのまたはより少ないプローブペアも企図される。センサ230は、出力増幅器270を含むことも可能である。出力増幅器270は、好ましくは、MP275によって制御され、高精度のデジタル化のためのアナログ-デジタルコンバータ(ADC)280に信号を提供する。オーバーサンプリングが、測定ノイズを低減させるために使用され、測定ノイズは、異なるソース(たとえば、熱的な干渉、電子的な干渉、生物学的な干渉、またはEM干渉)から生じ得る。MP275は、可能な限り高いケイデンスで測定を行うようにADCに指令し、次いで、サンプリング周波数に対応する時間間隔にわたって取得されたデータを平均する。サンプリング周波数は、インピーダンスサンプリングがインピーダンス測定デバイスによってコンピュータに提示されるときのインピーダンスサンプリングの周波数である。周波数は、好ましくは、呼吸の細かい特徴のすべてをモニタリングするために十分に高くセッティングされる。
【0083】
制御可能なゲインおよびオーバーサンプリングを使用することは、好ましくは、極めて高い有効精度で(現在の実施形態に関して、28ビット、または、4パーツパービリオンと推定される)、システムがインピーダンスを測定することを可能にする。
【0084】
信号源205およびセンサ230の両方は、MP275によって制御される。MP275は、好ましくは、信号処理をモニタリングする少なくとも1つのADC280と、デジタルポテンショメータ、マルチプレクサ、オペアンプ、信号発生器、および他のデバイスを制御するための、少なくとも1つのデジタル出力285とを含む。好ましくは、MP275およびコンピュータインターフェース(たとえば、USBインターフェース、シリアルインターフェース、またはワイヤレスインターフェースを介する)。
【0085】
好ましくは、MPは、呼吸速度(RR)、1回換気量(TV)、および分時換気量(MV)に関する値をコンピューティングし、コンピューティングされたRR、TV、またはMV値のトレンドをトラッキングし、トレンドに対して、統計的分析、要因分析、またはフラクタル分析をリアルタイムに実施する。MPは、RR、TV、またはMVに関して予測される適切な値からの瞬時のおよび累積的な偏差をトラッキングすることが可能であり、呼吸充足度インデックス(RSI)をコンピューティングする。
【0086】
好適な実施形態では、デバイスは:心拍出量、呼気終末CO2、酸素灌流、ECGおよび、心臓の他の電気生理学的測定値を、限定ではなく、含む、他のパラメータを測定および記録する能力を有している。好適な実施形態では、インピーダンス測定デバイスは、インピーダンスカルジオグラフィおよびインピーダンスニューモグラフィを同時に測定する。好ましくは、追加的なパラメータが、スクリーン上に表示される。好ましくは、呼吸インピーダンスデータが、診断の補佐役として作用するように意味のある方式で、追加的なパラメータと組み合わせられる。好ましくは、インピーダンスデータは、単独で、または、1つもしくは複数の追加的なパラメータと組み合わせられて、疾患状態の診断を提供するために使用される。
【0087】
1つの実施形態では、測定値が、胸部のそれぞれの側から独立してとられ、全体的な肺の状態、および、右の肺の通気または胸部膨張と左の肺の通気または胸部膨張との間の差の両方を評価するために使用される。これの例は、肋骨骨折のケースでは(肺挫傷を含む損傷に起因する変化が存在する可能性がある)、副木または気胸に起因する運動の減少であり、そこでは、胸部の両側が、独立してモニタリングされ、各側の特有のデータを提供する。肺炎、水胸症、乳糜胸症、血胸症、血/気胸症、無気肺、腫瘍、および放射線傷害を含む、局在性の肺の病変の他の原因も評価され得る。
【0088】
別の実施形態では、デバイスからの情報が、心エコー図、放射性核種試験、または、心臓をイメージングする他の方法からの情報とともに使用される。好適な実施形態では、デバイスは、以下のもののうちの1つ、すなわち:ekg、先進の電気生理学的研究、心臓カテーテル法、心エコー図、ストレス検査、放射性核種検査、CT、MRI、および、インピーダンス測定による心拍出量モニタリングのうちの1つによって、心筋虚血の診断を支援する。1つの実施形態では、デバイスは、呼吸音、心臓の情報、放射線検出デバイス、放射線療法デバイス、アブレーションデバイスなどのような、呼吸とともに変化する他の信号の収集を助けるために使用される情報を提供する。
【0089】
好適な実施形態では、デバイスは、別のモダリティによって、および/または、収集されたデータを補正するために呼吸曲線の特性を使用することによって、タイミングまたはデータ収集を支援することが可能である。
【0090】
1つの実施形態では、デバイスは、心拍ごとの変動または複雑性とともに使用されることになる、呼吸ごとの変動または呼吸の複雑性についての情報を提供し、心臓の状態、肺系統の状態、または、全体的な代謝の状態もしくは神経学的状態についての、その他の方法では利用可能でない情報を提供する。
【0091】
リード線構成
提案されている呼吸パラメータ評価技法は、パラメータと測定されるインピーダンスとの間の高度に線形の関係に依存する。これは、すべての電極設置に当てはまるわけではない。好ましくは、以下の条件を満足する最良の電極設置を選択するために、広範囲な研究が行われた:
1) 呼吸体積と測定されるインピーダンス変化との間に、高度に線形の関係があること(すなわち、96%を上回る相関関係値)。
2) 患者の運動に起因するアーチファクトのレベルが低いこと。
3) 繰り返しの電極適用間の変動が低いこと。
4) 一般の臨床的状況において容易に適用できること。
「普遍的な較正」とともに使用するための能力、「普遍的な較正」は、ベンチレータ/スパイロメータによる予備的な較正なしに、測定可能な患者の身体のパラメータに依存するスケーリングファクタを信頼性高く決定する
【0092】
好ましくは、電極は、第6肋骨のレベルにおいて中腋窩線に対して水平方向に取り付けられる。好ましくは、1つの電極が、たとえば、鎖骨の直ぐ下方に、または、胸骨切痕などに、安定した場所に設置され、また、別の電極が、胸郭の底部に、または、中腋窩線における剣状突起のレベルに設置される。しかし、電極は、胸郭のより高い位置またはより低い位置に設置され得る。そのうえ、テストされることになる被験者、実施されることになるテスト、および、他の生理学的な関心事(たとえば、患者がペースメーカまたは他の人工的なデバイスを有しているかどうか)に応じて、電極は、他の場所におよび他の構成で(たとえば、胸郭に沿って垂直方向に、胸郭を横切る角度で、または、患者の前面の位置から患者の背中の位置へ)設置され得る。
【0093】
好ましくは、少なくとも1つのインピーダンス測定エレメントが、1つまたは複数の電極リード線の上に存在している。好ましくは、2つ以上の電極が、線形のアレイで、格子状のパターンで、または、解剖学的に影響を受ける構成で配列される。好ましくは、4つの遠隔プローブが、線形のアレイで配列される。別の実施形態では、複数の電極リード線が、ネット、ベスト、またはアレイとして配列される。好ましくは、1つまたは複数のプローブ、電極リード線、またはセンサが、被験者の胸郭または腹部の上に設置される。好ましくは、デバイスは、単一回使用の電極を使用する。他の実施形態では、電極は、ヒドロゲル、親水コロイド、または固体ゲルである。好ましくは、電極は、AgCl、ニッケル、または炭素センサを利用する。好ましくは、電極は、柔らかい布、フォーム、マイクロ多孔性のテープ、透明テープの裏張り、または別の接着剤を備えている。好ましくは、成人および新生児のために、異なるサイズの妥当な電極が存在しており、成人用電極は、新生児用電極よりも大きくなっており、それは、好ましくは、1”×3/8”以下(2.54cm×0.95cm以下)である。他の実施形態では、センサ電極は、電気インパルスを身体に送達するプローブと同じであるか、または、送達電極とは異なっているか、または、ワイヤレスであり、遠隔センサへデータを送信する。別の実施形態では、送達プローブは、それ自身がセンサになっている。1つの実施形態では、刺激電極は、バッテリ駆動式である。好ましくは、少なくとも1つの呼吸パラメータが、30秒の持続期間にわたって、連続的に、間欠的に、最大で少なくとも3回、5回、10回、20回、もしくは50回の被験者の呼吸にわたって、最大で少なくとも100回の被験者の呼吸にわたって、最大で少なくとも1000回の被験者の呼吸にわたって、または、別の持続期間にわたって記録される。好ましくは、被験者のインピーダンス心電図が、同時に記録される。
【0094】
好ましくは、少なくとも1つのインピーダンス測定エレメントは、1つもしくは複数の遠隔プローブまたは電極リード線を含み、または、標準的なEKGリード線と同様のリード線、もしくは、心臓インピーダンスを測定するために使用されるリード線と同様のリード線を含み、プログラマブルエレメントは、1つもしくは複数の遠隔プローブまたは電極リード線から収集された、1つもしくは複数の遠隔プローブまたは電極リード線データセットを分析するようにさらにプログラムされている。
【0095】
本発明の1つの実施形態では、インピーダンス測定サブシステムは、複数のチャネルからのインピーダンスを読み取る。好適な実施形態では、二次(secondary)電圧センシングチャネルは、一次(primary)電圧センシングチャネルに対して所定の角度で配置されている。1つの実施形態では、2つのチャネルは、電流発生電極を共有している。1つの実施形態では、2つのチャネルは、電圧センシング電極のうちの1つも共有している。2つ以上のチャネルからのデータは、運動からのノイズを決定および抑制するために、適応型のアルゴリズムの中で使用され得る。
【0096】
リード線構成は、任意の実施形態において、デバイスのパフォーマンスにとって重要である。好ましくは、1つまたは複数のリード線は、胸郭の上に設置される。1つの実施形態では、リード線は、胸郭および腹部の上に設置され、胸郭または腹部などのような、身体の異なる領域から、呼吸を測定する。呼吸に関連付けられる身体の運動の場所における差は、生理学的状態の診断および疾患のモニタリングに関して臨床的に有用な情報を作り出し、それは、計算において補償され得る。リード線は、代替的な構成において、胸郭、首部、および頭部の上に設置される。1つの実施形態では、リード線は、解剖学的場所に基づいて、異なる構成で設置され、特有の測定される距離もしくは解剖学的ランドマークのいずれかに従って、または、その両方の組合せに従ってスペースをもたされる。1つの実施形態では、身体のサイズに対するスペーシングの修正が実現される。好ましくはこれらの修正は、解剖学的ランドマークに関係付けられる。好適な実施形態では、スペーシングは、250gから400kgまでの範囲にある、新生児から肥満患者までのすべてのサイズの患者に関して、相対的に同じままである。別の実施形態では、スペーシングは、身体のサイズおよび体形を反映するアルゴリズムに基づいて変化する。他の構成は、一方の半胸郭と他方の半胸郭との運動の差を決定する利点を有しており、それは、気胸、血胸症、蓄膿、癌などのような、片方だけのまたは非対称の病変を診断またはモニタリングする際に有用である。
【0097】
ここで
図2を参照すると、後側左右(Posterior Left to Right:PLR)と呼ばれる特定の電極構成を備えた1つの実施形態が示されており、ここでは、第1の電極7が、剣状突起のレベルにおいて脊椎の左へ6インチに設置されており、第2の電極8が、剣状突起のレベルにおいて脊椎の左へ2インチに設置されており、第3の電極9が、剣状突起のレベルにおいて脊椎の右へ2インチに設置されており、第4の電極10が、剣状突起のレベルにおいて脊椎の右へ6インチに設置されている。この構成で電極を設置する利点は、両方の肺が、信号の読み取りと高いレベルに織り込まれることである。
【0098】
図3を参照すると、後側垂直方向右(Posterior Vertical Right:PVR)と呼ばれる第2の特定の電極構成が示されており、ここでは、第1の電極11が、肩甲骨の直ぐ下方において、中腋窩線と脊椎との間の中間に設置されており、第2の電極12が、電極1の下方へ2インチに設置されており、第3の13電極が、電極2の下方へ2インチに設置されており、第4の電極14が、電極3の下方に設置されている。この構成の利点は、胸郭膨張に起因する電極移動が低減すること、および、心臓の干渉がより少ないことである。この位置は、電極間の体積変化がほとんどないかまたはまったくないという利益、および、心臓のノイズがより少ないという利益を有している。
【0099】
図4を参照すると、前側から後側(Anterior to Posterior:AP)と呼ばれる第3の特定の電極構成が示されており、ここでは、第1の電極15が、剣状突起のレベルにおいて右側中腋窩線の右に6インチの位置に設置されており、第2の電極16が、剣状突起のレベルにおいて右側中腋窩線の右に2インチの位置に設置されており、第3の電極17が、剣状突起のレベルにおいて右側中腋窩線の左に2インチの位置に設置されており、第4の電極18が、剣状突起のレベルにおいて右側中腋窩線の左に2インチの位置に設置されている。この位置は、最も大きい体積を取り、それは、呼吸の局在性の決定に有用である。
【0100】
図5を参照すると、前側垂直方向右(Anterior Vertical Right:AVR)と呼ばれる第4の特定の電極設置が示されており、ここでは、第1の電極19が、剣状突起と中腋窩線との間の中間において、鎖骨の直ぐ下方に設置されており、第3の電極20が、第1の電極に整列して剣状突起のレベルに設置されており、第2の電極21が、第3の電極の上方へ4インチに設置されており、第4の電極22が、第3の電極の下方へ4インチに設置されている。この位置は、新生児に、および、オペレータが後側にリード線を設置することを妨げる特性を有する他の患者に有用である。他の4個のプローブの位置は、互いから等距離に、または、明確に測定された距離に、腹部および胸郭の上に、垂直方向におよび水平方向に設置される。また、プローブ位置は、腸骨稜または第3肋間腔などのような、生理学的なランドマークに設置される。腹部および胸郭の両方の上にプローブを設置することは、胸呼吸と腹式呼吸との間の関係が決定されることを可能にする。この関係は、治療法の診断およびモニタリングを支援する。
【0101】
上述の4個のプローブ構成に加えて、これらの構成は、位置間で等距離にプローブを追加することによって、たとえば、AP構成において、電極1と電極2との間、電極2と電極3との間、電極3と電極4との間に、それぞれの電極から2インチに、この設置に整列して電極を追加することによって、より多くのプローブを含むように修正され得る。多数の電極によって、それらは、互いから等距離の格子パターンで設置され得る。この構成は、さらに下記に議論されることになる。2つ以上のリード線に関する他の設置は、剣状突起などのような、一定の高さにおける等距離のポイントにおける胸郭の周りを含む。24本のリード線システムに関する特定の設置は、胸部および背中の上にそれぞれ線形に等しいスペースでおかれた、12本のリード線を伴う線形のアレイの中にある。そのような格子またはアレイは、患者によって着用されることになるネットまたはベストの中に実現され得る。1つの実施形態では、デバイスは、リード線設置の代替例を説明する表を提供しており、プローブ設置を支援するための測定デバイスを提供する。1つの実施形態では、リード線間の測定される距離は、リード線によって自動的に確認され、リード線は、ポジショニングセンサ、および/または、1つのセンサから1つもしくは複数の別のセンサまでの距離を決定することができるセンサを有している。
【0102】
ここで
図6を参照すると、いくつかの電極構成23が示されており、いくつかの電極構成23は、アナログマルチプレクサ24によって接続されており、無線周波数インピーダンスメータ25およびPCなどのようなプログラマブルエレメント26に接続されている。以前の図、すなわち、
図2および
図3に示されているリード線およびマルチプレクサ構成を実現するデバイスの実施形態が示されている。
図6では、それぞれのリード線は、マルチプレクサによっていくつかの異なる電極に接続されている。この構成の利点は、いくつかの方向におけるインピーダンスに関するデータをほぼ同時に集めるために、デバイスがDASの電子的な入力および出力をデジタル的に切り換え、電極構成を効果的に切り換えることを可能にすることである。たとえば、12個の電極システムは、4つの異なるセットのリード線から構成されており、第1のセットが、それぞれの構成の中の対応する第1の電極に行き、第2のセットのリード線が、それぞれの構成の中の対応する第2の電極に行き、以下同様という状態になっている。
【0103】
電極構成は、
図7に示されている安静ICG位置などのような、胸郭、腹部、および手足の上の解剖学的位置と対応するようにもなされ、そこでは、第1の電極27が、額の上に設置されており、第2の電極28は、左の鎖骨の上方に設置されており、第3の電極29は、剣状突起のレベルにおいて中腋窩線の上に設置されており、第4の電極30は、腸骨稜の直ぐ上方において中腋窩線の上に設置されている。
【0104】
それぞれの電極構成は、異なる方式で運動によって影響を与えられることになる。たとえば、右腕の移動は、右の胸筋、広背筋、僧帽筋、ならびに、胸部および上背部の他の筋肉を横切るインピーダンスをトレースする、任意のリード線設置の上に、モーションアーチファクトを引き起こすことになる。異なるリード線設置から同時に記録される信号の形状間、導関数間、または大きさ間の差に注目することによって、局所的なモーションアーチファクトが識別され、インピーダンス信号から減算され得る。
【0105】
1つの実施形態では、プローブは、線形のストリップの中に製造されており、線形のストリップは、それぞれの端部において送達およびセンサのペアを伴い、送達電極とセンサ電極との間に固定距離を有し、別個のパッドを形成している。好適な実施形態では、2つのパッドの間に柔軟な(compliant)ストリップが存在しており、それは、解剖学的ランドマークに基づいて妥当な患者に特有の位置決めを許すように引き伸ばされ得る。好ましくは、材料は、引き伸ばされると、その伸ばされた構成を維持することになる。
【0106】
プローブ
ここで
図23を参照すると、デバイスの実施形態が示されており、そこでは、1つまたは複数の遠隔プローブ(それは、表面電極、スピーカ、および/またはマイクロホンとして具現化されている)が、ケーブルを使用してインピーダンスプレチスモグラフ47に接続されているベスト46の中へ一体化されている。この実施形態の利点は、リード線の位置がベストの製造業者によって決定されることであり、したがって、それらが標準化されることである。すなわち、ベストの使用は、リード線構成に関するオペレータのエラーを排除する。代替的な実施形態では、プローブおよびアクチュエータは、ワイヤレスになっている。代替的な実施形態では、ベストは、また、腹部をカバーするリード線を含む。
【0107】
ここで
図24を参照すると、デバイスの実施形態が示されており、そこでは、1つまたは複数の遠隔プローブがアレイ48の中へ一体化されており、電極同士は、患者の皮膚の上に優しく押し付けられる柔軟な(compliant)布または網細工によって接続されている。この構成の利益は、電極間距離がアレイ製造業者によって標準化され、したがって、電極構成に関するオペレータ依存のエラーを少なくすることである。
【0108】
ここで
図25を参照すると、デバイスの実施形態が示されており、そこでは、1つまたは複数の遠隔プローブが、ストリングによって互いに接続されており、急速および効果的に患者の皮膚に適用され得るネット49を形成している。前記実施形態の利益は、電極間距離、および、互いに対する電極の相対的位置が標準化され、したがって、オペレータ依存のエラーの影響を小さくすることである。別の実施形態では、ストリングの弾性的な伸びが、異なる体形のためのプローブ調節を提供する。好ましくは、伸縮性の材料は、材料の上で読み取られること、または、伸縮に関する情報をデバイスに中継することのいずれかによって、距離の測定を提供することになる。好ましくは、ストリングは、ネットのそれぞれのストリングが引き伸ばされている長さについての情報を中継するためにプログラマブルエレメントに機能的に接続されている、線形の変位トランスデューサなどのような変位センサまたは歪みゲージを取り付けることになる。好ましくは、プログラマブルエレメントは、変位センサからそれに中継されたリード線設置の変化を考慮するようにさらにプログラムされている。
【0109】
ここで
図26を参照すると、デバイスの実施形態が示されており、そこでは、1つまたは複数の遠隔プローブが、遠隔送信機50に機能的に接続されており、プログラマブルエレメント51が、遠隔受信機に接続されている。システムに関して提案される通信プロトコルは、限られたスコープから、いくつかのノードの広大にネットワーク接続されたシステムレンジにわたる。これは、無限の数の使用ケースに関する基礎を提供する。遠隔通信プロトコルの1つの実施形態では、Bluetooth v4.0などのような近いレンジの高周波数システムが使用される。これは、RS-232ワイヤード接続が提供することになるもののワイヤレスソリューションをエミュレートする。これは、近いレンジにある2つのデバイスの通信を急速および安全に可能にする。別の実施形態では、おおむね802.11に準拠したプロトコルが、最も近いデバイスから成るメッシュネットワークを発生させるために使用される。このメッシュネットワークは、所与のユニットの中のデバイスのすべてを組み込む。個々のノードの追加がレンジを増加させるので、ユニットサイズは限界を伴わない(ネットワークがノード自身によって構成および支配されるので(基礎をなすインフラストラクチャーが要求されない)、範囲およびユニットサイズは、直接的に比例する)。巨大な異常値だけが、このネットワークから省略される。これは、異常値が省略されるようにするために、現在接続されている最も近いノードが、明白に、異常値が通信するためのレンジ外になければならないこと意味している。これらのサービス、具体的には、ハードウェアは、メインCPUの使用なしに稼働/ポーリングすることができる(バッテリの使用を最小化する)。これは、有用である。その理由は、デバイスが読み取られていないときに、それは、単にリレーノードとして作用するだけであるからである。システムの性質は、電力要件を最小化し(サービスの寿命を増加させる)、非対称のリンク/パスをサポートし、ネットワークに利益をあたえるためにそれぞれのノードが複数の役割を果たすことを可能にする。
【0110】
別の実施形態は、LANまたはWANネットワークへの接続を要求し、遠隔手順は、ユーザ駆動のイベント(ボタンを押すなど)によって触媒される。これは、デバイス特有の情報と連結されているそれぞれのフォンの上に、データトランザクションのデジタル受信に関して、一意の識別子を発生させる。この情報は、デバイスの場所を区別するために、GPSロケーションによって補足される。データ送信が、GPS情報と連結された正確な時間において両当事者によって開始させられるので、システムは、ロケーション、UID、およびデバイス識別子によって、両当事者を確実に識別することができる。すべての方法が、アノニミティヒューリスティクスおよび暗号化によって安全にされる。これは、データのスヌーピング、すなわち、「中間者」攻撃によって提示される問題を防止することになる。
【0111】
デバイスの別の実施形態は、身体の中に移植された1つまたは複数の電気的なプローブを利用する。本発明の1つの実施形態では、移植されたプローブは、心臓ペースメーカに接続されている。別の実施形態では、移植されたプローブは、内部の自動除細動器に接続されている。別の実施形態では、移植されたプローブは、横隔神経刺激装置に接続されている。別の実施形態では、移植されたプローブは、鎮痛薬、局所麻酔、バクロフェン、または他の薬物のための送達ポンプに接続されている。別の実施形態では、移植されたプローブは、別の移植された電子デバイスに接続されている。好ましくは、接続は、ワイヤレスになっている。
【0112】
ここで
図33を参照すると、電極構成XidMarが示されている。構成XidMarは、2つのチャネル構成であり、電極1が、剣状突起の上にあり、電極4が、水平方向に電極1に整合して、右側中腋窩線の上にある状態になっている。電極2aは、電極1の左へ1インチにあり、一方、電極3aは、電極4の右へ1インチにある。電極2aおよび3aは、チャネルaの上の電圧信号を記録するために使用される。チャネルbは、電極2bおよび3bを使用して記録され、電極2bおよび3bは、対応するチャネルaの電極の下方へ1インチに見出される。
【0113】
図34は、StnMar電極構成を示しており、StnMar電極構成において、電極1は、胸骨切痕の直ぐ下方に位置しており、電極4は、水平方向に剣状突起と整合して、右側中腋窩線の上に位置する。電極2aは、電極1の下方へ1インチに位置しており、電極3aは、電極4の右へ1インチに位置する。チャネルbは、チャネルaに対しておおよそ45度の角度にある。電極2bは、剣状突起の上に位置しており、電極3bは、電極3aの下方へ1インチに位置する。
【0114】
図35は、StnIMar電極場所を示しており、StnIMar電極場所において、電極1は、胸骨切痕の直ぐ下方に位置しており、電極4は、胸郭の底部において、下(inferior)右側中腋窩線の上に位置する。電極2aは、電極1の下方へ1インチの位置に位置しており、電極3aは、電極4の右へ1インチに位置する。電極2bは、剣状突起の上に位置しており、電極3bは、電極3aの下方へ1インチに位置する。
【0115】
図36は、McrMar電極構成を示しており、McrMar電極構成において、電極1は、鎖骨の直ぐ下方において右側鎖骨中線の上に位置しており、電極4は、水平方向に剣状突起と整合させられて、右側中腋窩線の上に位置する。電極2aは、電極1の下方において1インチの位置に位置しており、電極3aは、電極4の右へ1インチに位置する。電極2bは、剣状突起の上に位置しており、電極3bは、電極3aの下方へ1インチに位置する。
【0116】
図37は、McrIMar電極構成を示しており、McrIMar電極構成において、電極1は、鎖骨の直ぐ下方において右側鎖骨中線の上に位置しており、電極4は、おおよそ胸郭の底部において下(inferior)中腋窩線の上に位置する。電極2aは、電極1の下方に1インチの位置に位置しており、電極3aは、電極4の右に1インチの位置に位置する。電極2bは、剣状突起の上に位置しており、電極3bは、電極3aの下方に1インチの位置に位置する。
【0117】
図38は、MclMar電極構成を示しており、MclMar電極構成において、電極1は、鎖骨の直ぐ下方において左側鎖骨中線の上に位置しており、電極4は、水平方向に剣状突起と整合させられて、右側中腋窩線の上に位置する。電極2aは、電極1の下方に1インチの位置に位置しており、電極3aは、電極4の右に1インチの位置に位置する。電極2bは、剣状突起の上に位置しており、電極3bは、電極3aの下方に1インチの位置に位置する。
【0118】
図34-
図38に示されている電極構成は、チャネルaもしくはチャネルbのいずれかを利用するか、または、その両方を同時に利用し、データを測定することが可能である。
【0119】
本発明の1つの実施形態では、システムは、ソース電極および1つまたは複数の電圧センシング電極の1つまたは複数のペアを利用するインピーダンストモグラフィスキャンを実施するように構成されている。スキャンは、皮膚に適用される可動電極によって、一連の測定値をとることによって完了される。可動電極は、少なくとも1つの他の電極とともに、インピーダンス読み取りのための電圧測定ペアを形成する。可動電極は、ヒドロゲルでコーティングされ得、ヒドロゲルは、複数回適用され得る。本発明の別の実施形態では、電極は、それぞれの用途のためのヒドロゲル分注器を含む。この実施形態では、ヒドロゲルは、内部ポーチまたはシリンジの中に貯蔵されており、機械的なボタンまたはスクイーズチューブなどのような、デバイスが存在しており、それは、ユーザが電極の上にヒドロゲルを分注することを可能にする。本発明のデバイスの1つの実施形態では、システムは、ユーザインターフェースの上にまたは参照カードの上に示されているような、身体の上の所定のポイント間で可動電極をスイープするように、ユーザに指示する。別の実施形態では、ユーザは、ポイントごとに可動電極を置くことが可能であり、システムは、カメラ、ソナー、レーダまたは他のデバイスを使用して、電極の場所を感知する。
【0120】
電極のしっかりとした接着は、インピーダンス読み取りの品質を決定する。本発明の1つの実施形態では、システムは、接着の品質を検出し、接着のインデックスをユーザに報告する。別の実施形態では、システムは、インデックスが特定の閾値を超える場合には、接着に伴う問題を報告する。本発明の好適な実施形態では、真っ直ぐな線で配列された複数の電圧センシングチャネルが存在している。これは、1列に配列されている5つの電極を使用して達成され得る。文字によって5つの電極を参照すると、電極AおよびBは、線の一方の端部に互いに近くに設置されており、電極DおよびEは、線の他方の端部に互いに近くに設置されている。ペアA-BおよびペアD-Eは、互いから3-24”離れて設置され得る。電極Cは、2つのペアの間のどこかに設置されている。インピーダンスは、3つのチャネル、B-C、C-D、およびB-Dの上で測定される。すべての電極が十分に接着されている場合には、ZBCおよびZCDの合計は、ZBDの近くになるはずである。測定値間の差、または、全測定値に対する比率が、接着品質のインデックスを決定するために使用され得る。
【0121】
本発明の1つの実施形態では、電極Cは、電極の他のペアと真っ直ぐな線の中に設置されてはいない。このケースでは、インピーダンスは、チャネルB-CおよびB-Dの上で測定される。2つのチャネルの上のインピーダンスZBCとZBDとの間の差は、接着品質のインデックスを決定するために使用される。本発明の別の実施形態では、電極AおよびEを通して駆動される電流が測定される。電流測定値、または、電流測定値の変動が、電極AおよびEに関する接着のインデックスを決定するために使用され得る。
【0122】
電気的なコネクターは、インピーダンス測定値に影響を与え得る固有のキャパシタンスを有している。本発明の1つの実施形態では、システムは、インピーダンス測定サブシステムと患者に接続された電極との間のケーブル、リード線、または他の電気的な接続のキャパシタンスを補償する。1つの実施形態では、これは、インピーダンス測定サブシステムの中のインダクタによって達成される。別の実施形態では、インピーダンス測定サブシステムを患者に接続された電極パッドに接続する患者ケーブルまたはリード線の中へ、補償インダクタが一体化される。別の実施形態では、補償インダクタは、一体化された電極PadSetの中へ埋め込まれている。別の実施形態では、寄生キャパシタンスCcを補償するように選択された値を有するキャパシタC
1およびC
2から構成されるHowland回路の修正が使用される(
図39を参照)。
【0123】
高い臨床的関連性および呼吸曲線の良好な定義を実現するために、インピーダンス測定サブシステムは、高い分解能によって、相対的に高いベースラインバックグラウンドの上の患者インピーダンスの小さい変動を決定することができるべきである。したがって、絶対的なおよび相対的なインピーダンス測定誤差に関する厳しい要件が存在している。十分な精度を取得するために、以下の設計解決策のうちの1つまたは複数が使用され得る:(1)電子的な設計が、高精度の/低い温度ドリフトの電子コンポーネントに基づくことが可能である;(2)高精度のアナログディバイダは、測定された電圧とモニタリングされたソース電流との間の比率を取得するために使用され得、ソース電流の中の変動を補償する;(3)同じ電圧が、ソース電流発生のために、および、ADC基準として使用され得、基準電圧の変動を補償する;(4)外部の較正されたインピーダンス標準が、インピーダンス測定サブシステムパフォーマンスを較正および確認するために使用され得る。較正されたシステムは、好ましくは、患者測定のために使用される同じ幹線ケーブルによって、インピーダンス標準に接続され、全体的なシステムパフォーマンスの確認を提供する。(5)インピーダンス測定サブシステムは、内蔵型の較正されたインピーダンス標準を有することが可能であり、オンサイトの確認および再較正を可能にする。1つの実施形態では、内蔵型の標準は、外部サービスポートを介してシステムに取り付けられている。幹線ケーブルの「患者」端部をデバイスの上のサービスポートに接続して戻すことによって、および、デバイスのGUIを通して利用可能な較正手順を走らせることによって、較正が遂行される。(6)較正は、測定される患者インピーダンスの全体的な範囲にわたって、内蔵型の標準のインピーダンスを変化させることによって完了させられ、デバイスモデルを導出することが可能であり、それは、患者測定の間に使用され、高精度の結果を達成することが可能である。(6)デバイスの温度モデルは、デバイスをサーモスタットの中へ設置することによって、および、内部デバイス温度に応じて測定された値の中のドリフトを測定することによって、導出され得る。内部デバイス温度は、内蔵型の熱センサを介してモニタリングされ得る。患者測定の間に、測定補正が、熱センサの読み取り値を使用して計算され、測定値に適用される。
【0124】
アクティブ音響システム
肺の体積の音響的測定のために、好ましくは、デバイスは、少なくとも1つのスピーカおよび少なくとも1つのマイクロホンを含む。好ましくは、少なくとも1つのスピーカおよびマイクロホンは、ネット、ベスト、またはアレイとして配列されている。好ましくは、少なくとも1つのスピーカは、別個の周波数間で切り換わり、または、広いスペクトルノイズを発する。好ましくは、多数のスピーカが、同時にアクティブになり、異なる音響信号を発する。好ましくは、多数のマイクロホンが、同時にアクティブになり、測定される胸郭の音響的属性を記録し、胸郭の音響特性は、肺の体積および肺の病変に相関付けされ得る。好ましくは、マイクロホンは、また、喘鳴、スクウォーク、およびクラックルなどのような、肺の中から生じる音を記録し、それは、多数の慢性のおよび急性の肺疾患のインジケータとなることが可能である。好ましくは、肺の音は、それらがアクティブ信号によって修正されるときに、記録および識別される。好ましくは、アルゴリズムが、喘鳴、スクウォーク、およびクラックルの数および位置を分析し、喘息および他の肺疾患を予測する。1つの実施形態では、音響データが、インピーダンスデータと組み合わせられ、呼吸サイクルに対して音響的測定のタイミングをとることを助ける。1つの実施形態では、音響データは、疾患の診断またはモニタリングの目的のために、インピーダンスデータと組み合わせられる。これの例は、鬱血性心不全であり、鬱血性心不全では、堅さが、インピーダンス曲線の中に特徴的な変化を生成させ、また、鬱血性心不全に関連付けられる肺の音の変化も存在する。データの組合せが、追加的な情報を提供する。
【0125】
ここで
図20を参照すると、スピーカ38が患者の胸部に取り付けられており、音減衰用のフォーム39によって絶縁されている、デバイスが示されている。マイクロホン40は、患者の背中に取り付けられており、音減衰用のフォームによって絶縁されている。スピーカおよびマイクロホンの両方が、たとえば、MATLABなどのような分析ソフトウェアがインストールされたコンピュータなど、プログラマブルエレメント41に機能的に接続されている。出力エレメントは、患者の呼吸に関するデータをリアルタイムでオペレータに提供する。スピーカは、音響信号を発生させ、音響信号は、マイクロホンによって記録される。信号発生および記録は、プログラマブルエレメントによってタイミング調整および同期化される。分析ソフトウェアは、記録された音波の特徴を使用し、胸郭の音響的属性を評価し、それは、肺の体積を推定するために使用され得る。前記信号特徴は:周波数依存型の位相シフトおよび振幅減衰を、限定ではなく、含む。好ましくは、スピーカは、音の別個の周波数の間で切り換わり、または、広いスペクトルのホワイトノイズを発生させる。
【0126】
デバイスの別の実施形態では、マイクロホンは、クラックル、スクウォーク、および喘鳴などのような、肺の中で生じる音を検出するためにも使用される。1つの実施形態では、デバイスのプログラマブルエレメントは、ソフトウェアアルゴリズムを用い、関連の音響パターンを検出し、医師に知らせることになる。1つの実施形態では、音響システムは、インピーダンスベースのシステムともインターフェース接続することになる。
【0127】
ここで
図21を参照すると、デバイスの実施形態が示されており、そこでは、マイクロホン42のアレイが、胸郭の異なる領域からの伝達された音を記録するために使用されている。好ましくは、マイクロホンは、同時に記録する。好ましくは、プログラマブルエレメント43は、分析のために最良の信号対ノイズ比を伴うマイクロホンを選択する。好ましくは、プログラマブルエレメントは、肺の体積の推定の精度を最大化するために、および、腫瘍形成、出血、および組織悪化を含む、肺の病変を突き止めるために、異なるチャネルからのデータを組み合わせる。
【0128】
ここで
図22を参照すると、デバイスの実施形態が示されており、そこでは、スピーカ44のアレイが、音波を発生させるために使用されている。好ましくは、プログラマブルエレメント45は、スピーカのそれぞれを個別に制御し、また、デバイスが多くの異なる方向における胸郭の音響的属性を測定することを可能にするように、スピーカ間で切り換える。好ましくは、プログラマブルエレメントは、一意の周波数の信号によって、それぞれのスピーカを同時にアクティブ化させることになり、それぞれのスピーカからの信号が、記録される信号の中で分離され得るようになっている。好ましくは、プログラマブルエレメントは、肺の体積の推定の精度を最大化するために、および、腫瘍形成、出血、および組織悪化を含む、肺の病変を突き止めるために、異なるチャネルからのデータを組み合わせる。
【0129】
患者データの入力
好ましくは、デバイスソフトウェアは、ユーザフレンドリなGUI(グラフィカルユーザインターフェース)を維持している。好ましくは、GUIは、カラーコーディングシステムを含み、オペレータが急速に診断して患者のケアのための決定を行うことを補助する。1つの実施形態では、GUIは、数値的なRVM測定を提示する。1つの実施形態では、GUIは、呼吸充足度インデックス(RSI)を提示する。1つの実施形態では、GUIは、呼吸波形を提示する。
【0130】
デバイスのすべての実施形態に存在するソフトウェアにおいて、患者データは、好ましくは、検査の前にユーザによって記録される。ユーザは、患者データを入力するように促される。記録されるデータは、以下のもの:患者の身長、体重、最大吸気時の胸囲、呼気終末時の胸囲、年齢、性別、民族、および喫煙歴のうちのいずれかまたはすべてを含む。1つの実施形態では、検査のときの姿勢も、プログラマブルGUIの中のデバイスの中へ入力される。姿勢の変化は、異なる呼吸パターンおよび1回換気量につながる可能性がある。デバイスは、背臥位、着席、および起立などのような、姿勢入力を受け入れる。複数の姿勢における患者をテストすることができることは、新生児または衰えた患者などのような、従順でない患者において、有用である。
【0131】
1つの実施形態では、デバイスは、BMIを計算する。好適な実施形態では、デバイスの中のまたはルックアップテーブルの上のアルゴリズムは、「較正係数」を計算し、「較正係数」は、患者サイズおよび体形に関して補正し、普遍的な較正を提供し、絶対的な測定値を送達する。較正係数は、適用されたプローブから記録されるデータと患者情報とを組み合わせることによって取得され得る。好ましくは、プローブの物理的な場所も入力される。データ獲得の間に、較正アルゴリズムは、データおよびその入力された患者情報との一貫性を検証することが可能であり、また、記録されたデータと最も一貫する入力パラメータの組合せを示唆することが可能であり、また、患者の情報を再チェックするようにオペレータに示唆することも可能である。データが獲得されているときに、較正アルゴリズムは、プローブから記録され、および/または、正常または異常としてオペレータによって提供された信号パターンに基づいて、再調節を示唆および/または実施することが可能である。別の実施形態では、デバイスは、BSA、または、身体の形状もしくはサイズの別のインデックスを計算する。1つの実施形態では、システムは、上述の患者データに基づいて、患者の結果の予測値を表示する。1つの実施形態では、デバイスは、また、表示される結果の中にこれらの値に対するパーセンテージ比較を提供し、Knudsen、Crapo、または他のものによって生成されたスパイロメトリデータの標準的な表に基づいて、患者パラメータまたは条件を臨床医にさらに知らせる。1つの実施形態では、患者の人口統計および/または身体の測定値が入力され、デバイスは、その患者のためのリード線構成、および/または、リード線のスペーシング、および/または、リード線のサイズもしくは特性を示唆する。
【0132】
1つの実施形態では、デバイスは、信号変化を査定し、変化に応答して、表示パラメータ、較正パラメータ、および/または中間計算を調節する。1つの実施形態では、デバイスは、リストの中の任意のアイテムのベースライン、平均、最小、最大、ダイナミックレンジ、振幅、レート、深さ、または、2次導関数もしくは3次導関数を含む、信号の1つまたは複数の特徴の中の変化を査定する。
【0133】
1つの実施形態では、デバイスは、生のまたは処理されたインピーダンストレースを呼吸体積トレースへ変換するための較正係数を計算する。1つの実施形態では、較正係数は、生理学的なおよび人口統計学的なパラメータの範囲から計算される。1つの実施形態では、本発明のデバイスは、パラメータの変化に応答して、較正係数を自動的に調節する。1つの実施形態では、デバイスは、呼吸速度、ベースラインインピーダンス、または平均インピーダンスのうちの1つまたは複数に応答して、較正係数を自動的に調節する。
【0134】
1つの実施形態では、デバイスは、係数の計算における呼吸速度、ベースラインインピーダンス、もしくは平均インピーダンス、または、較正係数に関する補正因子のうちの1つまたは複数を含む。較正係数が、呼吸速度、ベースラインインピーダンス、または平均インピーダンスなどのような、時間で変わりうるパラメータに基づいている実施形態では、デバイスは、パラメータの変化を考慮するように、較正係数を自動的に調節する。
【0135】
1つの実施形態では、デバイスは、信号の変化の査定に基づいて、較正係数を調節する。較正係数が生のインピーダンス信号を呼吸体積トレースへ変換するために使用される1つの実施形態では、較正係数は、部分的に呼吸速度に基づいている。
【0136】
1つの実施形態では、デバイスは、データセットの変化に応答して、データセットの表示を調節する。データセットは、センサからの生の信号、センサからの処理された信号、または、計算されたメトリクスもしくはパラメータから構成されている。
【0137】
1つの実施形態では、デバイスは、データセットの変化に応答して、表示されるチャートの上のy軸の最小を調節する。1つの実施形態では、表示されるチャートの上のy軸の最小は、データセットの最小に等しい。1つの実施形態では、表示されるチャートの上のy軸の最小は、特定のウィンドウの中のデータセットの最小に等しい。1つの実施形態では、データセットの関連の最小が計算されるウィンドウは、データが表示されるウィンドウと同じである。1つの実施形態では、表示されるチャートの上のy軸の最小は、表示ウィンドウの中のデータセットの最小から、最小値の係数またはパーセンテージを減じたものに等しい。
【0138】
1つの実施形態では、デバイスは、データセットの変化を考慮するために、表示されるデータセットのy軸の範囲を調節する。1つの実施形態では、表示されるデータセットのy軸の範囲は、データセットのダイナミックレンジに等しい。1つの実施形態では、表示されるデータセットのy軸の範囲は、特定のウィンドウの中のデータセットのダイナミックレンジに等しい。1つの実施形態では、表示されるデータセットのy軸は、特定のウィンドウの中のデータセットのダイナミックレンジに、ダイナミックレンジの定数またはパーセンテージを加えたものに等しい。
【0139】
1つの実施形態では、デバイスは、データセットの特徴の統計に基づいて、表示されるデータセットのy軸の範囲を調節する。1つの実施形態では、デバイスは、信号の平均振幅に、係数が掛けられた、特定のウィンドウの中の信号の振幅の分散を加えたものに等しくなるように、y軸の範囲をセッティングする。1つの実施形態では、デバイスは、信号の平均振幅に、係数が掛けられた、特定のウィンドウの中の信号の振幅の分散を加えたものに等しくなるように、表示されるデータセットのy軸の範囲を調節する。1つの実施形態では、デバイスは、データセットの中の呼吸の振幅を計算する。次いで、デバイスは、高い端部における異常値、低い端部における異常値、または、測定される意図したパラメータと関係のないように見える特徴を有する異常値を除去する。次いで、デバイスは、データセットの平均振幅に、係数が掛けられた、データセットの振幅の分散を加えたものに等しくなるように、y軸の範囲を調節する。
【0140】
1つの実施形態では、デバイスは、データセットの変化に応答して、データセットのチャートのy軸の中間点を自動的に調節する。1つの実施形態では、デバイスは、特定のウィンドウの中のデータセットの平均に等しくなるように、y軸をセッティングする。別の実施形態では、デバイスは、特定のウィンドウの中のデータセットの中央値に等しくなるように、y軸をセッティングする。1つの実施形態では、デバイスは、y軸の中間点をデータセットの統計の関数の結果にセッティングする。
【0141】
較正方法
較正係数が、新規な方式で計算される。好適な実施形態では、デバイスは、デバイスを自動的に較正する回路およびソフトウェアを含む。1つの実施形態では、較正は、生体電気インピーダンス分析(それは、さまざまな周波数において、1つまたは複数のチャネルの上の組織インピーダンスを測定するプロセスである)を通して獲得されたデータによって補助される。この実施形態では、生体電気インピーダンス分析からのデータは、水分量レベル、ベースラインインピーダンス、および身体組成を、限定ではなく、含む、被験者の特定の特性を計算するために使用され得る。低いレベルの水分量は、身体の電気インピーダンスをより大きくする。身体の中の高いレベルの脂肪も、身体の平均電気インピーダンスの増加を引き起こすことになるが、電気が最小の抵抗の経路を通過するので、全体的なインピーダンスの減少を引き起こすこともありそうである。筋肉は、脂肪よりもはるかに血管が多く、より多くの導電性の電解質を含んでおり、したがって、筋肉質の患者の身体は、それほど筋肉質でない同様のサイズの人よりもはるかに低い電気インピーダンスを有することになる。これらの入力に基づいて較正因子をスケーリングすることは、較正因子をより正確にする。
【0142】
本発明のデバイスの較正は、好ましくは、身体の組織の代謝要件に基づいて、呼吸速度、1回換気量、および分時換気量に関する予測を含む。予測は、好ましくは、患者の測定体重または理想体重に、単位体重によって要求される空気の体積、または、毎分の空気の体積を掛けることを伴う。理想体重は、患者の身長、人種、および/または年齢から決定され、さらに、Devine、Robinson、Hamwi、およびMillerの公式のうちの1つまたは複数によって決定され得る。
【0143】
1つの実施形態では、較正係数は:性別、年齢、および人種を、限定ではなく、含む、患者の人口統計学的情報から計算される。別の実施形態では、較正係数は、体型、身長、体重、呼吸サイクルの異なるポイントにおいて測定される胸囲、体脂肪率、身体の表面積、およびボディマスインデックスを、限定ではなく、含む、患者の生理学的測定値から計算される。別の実施形態では、較正係数は、異なるポイントにおいて記録されるECG信号の測定値に基づいて計算される。より詳細には、ECGは、胸郭および腹部の上のさまざまな場所における電極によって記録される。1つの実施形態では、異なる電極における差動電圧の記録が、平均ベースラインインピーダンスを計算するために使用され、また、さまざまな方向における患者の胸郭の抵抗率を推定するために使用される。別の実施形態では、較正係数は、2極構成、4極構成、または、2つ以上のリード線を含む他の構成で、電極間で測定されるような、外部電流源に対する患者のベースラインインピーダンスに基づいて計算される。これらの電極の場所は、身体全体にわたる構成の範囲に設置される。別の実施形態では、人口統計学的特性が、較正のためにベースラインインピーダンス測定値と組み合わせられる。別の実施形態では、解剖学的情報が、較正のためのベースラインインピーダンス測定値と組み合わせられる。好適な実施形態では、スパイロメータまたはベンチレータの上に記録される既知の体積が、人口統計学的情報およびベースラインインピーダンスと組み合わせられる。そのような実施形態では、システムは、(スパイロメータ、ベンチレータ、または他の同様のデバイスを使用して)インピーダンスおよび体積を同時に測定することが可能である。次いで、システムは、変換アルゴリズムへの入力として、インピーダンスと体積との間の特定の変換をコンピューティングする。
【0144】
別の実施形態では、追加的なパラメータに基づく動的較正が実現され、追加的なパラメータは、インピーダンス測定サブシステムを使用して取得され、全体的な患者インピーダンス(皮膚インピーダンスおよび脂肪層インピーダンスを含む)、内部器官インピーダンス(ベースラインインピーダンス)、およびその変形例、ならびに、呼吸曲線の形状から構成される。
【0145】
継続的なまたは間欠的な較正のチェックが行われることが好ましい。デバイスの好適な実施形態では、較正は、それぞれのサンプルの記録を伴って再計算される。別の実施形態では、デバイスは、タイマ機能に基づいて定期的に再較正される。別の実施形態では、ベースラインインピーダンスがベースラインから特定の閾値(たとえば、10%など)だけ変化するときはいつでも、デバイスが再較正される。別の実施形態では、1回換気量または分時換気量がベースラインレベルまたは予測レベルから特定の閾値(たとえば、20%など)だけ変化するときはいつでも、デバイスが再較正され、ここで、予測値は、Krappo、Knudson、および他のものによって公開された公式を使用して計算される。
【0146】
継続的なまたは間欠的な較正のチェックが行われ得る。好ましくは、これは、内部ファントムへの内部チェックを伴う。
【0147】
好ましくは、継続的なまたは間欠的なベースラインインピーダンスのチェックは、較正を再較正または再確認するために使用される。好ましくは、それぞれの半胸郭からの継続的なまたは間欠的な読み取り値は、個別にまたは組み合わせて、再較正するために使用されるか、または、再較正のためのデータを提供するために使用される。
【0148】
好ましくは、再較正は、自動的に実施されるか、または、要求される修正を介護人にアラートすることによって、もしくは、たとえば、ベンチレータもしくはスパイロメータによる再較正など、介護人によってとられるべき追加的なステップを要求することによって実施される。
【0149】
1つの実施形態では、較正は、測定電極ペアを通して行われる。別の実施形態では、較正は、追加的な電極を通して行われる。別の実施形態では、較正は、測定電極を別の目的で使うことによって、および、センサを送達電極として使用し、送達電極をセンサ電極として使用することによって、全体的にまたは部分的に行われる。
【0150】
好ましくは、較正電極は、腹部および胸郭の上において、特定の場所に設置され、および/または、特定の距離だけ離して設置されている。別の実施形態では、リード線のうちの1つまたは複数は、額の上に特定の距離だけ離して設置されている。デバイスの別の実施形態では、心臓の体積の推定を伴って、または、心臓の体積の推定を伴わずに、許容可能な電極構成を横切るICG信号の大きさが、ベースラインインピーダンスを決定し、呼吸体積に対してRVMデータを較正するために使用される。好ましくは、較正係数は、以前に述べられた5つの方法の組合せを使用して計算される。
【0151】
普遍的な較正
呼吸およびインピーダンス変化の間の関係は、高度に線形になっているが、それらの値の間の「スケーリングファクタ」は、患者ごとに著しく変化する。また、同じ患者に関して、日ごとの変化も存在する。日ごとの変化は、RMVデバイスによって測定される生理学的なパラメータにある程度相関付けされ、著しく補償され得る。同じ患者に関する残余の日ごとの変化は、典型的な測定誤差よりも小さい。好適な実施形態では、この残余の変化は、既存の補助的な測定によって管理され得る。好適な実施形態では、この残余の変化は、以前に説明された方法のいずれかによる継続的なまたは間欠的な再較正を使用して管理され得る。
【0152】
1つの実施形態では、「スケーリングファクタ」は、患者間で約1桁ほど変化する。好適な実施形態では、このファクタは、スパイロメータまたはベンチレータデータまたは他のデータセットによる予備的な較正によって精密に決定され得る。好適な実施形態では、RMVデバイスは、予備的な較正なしに、呼吸パラメータの測定のために使用される。好ましくは、測定可能な患者生理学的なパラメータからこのファクタを推論する信頼性の高い手順が、較正のために使用される。そのような手順は、十分な精度の「スケーリングパラメータ」の決定が、提案されるデバイス用途のすべてに関しての測定要件を満足させることを可能にする。
【0153】
1つの実施形態では、インピーダンスプレチスモグラフィ、身体の上に設置された加速度計、ビデオイメージ、音響信号、または、胸郭、腹部、もしくは他の身体パーツの運動をトラッキングする他の手段を含む技術から導出される呼吸運動の測定値は、呼吸状態を査定する別の技術によって較正または相関付けされる。好適な実施形態では、インピーダンス測定値から導出される呼吸運動検出は、肺活量測定によって較正される。1つの実施形態では呼吸運動検出は、呼気終末CO2測定値によって較正または相関付けされる。1つの実施形態では、呼吸運動検出は、フローおよび/または体積のベンチレータ測定値によって較正または相関付けされる。1つの実施形態では、呼吸運動は、全身プレチスモグラフによって較正される。1つの実施形態では、所与の患者のベースラインRVM測定値は、標準的な肺活量測定値と併せてとられ、その特定の患者に関する較正係数が導出される。後に、手術後期間において、または、その他において、較正係数が、その患者に関して、定量的な肺の体積の測定値を取得するために使用される。好適な実施形態では、そのような較正係数は、継続的なまたは間欠的な較正のために、電流ベースラインインピーダンスまたは他の生理学的測定値と組み合わせられる。1つの実施形態では、手術前の測定値が、較正係数を導出するために使用され、それは、次いで、単独で、または、他のデータと組み合わせて、定量的な肺の体積の測定値を取得するために使用され、外科手術後または他の状況における患者の管理において使用する。別の実施形態では、較正係数は、機械的なベンチレータから記録された測定値から、挿管されている患者について取得された肺の体積またはフローの測定値から導出される。
【0154】
好ましくは、デバイスは、スパイロメータ、ベンチレータ、またはニューモタコメータにリンクされており、体積またはフローの較正を提供する。好ましくは、デバイスは、スパイロメータ、ベンチレータ、またはニューモタコメータにリンクされており、体積の較正を提供する。1つの実施形態では、オペレータは、以下のもの:少なくとも1つの1回呼吸サンプル、少なくとも1つの努力肺活量(FVC)サンプル、分時換気量サンプルの少なくとも1つの測定、および少なくとも1つの最大努力性換気量(MVV)サンプルのうちの1つまたは複数の簡潔な呼吸テストレジメンに、患者を通すことになる。デバイスは、インピーダンス測定に関連して、スパイロメータテストの結果に基づいて較正されることになる。好適な実施形態では、較正は、1回呼吸の間に行われた測定から実現されることになる。とりわけ、手順に従うことができない患者に関して、簡単な1回呼吸サンプルがとられることになり、それは、コーチングまたは従順性を要求しない。1回呼吸サンプルは、15秒、30秒、60秒、または別の時間フレームにわたって収集される。
【0155】
1つの実施形態では、所与の個人に関する較正係数が、組み合わせられた肺活量測定およびRVMデータに基づいて計算され、将来の時点において行われるRVM測定に関して絶対的な体積測定を送達するために適用される。好ましくは、この絶対的な体積測定は、将来の時点において、ハードウェアに固有の較正能力およびデバイスから導出される現在の測定値を使用して、検証または修正されることになる。好適な実施形態では、患者人口統計、Knudsen、Crapo、および他のもの業績に見出されるさまざまな患者人口統計に関する既存の正常な肺活量測定データ、ならびに/または、他の解剖学的なまたは生理学的測定値に基づいて、アルゴリズムが、RVMデータに適用され、普遍的な較正を提供し、スパイロメータまたはベンチレータによる個々の較正を必要とすることなく、絶対的な体積測定を送達することが可能である。
【0156】
好ましくは、デバイスは、ECGまたはICGデータと併せて使用され、心拍数およびSNRなどのような、ECGおよびICGから導出されるパラメータを利用することによって、インピーダンスデータのさらなる較正を作り出すことが可能である。好ましくは、ECGまたはICGデータは、適正な電極設置を検証することを助けることになる。別の実施形態では、心臓の電気的な活動が、デバイス較正を強化するために使用される。好ましくは、デバイスは、以下の心臓の、肺の、および、他の生理学的パラメータおよび特徴:心拍数(HR)、ベースラインインピーダンス、インピーダンスの大きさ、前駆出期(PEP)、左心室駆出時間(LVET)、収縮時間比(STR)、1回拍出量(SV)、心拍出量(CO)、心係数(CI)、胸郭内流体含有量(TFC)、収縮期血圧(SBP)、拡張期血圧(DBP)、平均動脈圧(MAP)、平均中心静脈圧(CVP)、全末梢血管抵抗(SVR)、心拍数×収縮期血圧(RPP)、ヘザーインデックス(HI)、1回拍出量インデックス(SVI)、および波形精度値(WAV)を測定することが可能である。これらの特徴に関して患者特性から計算されるベースライン値は、較正係数を導出するために、および、全体的な呼吸充足度のインデックスを計算するために利用される。逆に、RVMデータは、心拍数(HR)、ベースラインインピーダンス、インピーダンス大きさ、前駆出期(PEP)、左心室駆出時間(LVET)、収縮時間比(STR)、1回拍出量(SV)、心拍出量(CO)、心係数(CI)、胸郭内流体含有量(TFC)、収縮期血圧(SBP)、拡張期血圧(DBP)、平均動脈圧(MAP)、平均中心静脈圧(CVP)、全末梢血管抵抗(SVR)、心拍数×収縮期血圧(RPP)、ヘザーインデックス(HI)、1回拍出量インデックス(SVI)、および波形精度値(WAV)などのような、ICGデータの精度または有用性を強化するために使用され得る。
【0157】
とりわけ、より複雑な手順に従うことができない患者に関して、安静時の呼吸の簡単な1回呼吸サンプルがとられ、それは、コーチングまたは従順性を要求しない。これらのデータの分析は、他の方法では取得できない肺の生理機能および呼吸状態に関する情報を提供する。
【0158】
ここで
図8を参照すると、両方とも同じプログラマブルエレメント33に機能的に接続されているインピーダンスプレチスモグラフ31およびスパイロメータ32が示されている。スパイロメータからの体積データは、好ましくは、インピーダンスプレチスモグラフのインピーダンス読み取り値によって、同時にまたはほぼ同時にサンプリングされる。ここで
図9を参照すると、ベンチレータ34およびインピーダンスプレチスモグラフ35に接続されている患者が示されており、ベンチレータ34およびインピーダンスプレチスモグラフ35の両方とも、プログラマブルエレメント36に機能的に接続されている。ベンチレータの体積は、インピーダンスプレチスモグラフのインピーダンス読み取り値と同時にサンプリングされる。ここで
図10のグラフを参照すると、さまざまな呼吸操作を受けている所与の患者に関して、体積対インピーダンスのグラフが示されており、一方、データは、インピーダンスプレチスモグラフおよびスパイロメータを使用して同時に収集された。
図11によって表されている、時間に対する体積のトレースは、正常な呼吸である。
図12によって表されているトレースは、ゆっくりとした呼吸であり、
図13によって表されているトレースは、不安定な呼吸である。1つの実施形態では、最良適合の線37の傾斜が、インピーダンスから体積をコンピューティングするために、RVM較正係数として使用される。別の実施形態では、傾斜、形状、および/もしくは他の曲線特性、ならびに/または、患者の他の人口統計学的特性もしくは体形特性を利用するアルゴリズムが、較正係数を計算するために使用される。
【0159】
1つの実施形態では、簡単な数値が、デバイスの較正において使用するために、1回換気量または分時換気量に関してベンチレータまたはスパイロメータから取得される。1つの実施形態は、組み合わせられたシステムから構成されており、組み合わせられたシステムでは、RVMおよび体積測定が、スパイロメータ、ニューモタコメータ、ベンチレータ、または同様のデバイスによって、同時に、ほぼ同時に、またはシーケンシャルに行われ、組み合わせられたデータが、所与の個人に関して、RVM測定から絶対的な体積の計算のための個々の較正係数を生成させるために利用される。
【0160】
例:
1つの較正の方法は、小規模の研究においてすでに利用されている。身長、体重、最大吸気および通常呼気における胸囲、胸骨上切痕から剣状突起までの距離、中腋窩線における下中央の鎖骨から胸郭の端部までの距離、中腋窩線における胸郭の端部から腸骨稜までの距離、および、へそにおける腹囲の測定が行われて記録された。電極は、上記に議論されている後側左右、後側右垂直方向、および、前側から後側、およびICG構成に位置決めされた。インピーダンス測定デバイスの4つのプローブは、上記の構成のうちの1つに対応する電極に接続された。ICG位置が、最初に接続され、背臥位位置にある被験者の安静ICGを測定するためだけに使用された。次いで、リード線が、後側左右位置に接続するように再構成された。リード線が正しく位置決めされ、被験者が背臥位になると、被験者は、呼吸テストを実施し、呼吸テストは、約30秒のサンプリング時間にわたって、インピーダンス測定デバイスおよびスパイロメータによって同時に測定された。実施された呼吸テストは、通常の1回呼吸(3回)、不安定な呼吸(2回)、ゆっくりとした呼吸(2回)、努力肺活量(FVC)(3回)、および最大換気量(MVV)(2回)であった。FVCおよびMVVは、ATS手順に従って実施された。通常、不安定、およびゆっくりのテストが、ベルスパイロメータによって測定され、FVCおよびMVVが、タービンスパイロメータによって測定された。好ましくは、較正は、ATS規格を満たす任意のタイプのスパイロメータの上ですべて一緒に実行され得る。すべての呼吸テストが完了すると、リード線は、新しい構成に再位置決めされ、すべての構成がテストされるまで、テストが再び実行された。データは、インピーダンスデータおよびタービンスパイロメータデータに関して、PCに収集され、ベルスパイロメータデータに関して、別のPCに収集された。次いで、データは、1つのPCの上にマージされ、MATLABの中へロードされた。好ましくは、信号処理を利用するMATLABまたは他のソフトウェアパッケージが使用される。好ましくは、データが、PCまたは他のコンピューティングステーションの上にロードされる。データがマージされると、それぞれの呼吸テストからのインピーダンスおよび体積データが、GUIベースのプログラムを使用して、一緒にマッチングされた。相関係数および較正係数は、MATLABを使用してインピーダンスおよび体積トレースを比較することによって、テストランのそれぞれに関して作り出された。次いで、このデータは、Excelにおいて利用され、患者特性に基づいて較正係数を予測した。好ましくは、データは、統計的パッケージを備えた任意のソフトウェアの中へとインポートされて分析され得る。
【0161】
ここで
図14を参照すると、7人の患者に関して、BMI対較正係数のグラフが示されている。BMIが、x軸に示されており、較正係数が、y軸に示されている。構成D(先に説明されているようなPRR設置)における身長と較正係数との間の線形の関係が、較正係数を決定する際のその有用性を示している。また、身長、体重、身体の表面積、人種、性別、胸囲、乳房間距離、年齢などのような、他の生理学的なパラメータも、較正係数との重要な関係を有しており、1つの実施形態では、これらのパラメータのうちのいずれかまたはすべてが、較正係数の正確な決定を補助する。統計的分析およびエキスパートシステムの組合せが、前記生理学的なパラメータの入力に基づいて、所与の患者の相関係数を決定するために使用される。そのような方法は、主成分分析、人工ニューラルネットワーク、ファジー論理、および遺伝的プログラミングおよびパターン分析を含むことが可能である。好適な実施形態では、パイロット研究からのテストデータが、エキスパートシステムをトレーニングするために使用される。好適な実施形態では、患者人口統計および肺機能に関する既存のデータが、エキスパートシステムをトレーニングするために使用される。好ましくは、パイロット研究からのテストデータおよび既存の肺機能データセットの組合せが、エキスパートシステムをトレーニングするために使用される。
【0162】
いくつかのスパイロメータにおいて直面される1つの問題は、体積ドリフトであり、体積ドリフトでは、呼気されたものよりも大きい量の空気が吸気される。追加的に、長時間の肺活量測定検査は、肺のフローに対する抵抗の増加を提供し、それは、生理機能を変更する可能性があり、ならびに/または、呼吸フローおよび/もしくは体積を変化させる可能性がある。これらのパターンは、インピーダンストレースが一定に留まっている状態で、体積が下向きの傾向になるように、体積を変更することによって、テストに関する相関係数を乱す可能性がある。
図15は、体積ドリフトを示す体積曲線を表している。
図16は、そのセットに関する体積対インピーダンスの曲線を示しており、そこでは、体積ドリフトが、プロットのフィットに損傷を与えている。1つの実施形態では、デバイスは、一定の傾斜値を有する線を減算することによって、この問題を補正する。この平均フロー方法を使用した後に、曲線は、
図17において見られるように、上向きまたは下向きの傾向になっておらず、体積対インピーダンスのデータは、
図18において見られるように、はるかにきちんと合った状態に留まっており、体積対インピーダンスのデータは、はるかにきちんと合った状態に留まり、より高い相関関係およびより良好な相関係数を与える。1つの実施形態では、体積ドリフトの減算が、較正において使用される。1つの実施形態では、体積ドリフトの減算が、較正係数を導出する際に使用される。フローを得るために体積曲線を微分し、開始ポイントおよび終了ポイントにおいて同じ肺の体積を有する間隔間のDCオフセットを減算し、そして、次いで、積分して、ドリフトアーチファクトなしのフローを得ることによっても、同じ有用性が実現される。
【0163】
デバイスの別の実施形態では、較正係数は、RVMデータトレースおよび計算値を比較することによって決定され、計算値は、Knudsen、Crapo、または、当業者に知られている他のものによって生成されたスパイロメトリデータの標準的な表に基づいて、患者の1回換気量、FVC、FEV1などに関する予測値と比較される。
【0164】
データ分析
ここで
図19を参照すると、分析ソフトウェアを通したデータの進行を表示するフローチャートが示されている。生データが、インピーダンスメータによって記録され、アナログ-デジタルコンバータを使用してデジタル化され、標準的なデータポートを通してプログラマブルエレメントに入力される。データ処理が、ノイズの信号およびモーションアーチファクトを取り除く。分析アルゴリズムが、体積トレースを計算し、また、:インピーダンス、および/または、計算された体積トレース、呼吸速度、1回換気量、および分時換気量の周波数およびタイムドメインプロットを、限定ではなく、含む、医学関連の情報を計算する。1つの実施形態では、インピーダンスを体積トレースへと変換する分析アルゴリズムは、スパイロメータもしくはベンチレータデータと併せた較正を利用するか、または、別の実施形態では、生理学的なパラメータに基づく較正を利用するかのいずれかである。アルゴリズムが、相関係数を作り出し、相関係数は、インピーダンスデータによって乗算されたときに、インピーダンススケールを体積スケールへと変換する。それに加えて、アルゴリズムは、上述のメトリクスの変動を考慮に入れ、標準化された呼吸充足度のインデックス(RSI)を自動的に計算する。このRSIは、1つもしくは複数の測定値からの情報を一体化する情報を含んでおり、および/または、以下の測定値(すなわち:呼吸速度、呼吸体積、呼吸曲線特性、呼吸変動、または、以前に記述されているような複雑性)の許容可能な値を個別におよび組み合わせて利用し、呼吸充足度または不充足度に関する単一の数字を提供する。
【0165】
1つの実施形態では、以下の方法、すなわち:以前の測定からの患者状態の変化、以前の測定からの患者状態の変化の2次導関数、多変量分析、パターン分析、スペクトル分析、ニューラルネットワーク、個人用の自己学習システム、患者集団用の自己学習システムのうちの1つが、RSIの計算において使用される。
【0166】
1つの実施形態では、RSIは、以下のもの、すなわち:酸素飽和度、TcpO2、TcpCO2、呼気終末CO2、舌下CO2、心拍数、心拍出量、膠質浸透圧、皮膚の水分量、身体の水分量、およびBMIからのデータも含む。このインデックスの利点は、それがトレーニングを受けていない人材によっても理解され得ること、および、それがアラームにリンクされており、健康の急激な悪化の場合に医師または他の介護人に知らせることが可能であることである。コンピューティングの後に、処理されたメトリクスが、出力モジュールに渡され、出力モジュールは、プリンタとして具現化され得るか、または、スクリーンの上に表示され得るか、または、口頭によるメッセージ、視覚的メッセージ、もしくは、テキストによるメッセージによって送達され得る。
【0167】
1つの実施形態では、デバイスは、呼吸の吸気相または呼気相の間に記録された曲線の中のパターンに注目する。1つの実施形態では、デバイスは、呼吸の数、体積、および/または場所に関して、呼吸変動のパターンに注目する。1つの実施形態では、パターンは、呼吸曲線の形状に関して注目される。1つの実施形態では、パターン分析は、吸気の傾斜から導出される値を含む。1つの実施形態では、パターン分析は、呼気の傾斜から導出される値を含む。1つの実施形態では、パターン分析は、パラメータの組合せを含み、パラメータは、以下のもの、すなわち:呼吸速度、分時換気量、1回換気量、吸気の傾斜、呼気の傾斜、呼吸変動のうちのいずれかまたはすべてを含むことが可能である。1つの実施形態では、これらのパラメータは、換気の適切性の標準化された定量的な尺度を提供する呼吸健康インデックス(RHI)の計算の中で使用される。1つの実施形態では、RHIは、アラームと連結されており、アラームは、呼吸が適切であると考えられるものを下回って落ちるときに、または、適切であると考えられる範囲内において、患者が非常に急激な変化を経験する場合のいずれかに、音を出す。1つの実施形態では、デバイスは、RHIを計算するための情報を提供する。好ましくは、デバイスは、RHIを計算して表示する。1つの実施形態では、呼吸健康インデックスは、患者特性に基づいて普遍的な較正に対して比較される。1つの実施形態では、RHIは、特定の患者へと較正されたシステムに定量的なデータを提供する。
【0168】
ここで
図27を参照すると、インピーダンス信号および体積信号の時間遅延または位相ラグが示されている。この特定の図において、遅延は、0.012秒であることが見出された。体積とインピーダンス信号との間の位相ラグは、1つの実施形態において対処される重要な問題である。肋膜および肺の組織の弾性的なおよび容量的な性質に起因して(それは、移動している横隔膜と肺の中を流れる空気との間にわずかな遅延を生成させる)、インピーダンスと体積信号との間にタイムラグが存在している。1つの実施形態では、この位相差は、肺のスティフネスおよび気道抵抗の尺度として使用される。周波数位相分析は、ユーザが位相角を見出すことを可能にする。より大きい位相オフセットは、運動に対する気道抵抗の程度が高いことを示している。位相角の計算は、同時に記録および同期化されたRVM曲線を、スパイロメータ、ニューモタコメータ、ベンチレータ、または同様のデバイスによって記録された、フロー、体積、または圧力の曲線と比較することによって達成される。1つの実施形態では、体積とインピーダンス信号との間の位相ラグは、所与の個人へとシステムを較正するために使用されるアルゴリズムのコンポーネントである。1つの実施形態では、位相ラグは、普遍的な較正のためにシステムを較正するために使用される。外部圧力、フロー、または体積測定デバイスを使用して、較正係数を計算するときに、先頭の曲線が、後ろの曲線と時間的に相関付けするために、位相ラグの大きさだけシフトされる。この実施形態は、較正アルゴリズムの精度を向上させる。外部圧力、フロー、または体積測定デバイスが、較正のために使用されないときには、仮想の位相ラグが、人口統計学的情報、生理学的測定値、および肺機能テストメトリクスを含む、患者特性に基づいて計算される。
【0169】
1つの実施形態では、位相ラグは、インピーダンスおよび体積の両方を整合させる際に、RVMアルゴリズムによって補正される。1つの実施形態では、位相ラグデータは、肺のコンプライアンスおよびスティフネスの尺度を実証するための標準化されたインデックスとして、独立して提示される。1つの実施形態では、位相ラグデータは、呼吸状態の尺度として呼吸健康インデックスの中に一体化される。
【0170】
1つの実施形態では、周波数ドメイン分析が、RVM測定に適用される。好ましくは、フーリエ変換などのような、少なくとも1つの周波数ドメインプロットが、オペレータに表示される。好ましくは、スペクトルグラフなどのような、RVMデータの少なくとも1つの2次元の周波数ドメインイメージが、オペレータに表示され、そこでは、一方の次元が周波数であり、他方の次元が時間であり、それぞれの場所における信号の大きさが色によって表されている。好ましくは、周波数ドメイン情報は、呼吸の健康または病変を査定するために使用される。好ましくは、アラームが、周波数ドメインデータが患者健康の急激な悪化を示す場合には、医療専門家にアラートすることになる。
【0171】
好適な実施形態では、RVM測定値が、複雑性分析のための基礎として使用される。1つの実施形態では、複雑性分析は、RVM信号だけについて実施される。好ましくは、RVM測定値は、心拍数、尿排出量、EKG信号、インピーダンス心電図、EEG、または他の脳モニタリング信号などのような、他の生理学的測定と組み合わせて使用される。
【0172】
好適な実施形態では、RVM測定値は、以下のもの、すなわち:患者が発生させた呼吸圧力のベンチレータ測定、患者が発生させた呼吸フローのベンチレータ測定、患者が発生させた呼吸体積のベンチレータ測定、ベンチレータが発生させた呼吸圧力のベンチレータ測定、ベンチレータが発生させた呼吸フローのベンチレータ測定、ベンチレータが発生させた呼吸体積のベンチレータ測定、輸液ポンプ、または、患者を治療するために使用される他のデバイスを含む、患者を治療またはモニタリングするために使用されるデバイスによって提供されるデータと組み合わせて、複雑性分析のコンポーネントとして利用され、RVM測定は、呼吸ごとの変動を定量化するために使用され得る。デバイスの1つの実施形態は、呼吸曲線に沿って特定のポイントを定義するために使用され、それによって、吸気のピークまたは呼気の最下点などのような、呼吸速度の呼吸ごとの変動を計算する。好ましくは、それぞれの呼吸のピークまたは最下点は、自動的に識別される。1つの実施形態では、デバイスは、吸気される体積の呼吸ごとの変動を説明することとともにデータを提供する。1つの実施形態では、デバイスは、呼吸ごとの変動もしくは傾斜の複雑性、または、呼吸体積もしくはフロー曲線の他の特性を説明するデータを提供する。1つの実施形態では、デバイスは、データを提供し、そのデータによって、同じまたは異なる電極のペアリングによって、身体の上の異なる場所からデータを収集することによって、胸部対腹部、または、一方の半胸郭対他方の半胸郭などのような、呼吸努力の場所に関連付けられる変動または複雑性を計算する。好ましくは、デバイスは、これらのパラメータのうちの1つまたは複数の呼吸ごとの変動または複雑性を計算する。好ましくは、デバイスは、ユーザによって解釈しやすい形態で、変動または複雑性分析を提示する。1つの実施形態では、デバイスは、以下のもの、すなわち:呼吸速度、呼吸体積、呼吸努力の場所、傾斜、または、呼吸体積もしくはフロー曲線の他の特徴的なものの中から、変動または複雑性の2つ以上の供給源からのデータを組み合わせ、呼吸機能の高度な査定を提供する。1つの実施形態では、デバイスは、変動または複雑性のデータを間欠的にまたは連続的に分析し、10分ごと、30分ごと、または、1時間ごとなどのような間隔でデータを提示する。好ましくは、デバイスは、10分未満に、5分未満に、1分未満に、または、ほぼリアルタイムで、変動分析を提示する。1つの実施形態では、呼吸パラメータのいずれかの変動または複雑性は、線形のまたは非線形の分析方法によって定量化され得る。好ましくは、呼吸パラメータのいずれかの変動または複雑性は、非線形の動力学的分析によって定量化され得る。1つの実施形態では、近似エントロピーが、データ分析のためのデバイスによって使用される。1つの実施形態では、データの変動または複雑性の分析が、体積データと組み合わせられ、呼吸機能の組み合わせられたインデックスを提供する。1つの実施形態では、変動または複雑性の分析データが、他のパラメータと組み合わせられ、呼吸充足度インデックスまたは呼吸健康インデックスとして提示される。
【0173】
好適な実施形態では、RVM測定値、または、RVM信号の複雑性分析が、目標指向型療法において使用される情報の少なくとも一部として利用される。好適な実施形態では、RVM測定値、または、RVM信号の複雑性分析は、決定サポートのための情報を提供する。好適な実施形態では、RVM測定値、または、RVM信号の複雑性分析は、制御されたループシステムに要求される患者データの少なくとも一部として利用される。
【0174】
イメージングにおける使用
デバイスの1つの実施形態では、呼吸サイクルは、インピーダンスニューモグラフィ、呼気終末CO2、またはパルスオキシメトリを、限定ではなく、含む、1つまたは複数の方法によって測定され、一方、心臓は、2Dエコー、3Dエコー、または、任意の他のタイプの心エコー検査として具現化され得る心エコー検査を使用して、イメージングされるかまたはその他の方法で測定される。心エコー図からの時系列データが、呼吸モニタによって記録される呼吸運動に基づいて、特定の精度レーティングを有するものとしてマークされる。1つの実施形態では、精度閾値を下回る心エコー検査データは、破棄される。別の実施形態では、心エコー検査データは、その精度レーティングに基づいて重み付けされ、最も正確でないデータは、最も低く重み付けされる。デバイスは、最も正確な心エコー図データに基づいて、心臓および心臓の動きの合成イメージまたはビデオを発生させる。1つの実施形態では、心エコー検査データは、2つ以上の心臓周期にわたって記録され、次いで、分析および精度レーティングの後に、最良のデータが、心臓の合成イメージまたは心臓周期のビデオを発生させるために使用される。
【0175】
他の実施形態は、精度を改善する目的のために、呼吸サイクル測定および定量化を他の心臓イメージング技法と組み合わせることを含む。心臓イメージングの方法は、Dopplerフロー測定、放射性核種試験、同期CT、および同期MRIを含むことが可能である。他の実施形態は、RVMによる呼吸サイクル測定と、診断CTまたはMRI、カテーテル向け療法、直接的な心臓アブレーション、腫瘍の放射線アブレーション、腫瘍の放射線療法を含む、胸部、腹部、および他の身体パーツの他の診断または治療モダリティとを組み合わせることを含む。好適な実施形態では、RVMおよび心臓インピーダンスデータは、診断用イメージングまたは解剖学的に直接的な療法のデータ収集またはデータ分析のタイミングのために、一緒に利用される。
【0176】
デバイスの別の実施形態では、呼吸インピーダンス測定値、または、RVM測定値の複雑性分析からのデータが、肺のイメージを発生させるために使用される。デバイスの別の実施形態では、RVM測定値の複雑性分析からのデータ、および、心臓インピーダンス測定値が、心臓および肺のイメージを発生させるために使用される。好適な実施形態では、心臓および肺は、同時にイメージングされる。1つの実施形態では、デバイスが、心臓および/または肺の2Dイメージ、ビデオ、またはモデルを発生させるために使用される。好適な実施形態では、デバイスが、心臓および/または肺の3Dイメージ、ビデオ、またはモデルを発生させる。
【0177】
病変を検出すること、および、モニタリングを改善すること
1つの実施形態では、デバイスは、RVMデータを提供し、RVMデータは、変動もしくは複雑性分析を伴って、または、伴わずに、機械的な換気のための抜管または挿管などのような、決定を行うことを補助するために使用される。1つの実施形態では、デバイスは、RVMデータを提供し、RVMデータは、変動もしくは複雑性分析を伴って、または、伴わずに、薬物投与または他の診療介入に関する決定を行うことを補助する。1つの実施形態では、デバイスは、ベンチレータのセッティングを調節するための開または閉ループ制御システムの一部として、変動または複雑性情報を、単独で、または、体積データとともに使用する。1つの実施形態では、デバイスは、薬物の服用量を調節するための開または閉ループ制御システムの一部として、変動または複雑性情報を、単独で、または、体積データまたはRVMによって提供される呼吸曲線の他の分析とともに使用する。この実施形態は、早産児に関して、圧力ベンチレータの管理を最適化するために有用であり、また、カフのない気管内チューブを着けた患者に関して有用である。1つの実施形態では、デバイスは、患者管理システムの一部として、変動または複雑性情報を、単独で、または、体積データもしくはRVMによって提供される呼吸曲線の他の分析とともに使用し、患者管理システムは、患者状態をモニタリングし、薬物送達を推奨し、次いで、さらなる行動を指示するために患者を再査定する。
【0178】
1つの実施形態では、デバイスは、RVM信号の変動または複雑性分析を単独で使用し、体積データを単独で使用し、曲線分析を単独で使用し、または、これらのいずれかを組み合わせて使用し、患者状態の変化を示すアラームをトリガする。別の実施形態では、シンボル分布エントロピーおよびビットパーワードエントロピーが、時系列におけるパターンの確率を測定するために使用される。別の実施形態では、分布の類似性の方法論が使用される。1つの実施形態では、デバイスが、呼吸の複雑性の変化、もしくは、特定の閾値を下回る呼吸の複雑性を検出したときに、または、肺の病変もしくは疾患状態に関連付けられるより不自然な呼吸パターンを検出したときに、デバイスがアラームを発する。1つの実施形態では、デバイスが、特定の閾値を超える呼吸および心拍数複雑性の組み合わされた測定値の変化を検出したときに、デバイスがアラームを発する。
【0179】
早期警告スコア(EWS)は、患者の病気の程度を決定するために、医学的サービスによって使用されるガイドである。そのいくつかの変形例が存在するが、しかし、一般に、そのスコアリングは、下記の表1と同様である。
【0180】
【0181】
病院の中で、EWSは、「トラック-アンド-トリガ」システムの一部として使用されることが多く、それによって、増加するスコアは、患者の観察の頻度を増加させることから(低いスコアに関して)、急変対応チームまたは緊急医療チームによる至急の検討まで変化する、段階的な応答を作り出す。EWSスコアは、たとえば、看護の注意を増加させたり、医療提供者に知らせたり、または、急変対応チームもしくは緊急医療チームを立ち上げたりするなど、早期介入および管理を開始させるために、臨床的悪化の早期のサインを認識するように、病院ケアチームによって使用されるツールである。これらのツールは、典型的に、いくつかの生理学的パラメータ(たとえば、収縮期血圧、心拍数、酸素飽和度、呼吸速度、意識のレベル、および尿排出量)に数値を割り当て、悪化のリスクのある患者を識別するために使用され得る複合スコアを導出することを伴う。ほとんどは、総計の重み付けされるシステムに基づいており、そこでは、エレメントは、生理学的な異常の程度に関して異なるポイントを割り当てられる。観察的な研究は、集中的な介入を要求する重大な臨床的イベントの最大で24時間前に、患者が臨床的悪化のサインを示すことが多いことを示唆している。治療の遅れまたは一般病棟での患者の不十分なケアは、集中治療室(ICU)への入院の増加、病院滞在の長さの増加、心肺停止、または死を結果として生じさせる可能性がある。
【0182】
デバイスの1つの実施形態では、MV、TV、および/またはRRは、進展する患者障害、疾患状態、または苦痛を防止するかまたは予測することを助けるための使用のために、現在ほとんどのEWSシステムの一部である標準的な呼吸速度の置き換えとして、または、それに加えてのいずれかで、既存の早期警告スコアリングシステムの一部分となる。そのような障害、疾患状態、または苦痛は、呼吸不全、敗血症、心不全、鬱血性心不全、腎不全、水分量過剰、肺浮腫、代謝亢進状態、過剰運動、外傷性脳損傷、肺塞栓症、オピオイド誘発性呼吸抑制、過剰鎮静のうちの1つまたは複数であることが可能である。好ましくは、デバイスは、1つまたは複数のセンサを使用して患者に取り付けられており、患者のインピーダンスレベル(本明細書で説明されているようにMV、TVおよび/またはRRを決定するために使用される)、MV、TV、および/またはRR、酸素飽和度、温度、血圧、パルスもしくは心拍数、血液酸素レベル、脳活動、血液ラボテスト(たとえば、全血球計算(CBC))、または、別の生理学的な状態のうちの1つまたは複数を取得する。センサから入って来るデータは、患者に関する早期警告スコアを出力するために収集および分析される。スコアが所定のレベルを超える場合には、1つまたは複数のアラーム(可聴式および/または視覚式)がアクティブ化され得る。追加的に、臨床医は、覚醒、声、痛み、および無反応(一般にAVPUと称される)を、限定ではなく、含む、患者の条件についての情報を入力することが可能である。好ましくは、分時換気量が、呼吸速度の代わりに、または、呼吸速度に併せて、および、他のセンサデータと組み合わせて使用され、患者状態を導出し、早期警告スコアを出力する。好ましくは、センサは、呼吸を妨げず、または、患者の気道を邪魔しない。好ましくは、センサは、非侵襲性である。
【0183】
デバイスの別の実施形態では、MV、TV、および/またはRRは、新しい改善された早期警告スコアリングシステムの基礎的ピースのうちの1つとなり、予測アルゴリズムが、進展する患者障害、疾患状態、または苦痛を防止するかまたは予測することを助けるための使用のために、その新しい改善された早期警告スコアリングシステムに基づいている。そのような障害、疾患状態、または苦痛は、呼吸不全、敗血症、心不全、鬱血性心不全、腎不全、水分量過剰、肺浮腫、代謝亢進状態、過剰運動、外傷性脳損傷、肺塞栓症、オピオイド誘発性呼吸抑制、過剰鎮静のうちの1つまたは複数であることが可能である。好ましくは、デバイスは、1つまたは複数のセンサを使用して患者に取り付けられており、患者のインピーダンスレベル(本明細書で説明されているようにMV、TVおよび/またはRRを決定するために使用される)、MV、TV、および/またはRR、酸素飽和度、温度、血圧、パルスもしくは心拍数、血液酸素レベル、脳活動、血液ラボテスト(たとえば、全血球計算(CBC))、または、別の生理学的な状態のうちの1つまたは複数を取得する。センサから入って来るデータは、患者に関する早期警告スコアを出力するために収集および分析される。スコアが所定のレベルを超える場合には、1つまたは複数のアラーム(可聴式および/または視覚式)がアクティブ化され得る。追加的に、臨床医は、覚醒、声、痛み、および無反応(一般にAVPUと称される)を、限定ではなく、含む、患者の条件についての情報を入力することが可能である。好ましくは、分時換気量が、呼吸速度の代わりに、または、呼吸速度に併せて、および、他のセンサデータと組み合わせて使用され、患者状態を導出し、早期警告スコアを出力する。好ましくは、センサは、呼吸を妨げず、または、患者の気道を邪魔しない。好ましくは、センサは、非侵襲性である。
【0184】
より良好な呼吸データがデバイスによって提供される状態で、アルゴリズムの重み付けは、進展する患者障害、疾患状態、または苦痛を防止するかまたは予測することを助けるための使用のために、修正され、次いで適用される。そのような障害、疾患状態、または苦痛は、呼吸不全、敗血症、心不全、鬱血性心不全、腎不全、水分量過剰、肺浮腫、代謝亢進状態、過剰運動、外傷性脳損傷、肺塞栓症、オピオイド誘発性呼吸抑制、過剰鎮静のうちの1つまたは複数であることが可能である。好ましくは、デバイスは、1つまたは複数のセンサを使用して患者に取り付けられており、患者のインピーダンスレベル(本明細書で説明されているようにMV、TVおよび/またはRRを決定するために使用される)、MV、TV、および/またはRR、酸素飽和度、温度、血圧、パルスもしくは心拍数、血液酸素レベル、脳活動、血液ラボテスト(たとえば、全血球計算(CBC))、または、別の生理学的な状態のうちの1つまたは複数を取得する。センサから入って来るデータは、患者に関する早期警告スコアを出力するために収集および分析される。スコアが所定のレベルを超える場合には、1つまたは複数のアラーム(可聴式および/または視覚式)がアクティブ化され得る。追加的に、臨床医は、覚醒、声、痛み、および無反応(一般にAVPUと称される)を、限定ではなく、含む、患者の条件についての情報を入力することが可能である。好ましくは、分時換気量が、呼吸速度の代わりに、または、呼吸速度に併せて、および、他のセンサデータと組み合わせて使用され、患者状態を導出し、早期警告スコアを出力する。好ましくは、センサは、呼吸を妨げず、または、患者の気道を邪魔しない。好ましくは、センサは、非侵襲性である。
【0185】
別の実施形態では、デバイスは、温度、血圧、脈拍数、血液検査(たとえば、CBC)などのような他の要因と併せて、MV、TV、および/またはRR測定値を使用することによって、敗血症または他の感染症の早期検出に関する情報を提供するが、しかし、他の(たとえば、呼吸)パラメータ(たとえば、MV、TV、および/またはRR)についての重視を増加させながら、温度および脈拍数に一般に関連付けられる重視を低減させる。
【0186】
別の実施形態では、異なる生理学的コンポーネントが、EWSに追加される。別の実施形態では、EWSの中の既存のパラメータのうちの1つまたは複数が、進展する患者障害、疾患状態、または苦痛を防止するかまたは予測することを助けるために使用される公式から除去される。そのような障害、疾患状態、または苦痛は、呼吸不全、敗血症、心不全、鬱血性心不全、腎不全、水分量過剰、肺浮腫、代謝亢進状態、過剰運動、外傷性脳損傷、肺塞栓症、オピオイド誘発性呼吸抑制、過剰鎮静のうちの1つまたは複数であることが可能である。好ましくは、デバイスは、1つまたは複数のセンサを使用して患者に取り付けられており、患者のインピーダンスレベル(本明細書で説明されているようにMV、TVおよび/またはRRを決定するために使用される)、MV、TV、および/またはRR、酸素飽和度、温度、血圧、パルスもしくは心拍数、血液酸素レベル、脳活動、血液ラボテスト(たとえば、全血球計算(CBC))、または、別の生理学的な状態のうちの1つまたは複数を取得する。センサから入って来るデータは、患者に関する早期警告スコアを出力するために収集および分析される。スコアが所定のレベルを超える場合には、1つまたは複数のアラーム(可聴式および/または視覚式)がアクティブ化され得る。追加的に、臨床医は、覚醒、声、痛み、および無反応(一般にAVPUと称される)を、限定ではなく、含む、患者の条件についての情報を入力することが可能である。好ましくは、分時換気量が、呼吸速度の代わりに、または、呼吸速度に併せて、および、他のセンサデータと組み合わせて使用され、患者の状態を導出し、早期警告スコアを出力する。好ましくは、センサは、呼吸を妨げず、または、患者の気道を邪魔しない。好ましくは、センサは、非侵襲性である。
【0187】
1つの実施形態では、早期警告スコアリングシステムに関する事前定義されたクライテリアおよびレンジは、外部から入力される(手動でもしくは自動的に(たとえば、電子健康記録(EHR)から))か、または、デバイス自身によって決定されるかのいずれかのような、患者の疾患状態(閉塞性睡眠時無呼吸(OSA)、鬱血性心不全(CHF)、全身性炎症反応症候群(SIRS)、敗血症、腎疾患など)に基づいている(および、患者の疾患状態に従って調節され得る)。1つの実施形態では、早期警告スコアリングシステムに関する事前定義されたクライテリアおよびレンジは、外部から入力される(手動でもしくは自動的に(たとえば、EHRから))か、または、デバイス自身によって決定されるかのいずれかのような、患者の状況(内視鏡的処置、外科手術、手術後状態など)に基づいている(および、患者の状況に従って調節され得る)。早期警告スコアは、患者の年齢、人口統計、条件(たとえば、妊娠)、または他の特徴に基づいて調節され得る。1つの実施形態では、早期警告スコアリングシステムに関する事前定義されたクライテリアおよびレンジは、外部から入力される(手動でもしくは自動的に(たとえば、EHRから))か、または、デバイス自身によって決定されるかのいずれかのような、患者の状況(内視鏡的処置、外科手術、手術後状態など)および疾患状態(OSA、CHF、COPD、肺線維症、喘息、敗血症、腎疾患など)の組合せに基づいている(および、組合せに従って調節され得る)。
【0188】
1つの実施形態では、MV、TV、および/またはRRは、患者のケア、患者薬物、または患者栄養に関する決定を行うことを助けるために、トリアージシステム(たとえば、PACUからの退院クライテリアのために使用されるAldreteスコアリングシステムなど)の一部となる。トリアージシステムは、好ましくは、早期警告スコアリングシステムと同様である。1つの実施形態では、トリアージシステムに関する事前定義されたクライテリアおよびレンジは、外部から入力される(手動でもしくは自動的に(たとえば、EHRから))か、または、デバイス自身によって決定されるかのいずれかのような、トリアージクライテリア(Aldreteスコアなど)および疾患状態(OSA、CHF、敗血症、腎疾患など)の組合せに基づいている(および、組合せに従って調節され得る)。
【0189】
1つの実施形態では、MV、TV、および/またはRRは、患者条件、疾患状態(たとえば、CHF、COPD、OSA、喘息、敗血症、頭蓋出血、ARDSなど)の変化を検出するために使用される、修正された早期警告スコアリングシステム(それは、アラームをトリガするために、および/または、外部システムを作動させるために使用される、修正された早期警告スコアをコンピューティングし、外部システムが、治療または医学的介入を送達または制御する)の一部となり、危険な状態にあるかまたは追加的なもしくは高度なケアを必要とする状態にある患者を識別し、患者のケアを開始または修正することを助け、介入の有効性または無効性を決定する。修正された早期スコアリングシステムは、好ましくは、早期警告システムと同様である。1つの実施形態では、修正された早期スコアリングシステムに関する事前定義されたレンジおよびクライテリアは、外部から入力される(手動でもしくは自動的に(たとえば、EHRから))か、または、デバイス自身によって決定されるかのいずれかのような、トリアージクライテリア(Aldreteスコアなど)および疾患状態(OSA、喘息、肺線維症、COPD、CHF、敗血症、腎疾患など)の組合せに基づいている(および、組合せに従って調節され得る)。修正された早期警告スコアリングシステムは、患者の年齢、人口統計、条件(たとえば妊娠)、または他の特徴に基づいて調節され得る。
【0190】
1つの実施形態では、MV、TV、および/またはRRは、患者条件、疾患状態(たとえば、気管支肺異形成症、喘息、嚢胞性線維症など)の変化を検出するために使用される、小児科学の早期警告スコアリングシステム(それは、アラームをトリガするために、および/または、外部システムを作動させるために使用される、小児科学の早期警告スコアをコンピューティングし、外部システムが、治療または医学的介入を送達または制御する)の一部となり、危険な状態にあるかまたは追加的なもしくは高度なケアを必要とする状態にある患者を識別し、患者のケアを開始または修正することを助け、介入の有効性または無効性を決定する。小児科学の早期スコアリングシステムは、好ましくは、早期警告システムと同様である。1つの実施形態では、小児科学の早期スコアリングシステムに関する事前定義されたレンジおよびクライテリアは、外部から入力される(手動でもしくは自動的に(たとえば、EHRから))か、または、デバイス自身によって決定されるかのいずれかのような、トリアージクライテリア(Aldreteスコアなど)および疾患状態(OSA、CHF、敗血症、腎疾患など)の組合せに基づいている(および、組合せに従って調節され得る)。修正された早期警告スコアリングシステムは、患者の年齢、人口統計、条件(たとえば妊娠)、または他の特徴に基づいて調節され得る。
【0191】
1つの実施形態では、MV、TV、および/またはRRは、患者のケアまたは患者栄養に関する決定を行うことを助けるために、PACU/ICU/病院フロア/家庭/リハビリ/養護施設モビライゼーションプロトコルの一部となる。モビライゼーションプロトコルシステムは、好ましくは、早期警告スコアリングシステムと同様である。1つの実施形態では、モビライゼーションプロトコルシステムに関する事前定義されたクライテリアおよびレンジは、外部から入力される(手動でもしくは自動的に(たとえば、EHRから))か、または、デバイス自身によって決定されるかのいずれかのような、PACU/ICU/病院フロア/家庭/リハビリ/養護施設モビライゼーションプロトコルおよび疾患状態(OSA、CHF、敗血症、腎疾患など)の組合せに基づいている(および、組合せに従って調節され得る)。
【0192】
1つの実施形態では、MV、TV、および/またはRRは、トレーニングレジメンまたは栄養の修正に関する決定を行うことを助けるために、フィットネス/ウェルネス/リハビリ/アスレチックトレーニング/パフォーマンスプロトコルの一部となる。トレーニングプロトコルシステムは、好ましくは、早期警告スコアリングシステムと同様である。1つの実施形態では、事前定義されたクライテリアおよびレンジは、外部から入力される(手動でもしくは自動的に(たとえば、EHRから))か、または、デバイス自身によって決定されるかのいずれかのような、フィットネス/ウェルネス/リハビリ/アスレチックトレーニング/パフォーマンスプロトコルおよび疾患状態(OSA、CHF、敗血症、腎疾患など)の組合せに基づいている(および、組合せに従って調節され得る)。
【0193】
1つの実施形態では、MV、TV、および/またはRRは、活動または栄養レジメンの修正に関する決定を行うことを助けるために、たとえば、糖尿病、悪液質、肥満、敗血症、同化作用、異化作用などの、異なる代謝の状態を有する患者に関する活動および/または栄養に基づいて、患者のケアをモニタリングまたは調節するためのシステムの一部となる。レジメンは、開もしくは閉ループフィードバックシステムによって連続的に修正され得るか、または、事前定義されたスケジュールに基づいて間欠的に、もしくは、システムによってアラートされるときに修正され得る。活動または栄養レジメンシステムは、好ましくは、早期警告スコアリングシステムと同様である。デバイスの1つの実施形態では、事前定義されたクライテリアおよびレンジは、外部から入力される(手動でもしくは自動的に(たとえば、EHRから))か、または、デバイス自身によって決定されるかのいずれかのような、たとえば、糖尿病、悪液質、肥満、敗血症などの、異なる代謝の状態を有する患者に関する活動および/または栄養に基づいて患者のケアをモニタリングまたは調節するためのシステムならびに疾患状態(OSA、CHF、敗血症、腎疾患など)の組合せに基づいている(および、組合せに従って調節され得る)。
【0194】
1つの実施形態では、活動は、それからの出力(測定されるかまたはコンピューティングされる)が、事前定義されたまたは調節可能な限界値内に入る場合には、所与のタイムフレームにわたって「通常」であると考えられる。別の実施形態では、活動は、特定の測定値、たとえば、MVを引き出すかまたは強化するために構造化され、こうして、特定のアクティブ刺激によって代謝の状態を評価するために使用される。
【0195】
1つの実施形態では、RVM測定値は、開または閉フィードバックループの中へ一体化され、呼吸停止の警告サインに関する換気をモニタリングすることによって、薬物の安全な服用を保証することによって、換気の適切性を報告する。好適な実施形態では、RVMは、開または閉フィードバックループを提供するベンチレータを備えたシステムの中へ一体化され、ベンチレータ調節は、開または閉フィードバックループによって行われる。RVM測定値とベンチレータまたはスパイロメータによって発生させられる体積またはフロー測定値との間の差は、療法の診断および案内のための情報を提供するために使用され得る。呼気終末CO2もしくはパルスオキシメトリ測定値からの追加的な情報とともに、または、そのような追加的な情報なしで、RVMモニタリングを使用することによって、この実施形態は、ベンチレータの支援を徐々に減少させることによって、ならびに、RVMおよび他のパラメータを観察することによって、患者を自動的にウィーニングし、抜管の用意ができていることを医師にアラートするか、または、進行することができないことをアラートする。パルスオキシメトリまたはETCO2のいずれかまたはその両方を備えたこの組み合わせられたシステムは、ベンゾジアゼピンまたはプロポフォールなどのような、麻酔剤または他の呼吸抑制作用のある薬物を送達するために、開または閉ループシステムとして使用され得る。
【0196】
1つの実施形態では、分析アルゴリズムが、エキスパートシステムデータベースの中に維持された特定の呼吸パターンの存在を検出し、関連の病変の可能性について、医師または他のヘルスケア提供者に知らせる。1つの実施形態では、所与の病変に関する呼吸パターンが認識され、好適な実施形態では、定量化される。別の実施形態では、病変が突き止められる。
【0197】
好適な実施形態では、デバイスは、呼吸体積、曲線、変動もしくは複雑性、または、RVMデータの他の分析に関係する特定のパターンを認識する。
【0198】
1つの実施形態では、デバイスは、差し迫る呼吸不全または呼吸停止に関連付けられるパターンを認識し、聴覚および/または視覚によるアラートまたは警告を送達する。1つの実施形態では、デバイスは、呼吸データまたはデータの中のトレンドを分析し、挿管および機械的な換気の推奨を行う。1つの実施形態では、デバイスは、呼吸パターンデータを分析し、プロポフォールなどのような、麻酔剤または他の呼吸抑制作用のある薬物の注入のレベルを調節する。
【0199】
1つの実施形態では、デバイスは、鬱血性心不全、喘息、COPD、麻酔剤によって誘発される呼吸抑制、または差し迫る呼吸不全などのような、特定の疾患の実体(entity)または病変に関連付けられる呼吸パターンを認識する。1つの実施形態では、デバイスは、この病変を医師にアラートする。1つの実施形態では、デバイスは、病変の程度を定量化する。1つの実施形態では、デバイスは、鬱血性心不全のパターンを認識し、時間の経過による、または、関連の診療介入による、改善または悪化に向かうトレンドに関するデータを提供する。
【0200】
好ましくは、デバイスのインピーダンス測定エレメントは、インピーダンスカーディオグラフ(ICG)測定値を作り出すことが可能である。好ましくは、デバイスは、心拍数変動に関連付けられるインピーダンス変動を検出する。好ましくは、デバイスは、呼吸波形または他の呼吸パラメータの変動に関連付けられるインピーダンス変動を検出し、心拍数および呼吸速度、体積、または波形の変動を利用し、心臓の、呼吸の、および肺の合併症を予測する。好ましくは、デバイスは、安全でない肺の変動もしくは複雑性、または、組み合わせられた心拍数および呼吸変動または複雑性に関連付けられる所定の限界に関して、アラームを維持する。
【0201】
別の実施形態では、呼気終末CO2(ETCO2)が、RVMベースラインを決定するための主観的な査定に加えて、または、その代わりに使用される。1つの実施形態では、RVMは、ETCO2測定値と連結され、呼吸状態に関する追加的な情報を提供する。
【0202】
別の実施形態では、RVMは、パルスオキシメトリと連結され、換気/呼吸および酸素化の両方についての情報を提供する。より複雑なRVMシステムが、標準的なRVM測定値をETCO2もしくはパルスオキシメトリのいずれかまたはその両方と連結する。この組み合わせられたデバイスは、鎮静した患者に関する呼吸についてのさらなる情報を提供し、患者モニタリングを強化する。
【0203】
好適な実施形態では、肺の体積および分時換気量の測定値が、抜管の後の患者の適性を定量的な方式で査定するために使用される。分時換気量は、具体的には、外科手術を受けている患者のために使用される。好ましくは、1回換気量または分時換気量の手術前の測定が、特定の患者に関するベースラインとして取得される。好ましくは、ベースラインは、手術前の呼吸状態と手術後の呼吸状態との間の比較として、手術後に使用される。1回換気量または分時換気量のトレンドが、外科手術または処置の間に、または、麻酔後回復室の中での、集中治療室の中での、もしくは、病院のフロアにおける、手術後回復の間に、患者をモニタリングするために使用される。このトレンドは、処置前ベースラインからの患者の呼吸の差および変化の正確な尺度を与え、患者が呼吸のベースラインレベルに戻ったときを示すことが可能である。好適な実施形態では、デバイスは、その患者に特有の呼吸の適切なレベルを定義することによって、医師が妥当な抜管の決定を行うことを直接的に補助する。1つの実施形態では、絶対的な肺の体積が、患者特性から導出される事前較正されたデータと比較され、拘束性および/または閉塞性の肺疾患および他の呼吸条件の存在を決定する際に使用される。絶対的な体積データは、既存の定量的なデータを補足するものとして、PACUおよびICUの中で、特に有用であり得る。
【0204】
PCAフィードバックおよび薬物投与最適化における使用
デバイスの1つの使用は、本明細書で列挙されている技術のうちの1つ、いくつか、または組合せによって測定および記録される心臓データおよび/または呼吸データを使用し、患者に対する1つまたは複数の薬物または他の医学的介入の影響を決定することである。ある実施形態では、呼吸モニタは、身体に対する鎮痛薬の副作用を判断し、および有害反応または過剰服用に起因する呼吸不全もしくは他の障害を防止するか、または、その防止を支援するために使用される。
【0205】
好適な実施形態では、デバイスは、患者管理鎮痛法(PCA)システムとペアにされるか、または、患者管理鎮痛法(PCA)システムの中へ一体化される。これは、本発明のデバイスと電子的なPCAシステムとの間の通信を通して電子的に達成されるか、または、一体化されたモニタ/PCAシステムによって、もしくは、患者がPCAを投与されていることを示すモニタの中のセッティングによって達成される。この実施形態では、鎮痛薬または麻酔の投与は、デバイスによって予測される呼吸または他の合併症のリスクに基づいて限定される。PCAシステムが電子的でないか、または、鎮痛薬が人の手によって送達されている場合には、デバイスは、いつ呼吸器合併症のリスクが高くなり、投薬量が低下されるべきであるかについての推奨を行う。
【0206】
本発明のデバイスの別の実施形態は、診断/治療プラットフォームである。モニタリングデバイスは、以下のもの、すなわち:投薬レジメン、治療レジメン、吸入器の使用、噴霧器の使用、呼吸器系をターゲットとする医薬品の使用、心臓血管系をターゲットとする医薬品の使用、喘息、COPD、CHF、嚢胞性線維症、気管支肺異形成症、肺高血圧症、および、肺の他の疾患をターゲットとする医薬品の使用のうちの1つまたは複数とペアにされる。デバイスのこの実施形態は、呼吸状態または呼吸健康に対する可能な医学的介入および非医学的介入の有効性を判断し、最適化のためにレジメンの変更を示唆し、および/または、患者が合併症に関して危険な状態になるときに妥当な介入を示唆するために使用される。
【0207】
1つの実施形態では、RVMは、行動アルゴリズム、または、以下の患者の医学的状態、環境要因、および、人口統計学的グループまたは患者全般の行動要因のうちのいずれかについての情報を含むアルゴリズムとペアにされる。好適な実施形態では、上記に説明されているアルゴリズムのうちの1つは、RVM測定値を取得する必要性を示すことが可能である。より好ましくは、RVM測定値は、アクションまたは療法を示すための情報を提供するために、行動的/医学的/環境的アルゴリズムのデータと併せて使用される。デバイスのこの実施形態の使用の例は、患者の以前の呼吸器合併症または慢性の呼吸病気、および/またはアレルギーを、前記条件を悪化させることが知られている行動イベントとともに、入力として含む、アルゴリズムであることになる。患者のスケジュール(たとえば、アレルギーの季節に屋外イベントに出席すること、または、スポーツ競技に参加すること)からの情報を含むことによって、システムは、患者がRVM測定を行うことを推奨し、次いで、薬物の通常の投与を維持するかまたはそれを増加させるかどうかについての推奨を行う。また、ソフトウェアは、患者が薬物をイベントに携行することを推奨することが可能であり、一般的に、患者が自分の薬物を摂取することを思い出させることが可能である。別の例は、患者が喘息の発作または他の呼吸器合併症を有する場合である可能性がある。RVMデータは、分時換気量、1回換気量、吸気対呼気に関する時間(すなわち、比率)、正常な呼吸の間の呼吸曲線の形状、可能な限り最も深い呼吸または他の呼吸操作の間の呼吸曲線の形状を含む、測定されるパラメータのいずれかによって、この発作の深刻性を査定するために利用され得る。次いで、データは、独立して促すことが可能であるか、または、他の情報と併せて使用され得、以下のもの、すなわち:何もしない、休む、吸入器を使用する、医薬品を摂取する、噴霧器を使用する、病院へ行く、のうちの1つを含むアクションを実施するように、患者のための決定を行う。要求されるアクションに関する情報は、特定の患者、または、同様の疾病を抱える患者のグループ、人口統計学的に同様の患者、特定の医学的な、解剖学的な、もしくは行動学的なプロファイルを有する患者、または、全般的な患者に関して設計されている、行動学的アルゴリズムまたは他のアルゴリズムの一部であることが可能である。好ましくは、アクションの後に、患者は、療法の適性を査定するために、RVM測定を繰り返すように指示される。好ましくは、患者の繰り返しの測定が、療法または他の介入の前の測定と比較され、変化が注目される。この比較からの追加的な情報、または、療法の後にとられたデータそのものが、単独で、または、他の患者データと組み合わせて使用され、さらなる医学的決定またはアクションに関する推奨を行う。
【0208】
たとえば、喘息患者が、兆候を有しており、RVM測定を取得することを決定し、または、RVM測定を取得するように疾患管理アルゴリズムによって指示される。RVMデータが、デバイスによって分析され、独立して利用され、または、履歴のベースラインもしくは最後にとられた測定値と比較される。これらに基づいて、心拍数などのような、他の患者に特有の入力を伴って、または、それを伴わずに、デバイスは、患者が吸入器を使用することを推奨する。次いで、第2のセットのRVMデータがとられる。このRVMデータは、治療の前にとられた以前のRVMデータと比較される。次いで、デバイスは、決定ツリーに従い、患者が改善しておりさらなる療法を必要としないこと、患者が投薬量を繰り返す必要があること、患者が医師を呼ぶ必要があること、または、患者が即座に病院へ行く必要があることを、患者に伝える。好適な実施形態では、RVMデータは、患者に関する推奨を最適化するために、人口統計学的または特定的患者に関して開発された行動アルゴリズムと組み合わせられる。
【0209】
PACU/ICUでの使用
1つの実施形態では、デバイスは、スタンドアロンモニタとして、もしくは、既存のモニタの付属物または既存のモニタの中に組み込まれるのいずれかとして、手術後麻酔回復室(PACU)のセッティングの中で使用される。PACU内において、RVM体積が計算され、BMI、身長、体重、胸囲、および他のパラメータを考慮に入れて導出された事前較正されたデータと比較される。デバイスは、PACU内で行う決定をサポートする既存の定量的なデータを補足するために使用される。1つの実施形態では、手術室内において、RVMデータが、呼吸状態のより包括的な査定を提供するために、呼気終末二酸化炭素測定値に相関付けされる。分時換気量を含む、RVMから導出された測定値が、外科手術または処置の前、間、および後の患者の状態を比較するために使用され、また、麻酔/麻酔剤によって誘発される呼吸抑制の影響を記録するために使用される。RVMは、再挿管の決定を含む、特定の決定のための定量的な正当化を提供することによって、PACUの中の臨床医によって行われるより主観的な査定をサポートするために使用される。また、デバイスは、呼吸状態の低下に関するモニタ、および、呼吸状態を改善させるために、再挿管されるかまたは別の介入を実施する必要性に関するアラームとして、病院のフロアの患者に関する主観的な査定をサポートする。好ましくは、RVM測定値は、麻酔剤鎮痛薬、ベンゾジアゼピンなどのような鎮静薬、または、呼吸抑制効果を有する他の薬物の調整を支援することになる。1つの実施形態では、PACUセッティングにおけるRVMに関する上述の使用は、新生児ICU、外科ICU、内科ICU、肺ICU、心臓ICU、冠疾患集中治療室、小児科ICU、および神経外科ICUなどのような、ICUセッティングの中で実現される。別の実施形態では、RVMデバイスは、呼吸状態を追うために、ステップダウン病棟または標準的な病院ベッドのセッティングにおいて使用される。
【0210】
手術後期間の後期などにおいて、1回換気量、呼吸速度、分時換気量、呼吸間の間隔もしくは体積の変動、またはRVM信号の複雑性を含む、呼吸パターンの測定値が、外科手術の前に測定されたベースライン値と比較され得る。これは、何がその患者に特有の呼吸の適切なレベルであるかを定義することによって、抜管の決定を直接的に補助することが可能である。デバイスの別の実施形態では、RVMモニタリングが、気管内チューブの位置決めの不良、過換気、低換気、再呼吸、および空気漏れなどのような、一般にベンチレータに関連付けられる問題を識別する。また、システムは、胸部チューブまたはカフなしチューブを通した空気漏れを識別する。空気漏れは任意の直接的な体積測定の上に下向きのトレンドを出現させるであろうが、このトレンドはインピーダンストレースの上には存在せず、したがって、デバイスは、体積またはフローを直接的に測定するデバイスの中の空気漏れを検出および報告することが可能である。好適な実施形態では、システムは、たとえば、以下の病変、すなわち:気胸、肺挫傷、肋骨骨折、血胸症、乳糜胸症、水胸症、および肺炎に関係したものなど、半胸郭に特有の異常およびトレンドを識別する。
【0211】
1つの実施形態では、デバイスは、監視下麻酔管理(MAC)の間に使用され、呼吸状態をモニタリングし、薬物および流体の投与を支援し、差し迫るまたは既存の呼吸障害または呼吸不全のインジケーションを提供し、必要な場合には、挿管される決定を支援する。
【0212】
デバイスの別の実施形態では、RVMモニタリングは、気管内チューブの貧弱な位置決め、過換気、低換気、再呼吸、および空気漏れなど、一般にベンチレータに関連付けられる問題を識別する。1つの実施形態では、RVM測定値は、ベンチレータから導出されるデータと組み合わせられ、生理機能に関する追加的なデータを提供する。これの例は、定量的な方式で「呼吸仕事量」を査定するために、RVM測定値対ベンチレータの上で測定される吸気されたまたは呼気されたフローまたは体積の比較によって、差が記録され得ることである。
【0213】
別の実施形態では、RVM測定値は、外科手術の後に、患者の回復をモニタリングするために、依然として麻酔または鎮痛薬の影響下にある患者の中でとられる。通常の手術前の条件の間の患者に関するベースライン1回換気量曲線を記録することは、外科手術の間および後のモニタリングのための比較ベースラインを提供する。同様の1回換気量曲線へ戻ることが、ベンチレータを取り外された後の呼吸回復の1つの信号である。本発明のこの実施形態では、デバイスは、抜管の成功を評価し、再挿管が必要であるかどうかを決定するために使用される。本明細書で説明されている本発明は、非侵襲的に、および、吸気された/呼気された空気のストリームの中にあることなしに、または、気道フローを妨げたり、もしくは、気道回路を汚染することなく、これらの測定値がとられることを可能にする。
【0214】
1つの実施形態では、デバイスは、具体的には、整形外科処置、白内障手術、ならびに、上部および下部GI管の内視鏡検査を受ける患者を含む、監視下麻酔管理を受ける患者に向けて用意された、外来患者外科センターの中で使用される。
【0215】
診断における使用
1つの実施形態では、デバイスは、パフォーマンスベースのテストの間の呼吸パラメータを定量化するために使用される。好適な実施形態では、デバイスは、ストレステストを含む心臓血管機能のテストにおいて、呼吸パラメータを定量化するために使用される。好適な実施形態では、デバイスは、呼吸に対するテストの影響を査定するために、以下のテストのうちの1つと組み合わせて使用される。好適な実施形態では、デバイスは、身体の全体的な生理機能または代謝に対する、エクササイズまたはドーパミンのような特定の薬物の影響を報告するが、これらの影響は、他の場所で説明されているような、呼吸ごとの変動/複雑性の高度な分析、フラクタルまたはエントロピーベースの分析を含む、呼吸体積、呼吸パターン、呼吸速度、またはそれらの組合せの変化によって反映される。好適な実施形態では、デバイスは、エクササイズまたは薬理学的ストレスの所与のレベルの安全を評価するために使用される。
【0216】
好適な実施形態では、RVM測定値の変動または複雑性分析は、標準的な肺機能検査に呼応して行われる。好適な実施形態では、RVM測定値の変動または複雑性分析は、ストレス検査、跛行のための歩行テスト、または、他のパフォーマンスベースの検査などのような、標準的な心臓血管の生理機能検査に呼応した心拍数の変動/複雑性分析の有無にかかわらず行われる。
【0217】
好適な実施形態では、デバイスは、診断目的のための気管支拡張薬、治療法のモニタリング、心臓および肺の両方に対する影響を含む最適化を含む、呼吸器系に対する薬物の影響を評価するために使用される。より好ましくは、上記のデバイスは、インピーダンスまたは説明された他の方法によって取得された呼吸情報を、心拍数、心拍数変動、虚血または不整脈のEKG証拠についてのEKG情報と組み合わせる。好適な実施形態では、デバイスは、誘発テストなどにおける気管支収縮剤の影響を評価するために使用される。さまざまな実施形態では、デバイスは、連続的なまたは間欠的なRVM測定値を取得する。好適な実施形態では、デバイスは、RVMデータのトレンドを提供する。
【0218】
好適な実施形態では、デバイスは、代謝の刺激物、または、ベータ遮断薬、アルファアドレナリン作動薬もしくは遮断薬、ベータアドレナリン作動薬もしくは遮断薬を含む、心臓血管薬物の影響を評価するために使用される。好適な実施形態では、デバイスは、ストレステストの間に、行われた努力のレベルを実証するために使用され、または、肺系統に関する非安全条件を実証し、テストを終了もしくは修正するために使用される。患者へ導入されるストレスは、エクササイズおよび/または薬物の送達を、限定ではなく、含む、さまざまな手段によって生成される。好適な実施形態では、デバイスは、全体的なエクササイズのレベルを示すために、先に説明された他の技術とともに働くまたは示す。好適な実施形態では、デバイスは、肺系統に対するエクササイズまたは他の刺激物の影響を測定するための独立したデバイスとして使用される。
【0219】
デバイスの別の実施形態では、呼吸情報は、心臓の情報と組み合わせられ、心臓疾患に関連付けられるEKG変化に関係した運動のレベルを定義する。デバイスの別の実施形態では、システムは、呼吸情報を心臓の情報と組み合わせ、アスリートの運動のレベルを決定する。
【0220】
別の実施形態では、デバイスは、呼吸信号と心臓インピーダンスまたはEKG測定値とをペアにすることの有無にかかわらず、全体的な健康または心臓の状態に対するエクササイズのレベルの潜在的な悪影響の警告を、家庭、運動場、軍事環境、または、病院外のセッティングにおいて、提供する。デバイスの1つの実施形態は、ホルターモニタであり、ホルターモニタは、以下のもの、すなわち:異なるリズム、脱分極、または他の心臓の病態生理学に関連付けられる、呼吸努力、活動のレベル、生理機能の状態、または代謝のうちの1つまたは複数に関する値を出力する。
【0221】
本発明の1つの実施形態は、病院、家庭、または他のセッティングにおいて数時間から数日にわたって1つまたは複数の生理学的なパラメータをモニタリングするホルターモニタと同様である。デバイスの1つの実施形態は、具体的には心不全に関係した代償不全効果をモニタリングするホルターモニタまたはクリティカルケアモニタと組み合わせられる。デバイスの同様の実施形態は、「肺水」の測定値をモニタリングおよび出力する。1つの実施形態では、デバイスは、鬱血性心不全のための疾患管理システムの中に含められる。
【0222】
最も好適な実施形態では、デバイスは、連続的な測定を提供し、その連続的な測定は、長い時間期間にわたって実行され得、また、エクササイズまたは診断用の薬物、治療モニタリングまたは薬物開発の効果を実証する時間曲線を送達することが可能である。
【0223】
デバイスの1つの実施形態は、さまざまな疾患状態を有する患者に関して、数分、数時間、数日にわたるトレンドデータを提供し、さまざまな疾患状態は、慢性閉塞性肺疾患、鬱血性心不全、肺高血圧症、肺線維症、嚢胞性線維症、間質性肺疾患、拘束性肺疾患、中皮腫、胸郭外科手術後、心臓外科手術後、開胸術後、胸郭開口術後、肋骨骨折後、肺挫傷後、肺動脈塞栓後、心虚血、心筋症、虚血性心筋症、拘束性心筋症、拡張型心筋症、感染型心筋症、肥大型心筋症を含む。好ましくは、デバイスは、介入または誘発検査手順に関係したこれらの疾患状態における呼吸の変化についての情報を提供する。
【0224】
本発明のデバイスの1つの実施形態では、システムは、さまざまな疾患を診断するために使用される。好適な実施形態では、デバイスは、進行中の肺炎のリスクを査定するために使用される。別の実施形態では、デバイスは、肺炎療法が効果的でないリスクを査定するために使用され、また、是正アクションを提案する。本発明の別の実施形態は、疾患に関連付けられる機能悪化または回復の評価のために使用され、疾患は:肺炎、心不全、嚢胞性線維症、間質性線維症、水分量レベル、心不全に起因する鬱血、肺浮腫、血液喪失、血腫、血管腫、身体の中の流体の蓄積、出血、または他の疾患を、限定ではなく、含む。この情報は、上記のような診断のために使用され得るか、または、デバイスによって測定され得るかまたはデバイスの中へ入力され得る呼吸体積測定値、あるいは他の生理学的測定値と一体化されて、包括的な呼吸充足度インデックス(cRSI)を提供し得る。
【0225】
1つの実施形態では、疾患特有の情報を集めるために、疾患特有のアルゴリズムを用いるために、および、特有の疾患に関係する最適化された呼吸体積データまたは呼吸診断データのいずれかを送達するために、疾患特有のモジュールが生成され得る。
【0226】
本発明の好適な実施形態では、呼吸曲線分析が、医学的条件を診断するために使用される。1つの実施形態では、システムは、誘発テストを利用して、以下のもの、すなわち:1回換気量、残気量、予備呼気量、予備吸気量、最大吸気量、吸気肺活量、肺活量、機能的残気量、残気量、努力肺活量、努力呼気容量、努力性呼気流量、努力性吸気流量、ピーク呼気流量、および最大努力性換気量のうちの1つまたは複数の、測定値または推定を決定する。この実施形態では、フロー体積ループなどのような、診断ツールが、さまざまな心肺の疾病または他の疾病の診断のためのシステムの上で走るソフトウェアによって発生させられる。
【0227】
また、呼吸曲線分析は、誘発テストなしに心肺の疾病または他の疾病を査定するために使用され得る。1つの実施形態では、アルゴリズムは、TV、MV、およびRRのトレンドをモニタリングし、呼吸充足度のメトリクスまたは呼吸充足度インデックス(RSI)を提供する。別の実施形態では、アルゴリズムは、呼吸条件を診断するための入力として、個々の呼吸を分析する。この実施形態では、以下のパラメータのうちの1つまたは複数が、呼吸ごとのベースで計算される:吸気時間(It)、呼気時間(Et)、It:Etの比率、パーセント吸気時間、タイダルインピーダンス、1回換気量、および、曲線の下の面積。この実施形態では、さまざまなパラメータが、ユーザが呼吸疾患状態を査定するために、システムのユーザインターフェースを通して、または、印刷可能なレポートを通して出力される。好適な実施形態では、アルゴリズムは、診断補助として作用するためのパラメータを分析する。この実施形態では、システムは、疾患深刻性のインデックス、または、疾患に関するプラス/マイナスの読み取り値を出力する。
【0228】
1つの実施形態では、デバイスは移植される。好適な実施形態では、デバイスは、ペースメーカのようなバッテリから給電される。1つの実施形態では、デバイスは、ペースメーカまたは除細動器と組み合わせられる。1つの実施形態では、デバイスは、外部コンポーネントを使用して調節されるか、較正されるか、またはインテロゲーションされる。
【0229】
図40は、インピーダンス測定デバイスが、高頻度胸壁振動法(「HFCWO」)ベストとデータ通信している、本発明の実施形態を示している。ベスト振動療法の間に、患者の分時換気量が最大で50%低減されることが最近観察された。効率の改善は、呼吸の間に血流の酸素化を提供する困難性を有する患者にかなりの健康利益を提供することが可能である。好適な実施形態では、HFCWOベストは、肺の中のO2からCO2への転送を最適化するために開発された療法レベル(周波数、強度、長さ)を自動的に提供する。目標は、HFCWOベストの使用による酸素およびCO2の転送を最適化することである。吸い込みおよび吐き出しの間の肺の中の乱流を増加させることによって、より良好な酸素およびCO2の転送が達成され得る。好ましくは、呼吸仕事量の減少は、呼吸不全の可能性を減少させる。それに加えて、酸素療法を受けている患者は、酸素療法をHFCWOベスト療法と組み合わせ、酸素化を最大化し、CO2除去を改善し、呼吸仕事量を減少させ、それによって、好ましくは、寿命を延ばすことが可能である。
【0230】
典型的に、HFCWOベスト療法は、滲出液を排除するための10分の治療を提供する。この製品の使用は、好ましくは、より良好な酸素化を可能にする。製品の使用は、最大で24時間/日まで連続的であることが可能である。システムは、たとえば、ウォーキングなどのような活動的な時間の間に、患者が追加的な酸素化効率を要求するときにアクティブ化するようにカスタマイズされ得る。滲出液除去とは対照的に、振動のパラメータは、肺の中の酸素転送を最大化しながら、患者不快感を最小化するように最適化され得る。
【0231】
図40に示されているように、生理学的な生体電気インピーダンス信号を患者から獲得するためのセンサは、好ましくは、コンピューティングデバイスに機能的に接続されている。コンピューティングデバイスは、好ましくは、生理学的な生体電気インピーダンス信号を分析し、分析された生体電気インピーダンス信号に基づいて、患者の分時換気量および1回換気量の査定を提供する。また、コンピューティングデバイスは、好ましくは、経時的に信号をモニタリングし、信号をHFCWOベストへ提供する。
【0232】
好ましくは、HFCWOベストは、コンピューティングデバイスによって決定されるような、療法の間の1回換気量、分時換気量、および呼吸速度を含む、生理学的パラメータのレベルに基づいて、療法レベル(周波数、強度、長さ)を自動的に調節する。それに加えて、一般的なセッションごとの肺パフォーマンスが、療法の有効性、および、療法レベルを拡張または修正する必要性を実証するためにトラッキングされ得る(TV、RR、MV)。目標は、HFCWOベストの使用によって、酸素およびCO2の転送を最適化し、吸い込みおよび吐き出しの間の肺の乱流を増加させることである。
【0233】
それに加えて、生体インピーダンスの吐き出し/吸い込み曲線の形状は、療法の成功のインジケータであることが可能である。酸素の転送を最大化するための妥当な曲線が識別され得、HFCWOベストのレベル(周波数、強度、療法の長さ、ベースライン圧縮)が、所望の呼吸曲線および必要な酸素化および/またはCO2抽出を得るために、ならびに、呼吸仕事量を最小化するために調節され得る。
【0234】
追加的に、パルスオキシメータは、強化された圧縮療法および改善された酸素化の成功のインジケータとして、システムに追加され得る。療法のレベルは、経時的に酸素化応答を見張ることによって最適化され得る。CO2モニタリングは、呼気終末または経皮的なCO2のモニタリングのいずれかによって、システムに追加され得る。
【0235】
それに加えて、酸素療法を受けている患者は、酸素療法をHFCWOベスト療法と組み合わせ、酸素化を最大化し、CO2除去を改善し、呼吸仕事量を減少させ、それによって、寿命を延ばすことが可能である。
【0236】
図41は、インピーダンス測定デバイスが、機械的な換気療法デバイスとデータ通信している、本発明の実施形態を示している。機械的な換気療法デバイスは、CHFOシステム、ベンチレータ、CPAP、BiPAP、CPEP(持続的呼気陽圧)、または、別の非侵襲性の換気デバイスであることが可能である。好ましくは、システムは、生理学的な生体電気インピーダンス信号を患者から獲得するためのセンサを含み、コンピューティングデバイスに機能的に接続されている。コンピューティングデバイスは、好ましくは、生理学的な生体電気インピーダンス信号を分析し、分析された生体電気インピーダンス信号に基づいて、患者の分時換気量および1回換気量の査定を出力する。システムは、経時的に信号をモニタリングし、機械的な換気デバイスに信号を提供することも可能である。機械的な換気デバイスは、好ましくは、肺の中のより良好な酸素化効率を引き起こす。機械的な換気デバイスは、好ましくは、周波数、振動の強度、および/または、ベースラインの吸い込みおよび吐き出し圧力を調節することが可能である。
【0237】
生体電気フィードバック信号は、酸素化の成功のためのインジケーションを提供する。1回換気量、分時換気量、および呼吸速度に関する特徴的な値は、変化することになる。変化をモニタリングすることによって、システムは、機械的な換気デバイスのパラメータを自動的に調節し、生理学的な応答およびシステムの効率を最適化することが可能である。追加的に、パルスオキシメータが、機械的な換気療法の成功のインジケータとして、システムに追加され得る。改善された酸素化およびCO2の転送が、好ましくは、達成され得るか、または、呼吸仕事量の減少が、好ましくは、呼吸不全の可能性を減少させるために達成され得る。療法のレベルは、経時的に酸素化応答を見張ることによって、さらに最適化され得る。それに加えて、療法の全体的な長さが調節され得る。一般的なセッションごとの肺パフォーマンスが、換気の有効性、および、療法レベルを拡張または修正する必要性を実証するためにトラッキングされ得る(TV、RR、MV)。
【0238】
それに加えて、生体インピーダンスの吸い込みおよび吐き出し曲線の特徴的な形状は、療法の成功のインジケータである。所望の排出曲線を得るために療法を調整することによって、システムは、酸素化効率を最適化することが可能である。換気を最大化するための妥当な曲線が決定され得、ベンチレータの調節レベル(周波数、強度、療法の長さ、ベースライン圧力)が、所望の呼吸曲線を得るために調節され得る。それに加えて、酸素療法を受けている患者は、酸素療法を機械的な換気療法と組み合わせ、酸素化を最大化し、寿命を延ばすことが可能である。追加的に、システムを使用することおよび十分な療法を得ることへの従順性のレベルは、肺の中に入るおよび肺から外へ出る空気の体積を分析することによってモニタリングされ得る。
【0239】
1回換気量、MV、およびRRを使用することによって、気道を広げる相対的成功が決定され得る。
【0240】
機械的な換気療法は、エーロゾル送達と組み合わせられ、追加的な療法レジメンを提供することが可能である。エーロゾルの吸引が、肺のインピーダンス特徴を本質的に修正することになるので、呼吸のレベル、および、これらの2つの組み合わせられた治療の効果が、また、最適化され得る。たとえば、治療の間に、1回換気量および特徴的な吸い込みおよび排出曲線が、治療の前、間、および後にモニタリングされ、膨張のときの肺および気道の呼気陽圧の妥当な最適化、または、適切にクリア化された肺を保証することが可能である。
【0241】
図42は、インピーダンス測定デバイスが、酸素化療法デバイスとデータ通信している、本発明の実施形態を示している。システムは、好ましくは、生理学的な生体電気インピーダンス信号を患者から獲得するためのセンサを含み、コンピューティングデバイスに機能的に接続されている。コンピューティングデバイスは、好ましくは、生理学的な生体電気インピーダンス信号を分析し、分析された生体電気インピーダンス信号に基づいて、患者の分時換気量および1回換気量の査定を提供する。コンピューティングデバイスは、追加的に、好ましくは、経時的に信号をモニタリングし、信号を酸素療法システムに提供する。好ましくは、酸素療法は、マスクまたはノーズカニューレを介して酸素を提供する。生体電気フィードバック信号は、気道の膨張のレベルの成功に関するインジケーションを提供する。生体インピーダンス膨張曲線の特徴的な形状は、空気が肺の中へ入っていることのインジケータである。
【0242】
吸い込みおよび吐き出しの圧力モニタリングをインピーダンス信号と組み合わせることによって、酸素化療法システムは、カニューレの酸素の送達を同期化し、ノーズカニューレを通した最適な酸素取り込みを保証することが可能である。
【0243】
マスクを使用する酸素療法に関して、酸素送達のフィードバックメカニズムが、同様に最適化され得る。それに加えて、インピーダンス信号およびマスク圧力の両方を使用することによって、酸素システムは、どれぐらい上手くマスクが患者に適用されているか、ならびに、どれくらい上手く回路が維持されているか(よじれがない、および、漏れがない)ことを、より信頼性高く決定することが可能である。
【0244】
図43は、インピーダンス測定デバイスが、吸引療法デバイスとデータ通信している、本発明の実施形態を示している。システムは、好ましくは、生理学的な生体電気インピーダンス信号を患者から獲得するためのセンサを含み、コンピューティングデバイスに機能的に接続されている。コンピューティングデバイスは、好ましくは、生理学的な生体電気インピーダンス信号を分析し、分析された生体電気インピーダンス信号に基づいて、患者の分時換気量および1回換気量の査定の出力を提供する。また、コンピューティングデバイスは、好ましくは、経時的に信号をモニタリングし、信号を吸引療法デバイスに提供する。
【0245】
吸引療法は、好ましくは、肺の中の流体のモビライゼーションを引き起こす。吸引療法は、振動の周波数および強度に関して調節され得る。また、ベースラインの吸い込みおよび吐き出し圧力が調節され得、療法の全体的な長さが調節され得る。
【0246】
生体電気フィードバック信号は、好ましくは、分泌物のモビライゼーションの成功に関するインジケーションを提供する。吸引が流体を引き出すときに、1回換気量、分時換気量、および呼吸速度に関する特徴的な値が変化することになる。変化をモニタリングすることによって、システムは、好ましくは、吸引パラメータを自動的に調節し、生理学的な応答を最適化することが可能である。
【0247】
生体インピーダンスの特徴的な形状に加えて、排出曲線は、療法の成功のインジケータである。所望の排出曲線を得るために療法を調整することによって、システムは、患者からの流体のモビライゼーションを最適化することが可能である。
【0248】
流体クリアランスが、エーロゾル送達と組み合わせられ、別の療法レジメンを提供することが可能である。エーロゾルの吸引が、肺のインピーダンス特性を本質的に修正することになるので、呼吸のレベル、および、これらの2つの組み合わせられた治療の効果が、また、最適化され得る。たとえば、治療の間に、1回換気量および特徴的な吸い込みおよび排出曲線が、治療の前、間、および後にモニタリングされ、適切にクリア化された肺の妥当なアウトカムを保証することが可能である。
【0249】
図44は、インピーダンス測定デバイスが、カフアシストデバイスとデータ通信している、本発明の実施形態を示している。システムは、好ましくは、生理学的な生体電気インピーダンス信号を患者から獲得するためのセンサを含み、コンピューティングデバイスに機能的に接続されている。コンピューティングデバイスは、好ましくは、生理学的な生体電気インピーダンス信号を分析し、分析された生体電気インピーダンス信号に基づいて、患者の分時換気量および1回換気量の査定の出力を提供する。また、コンピューティングデバイスは、好ましくは、経時的に信号をモニタリングし、信号をカフアシストデバイスに提供する。
【0250】
カフアシストデバイスは、好ましくは、咳を刺激し、障害を受けた咳嗽時ピークフローを伴う患者の中の分泌物を除去する非侵襲性な療法である。それは、粘液からクリアな状態に肺を維持するように設計されている。保持された分泌物が、肺の中に集まり、感染症のための環境を生成させる。機械的な咳介助(MI/E)療法の製品は、咳が弱くなっており、支援なしでは大きい気道から分泌物を除去することができない患者にとって、重要である。システムは、肺を膨張させるためにプラスの圧力(吸い込み)を供給し、次いで、マイナスの圧力(吐き出し)を供給するように、急速にシフトし、このプロセスの間に、分泌物が剪断され、咳により吐き出され得るか、または、吸引によって除去され得る。吐き出しの後に、システムは、休止し、残っているプラスの圧力フローを患者に維持する。フェイスマスクまたはマウスピースが、(すなわち、妥当なアダプタを備えた患者に関して)気管内および気管切開において使用され得る。
【0251】
好ましくは、カフアシストデバイスは、療法の間の1回換気量、分時換気量、および呼吸速度のレベルに基づいて、特徴的な療法レベル(周波数、強度、療法の長さ、吸い込み圧力、吐き出し圧力)を自動的に調節する。それに加えて、一般的なセッション内のおよびセッションごとの肺パフォーマンスが、(多くのセッションの前、間、および、後に、ならびに、多くのセッションを横切って)療法の有効性を実証するためにトラッキングされ得る。グラフが、患者の呼吸特性を文書に示すために、および、経時的に患者の改善を実証するために提供され得る。
【0252】
それに加えて、生体インピーダンス膨張曲線の特徴的な形状は、それぞれの個々の咳の成功のインジケータである。滲出液除去を最大化するための妥当な曲線が識別され得、カフアシストシステムの調節レベル(周波数、強度、療法の長さ、吸い込み圧力、および吐き出し圧力)が、所望の咳排出曲線を得るために調節され得る。カフアシストの特性は、最適な結果がそれぞれの個々の患者に提供されることを保証するように調節され得る。
【0253】
本発明の他の実施形態および技術的な利点は、下記に記載されており、次に続く本発明の図面および説明から明らかになり得、または、本発明の実践から知られ得る。
【0254】
本発明の他の実施形態および使用は、本明細書で開示されている本発明の仕様および実践を考慮することから当業者に明らかになることになる。すべての刊行物、米国および外国の特許および特許出願を含む、本明細書で引用されているすべての参考文献は、具体的におよび全体的に、参照により組み込まれている。「含む(comprising)」という用語は、使用される場合にはいつでも、「からなる(consisting of)」および「本質的に~からなる(consisting essentially of)」という用語を含むことが意図されている。そのうえ、「含む(comprising)」、「含む(including)」、および「含む(containing)」という用語は、限定になることは意図されていない。明細書および例は、以下の特許請求の範囲によって示されている本発明の真の範囲および精神によって、例示的にのみ考慮されるべきであることが意図されている。