IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ アルファ−ラヴァル・コーポレート・アーベーの特許一覧

<>
  • 特許-液体混合物を分離するための遠心分離機 図1
  • 特許-液体混合物を分離するための遠心分離機 図2
  • 特許-液体混合物を分離するための遠心分離機 図3
  • 特許-液体混合物を分離するための遠心分離機 図4
  • 特許-液体混合物を分離するための遠心分離機 図5
  • 特許-液体混合物を分離するための遠心分離機 図6
  • 特許-液体混合物を分離するための遠心分離機 図7
  • 特許-液体混合物を分離するための遠心分離機 図8
  • 特許-液体混合物を分離するための遠心分離機 図9
  • 特許-液体混合物を分離するための遠心分離機 図10
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-03-26
(45)【発行日】2024-04-03
(54)【発明の名称】液体混合物を分離するための遠心分離機
(51)【国際特許分類】
   B04B 1/08 20060101AFI20240327BHJP
   B04B 11/02 20060101ALI20240327BHJP
   B04B 13/00 20060101ALI20240327BHJP
【FI】
B04B1/08
B04B11/02
B04B13/00
【請求項の数】 13
(21)【出願番号】P 2022557942
(86)(22)【出願日】2021-03-17
(65)【公表番号】
(43)【公表日】2023-05-02
(86)【国際出願番号】 EP2021056832
(87)【国際公開番号】W WO2021191023
(87)【国際公開日】2021-09-30
【審査請求日】2022-11-18
(31)【優先権主張番号】20165833.3
(32)【優先日】2020-03-26
(33)【優先権主張国・地域又は機関】EP
(73)【特許権者】
【識別番号】509005513
【氏名又は名称】アルファ-ラヴァル・コーポレート・アーベー
(74)【代理人】
【識別番号】100108453
【弁理士】
【氏名又は名称】村山 靖彦
(74)【代理人】
【識別番号】100110364
【弁理士】
【氏名又は名称】実広 信哉
(74)【代理人】
【識別番号】100133400
【弁理士】
【氏名又は名称】阿部 達彦
(72)【発明者】
【氏名】ペール-グスタフ・ラーション
【審査官】伊藤 真明
(56)【参考文献】
【文献】特開2017-006883(JP,A)
【文献】特開昭57-056720(JP,A)
【文献】特開昭58-186019(JP,A)
【文献】特開平11-262686(JP,A)
【文献】特開2005-177191(JP,A)
【文献】米国特許出願公開第2017/0203306(US,A1)
【文献】特開2010-46436(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
B04B 1/00-15/12
G01G 1/00-23/48
(57)【特許請求の範囲】
【請求項1】
遠心分離機(100)を含む液体混合物を分離するための分離システム(120)であって、
前記遠心分離機(100)は、
固定フレーム(30)と、
回転可能アセンブリ(101)と、回転軸(X)の周りでフレーム(30)に対して前記回転可能アセンブリ(101)を回転させるための駆動ユニット(34)と、
分離され液体混合物を受容するための供給入口(20)と、
分離された軽液相を排出するための第1の液体出口(21)と、前記軽液相より高い密度を有する重液相を排出するための第2の液体出口(22)と、
を備え、
前記回転可能アセンブリ(101)は、分離ディスクのスタック(19)が前記回転軸(X)の周りを回転するように配置された分離空間(17)を取り囲むロータ・ケーシング(2)を備え、前記分離空間(17)が、前記供給入口(20)から液体混合物を受容するために配置され、
前記回転可能アセンブリ(101)は、交換可能な分離インサート(1)及び回転部材(31)を備え、
前記分離インサート(1)は、前記ロータ・ケーシング(2)を含み、前記回転部材(31)によって支持され、
さらに、当該分離システム(120)は、
前記遠心分離機(100)の前記第1の液体出口(21)および/または前記第2の液体出口(22)の下流に配置され、排出された液相を受容するために配置された容器(60)と、
前記容器(60)に収容される排出された液相の重量を測定するためのはかり(61)と、
を含み、
前記容器(60)は、前記はかり(61)に吊り下げられ、
前記分離システム(120)は、前記容器(60)の重量増加を時間の関数として決定するように構成された制御ユニット(53)をさらに備え、
前記制御ユニット(53)は、時間の関数として測定された前記容器(60)の重量増加に基づいて、排出された液相の流量を決定するようにさらに構成されることを特徴とする、分離システム(120)。
【請求項2】
前記容器(60)から空にされる液相を受容するためのタンク(205)をさらに備えていることを特徴とする、請求項1に記載の分離システム(120)。
【請求項3】
前記容器(60)が、前記排出された液相を受容するための容器入口(60a)と、前記容器(60)から液相を空にするための容器出口(60b)とを備え、当該分離システム(120)は、前記容器(60)から空にされる液相の流れを調節するためのバルブ手段(50、52b)をさらに備えていることを特徴とする、請求項1または2に記載の分離システム(120)。
【請求項4】
前記制御ユニット(53)は、前記バルブ手段(50、52b)を制御するようにさらに構成され、時間の関数として前記容器(60)の重量増加を決定する間、前記バルブ手段(50、52b)を閉じるように構成されていることを特徴とする、請求項3に記載の分離システム(120)。
【請求項5】
前記容器(60)からの液相の出口流量が、前記容器(60)への液相の入口流量よりも多いように、前記制御ユニット(53)が、前記バルブ手段(50、52b)を開くようにさらに構成され、それによって前記容器(60)が空にされることを特徴とする、請求項に記載の分離システム(120)。
【請求項6】
前記制御ユニット(53)は、前記容器(60)が充填されるのと空にされるのとを繰り返すように、前記バルブ手段(50、52b)の閉鎖と前記バルブ手段(50、52b)の開放とを切り替えるように構成されていることを特徴とする、請求項に記載の分離システム(120)。
【請求項7】
前記容器(60)が、前記第1の液体出口(21)の下流に配置されていることを特徴とする、請求項1~のいずれか一項に記載の分離システム(120)。
【請求項8】
前記分離システム(120)には、前記容器(60)が配置された液体出口(21、22)の下流に配置される追加の流量センサ(51)がないことを特徴とする、請求項1~のいずれか一項に記載の分離システム(120)。
【請求項9】
遠心分離機から排出される液相の流量を決定する方法(100)であって、
a)請求項1~のいずれか一項に記載の分離システム(120)を提供するステップと、
b)前記供給入口(20)にフィードを供給し、前記第1の液体出口(21)から分離された軽液相を排出し、前記第2の液体出口(22)から分離された重液相を排出するステップと、
c)前記容器(60)の重量増加を時間の関数として測定するステップと、
d)ステップc)で測定された重量増加に基づいて、前記容器(60)に放出される液相の流量を決定するステップと、
を含んでなることを特徴とする、方法。
【請求項10】
ステップc)が、前記容器(60)の重量増加を時間の関数として測定する間に、前記容器(60)からの分離された液相の流れを停止させるステップc1)をさらに含むことを特徴とする、請求項に記載の方法。
【請求項11】
ステップc)が、前記容器(60)からの分離された液相の流れを開始させ、それにより、前記容器(60)の重量増加を時間の関数として測定した後に、前記容器を空にするステップc2)をさらに含むことを特徴とする、請求項10に記載の方法。
【請求項12】
ステップc)は、ステップc1)およびステップc2)を繰り返すことを含むことを特徴とする、請求項11に記載の方法。
【請求項13】
ステップd)において、前記液相の決定された流量に基づいて、前記容器(60)が配置された同じ液体出口の下流に配置された流量センサ(51)を調整するステップをさらに含むことを特徴とする、請求項12のいずれか一項に記載の方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明の概念は、遠心分離機の分野に関する。
【0002】
より詳細には、本発明は、遠心分離機から分離された相の液体流れを測定するための遠心分離機の方法に関する。
【背景技術】
【0003】
遠心分離機は、一般に、液体混合物または気体混合物から液体および/または固体を分離するために使用される。動作中、分離しようとしている流体混合物が回転ボウルに導入され、遠心力により、重い粒子または水などのより密度の高い液体が、回転するボウルの周囲に蓄積するが、密度の低い液体は回転の中心軸の近くに蓄積する。これにより、例えば、周囲および回転軸の近くにそれぞれ配置された異なる出口によって、分離された画分(fractions)の収集が可能になる。
【0004】
国際公開第2015/181177号(特許文献1)には、発酵ブロスなどの医薬品の遠心処理のための分離機が開示されている。分離機は、回転可能な外側ドラムと、外側ドラム内に配置された交換可能な内側ドラムと、を備えている。内部ドラムは、流動性製品を清澄化するための手段を備える。外側ドラムは、外側ドラムの下に配置されたモータによって駆動スピンドルを介して駆動される。内側ドラムは外側ドラムを通って上方に垂直に延在しており、その流体接続部は分離機の上端に配置されている。
【0005】
遠心分離機から分離された液相の液体流れを測定する従来の方法は、流量センサを使用することである。流量センサは一般的に高価であり、特定の用途に適した流量センサを選択するのは難しい場合があり、これは、流量センサがいくつかの異なる測定原理に依存し、それぞれに長所と短所があるためである。同じ流量センサで異なる液体を測定したい場合、或いは、温度または液体組成が時間とともに変化する場合、通常、測定エラーが発生する。
【先行技術文献】
【特許文献】
【0006】
【文献】国際公開第2015/181177号
【発明の概要】
【発明が解決しようとする課題】
【0007】
したがって、遠心分離機からの分離された液相流れを測定するための方法において改善された方法が当技術分野で必要とされている。
【0008】
本発明の目的は、先行技術の1つまたは複数の制限を少なくとも部分的に克服することである。特に、排出される液相の流量を決定するための分離機および方法を提供することが目的である。
【課題を解決するための手段】
【0009】
本発明の第1の態様として、遠心分離機を含む、液体混合物を分離するための分離システムが提供される。遠心分離機は、
固定フレームと、
回転可能アセンブリと、回転軸の周りでフレームに対して回転可能アセンブリを回転させるための駆動ユニットと、
分離された液体混合物を受容するための供給入口と、
分離された軽液相を排出するための第1の液体出口と、軽液相より高い密度を有する重液相を排出するための第2の液体出口と、
を備え、
回転可能アセンブリは、分離ディスクのスタックが回転軸の周りを回転するように配置された分離空間を取り囲むロータ・ケーシングを備え、分離空間が、供給入口から液体混合物を受容するために配置されている。
【0010】
分離システムはさらに、
遠心分離機の第1の液体出口および/または第2の液体出口の下流に配置され、排出された液相を受容するために配置された容器と、
容器に収容される排出された液相の重量を測定するためのはかりと、
を備えている。
【0011】
遠心分離機の固定フレームは非回転部分であり、回転可能アセンブリは、フレームによって、すなわち、ボールベアリングのような少なくとも1つのベアリング手段によって支持される。
【0012】
遠心分離機は、回転可能アセンブリを回転させるように構成された駆動ユニットをさらに備え、そして、電気モータを備え、ベルトまたはギア伝動などの適切な伝動によって回転可能アセンブリを回転させるように構成され得る。したがって、駆動ユニットは、回転可能アセンブリを直接またはトランスミッションを介して間接的に駆動するように構成され得る。
【0013】
回転可能アセンブリは、分離が行われるロータ・ケーシングを備えている。ロータ・ケーシングは、細胞培養混合物などの流体混合物の分離が行われる分離空間を取り囲む。ロータ・ケーシングは、分離相のためのさらなる出口がない、中実のロータ・ケーシングであり得る。このように、中実ロータ・ケーシングは、分離空間の周辺に蓄積されたスラッジ相である排出のための周辺ポートがないという点において中実であり得る。しかしながら、実施形態では、ロータ・ケーシングは、分離空間の周囲から分離相を断続的または連続的に排出するための周囲ポートを含む。
【0014】
供給入口は、分離される液体混合物を受容し、供給物を分離空間に導くためのものである。分離空間は、回転軸の周りに中央に配置された分離ディスクのスタックを含む。スタックは、円錐台形の分離ディスクを含み得る。
【0015】
したがって、分離ディスクは円錐台形を有し得、これは、円錐台の形状を有する形状を指し、それは狭い端部または先端が除去された円錐体の形状である。したがって、円錐台形は、対応する円錐形状の先端または頂点が位置する架空の頂点を有する。円錐台形の軸は、中実のロータ・ケーシングの回転軸と軸方向に整列している。円錐台形部の軸は、対応する円錐形状の高さ方向、または対応する円錐形状の頂点を通る軸の方向である。
【0016】
あるいは、分離ディスクは、回転軸の周りに配置された軸方向ディスクであり得る。
【0017】
分離ディスクは、ステンレス鋼などの金属を含むか、または金属材料でできていてもよい。分離ディスクは、プラスチック材料をさらに含むか、またはプラスチック材料でできていてもよい。
【0018】
遠心分離機は、液体混合物を少なくとも第1および第2の液相に分離する。分離された液相は、第1および第2の液体出口を介して排出される。軽液相出口とも呼ばれる第1の液体出口は、低密度の分離された液相を排出するためのものであり、重液相出口とも呼ばれる第2の液体出口は、第1の液体出口から排出される液相よりも高密度の重相を分離するためのものである。
【0019】
本発明の第1の態様は、例えば、容器がはかりの上に立っているか吊り下げられて、はかりの重量変化が経時的に評価されている場合に、第1または第2の液体出口の下流に配置された容器に入る流れが容易に決定され得るという洞察に基づいている。この容器は、周期的に充填されおよび空にされ得るように構成され、容器の充填中および容器から液体がなくなるとき、経時的な重量増加が評価され、そして、容積流量または質量流量などである液体流量が決定され得る。
【0020】
質量流量は、時間間隔(Δt)中の容器の重量増加(Δw)を決定することによって計算され、次に、Δw/Δtが推定され得る。容積流量は、容器に入る液相の密度を使用して質量流量から決定され得る。
【0021】
液体の密度が不明な場合でも、はかりを使用して時間の経過に伴う重量変化を測定および評価すると、従来の流量センサよりも測定誤差が少なくなり得る。測定される液相の密度の変動が比較的小さい場合、測定誤差は非常に小さくなる。例として、密度が1000~1050kg/mの間で変動し、流量計算の密度値が1025kg/mに設定されている場合(例えば、正確な密度が不明な場合)、容積流量の測定誤差が+/-2.5%と小さくなり、従来の流量センサの測定誤差よりも低くなる。測定された液相の正確な密度がわかっている場合、容積流量の測定誤差は多かれ少なかれ最小限に抑えられ得る。さらに、決定された質量流量の測定誤差も最小限に抑えられ得る。
【0022】
容器は、第1の液体出口の下流または第2の液体出口の下流のいずれかに配置され得る。実施形態では、両方の液体出口の下流に配置された容器およびはかりが存在する。
【0023】
容器ははかりの上に起立するように配置され得るし、はかりに吊り下げられるように配置され得る。このように、本発明の実施形態では、容器ははかり上に配置されるか、またははかり内に吊り下げられ、それによって、容器内に収容された排出される液相の重量が測定され得る。
【0024】
容器は、例えば、循環式に充填されおよび空にされるように構成されている。したがって、第1の態様の実施形態では、容器は、分離した液相を長期保存するための保存容器ではない。
【0025】
したがって、第1の態様の実施形態では、分離システムは、容器から空にされる液相を受容するためのタンクを備えている。
【0026】
タンクは、分離された液相の長期貯蔵のために配置され得る。したがって、タンクは、容器の容積よりも大きい容積を有し得る。タンクは、容器の容積の少なくとも5倍、少なくとも10倍、少なくとも25倍の容積を有し得る。タンクは、例えば、ステンレス製であり得る。
【0027】
実施形態では、容器は、少なくとも500mlなど、少なくとも100mlの容量を保持するように配置される。さらに、容器は、2500ml未満、例えば1500ml未満、例えば1000ml以下の最大容積を有し得る。
【0028】
第1の態様の実施形態では、容器は、排出された液相を受容するための容器入口と、容器から液相を空にするための容器出口とを備え、分離システムは、容器から空にされる液相の流れを調節するためのバルブ手段をさらに含む。
【0029】
バルブ手段は、容器の下流に配置され得る。バルブ手段は、例えば、調整弁、遮断弁、または蠕動ポンプであり得る。
【0030】
本発明の第1の態様の実施形態では、分離システムは、容器の重量増加を時間の関数として決定するように構成された制御ユニットをさらに含む。
【0031】
制御ユニットは、時間の関数として測定された重量増加に基づいて、容器に放出される液相の流量を決定または計算するようにさらに構成され得る。
【0032】
制御ユニットは、重量増加を時間の関数として決定するように構成されたコンピュータプログラム製品を含み得る。したがって、制御ユニットは、はかりと通信するためのプロセッサおよび通信インターフェースを備え得る。
【0033】
この目的のために、制御ユニットは、例えばメモリに格納され得るコンピュータコード命令を実行するように構成された、中央処理ユニットなどの処理ユニットの形態で処理能力を有するデバイスを備え得る。あるいは、処理ユニットは、ハードウェア構成要素の形態であり得る。
【0034】
一例として、制御ユニットは、時間の関数として容器の測定された重量増加に基づいて、排出される液相の流量を決定するようにさらに構成され得る。
【0035】
流量は、質量流量または容積流量であり得る。さらに、分離システムが、容器から空にされる液相の流れを調節するためのバルブ手段を含む場合、制御ユニットは、バルブ手段を制御するようにさらに構成され得る。さらに、制御ユニットはまた、容器の重量増加を時間の関数として決定する間、バルブ手段を閉じるように構成され得る。したがって、バルブ手段を制御することは、バルブ手段を開閉すること、および/またはバルブ手段を通る流量を調節することを含み得る。
【0036】
したがって、容器が空にならないとき、すなわち、容器が一杯になったとき、容器の重量増加が測定され得る。充填時間が長いほど、容器の測定容積が大きくなり、測定誤差が減少する。
【0037】
さらに、制御ユニットは、前記容器からの液相の出口流量が前記容器への液相の入口流量よりも多くなるようにバルブ手段を開くようにさらに構成され得る。これにより、容器が空になり得る。
【0038】
容器の重量増加を測定し、それから容器への流量を測定することが、周期的に実施され得る。したがって、制御ユニットは、バルブ手段を閉じることとバルブ手段を開くこととの間で切り替わるように構成され、その結果、前記容器は、循環式に充填および空にされ得る。
【0039】
したがって、制御ユニットは、バルブ手段が閉じている期間中、すなわち容器の数回の充填期間中に容器の重量増加を測定するように構成され得る。
【0040】
本発明の第1の態様の実施形態では、容器は第1の液体出口の下流に配置される。その結果、制御ユニットは、容器の時間の関数としての重量増加の情報を使用して、放出された軽液相の流量を測定するために使用され得る。
【0041】
はかり上に配置または吊り下げられた容器を使用し、容器の重量増加を時間の関数として測定することにより、測定された重量増加から液体の流量が決定され得る、さらなる流量センサの使用が省略され得る。したがって、第1の態様の実施形態では、分離システムは、容器が配置される液体出口の下流に、または下流に配置される任意の流量センサを含まなくてもよい。つまり、遠心分離機には、関連する液体出口の下流に配置された容器およびはかり以外の追加の流量センサがなくてもよい。
【0042】
本発明の第2の態様として、遠心分離機から排出される液相の流量を決定する方法が提供される。この方法は、
a)上述された第1の態様による分離システム提供するステップと、
b)供給入口にフィードを供給し、第1の液体出口から分離された軽液相を排出し、第2の液体出口から分離された重液相を排出するステップと、
c)容器の重量増加を時間の関数として測定するステップと、
d)ステップc)で測定された重量増加に基づいて、容器に放出される液相の流量を決定するステップと、
を含んでなる。
【0043】
この態様は、一般に、前者の態様と同じまたは対応する利点を示し得る。この第2の態様の効果および特徴は、第1の態様に関連して上述されたものとほぼ類似している。第1の態様に関して言及された実施形態は、第2の態様と大部分において互換性がある。
【0044】
フィードを供給するステップb)は、例えば、当技術分野で知られているように、供給ポンプが使用され得る。
【0045】
ステップc)およびd)は、上述した第1の態様に関して説明したように、制御ユニットによって実行され得る。
【0046】
第2の態様の実施形態では、ステップc)は、時間の関数としての容器の重量増加の測定中に、容器から出る分離液相の流れを停止するステップc1)をさらに含み得る。
【0047】
上述した第1の態様に関連して論じたように、重量測定は、容器の充填中に実行され得る。
【0048】
さらに、ステップc)は、容器からの分離液相の流れを開始し、それにより容器の重量増加を時間の関数として測定した後、容器を空にするステップc2)を含み得る。
【0049】
容器からの分離相の流れは、例えば、容器への分離された液相の流れよりも高い容器からの分離された液相の流れであって、容器への流入中に実行され得る。このようにして、容器への流入があっても、容器は空にされ得る。
【0050】
容器の充填および空にするステップは、例えば、周期的に数回実行され得る。したがって、ステップc)は、ステップc1)およびc2)の繰り返しを含み得る。
【0051】
容器およびはかりは、他の流量センサと組み合わせて使用され得る。このようにして、測定された重量増加が容器の時間の関数として使用され、そのような他の流量センサを較正するなどして調整され得る。
【0052】
したがって、第2の態様の実施形態では、当該方法は、ステップd)で決定された液相の流量に基づいて、容器が配置された同じ液体出口の下流に配置された流量センサを調整するステップをさらに含む。流量センサを調整するステップは、流量センサの較正であり得る。
【0053】
本発明の異なる態様で使用される遠心分離機は、同じ遠心分離機であり得る。したがって、遠心分離機に関連して論じられた特徴は、本発明の第1および第2の態様の両方における遠心分離機の特徴であり得る。
【0054】
本発明の第1および第2の態様の実施形態では、遠心分離機の供給入口および2つの液体出口は、機械的に気密シールすることができる。
【0055】
機械的気密シールは、分離される液体混合物または分離された液相を輸送するための導管などの固定部分とロータ・ケーシングとの間に気密シールを提供するシールを指す。機械的気密シールは、ロータ・ケーシングの外側からの空気がフィードを汚染するリスクをさらに減らし、フィードが分離スペースから漏れるリスクも減らす。したがって、ロータ・ケーシングは、動作中に細胞培養混合物などの液体で完全に充填されるように配置され得る。これは、動作中にロータ・ケーシング内に空気または液体の面が存在しないことを意味する。
【0056】
機械的気密シールされた入口は、分離される流体を受容し、流体を分離空間に導くためのものである。また、第1および第2の液体出口は、機械的に気密シールされ得る。
【0057】
第1および第2の態様の実施形態では、入口は、ロータ・ケーシングの第1の軸方向端部に配置され、分離される液体混合物が回転軸でロータ・ケーシングに入るように配置される。さらに、第2の液体出口は、第1の端部と反対側のロータ・ケーシングの第2の軸方向端部に配置され、分離された重相が回転軸(X)で排出されるように配置され得る。したがって、入口はロータ・ケーシングの軸方向下端などの第1の軸端に配置され、機械的気密シールされた第2の液体出口は、ロータの軸方向上端などの反対側の軸端に配置される。分離された液相を排出するための機械的気密シールされた第1の液体出口は、ロータ・ケーシングの軸方向下端または軸方向上端に配置され得る。
【0058】
例えば、細胞培養物が回転軸で分離機の回転部分に出入りできる場合、有利であり得る。これにより、分離された細胞に与える回転エネルギーが少なくなり、分離機から離れるため、細胞の破損のリスクが減少する。細胞相などの分離された重相は、ロータ・ケーシングから、および回転軸で回転可能アセンブリから排出され得る。
【0059】
第1および第2の態様の実施形態では、遠心分離機は、入口をシールして固定入口導管に接続するための第1の回転可能シールをさらに備え、固定入口導管の少なくとも一部は、回転軸の周りに配置される。
【0060】
したがって、第1の回転可能シールは、入口を固定入口導管に接続してシールするための回転可能なシールである、機械的気密シールであり得る。第1の回転可能シールは、ロータ・ケーシングとフレームの固定部分との間のインターフェースの一部として配置され、したがって、固定部分と回転部分とを備え得る。
【0061】
したがって、固定入口導管は、固定フレームの一部であってもよく、回転軸に配置される。
【0062】
第1の回転可能シールは、分離された液相の1つを排出するために機械的気密シールされた第1の液体出口もシールする二重シールであり得る。
【0063】
本発明の第1および第2の態様の実施形態では、遠心分離機は、第2の液体出口をシールし、回転軸の周りに配置された固定出口導管に接続するための第2の回転可能シールをさらに備える。
【0064】
同様に、第2の回転可能シールは、出口を固定出口導管に接続してシールするための回転可能なシールである、機械的気密シールであり得る。第2の回転可能シールは、ロータ・ケーシングとフレームの固定部分との間のインターフェースの一部として配置され、したがって、固定部分と回転部分とを備え得る。
【0065】
したがって、固定出口導管は、固定フレームの一部であってもよく、回転軸に配置される。
【0066】
本発明の第1および第2の態様の実施形態では、回転可能アセンブリは、交換可能な分離インサートおよび回転部材を備え得る。インサートは、ロータ・ケーシングを含み、回転部材によって支持されている。
【0067】
したがって、交換可能な分離インサートは、インサートの回転可能な支持体として機能し得る、回転部材に取り付けられる事前に組み立てられたインサートであり得る。したがって、交換可能なインサートは、単一のユニットとして回転可能な部材に容易に挿入され、そこから取り出され得る。
【0068】
実施形態によれば、交換可能な分離インサートは使い捨て分離インサートである。したがって、インサートは、使い捨てのインサートに適合され、使い捨てのインサートであり得る。したがって、交換可能なインサートは、製薬業界における単一の製品バッチなど、1つの製品バッチを処理するためのものであり、その後廃棄され得る。
【0069】
交換可能な分離インサートは、ポリマー材料を含むか、またはポリマー材料から構成され得る。一例として、ロータ・ケーシングおよび分離ディスクのスタックは、ポリプロピレン、白金硬化シリコーン、またはBPAを含まないポリカーボネートなどのポリマー材料を含むか、またはポリマー材料であり得る。インサートのポリマー部分は射出成形され得る。しかしながら、交換可能な分離インサートは、また、ステンレス鋼などの金属部品を含み得る。例えば、分離ディスクのスタックは、ステンレス鋼のディスクを含み得る。
【0070】
交換可能なインサートは、シールされた無菌ユニットであり得る。
【0071】
さらに、回転可能アセンブリが交換可能な分離インサートおよび回転可能な部材を含む場合、回転可能な部材は、1つ以上の外部ベアリングによって単独で外部的に支持されるように配置され得る。
【0072】
さらに、交換可能な分離インサートおよび回転可能な部材には、外部ベアリングによって支持されるように配置された回転可能なシャフトがなくてもよい。
【0073】
一例として、交換可能なインサートの外面は、回転部材の支持面内に係合され得、それによって、交換可能なインサートを回転部材内に支持する。
【0074】
したがって、遠心分離機は、モジュール式の遠心分離機であり得るし、または、ベースユニットと、交換可能な分離インサートを備えた回転可能アセンブリとを含み得る。ベースユニットは、固定フレームと、回転可能アセンブリを、回転軸を中心に回転させるための駆動ユニットとを備え得る。回転可能アセンブリは、第1の軸方向端部および第2の軸方向端部を有し、少なくとも半径方向に内部空間を区切ることができ、内部空間が、交換可能な分離インサートの少なくとも一部を受容するように構成されている。回転可能アセンブリは、第1の軸端で内部空間への第1の貫通開口部を備え、交換可能な分離インサートの第1の流体接続が第1の貫通開口部を通って延在するように構成され得る。回転可能アセンブリはまた、第2の軸方向端部で内部空間への第2の貫通開口部を含み、交換可能な分離インサートの第2の流体接続が第2の貫通開口部を通って延在するように構成され得る。
【0075】
本発明の第1および第2の態様の実施形態では、回転可能アセンブリは、分離された重相を分離空間から機械的気密シールされた第2の液体出口に輸送するための少なくとも1つの出口導管をさらに含み、導管は、分離空間の半径方向外側の位置から機械的気密シールされた第2の液体出口、すなわち重相出口まで延在する。出口導管は、半径方向外側位置に配置された導管入口と、半径方向内側位置にある導管出口とを有し得る。その結果、重相出口は半径方向内側の位置にある。この出口導管は、分離空間の上部に配置され得る。
【0076】
一例として、導管入口は半径方向外側位置に配置され、導管出口は半径方向内側位置に配置され得る。さらに、少なくとも1つの出口導管は、導管入口から導管出口まで上向きに傾斜して配置され得る。
【0077】
したがって、水平面に対して、出口導管は、分離空間内の導管入口から重相出口の導管出口まで、軸方向上向きに傾斜され得る。これは、分離された細胞相の出口導管への輸送を容易にし得る。
【0078】
導管入口は、分離空間内の軸方向上方位置に配置され得る。導管入口は、分離空間がその最大内径を有する軸方向位置に配置され得る。
【0079】
出口導管はパイプであり得る。一例として、例えば、ロータ・ケーシング内の回転可能アセンブリは、単一の出口導管を備え得る。
【0080】
一例として、少なくとも1つの出口導管は、水平面に対して少なくとも2度上向きに傾斜している。一例として、少なくとも1つの出口導管は、水平面に対して、少なくとも10度など、少なくとも5度の上向き傾斜に傾斜され得る。
【0081】
少なくとも1つの出口導管は、分離空間内の分離された重相の重相出口への輸送を容易にし得る。
【図面の簡単な説明】
【0082】
上述した本発明の概念および追加の目的、特徴、および利点は、添付の図面を参照して、以下の例示的かつ非限定的な詳細な説明によってよりよく理解されるであろう。図面において、別段の記載がない限り、同様の要素には同様の参照番号が使用されている。
【0083】
図1】容器およびはかりが第1の液体出口の下流に配置された、本開示の分離システムの概略図である。
図2】制御ユニットをさらに含む、図1の分離システムの概略図である。
図3】容器へおよび容器からの流れを調節するために蠕動ポンプが使用される分離システムの概略図である。
図4】重量増加の測定値を使用して流量センサを較正する分離システムの概略図である。
図5】容器およびはかりが第2の液体出口の下流に配置される、本開示の分離システムの概略図である。
図6】細胞培養混合物を分離するための分離システムの概略図である。
図7】細胞培養混合物を分離するための遠心分離機用の交換可能な分離インサートを形成するロータ・ケーシングの概略を示す外側の側面図である。
図8図7に示される交換可能なインサートを含む遠心分離機の概略断面図である。
図9図7に示される交換可能な分離インサートの概略断面図である。
図10】遠心分離機の一実施形態の概略断面図である。
【発明を実施するための形態】
【0084】
図1は、本開示の遠心分離機100の概略図を含む、実施形態による分離システム120を概略的に示す。明確にするために、遠心分離機100の回転可能アセンブリ101の外側のみが示されている。
【0085】
図1の遠心分離機100において、分離されるべき液体混合物は、供給ポンプ204によって固定入口パイプ7を介して回転可能アセンブリ101に供給される。回転可能アセンブリの分離空間内での分離後、分離された液体の軽相は、第1の液体出口を通って第1の固定出口パイプ9に排出され、分離された重相は、第2の液体出口を介して第2の固定出口パイプ8に排出される。
【0086】
第2の液体出口の下流には、第2の液相の排出を促進するために配置された蠕動ポンプ50aがある。蠕動ポンプ50aは、調整弁としても機能し、固定パイプ8に排出される分離された重相の流れを調整し、または流れを遮断するために使用され得る。
【0087】
第1の液体出口の下流には、固定出口パイプ9内の分離された軽液相の排出を調節するための調節弁52aがある。この調節弁の下流には、排出された軽液相を受容するために配置された容器60がある。容器は、排出された分離軽液相を受容するための容器入口60aと、容器60から液相を空にするための容器出口60bとを有する。容器60を空にすることは、容器60の下流に配置された遮断弁52bを介して行われる。容器60の下流に配置された蠕動ポンプ50bなどの容積式ポンプ50bは、第1の液体出口からタンク205への流れを促進するために使用される。
【0088】
容器60は、この実施形態では、容器60の重量を測定するように構成されたはかり61内に吊るされている。したがって、容器内の分離された軽液相の測定重量は、排出される軽液相の量の尺度であり、はかりの重量のそのような測定値は、分離された軽液相の排出流量を計算するために使用され得る。
【0089】
図1にもまた示されるように、容器60から空にされた軽液相は、例えば、周期的(循環式)にタンク205に集められる。このタンク205は、容器60よりも大きな容積を有し、分離された軽液相の貯蔵に使用されるが、はかり61内に吊るされた容器60は、分離機100における液体混合物の分離中に空にされるように配置される。タンク205は、排出された軽液相をさらに処理する前に、中間貯蔵または長期貯蔵に使用され得る。タンクは、容器60の容積よりも少なくとも5倍、例えば少なくとも10倍大きい容積を有し得る。
【0090】
図2は、分離システム120の実施形態を示す。システム120は、図1に示される分離システム120と同様の設定を有し、時間の関数として容器60の重量増加を決定するように構成された制御ユニット53が追加されている。したがって、制御ユニット53は、容器60の重量の測定データを、連続的にまたは個別の時点で受信するように構成されている。これは、図2の矢印「Z1」によって示されている。さらに、制御ユニット53は、時間の関数として測定された容器60の重量増加に基づいて、排出される分離液相の流れを決定するようにさらに構成されている。制御ユニット53は、この実施形態では、矢印「Z2」によって示されるように、遮断弁52bにも接続されている。制御ユニット53は、はかり61から重量データを受信することができる送信機/受信機などの通信インターフェースを備えている。したがって、制御ユニット53は、容器60の時間の関数として重量の情報を受信するように構成されている。
【0091】
制御ユニット53は、容器60の測定された重量を時間の関数として使用して、排出されている軽液相の流量を決定するようにさらに構成され得る。この目的のために、制御ユニット53は、例えばメモリに格納され得るコンピュータコード命令を実行するように構成された、中央処理ユニットなどの処理ユニットの形で処理能力を有するデバイスを備え得る。あるいは、処理ユニットは、特定用途向け集積回路、フィールドプログラマブルゲートアレイなどのハードウェアコンポーネントの形態であり得る。
【0092】
制御ユニット53は、この例では、遮断弁52bを通る液体の流れを調整するようにも構成されている。この目的のために、制御ユニット53の処理ユニットは、動作要求を遮断弁52bに送信するためのコンピュータコード命令をさらに含み得る。
【0093】
一例として、制御ユニットは、容器60の重量増加を時間の関数として測定している間、遮断弁52bを閉じるように構成され得る。さらに、制御ユニット53は、容器60からの軽液相の出口流が容器60への軽液相の入口流よりも高くなるように、遮断弁52bを開くようにさらに構成され得る。このように、制御ユニット53および遮断弁52bは、ポンプ50bで容器60を空にするために使用される。
【0094】
さらなる例として、制御ユニット53は、容器60が周期的(循環式)に充填および空にされるように、遮断弁52bを閉じることと遮断弁52bを開くこととを切り替えるように構成され得る。これは、時間の関数としての重量増加の測定を定期的に行い得ること、すなわち、遠心分離機100における液体混合物の処理中に軽液相の流量が定期的に決定され得ることを意味する。
【0095】
図3は、本開示の分離システム120の実施形態を示す。この分離システム120は、蠕動ポンプ50bの形態の容積式ポンプ50bが、容器60からの軽液相の流出を調節するために使用されるとの違いを伴って、図2に関して論じられたシステム120と同様の設定(セットアップ)を有する。したがって、この実施形態では、制御ユニット53は、図3の矢印「Z3」によって示されるように、蠕動ポンプ50bに接続される。したがって、制御ユニット53は、蠕動ポンプ50bを通る流量など、蠕動ポンプ50bを通る液体の流れを調節するように構成される。この目的のために、処理ユニットは、動作要求を蠕動ポンプ50bに送信するためのコンピュータコード命令をさらに含み得る。
【0096】
図1図3に示されるように、第1の液体出口の下流に配置された容器60およびはかり61を使用することにより、分離システム120は、第1の液体出口の下流に配置された追加の流量センサを必要としない。
【0097】
しかしながら、代替として、時間の関数としての重量増加の測定値は、流量センサ51の較正などの調整に使用され得る。そのような実施形態が図4に示され、第1の液体出口の下流、すなわち容器60およびはかり61と同じ液体出口の下流に配置された流量センサ51が配置されている。
【0098】
制御ユニット53は、この実施形態では、時間の関数として測定された容器60の重量増加に基づいて流量センサ51を較正できるように、流量センサ51にさらに接続されている。これは、図4の矢印「Z4」で示されている。したがって、制御ユニット53は、送信機/受信機などの通信インターフェースを備え、それを介して、容器60の時間の関数としての重量増加の測定から得られた測定流量に基づいて較正するために流量センサ51にデータを送受信し得る。したがって、制御ユニット53は、流量センサ51から受容した流量を、容器60の時間の関数としての重量増加の測定によって計算された流量と比較するように構成され、この比較に基づいて、流量センサ51を校正し得る。
【0099】
容器60と、容器60に収容された排出液相の重量を測定するためのはかり61とを、第2の液体出口の下流にも配置することができ、したがって、排出された重液相の流量を測定するためにも使用され得ることを理解されたい。これは、図5に示されている。したがって、分離システム120は、容器60と、液体出口のいずれか1つの下流または両方の液体出口の下流で容器60に含まれる排出された液相の重量を測定するためのはかり61とを含み得る。
【0100】
図6は、細胞培養混合物を分離するための分離システム120の概略図であり、図1~4に関して説明した分離機100が使用される。システム120は、細胞培養混合物を含むように構成された発酵タンク200を備えている。発酵タンク200は、軸方向上部200aと軸方向下部200aとを有する。発酵タンク200における発酵は、例えば、哺乳動物細胞培養混合物からの抗体などの細胞外生体分子の発現のためであり得る。発酵後、細胞培養混合物は、本開示による遠心分離機100で分離される。図6に見られるように、発酵槽タンク200の底部は、分離機100の底部への接続201を介して、分離機の入口導管7に接続される。接続201は、直接接続であり得るし、タンクなどの他の処理装置を介した接続であり得る。したがって、接続部201は、矢印「A」によって示されるように、発酵タンク200の軸方向下部200aから遠心分離機100の軸方向下端の入口への細胞培養混合物の供給を可能にする。供給物、すなわち、発酵タンク200からの細胞培養混合物を分離機100の入口にポンピングするために配置された供給ポンプ204が存在する。
【0101】
分離後、より高い密度の分離された細胞相は、分離機の上部にある第2の液体出口を介して固定出口導管8に排出され、一方、発現された生体分子を含む、より低い密度の分離軽液相は、分離機100の底部にある軽液相出口を介して固定出口導管9に排出される。
【0102】
固定出口導管9を介して放出される分離軽液相の流量は、上述した図1~4に関連して説明したように、容器60およびはかり61によって決定され、上述した図1~4に関連して説明したように、制御ユニット(図6には図示せず)が使用される。
【0103】
容積式ポンプ50a、50bは、排出された液相に吸引力を提供することができ、したがって、供給ポンプ204で使用される供給圧力を低くすることができ、したがって、分離機100内の細胞のより穏やかな処理が促進される。代替として、供給ポンプ204を完全に省略し、容積式ポンプ50a、50bによって生成される吸引力のみを使用して細胞を分離機100に引き寄せることができる。
【0104】
分離された細胞相は、例えば、発酵タンク200内のその後の発酵プロセスで再利用されるために、タンク203に排出され得る。分離された細胞相は、接続部202によって示されるように、分離機100の供給入口にさらに再循環され得る。分離された軽液相は、出口導管9を介してさらなるタンク205または発現された生体分子のその後の精製のための他のプロセス装置に排出され得る。
【0105】
図7~10は、本開示の分離システム120で使用され得る遠心分離機100の例示的な実施形態および詳細をより詳細に示している。図7~9は、回転可能アセンブリ101が交換可能な分離インサート1および回転部材31を含む、遠心分離機100を概略的に示す。インサート1は、ロータ・ケーシング2を含み、回転部材31によって支持されている。
【0106】
図7は、本開示の遠心分離機100で使用され得る交換可能な分離インサート1の外側側面図を示す。インサート1は、回転軸(X)によって規定される軸方向に見て、第1の下部固定部分3と第2の上部固定部分4との間に配置されたロータ・ケーシング2を備えている。第1の固定部分3がインサート1の軸方向下端5に配置され、第2の固定部分4がインサート1の軸方向上端6に配置されている。
【0107】
供給入口は、この例では、軸方向下端5に配置され、フィード(feed)は、第1の固定部分3に配置された固定入口導管7を介して供給される。固定入口導管7は、回転軸(X)に配置される。第1の固定部分3は、分離された軽液相とも呼ばれる低密度の分離された液相のための固定出口導管9をさらに備えている。
【0108】
さらに、重液相とも呼ばれる、分離された高密度相を排出するために、固定出口導管8が上部固定部分4に配置されている。したがって、この実施形態では、原料は軸方向下端5を介して供給され、分離された軽相は軸方向下端5を介して排出され、分離された重相は軸方向上端6を介して排出される。
【0109】
ロータ・ケーシング2の外面は、第1の円錐台部分10および第2の円錐台部分11を備えている。第1の円錐台部分10は、第2の円錐台部分11の軸方向下方に配置される。外面は、第1の円錐台部分10および第2の円錐台部分11の仮想頂点が両方とも同じ軸方向を指すように、回転軸(X)に沿って配置され、この場合、インサート1の軸方向下端5に向かって軸方向下向きである。
【0110】
さらに、第1の円錐台部分10は、第2の円錐台部分11の開き角度よりも大きい開き角度を有する。第1の円錐台形部分の開き角度は、ロータ・ケーシング2の分離空間17内に含まれる分離ディスクのスタックの開き角度と実質的に同じであり得る。第2の円錐台形部分11の開き角度は、ロータ・ケーシング2の分離空間内に含まれる分離ディスクのスタックの開き角度よりも小さくてもよい。一例として、第2の円錐台形部分11の開き角度は、外面が回転軸と10度未満、例えば5度未満の角度αを形成するようなものであり得る。仮想頂点が下向きの2つの円錐台部分10および11を有するロータ・ケーシング2により、インサート1を回転部材30に上から挿入可能することができる。したがって、外面の形状は、第1の円錐台部分10および第2の円錐台部分11と係合するなど、ロータ・ケーシング2の外面の全体または一部と係合し得る外部回転可能部材31との適合性を高めている。
【0111】
ロータ・ケーシング2を第1の固定部分3から分離する下部シールハウジング12内に配置された下部回転可能シールと、ロータ・ケーシング2を第2の固定部分4から分離する上部シールハウジング13内に配置された上部回転可能シールとが存在する。下部シールハウジング12内のシールインターフェースの軸方向位置は15cで示され、上部シールハウジング13内のシールインターフェースの軸方向位置は16cで示される。したがって、第1の回転可能シール15および第2の回転可能シール16における、そのような固定部分15a、16aと回転可能部分15b、16bとの間に形成されるシールインターフェースはまた、ロータ・ケーシング2と、インサート1の第1の固定部分15および第2の固定部分16との間のインターフェースまたは境界を形成する(図9も参照)。
【0112】
さらに、冷却液などのシール流体を第1の回転可能シール15に供給および回収するためのシール流体入口15dおよびシール流体出口15eが設けられ、同様に、冷却液などのシール流体を第2の回転可能シール16に供給および回収するための、シール流体入口16dおよびシール流体出口16eが設けられる。
【0113】
図7には、ロータ・ケーシング2内に囲まれた分離空間17の軸方向位置も示されている。この実施形態では、分離空間は、ロータ・ケーシング2の第2の円錐台部分11内に実質的に配置されている。分離空間17は、少なくとも第1の下方の軸方向位置17aから第2の上方の軸方向位置17bまで延在する(図9も参照)。分離空間17の内周面は、角度α、すなわち第2の円錐台部分11の外面と回転軸との間の角度(X)と実質的に同じである回転軸(X)との角度を形成し得る。したがって、分離空間17の内径は、第1の軸方向位置17aから第2の軸方向位置17bまで連続的に増加し得る。角度αは、5度未満など、10度未満であり得る。
【0114】
交換可能な分離インサート1は、操作者によるインサート1の操作性および取り扱いを向上させるコンパクトな形状を有する。一例として、インサートの軸方向下端5における分離空間17と第1固定部分3との間の軸方向距離は、20cm未満、例えば15cm未満であり得る。この距離は、図7にd1で示され、この実施形態では、分離空間17の重相収集空間17cの最も低い軸方向位置17aから第1の回転可能シール15のシールインターフェース15cまでの距離である。さらなる例として、分離空間17が円錐台形の分離ディスクのスタックを含む場合、スタック内で軸方向に最も低く、第1の固定部分3に最も近い円錐台形の分離ディスクは、仮想頂点18が、10cm未満、例えば5cm未満である第1の固定部分3からの軸方向距離d2に配置された仮想頂点18で配置され得る。距離d2は、この実施形態では、軸方向最下部の分離ディスクの仮想頂点18から第1の回転可能シール15のシールインターフェース15cまでの距離である。
【0115】
図8は、遠心分離機100内に挿入されている交換可能な分離インサート1の概略図を示している。分離機100は、固定フレーム30と、上部および下部ボールベアリング33a、33bの形態の支持手段によってフレームによって支持される回転部材31とを備えている。したがって、回転部材31およびインサート1は、回転可能アセンブリ101の一部を形成する。駆動ユニット34もあり、この場合、駆動ベルト32を介して回転軸31の周りで回転部材31を回転させるように配置される。しかしながら、電気直接駆動などの他の駆動手段も可能である。
【0116】
交換可能な分離インサート1は、回転部材31内に挿入され、固定される。したがって、回転部材31は、ロータ・ケーシング2の外面と係合するための内面を備える。上部および下部ボールベアリング33a、33bは両方とも、ロータ・ケーシング2の外面の円筒形部分14がベアリング平面に軸方向に配置されるように、ロータ・ケーシング2内の分離空間17の軸方向下方に配置される。したがって、円筒形部分14は、少なくとも1つの大型ボールベアリング内へのインサートの取り付けを容易にする。上部ボールベアリング33aおよび下部ボールベアリング33bは、少なくとも120mmなど、少なくとも80mmの内径を有し得る。
【0117】
さらに、図8に示されるように、インサート1は、最下部の分離ディスクの仮想頂点18が、上部および下部ボールベアリング33a、33bの少なくとも1つのベアリング面またはその下に軸方向に配置されるように、回転部材31内に配置される。
【0118】
さらに、分離インサート1は、インサート1の軸方向下部5が支持手段、すなわち上部および下部ベアリング33a、33bの軸方向下方に配置されるように、分離機100内に装着される。ロータ・ケーシング2は、この例では、回転部材31によって単独で外部から支持されるように配置される。分離インサート1はさらに、セパレータ100内に取り付けられ、インサート1の上部および底部にある入口および出口へのアクセスが容易となる。
【0119】
図9は、本開示の遠心分離機の一部を形成し得る交換可能な分離インサート1の実施形態の断面の概略図を示す。インサート1は、回転軸(X)の周りを回転するように配置され、第1の下部固定部分3と第2の上部固定部分4との間に配置されたロータ・ケーシング2を備えている。したがって、第1の固定部分3はインサートの軸方向下端5に配置され、第2の固定部分4はインサート1の軸方向上端6に配置される。
【0120】
供給入口20は、この例では、軸方向下端5に配置され、フィード(feed)は、第1の固定部分3に配置された固定入口導管7を介して供給される。固定入口導管7は、プラスチックチューブなどのチューブを含み得る。固定入口導管7は、分離される材料が回転中心で供給されるように、回転軸(X)に配置される。供給入口20は、分離される流体混合物を受容するためのものである。
【0121】
供給入口20は、この実施形態では、入口コーン10aの頂点に配置され、インサート1の外側で第1の円錐台形外面10も形成する。さらに、流体混合物を入口24から分離空間17に分配するために、供給入口に配置された分配器24がある。
【0122】
分離空間17は、第1の軸方向下部位置17aから第2の軸方向上部位置17bまで軸方向に延在する外側重相収集空間17cを含む。分離空間は、スタック19の分離ディスク間の隙間によって形成される半径方向内側の空間をさらに含む。
【0123】
分配器24は、この実施形態では、回転軸(X)に頂点があり、インサート1の下端5の方を向いている円錐形の外面を有する。分配器24の外面は、入口コーン10aと同じ円錐角を有する。さらに、外面に沿って延在する複数の分配チャネル24aがあり、分離される流体混合物を入口の軸方向下側位置から軸方向上側位置の分離空間17まで連続的に軸方向上向きに案内する。この軸方向上側位置は、分離空間17の重相収集空間17cの第1の下方軸位置17aと実質的に同じである。分配チャネル24aは、例えば、直線形状または湾曲形状を有することができ、したがって、分配器24の外面と入口コーン24aとの間に延在する。分配チャネル24は、軸方向の下方位置から軸方向の上方位置まで分岐し得る。さらに、分配チャネル24は、軸方向下方位置から軸方向上方位置まで延在するチューブの形態であり得る。
【0124】
さらに、分離空間17内に同軸に配置された円錐台形分離ディスクのスタック19がある。スタック19内の分離ディスクは、仮想頂点18が分離インサートの軸方向下端5を指すように、すなわち入口20に向かって配置される。スタック19内の最も下の分離ディスクの仮想頂点18は、インサート1の軸方向下端5内の第1の固定部分3から10cm未満の距離に配置され得る。スタック19は、少なくとも40枚の分離ディスク、少なくとも50枚の分離ディスク、少なくとも100枚の分離ディスク、少なくとも150枚の分離ディスクなど、少なくとも20枚の分離ディスクを含み得る。分かりやすくするために、図9にはいくつかのディスクのみが示されている。この例では、分離ディスクのスタック19は分配器24の上に配置され、したがって、分配器24の円錐形の外面は、回転軸(X)に対して円錐台形の分離ディスクの円錐部分と同じ角度を有し得る。分配器24の円錐形状は、スタック19内の分離ディスクの外径とほぼ同じかそれより大きい直径を有する。したがって、分配チャネル24aは、分離される流体混合物を、スタック19内の円錐台形分離ディスクの外周の半径方向位置の外側にある半径方向位置P1である、分離空間17内の軸方向位置17aに案内するように配置され得る。
【0125】
分離空間17の重相収集空間17cは、この実施形態では、第1の軸方向下部位置17aから第2の軸方向上部位置17bまで連続的に増加する内径を有する。分離空間17から分離された重相を輸送するための出口導管23がさらにある。この導管23は、分離空間17の半径方向外側位置から重相出口22まで延在する。この例では、導管は、中心位置から半径方向外側に分離空間17内に延在する単一のパイプの形態である。しかしながら、少なくとも3つ、例えば少なくとも5つの出口導管23のような、少なくとも2つのそのような出口導管23があり得る。したがって、出口導管23は、半径方向外側位置に配置された導管入口23aと、導管出口23bとを有し、そして、出口導管23は、導管入口23aから導管出口23bに向かって上向きに傾斜して配置されている。一例として、出口導管は、水平面に対して、少なくとも5度、少なくとも10度など、少なくとも2度の上向き傾斜に傾き得る。
【0126】
出口導管23は、分離空間17の軸方向上部位置に配置され、出口導管入口23aは、分離空間17の軸方向最上部位置17bから分離された重相を輸送するために配置される。出口導管23はさらに、分離空間17内に半径方向外側に延在し、出口導管入口23aが、分離空間17の周囲から、すなわち分離空間17の内面において、分離空間の半径方向の最外位置から、分離された重相を輸送するように配置される。
【0127】
固定出口導管23の導管出口23bは重相出口22で終わり、これは第2の上部固定部分4に配置された固定出口導管8に接続されている。したがって、分離された重相は、分離インサート1の上部、すなわち上部軸端6を介して排出される。
【0128】
さらに、分離ディスク19のスタックを通って分離空間17内を半径方向内側に通過した分離軽液相は、ロータ・ケーシング2の軸方向下端に配置された軽液相出口21に導かれる。軽液相出口21は、インサート1の第1の下部固定部分3に配置された固定出口導管9に接続される。したがって、分離された軽液相は、交換可能な分離インサート1の第1の下部軸端5を介して排出される。
【0129】
第1の固定部分3に配置された固定出口導管9および第2の固定部分4に配置された固定重相導管8は、プラスチックチューブなどのチューブを含み得る。
【0130】
ロータ・ケーシング2を第1の固定部分3から分離する下部回転シール15が下部シールハウジング12内に配置され、ロータ・ケーシングを第2の固定部分4から分離する上部回転シール16が上部シールハウジング内に配置される。第1の回転可能シール15および第2の回転可能シール16は、機械的気密シールされた入口および出口を形成する気密シールである。
【0131】
下部回転シール15は、入口パイプを追加することなく、入口コーン10aに直接取り付けられ、すなわち、入口は、下部回転シール15の真上で軸方向に入口コーンの頂点に形成され得る。そのような構成により、軸方向の振れを最小限に抑えるために、大きな直径で下部メカニカルシールをしっかりと取り付けることができる。
【0132】
下部回転シール15は、入口20を固定入口導管7にシールして接続し、軽液相出口21を固定軽液相導管9にシールして接続する。このように、下部回転シール15は同心二重メカニカルシールを形成し、これにより、少ない部品で簡単に組み立てることができる。下部回転シール15は、インサート1の第1固定部分3に配置された固定部分15aと、ロータ・ケーシング2の軸方向下部に配置された回転部分15bとを備える。回転部分15bは、この実施形態では、ロータ・ケーシング2内の回転シールリングであり、固定部分15aは、インサート1の第1の固定部分3内に配置された固定シールリングである。回転シールリングと固定シールリングとを互いに係合させ、それによってリング間に少なくとも1つのシールインターフェース15cを形成するための少なくとも1つのばねなどのさらなる手段(図示せず)がある。形成されたシールインターフェースは、回転軸(X)に対して水平面とほぼ平行に延在する。したがって、このシールインターフェース15cは、ロータ・ケーシング2とインサート1の第1の固定部分3との間の境界またはインターフェースを形成する。冷却液、緩衝液、またはバリア液などの液体を下部回転可能シール15に供給するために、第1の固定部分3に配置された接続部15d、15eがさらにある。この液体は、シールリング間のインターフェース15cに供給され得る。
【0133】
同様に、上部回転可能シール16は、重相出口22をシールし、固定出口導管8に接続する。上部メカニカルシールは、同心二重メカニカルシールであり得る。上部回転可能シール16は、インサート1の第2の固定部分4に配置された固定部分16aと、ロータ・ケーシング2の軸方向上部に配置された回転部分16bとを備えている。回転可能部分16bは、この実施形態では、ロータ・ケーシング2に配置された回転可能シールリングであり、固定部分16aは、インサート1の第2の固定部分4に配置された固定シールリングである。回転シールリングと固定シールリングとを互いに係合させ、それによってリング間に少なくとも1つのシールインターフェース16cを形成するための少なくとも1つのばねなどのさらなる手段(図示せず)がある。形成されたシールインターフェース16cは、回転軸(X)に対して水平面とほぼ平行に延在する。したがって、このシールインターフェース16cは、ロータ・ケーシング2とインサート1の第2の固定部分4との間の境界またはインターフェースを形成する。冷却液、緩衝液、またはバリア液などの液体を上部回転可能シール16に供給するために、第2の固定部分4に配置された接続部16d、16eがさらにある。この液体は、シールリング間のインターフェース16cに供給され得る。
【0134】
さらに、図9は、輸送モード(transport mode)における交換可能な分離インサート1を示している。輸送中に第1の固定部分3をロータ・ケーシング2に固定するために、下部回転可能シール15をロータ・ケーシング2の円筒部分14に軸方向に固定するスナップ嵌めの形態の下部固定手段25がある。交換可能なインサート1を回転可能アセンブリに装着すると、ロータ・ケーシング2が下部回転シールで軸(X)を中心に回転可能になるように、スナップ嵌め25が解放され得る。
【0135】
さらに、輸送中、ロータ・ケーシング2に対して第2の固定部分4の位置を固定する上部固定手段27a、bがある。上部固定手段は、ロータ・ケーシング2に配置された係合部材27aの形態であり、これは、第2の固定部分4の係合部材27bと係合し、それによって第2の固定部分4の軸方向位置を固定する。さらに、スリーブ部材26が、ロータ・ケーシング2および第2の固定部分4とシール当接して輸送またはセットアップ位置に配置される。スリーブ部材26は、さらに弾力性があり、ゴムスリーブの形態であり得る。スリーブ部材は、ロータ・ケーシング2が第2の固定部分4に対して回転することを可能にするために、輸送またはセットアップ位置から取り外し可能である。したがって、スリーブ部材26は、セットアップまたは輸送位置において、ロータ・ケーシング2に対して半径方向にシールし、第2の固定部分4に対して半径方向にシールする。交換可能なインサート1を回転可能アセンブリに装着する際に、スリーブ部材を取り外し、係合部材27aと27bとの間の軸方向空間を作成して、第2の固定部分4に対するロータ・ケーシング2の回転を可能にし得る。
【0136】
下部および上部の回転可能なシール15、16はメカニカルシールであり、入口および2つの出口を気密シールする。
【0137】
動作中、回転部材31に挿入された交換可能な分離インサート1は、回転軸(X)の周りを回転する。分離される液体混合物は、固定入口導管7を介してインサートの入口20に供給され、その後、分配器24の案内チャネル24によって分離空間17に案内される。したがって、分離される液体混合物は、入口導管7から分離空間17への上方経路に沿ってのみ案内される。密度差により、液体混合物は軽液相および重液相に分離される。この分離は、分離空間17に嵌合されたスタック19の分離ディスク間の空間によって促進される。分離された重液相は、出口導管23によって分離空間17の周囲から導かれ、回転軸(X)に配置された重相出口22を介して固定重相出口導管8に導かれる。分離された軽液相は、分離ディスクのスタック19を通って半径方向内側に押し出され、軽液相出口21を介して固定軽相導管9に導かれる。
【0138】
したがって、この実施形態では、フィード(feed)は軸方向下端5を介して供給され、分離された軽相は軸方向下端5を介して排出され、分離された重相は軸方向上端6を介して排出される。
【0139】
さらに、上述したように入口20、分配器24、分離ディスクのスタック19、および出口導管23を配置することにより、交換可能分離インサート11は自動的に脱気され、すなわちエアポケットの存在が排除または減少され、その結果、ロータ・ケーシング内に存在する空気が妨げられずに上向きに移動し、重相の出口から排出されるようにする。したがって、固定状態ではエアポケットはなく、インサート1が供給入口から充填されている場合、すべての空気は重相出口22から排出され得る。これにより、分離する液体混合物または液体混合物用の緩衝液がインサート1内に存在するときに、静止状態での分離インサート1の充填とロータ・ケーシングの回転開始とを容易にする。
【0140】
図9にも見られるように、交換可能分離インサート1はコンパクトな設計を有する。 例として、スタック19内の最も下の分離ディスクの仮想頂点18の間の軸方向距離は、第1の固定部分3から5cm未満など10cm未満で、すなわち、下部回転シール15のシールインターフェース15cから5cm未満など、10cm未満であり得る。
【0141】
さらに、第1の回転シールの回転部分は、ロータ・ケーシングの軸方向下部に直接配置され得る。
【0142】
本開示の遠心分離機はまた、回転可能アセンブリが使い捨てインサートを含まない遠心分離機であり得る。実施形態では、回転可能アセンブリは、ロータ・ケーシングと同軸に回転するように構成されたスピンドルを備え、スピンドルは、少なくとも1つのベアリングを介して固定フレームによって回転可能に支持され得る。
【0143】
したがって、ロータ・ケーシングは、回転可能なスピンドルの端部に配置され、このスピンドルは、少なくとも1つのボールベアリングなどの少なくとも1つのベアリングデバイスによってフレーム内に支持され得る。
【0144】
一例として、スピンドルは、回転軸(X)の周りに配置され、入口と流体接続する中央ダクトを備え得、前記第1の回転可能シールは、前記中央ダクトをシールし、前記固定入口導管に接続する。
【0145】
したがって、スピンドルは、中空スピンドルであってもよく、入口にフィードを供給するために使用され得る。スピンドルは、分離された軽液相などの分離された液相を排出するための外側環状ダクトをさらに備え得る。
【0146】
図10は、回転可能アセンブリが回転可能な中空スピンドルを備えた遠心分離機100をより詳細に示している。分離機100は、細胞培養混合物の形態の液体混合物を、細胞相と、例えば、発現された生体分子を含む液相とに分離するように構成されている。
【0147】
分離機100は、フレーム30と、フレーム30によって下部ベアリング33bおよび上部ベアリング33aで回転可能に支持された中空スピンドル40と、ロータ・ケーシング2を有する回転部材1とを備えている。ロータ・ケーシング2は、スピンドル40の軸方向上端に接合され、スピンドル40と共に回転軸(X)の周りを回転する。ロータ・ケーシング2は、処理される細胞培養混合物の効果的な分離を達成するために分離ディスクのスタック19が配置される分離空間17を取り囲む。スタック19の分離ディスクは、仮想頂点が軸方向下向きに向いた円錐台形状を有し、表面拡大インサートの例である。スタック19は、ロータ・ケーシング2の中心に同軸に取り付けられる。図10では、いくつかの分離ディスクのみが示されている。スタック19は、例えば、200枚を超える分離ディスクなど、100枚を超える分離ディスクを含み得る。
【0148】
ロータ・ケーシング2は、分離された軽液相を排出するための機械的に気密シールされた液体出口21と、分離された軽液相よりも密度の高い相を排出するための重相出口22とを有する。したがって、軽液相は、発酵中に細胞によって発現された細胞外生体分子を含み、分離された重相は分離された細胞相であり得る。
【0149】
分離空間17から分離された重相を輸送するためのパイプ形態の単一の出口導管23がある。この導管23は、分離空間17の半径方向外側の位置から重相出口22まで延在する。導管23は、導管入口23aが半径方向の外側位置に配置され、導管出口23bが半径方向の内側位置に配置される。さらに、出口導管23は、導管入口23aから導管出口23bまでの水平面に対して上向きに傾斜して配置される。
【0150】
分配器24を介して前記分離空間17に処理される液体混合物を供給するための機械的に気密シールされた入口20もある。入口20は、この実施形態では、スピンドル40を通って延在する中央ダクト41に接続され、これは、中空の管状部材の形態をとる。混合液を下から投入することで、供給を緩やかに加速させる。スピンドル40はさらに、気密シール15を介して分離機100の軸方向底部で固定入口パイプ7に接続され、これにより、分離される液体混合物は、供給ポンプによって中央ダクト41に移送され得る。分離された軽液相は、この実施形態では、前記スピンドル40内の外側環状ダクト42を介して排出される。その結果、より低い密度の分離された液相は、分離機100の底部を介して排出される。
【0151】
第1のメカニカル気密シール15は、中空スピンドル40を固定入口パイプ7にシールするために下端に配置される。気密シール15は、スピンドル40の下端および固定パイプ7を取り囲む環状シールである。第1の気密シール15は、固定入口パイプ7への入口21と固定出口パイプ9への軽液相出口21との両方をシールする同心二重シールである。また、分離機100の頂部で重相出口22を固定出口パイプ8にシールする第2のメカニカル気密シール16もある。
【0152】
図10に見られるように、入口20、および細胞相出口22、ならびに分離された細胞相を排出するための固定出口管8はすべて、回転軸(X)の周りに配置され、これにより、分離される液体混合物は、矢印「A」で示されるように、回転軸(X)でロータ・ケーシング2に入り、分離された重相は、矢印「B」で示されるように、回転軸(X)で排出される。排出された軽液相は、矢印「C」で示されるように、遠心分離機100の下端から排出される。
【0153】
遠心分離機100は、駆動モータ34をさらに備える。このモータ34は、例えば、固定要素と回転要素とを備えることができ、回転要素は、動作中に駆動トルクがスピンドル40に伝達され、したがってロータ・ケーシング2に伝達されるように、駆動トルクをスピンドル40に伝達し、スピンドル40に駆動トルクを伝達する。駆動モータ34は電動モータであり得る。さらに、駆動モータ34は、伝達手段によってスピンドル40に接続され得る。伝達手段は、ピニオンと、駆動トルクを受けるためにスピンドル40に接続された要素とを備えるウォームギアの形態であり得る。伝達手段は、代わりに、プロペラシャフト、駆動ベルトなどの形態をとり、駆動モータ34は、代わりにスピンドル40に直接接続され得る。
【0154】
図10の分離機の動作中、回転可能アセンブリ101、したがってロータ・ケーシング2は、駆動モータ34からスピンドル40に伝達されるトルクによって回転させられる。スピンドル40の中央ダクト41を介して、分離される液体混合物は、入口20を介して分離空間17に導入される。入口20および分離ディスクのスタック19は、液体混合物が、分離ディスクのスタック19の外半径にある、または半径方向外側にある半径位置で分離空間19に入るように配置される。
【0155】
しかしながら、分配器24はまた、分離ディスクのスタック内にある半径方向位置で、分離される液体または流体を分離空間に供給するように配置され得る、つまり、分配器および/または分離ディスクのスタックの軸分配開口部によるものである。そのような開口部は、スタック内に軸方向分配チャネルを形成し得る。
【0156】
気密タイプの入口20では、液体材料の加速は小さな半径で開始され、液体が入口を離れて分離空間17に入る間に徐々に増加する。分離空間17は、動作中に液体で完全に充填されるように意図されている。原則として、これは、好ましくは、ロータ・ケーシング2内に空気または自由液体面が存在しないことが意図されていることを意味する。しかしながら、ロータが既に動作速度で作動している時、または固定している時に液体混合物が導入され得る。したがって、細胞培養物などの液体混合物は、ロータ・ケーシング2に連続的に導入され得る。
【0157】
混合液は、密度差により軽液相と密度の高い相(重相)に分離される。この分離は、分離空間17に取り付けられたスタック19の分離ディスク間の空間によって促進される。分離された重相は、導管23によって分離空間17の周囲から集められ、回転軸(X)に配置された出口22を通って押し出されるのに対し、分離された軽液相は、スタック19を通って半径方向内向きに押し出され、その後、スピンドル40内の環状外側ダクト42を通って、排出される。
【0158】
上記において、本発明の概念は、限定された数の例を参照して主に説明された。しかしながら、当業者には容易に理解されるように、上で開示したもの以外の例も、添付の特許請求の範囲によって規定される発明概念の範囲内で同様に可能である。
【符号の説明】
【0159】
1 分離インサート
2 ロータ・ケーシング
3 第1の下部固定部分
4 第2の上部固定部分
5 軸方向下端
6 軸方向上端
7 固定入口パイプ、固定入口導管
8 固定パイプ、固定出口導管
9 固定出口導管
10 第1の円錐台部分
10a 入口コーン
11 第2の円錐台部分
12 下部シールハウジング
13 上部シールハウジング
14 円筒形部分
15 第1の回転可能シール
15a 固定部分
15b 回転可能部分
15c インターフェース
15d シール流体入口、接続部
15e シール流体出口、接続部
16 第2の回転可能シール
16a 固定部分
16b 回転可能部分
17 分離空間
17a 第1の軸方向位置
17b 第2の軸方向位置
18 仮想頂点
19 スタック
20 供給入口
21 軽液相出口
22 重相出口
23 出口導管
23a 導管入口
23b 導管出口
24 分配器
24a 分配チャネル
25 スナップ嵌め
26 スリーブ部材
27a、b 上部固定手段
30 固定フレーム
31 回転部材
32 駆動ベルト
33a、33b 上部および下部ボールベアリング
34 駆動ユニット、モータ
40 スピンドル
50a、50b 容積式ポンプ、蠕動ポンプ
51 流量センサ
52a 調節弁
52b 遮断弁
53 制御ユニット
60 容器
60a 容器入口
60b 容器出口
61 はかり
100 遠心分離機
101 回転可能アセンブリ
120 分離システム
200 発酵タンク
200a 軸方向下部
201 接続
204 供給ポンプ
205 タンク
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10