IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 能美防災株式会社の特許一覧

<>
  • 特許-スプリンクラ消火設備 図1
  • 特許-スプリンクラ消火設備 図2
  • 特許-スプリンクラ消火設備 図3
  • 特許-スプリンクラ消火設備 図4
  • 特許-スプリンクラ消火設備 図5
  • 特許-スプリンクラ消火設備 図6
  • 特許-スプリンクラ消火設備 図7
  • 特許-スプリンクラ消火設備 図8
  • 特許-スプリンクラ消火設備 図9
  • 特許-スプリンクラ消火設備 図10
  • 特許-スプリンクラ消火設備 図11
  • 特許-スプリンクラ消火設備 図12
  • 特許-スプリンクラ消火設備 図13
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-03-26
(45)【発行日】2024-04-03
(54)【発明の名称】スプリンクラ消火設備
(51)【国際特許分類】
   A62C 35/64 20060101AFI20240327BHJP
   A62C 35/62 20060101ALI20240327BHJP
   A62C 37/40 20060101ALI20240327BHJP
【FI】
A62C35/64
A62C35/62
A62C37/40
【請求項の数】 2
(21)【出願番号】P 2023117195
(22)【出願日】2023-07-19
(62)【分割の表示】P 2022085006の分割
【原出願日】2018-07-11
(65)【公開番号】P2023130508
(43)【公開日】2023-09-20
【審査請求日】2023-07-19
(73)【特許権者】
【識別番号】000233826
【氏名又は名称】能美防災株式会社
(74)【代理人】
【識別番号】100127845
【弁理士】
【氏名又は名称】石川 壽彦
(72)【発明者】
【氏名】山中 寛之
【審査官】飯島 尚郎
(56)【参考文献】
【文献】特開2015-084825(JP,A)
【文献】特開2016-067798(JP,A)
【文献】特開2013-085914(JP,A)
【文献】特開2016-057135(JP,A)
【文献】特開昭62-057569(JP,A)
【文献】米国特許第05971080(US,A)
【文献】中国特許出願公開第110087741(CN,A)
【文献】韓国登録特許第10-1754620(KR,B1)
(58)【調査した分野】(Int.Cl.,DB名)
A62C 2/00-99/00
(57)【特許請求の範囲】
【請求項1】
常時は閉じた予作動弁と、該予作動弁の二次側に接続され、圧縮気体が封入された二次側配管と、該二次側配管に接続されたスプリンクラヘッドと、該スプリンクラヘッドと同じ防護区域に設けられ、火災感知器からの火災信号またはセンサ出力を受信する火災受信機と、前記二次側配管内の圧力を常時検知する圧力センサと、該圧力センサの検知信号を入力して圧力変化率を演算して該演算値が所定の値になるとスプリンクラ作動信号を発信する信号変換器と、前記火災受信機からの火災信号及び前記信号変換器のスプリンクラ作動信号の入力があったときに前記予作動弁を開放する制御盤とを備え、
前記制御盤は、前記圧力センサがサンプリングした圧力値を入力し、入力した圧力値を表示する表示部を有することを特徴とするスプリンクラ消火設備。
【請求項2】
前記信号変換器が演算する圧力変化率は、所定時間ごとに取得した圧力の値と、取得時間との関係について、最小二乗法による直線回帰をした回帰直線の傾きであることを特徴とする請求項1記載のスプリンクラ消火設備。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、スプリンクラ消火設備に関し、特に予作動式スプリンクラ消火設備に関するものである。
【背景技術】
【0002】
ある一定規模以上の建物には、消火設備としてスプリンクラ消火設備が設けられている。スプリンクラ消火設備は、天井に設置されたスプリンクラヘッドから放水することで、火災を消火する設備である。
【0003】
スプリンクラ消火設備は、スプリンクラヘッドが火災の熱によって感熱部が溶融または破裂すると、水を放水するものであるが、設備としての信頼性を高めたものとして、予作動式のスプリンクラ消火設備がある。
【0004】
この予作動式のスプリンクラ消火設備は、常時は閉じた予作動弁と、予作動弁の二次側に接続され、圧縮空気等が封入された二次側配管と、二次側配管に接続されたスプリンクラヘッドと、スプリンクラヘッドと同じ防護区域に設けられた火災感知器などから構成される。
【0005】
この設備では、火災が発生すると、火災感知器が動作し、その火災感知器からの信号に基づいて、予作動弁が開放され、その後、スプリンクラヘッドが火災の熱によって開放すると、配管内の圧縮空気が排出され、スプリンクラヘッドから放水するものである。この設備の場合、万が一、外力などによってスプリンクラヘッドの感熱部が破損しても、火災感知器が動作していなければ、防護区域で水損が発生することがなく信頼性が高い。
【0006】
しかし、予作動式のスプリンクラ消火設備は、火災感知器の動作により予作動弁が開放することから、火災感知器が非火災によって動作してしまうと、予作動弁が開放し、二次側配管内に水が流入してしまう。二次側配管内に水が入った場合には、その後水抜き作業が必要となるが、スプリンクラヘッドが接続された立下り管は、水抜きを行うことができず、長い期間が経過すると、そこに溜まった水と圧縮空気によって配管が腐食する場合がある。
そこで、特許文献1では、予作動式のスプリンクラ消火設備においては、予作動弁を開放させる条件として、火災感知器が動作することに加えて、二次側配管内の圧力が所定値以下になったことを検知する圧力スイッチが動作することとしている。
【0007】
この設備では、防護区域で火災が発生し、スプリンクラヘッドが開放すると、二次側配管内の圧縮空気が排出されて配管内の圧力が低下して圧力スイッチが動作すると共に、その火災により火災感知器が動作した場合に、予作動弁が開放する。このように2つの条件で予作動弁を開放させることから、ダブルインターロック制御とも呼ばれている。
このダブルインターロック制御を採用した設備では、非火災で火災感知器が動作しても予作動弁が開放しないことから、二次側配管内に水が流入することがなく、しかも通常のスプリンクラ消火設備に対して水損が生じにくい点で優れている。
【先行技術文献】
【特許文献】
【0008】
【文献】特開昭62-57569号公報
【発明の概要】
【発明が解決しようとする課題】
【0009】
しかしながら、ダブルインターロック制御の場合、二次側配管内の圧力低下が所定値まで低下しないと圧力スイッチが動作しないし、また誤動作を防ぐために圧力スイッチにおける監視時の圧力と圧力低下設定値との差を大きくとっているため、スプリンクラヘッドが動作してから圧力低下信号が出るまでに時間がかかるので、結果的に、放水遅れにつながるという問題がある。
【0010】
このような問題を解決するものとして、本出願人は先願(特願2018-58038)において、圧力スイッチに代えて圧力センサを用いて、圧力センサの検知信号を入力して圧力変化率を演算し、該演算値が所定の値になるとスプリンクラ作動信号を発信する信号変換器を有し、火災感知器からの火災信号またはセンサ出力を火災受信機に送信し、該火災受信機からの火災信号及び前記信号変換器のスプリンクラ作動信号を消火システム制御盤に入力して、これらの2つの信号の入力があったときに、予作動弁を開放するようにしたスプリンクラ消火設備を提案している。
この先願のスプリンクラ消火設備によれば、二次側配管内の圧力が減圧して所定値に達する前に、圧力低下を検知でき、圧力スイッチを用いる従来例に比較して早期に減圧状態を検知できるので、放水遅れを防止する効果が高い。
【0011】
しかしながら、火災受信機や消火システム制御盤が故障することも考えられ、これらの機器が故障した場合の対策をいかにするべきかという課題が残されている。
【0012】
本発明は、かかる課題を解決するためになされたものであり、火災受信機や消火システム制御盤の故障があった場合であっても、放水遅れが生ずることなく、適切な対応のできるスプリンクラ消火設備を提供することを目的としている。
【課題を解決するための手段】
【0013】
(1)本発明に係るスプリンクラ消火設備は、常時は閉じた予作動弁と、該予作動弁の二次側に接続され、圧縮気体が封入された二次側配管と、該二次側配管に接続されたスプリンクラヘッドと、該スプリンクラヘッドと同じ防護区域に設けられ、火災感知器からの火災信号またはセンサ出力を受信する火災受信機と、前記二次側配管内の圧力を常時検知する圧力センサと、該圧力センサの検知信号を入力して圧力変化率を演算して該演算値が所定の値になるとスプリンクラ作動信号を発信する信号変換器と、前記火災受信機からの火災信号及び前記信号変換器のスプリンクラ作動信号の入力があったときに前記予作動弁を開放する制御盤とを備え、
前記火災受信機は故障信号を前記制御盤に送信する機能を有し、前記制御盤は前記故障信号を受信すると前記火災信号の入力がなくても前記スプリンクラ作動信号の入力があったときに前記予作動弁を開放する制御に切り替えると共に前記故障信号を前記信号変換器に通知し、該信号変換器は該通知を受けるとスプリンクラ作動信号を発信する条件を、より厳しい条件に変更することを特徴とするものである。
【0014】
(2)また、上記(1)に記載のものにおいて、前記信号変換器が演算する圧力変化率は、所定時間ごとに取得した圧力の値と、取得時間との関係について、最小二乗法による直線回帰をした回帰直線の傾きであり、前記より厳しい条件は、前記スプリンクラ作動信号を発信する前記傾きのしきい値を大きくする又は直線回帰するデータ数を増やすことを特徴とするものである。
【0015】
(3)さらに、本発明に係るスプリンクラ消火設備は、常時は閉じた予作動弁と、該予作動弁の二次側に接続され、圧縮気体が封入された二次側配管と、該二次側配管に接続されたスプリンクラヘッドと、該スプリンクラヘッドと同じ防護区域に設けられ、火災感知器からの火災信号またはセンサ出力を受信する火災受信機と、前記二次側配管内の圧力を常時検知する圧力センサと、該圧力センサの検知信号を入力して圧力変化率を演算して該演算値が所定の値になるとスプリンクラ作動信号を発信する信号変換器と、前記火災受信機からの火災信号及び前記信号変換器のスプリンクラ作動信号の入力があったときに前記予作動弁を開放する制御盤とを備え、
前記信号変換器は、前記制御盤との通信が不能になると、前記制御盤に代わって前記予作動弁を開放する機能を有し、前記制御盤との通信が不能になったときには前記制御盤との通信が成立していたときにスプリンクラ作動信号を発信する条件よりも、より厳しい条件で予作動弁を開放するようにしたことを特徴とするものである。
【発明の効果】
【0016】
本発明に係るスプリンクラ消火設備は、前記二次側配管内の圧力を常時検知する圧力センサと、該圧力センサの検知信号を入力して圧力変化率を演算して該演算値が所定の値になるとスプリンクラ作動信号を発信する信号変換器と、前記火災受信機からの火災信号及び前記信号変換器のスプリンクラ作動信号の入力があったときに前記予作動弁を開放する制御盤とを備えたことにより、二次側配管内の圧力が減圧して所定値に達する前に、二次側配管内の圧力低下を検知できる。このため、圧力スイッチを用いる従来例に比較して早期に減圧状態を検知できるので、放水遅れを防止する効果が高い。
また、火災受信機は故障信号を前記制御盤に送信する機能を有し、前記制御盤は前記故障信号を受信すると前記火災信号の入力が無くても前記スプリンクラ作動信号の入力があったときに前記予作動弁を開放する制御に切り替えると共に前記故障信号を前記信号変換器に通知し、該信号変換器は該通知を受けるとスプリンクラ作動信号を発信する条件を、より厳しい条件に変更するようにしたので、火災受信機の故障があった場合であっても、放水遅れが生ずることなく、適切な対応をすることができる。
【図面の簡単な説明】
【0017】
図1】本発明の一実施の形態に係るスプリンクラ消火設備の全体構成の説明図である。
図2図1に示したスプリンクラ消火設備の要部の説明図である。
図3図1に示したスプリンクラ消火設備の信号変換器における圧力変化率による判定方法の説明図である(その1)。
図4図1に示したスプリンクラ消火設備の信号変換器における圧力変化率による判定方法の説明図である(その2)。
図5図1に示したスプリンクラ消火設備の信号変換器における圧力変化率による判定方法の効果を説明する説明図である(その1)。
図6図1に示したスプリンクラ消火設備の信号変換器における圧力変化率による判定方法の効果を説明する説明図である(その2)。
図7】火災受信機が故障した場合の信号変換器の機能を説明する説明図である(その1)。
図8】火災受信機が故障した場合の信号変換器の機能を説明する説明図である(その2)。
図9】火災受信機が故障した場合の信号変換器の機能を説明する説明図である(その3)。
図10図1に示したスプリンクラ消火設備の火災時の動作のフローチャートである。
図11図1に示したスプリンクラ消火設備の火災受信機が故障した状態を説明する説明図である。
図12図1に示したスプリンクラ消火設備の火災受信機が故障した場合の火災時の動作のフローチャートである。
図13図1に示したスプリンクラ消火設備の消火システム制御盤が故障した状態を説明する説明図である。
【発明を実施するための形態】
【0018】
[実施の形態1]
本実施の形態が対象としているスプリンクラ消火設備は、予作動式スプリンクラ消火設備であるため、従来例に備わっている機器構成を含めてその概要を図1に基づいて説明する。
予作動式スプリンクラ消火設備1は、図1に示すように、建物の地下階に消火水を貯留する貯水槽3を設け、貯水槽3の消火水は消火ポンプ5によって給水本管7に供給される。給水本管7には、消火ポンプ5の起動に使用される圧力タンク9が接続され、圧力タンク9には給水本管7の圧力水が導入され、内部の空気を圧縮するように構成されている。圧力タンク9には、圧力スイッチ11が設けられ、圧力スイッチ11が規定圧力以下の減圧を検出すると、この減圧信号がポンプ制御盤13に出力されて、消火ポンプ5が起動するように構成されている。
【0019】
給水本管7からは、防護区域毎に分岐管15が引き出され、分岐管15には予作動式流水検知装置17が設けられている。そして、分岐管15における予作動式流水検知装置17の二次側、すなわち二次側配管19に閉鎖型のスプリンクラヘッド21が取り付けられ、さらに二次側配管19の末端には試験弁23が設けられている。また、二次側配管19には、コンプレッサ25によって所定の圧力に加圧された圧縮空気(請求項内の、圧縮気体に相当する)が空気配管27を介して供給されている。
予作動式流水検知装置17は、予作動弁29と予作動弁29を開放する電動弁31と、減圧を検知する圧力スイッチ33と、流水検知スイッチ35を備えている。
また、二次側配管19には、内部の圧力を常時検知する圧力センサ45が設けられている。圧力センサ45は、常時極めて短い時間間隔(例えば、10m秒間隔)で配管内の圧力値をサンプリングして、後述の信号変換器47に出力している。
【0020】
圧力センサ45、電動弁31、圧力スイッチ33、流水検知スイッチ35は信号変換器47に電気的に接続されており、信号伝送が可能になっている。
信号変換器47は、圧力センサ45の検知信号を入力して圧力の変化率を演算して該演算値が所定の値になるとスプリンクラを作動するための信号であるスプリンクラ作動信号を発信する機能を備えている。
【0021】
また、信号変換器47には非常電源装置49が設けられており、非常電源装置49から信号変換器47及び圧力センサ45に常時給電されている。このため、火災が発生し、かつ停電が発生するような場合であっても信号変換器47は正しくスプリンクラ作動信号を送信できる。
信号変換器47は、一つの予作動式流水検知装置17に対応して一つが設けられているため、一つの建築物には複数の信号変換器47が存在するが、これら複数の信号変換器47は本発明の制御盤としての消火システム制御盤39に接続されて信号伝送が可能になっている。
【0022】
また、スプリンクラヘッド21が設置された防護区域には火災感知器41が設置されて、火災感知器41が火災であると判断すると火災信号が火災受信機43に入力され、火災受信機43から消火システム制御盤39に火災信号が入力されるようになっている。また、火災受信機43は、自身が故障した場合、火災感知器41が故障した場合には故障信号を消火システム制御盤39に送信する機能を有している(図2参照)。
なお、上記は火災感知器41が火災であると判断する場合であるが、火災感知器41がアナログ式のものである場合には、火災感知器41からのセンサ出力が火災受信機43に入力され、火災受信機43がそのセンサ出力と所定値とを比較して火災か否かを判断する。火災受信機43が火災であると判断したときには、その判断に基づく火災信号が消火システム制御盤39に入力される。
【0023】
消火システム制御盤39は、火災受信機43からの火災信号及び、信号変換器47のスプリンクラ作動信号又は圧力スイッチ33の信号のいずれかの信号の入力があったときに電動弁31を制御して、予作動弁29を開放するように構成されている。
また、消火システム制御盤39は、火災受信機43から故障信号が入力されると、当該故障信号を信号変換器47に通知すると共に(図2参照)、それ以後は、火災信号の入力がなくてもスプリンクラ作動信号又は圧力スイッチ33の信号のいずれかの信号の入力があったときに電動弁31を制御して、予作動弁29を開放するように構成されている。
【0024】
信号変換器47と消火システム制御盤39との間における信号の伝送はいわゆるポーリング方式といって消火システム制御盤39から信号変換器47に対して呼びかけを行って、信号変換器47がその状態を知らせるという方式を採用しているのが一般的である。
しかしながら、この方式の場合には、信号変換器47が消火システム制御盤39に複数接続されていた場合、消火システム制御盤39は先頭の信号変換器47から順次呼びかけを行うため、信号変換器47がスプリンクラ作動信号を発信できる状態となってから実際に発信するまでにタイムラグが生じるため、消火システム制御盤39にその情報が送信されるまでに時間を要するという問題がある。
そこで、信号変換器47と消火システム制御盤39を専用線で接続して、信号変換器47がスプリンクラ作動信号を発信すれば、消火システム制御盤39からの呼びかけを待たずに、その時点でその信号が消火システム制御盤39に送信されるようにするのが好ましい。このようにすることで、信号変換器47がスプリンクラ作動信号を発信してから放水までの時間短縮が可能となる。
【0025】
信号変換器47の特徴的な機能として、圧力変化率を演算してスプリンクラ作動信号を発信する機能(第1機能)と、火災受信機43が発信する故障信号を受信したときに、スプリンクラ作動信号を発信するアリゴリズムをより厳しい条件(火災であることがより確実であると判断される条件のときにスプリンクラ作動信号を発信するアリゴリズム)に変更し、変更後のアリゴリズムに基づいてスプリンクラ作動信号を発信する機能(第2機能)を有している。
以下、これらの機能について詳細に説明する。
【0026】
<第1機能について>
信号変換器47が演算する圧力変化率の求め方として、本実施の形態では、所定時間ごとに取得した圧力の値と、取得時間との関係について、最小二乗法による直線回帰をした回帰直線の傾きとして求めるようにしている。
具体的には、図3に示すように、10m秒毎に圧力値のサンプリングデータを取得し、例えば199個のデータ(≒2秒分)について、図4に示すように、縦軸Yを圧力値、横軸Xを時間としたグラフにおいて、最小二乗法による直線回帰をした回帰直線の傾きを求める。
なお、図4においては、模式図であるため、サンプリングデータ数は4個しか図示していないが実際には、上述のように200個程度のデータによって直線回帰を行う。もっとも、データ数が多いほど電気的ノイズの影響が少なくなり精度は向上するが、直線回帰に時間を要するので、例えば200個から400個程度のデータ数とするのが好ましい。
これを式で表現すると以下のようになる。
傾き=XY共分散/X分散
ただし、XY共分散=(xi*yi)平均-(xi平均*yi平均)
X分散=合計((xi平均-xi)^2)
i=1~199
【0027】
傾きの計算は、図3に示すように、所定時間(図3の例では、10m秒×20=200m秒=0.2秒)毎に行い、予め設定した所定のしきい値と比較してスプリンクラ作動信号発信の要否を判定する。
例えば、図3に示すように、
(i)n1~n199のデータで「最小二乗法」により傾きを算出し、しきい値と比較して判定
(ii)n21~n219のデータで「最小二乗法」により傾きを算出し、しきい値と比較して判定
(iii)n41~n239のデータで「最小二乗法」により傾きを算出し、しきい値と比較して判定
(iv)n61~・・(以下略)・・・
傾きの値が、しきい値を超えると、信号変換器47は、消火システム制御盤39にスプリンクラ作動信号を出力する。
【0028】
圧力変化率を上記のように求めることの効果について、図5図6に基づいて説明する。
図5は、実際には圧力変化がほとんどない監視状態において、10m秒毎×199個(≒2秒分)の圧力センサから出力されるサンプリングデータに基づく圧力変化を示したグラフであり、縦軸が圧力(kPa)、横軸が時間(秒)をそれぞれ示している。
図5に示すように、圧力センサから出力されるサンプリングデータに基づく圧力値は極めて短時間に常時変化している。この変化は、実際の圧力変化を示したものではく、電気的ノイズによる変化である。
このような電気的ノイズの影響を受けているサンプリングデータに基づいて圧力変化率を求める場合、例えば、所定時間間隔における最初と最後の値のみから傾きを算出したものを図示すると、図5の一点鎖線で示すように、一定の傾きを持った直線となる。一定の傾きをもっているということは、圧力が変化していることを示しており、実際には圧力変化がないのに圧力変化があることを示すことになる。
【0029】
これに対して、最小二乗法による直線回帰をした回帰直線の傾きを求めると、図5の破線で示すように、傾きがほぼゼロの直線となる。
このように、最小二乗法を用いることで、電気的ノイズの影響を除いて、実際の圧力の変化を正しく捉えることができる。
【0030】
図6はスプリンクラヘッドが作動した場合の、サンプリングデータに基づく圧力値の変化を示すグラフであり、グラフ中には、最小二乗法による直線を記載している。
直線の傾きは、図中にも記載しているように約-1.557kPa/秒であり、スプリンクラが作動した際の圧力変化率を正しく表している。
【0031】
以上のように、信号変換器47が第1の機能を有することにより、常時極めて短い時間間隔で配管内の圧力値をサンプリングし、信号変換器47はこのサンプリング信号を入力して常時圧力の変化率を演算しているので、二次側配管19内の圧力が減圧して所定値に達する前に、圧力低下を検知できる。このため、圧力スイッチのみを用いる従来例に比較して減圧状態を極めて早期に検知できるので、放水遅れを防止する効果が高い。
しかも、本実施の形態では、圧力変化率を、最小二乗法を用いて演算するようにしているので、電気的ノイズの影響を可及的に少なくすることができる。
【0032】
なお、本発明において、信号変換器47による圧力変化率の演算は、上記のものに限定されず、例えば以下のようにしてもよい。
信号変換器47は、定期的に圧力センサ45の出力値をサンプリングし、例えば、サンプリングするたび今回サンプリングした出力値と、前回の出力値とを差分し、圧力が減少傾向にあるかを判定する。そして圧力の減少傾向が、何回かにわたって連続してあり、かつ所定値以上の圧力低下である場合に、信号変換器47は、消火システム制御盤39へスプリンクラ作動信号を出力する。
なお、圧力スイッチ33が動作する圧力をAとし、通常時、つまり監視状態の二次側配管19内の圧力をBとした場合、圧力Aと圧力Bの中間値である圧力Cよりも高い圧力で、ある一定の圧力の減少傾向があるときにスプリンクラ作動信号を出力するようにすることで、早期に二次側配管19内の圧力低下を検知することができる。
【0033】
<第2機能について>
第2機能は、上述したように、火災受信機43が故障した場合に発信する故障信号を受信したときに、スプリンクラ作動信号を発信するアリゴリズムをより厳しい条件(火災であることがより確実であると判断される条件のときにスプリンクラ作動信号を発信するアリゴリズム)に変更し、変更後のアリゴリズムに基づいてスプリンクラ作動信号を発信する機能である。
通常時のスプリンクラ作動信号を発信する機能が上述した最小二乗法に基づくものである場合について、図7図9に基づいて説明する。
図7は、圧力センサ45によって10m秒ごとに取得されたサンプリングデータに基づく圧力変化を示すグラフである。また、図8図9図7のデータに基づいて上述した最小二乗法によって求めた回帰直線の傾きの時間変化を示すグラフであり、縦軸が傾きを、横軸が時間を示している。そして、図8は、10m秒ごとに取得した100個のデータに基づいて傾きを求めた場合であり、図9は10m秒ごとに取得した200個のデータに基づいて傾きを求めた場合を示している。
【0034】
図8のグラフと図9のグラフを比較すると、図9の方がデータのバラつきが小さく、かつ傾きが緩やかになっていることがわかる。データのバラつきが小さいことから、精度が向上していることが分かる。また、傾きが緩やかになっていることから、傾きが所定の値以上になったときにスプリンクラ作動信号を発信するという場合、図8の場合にはスプリンクラ作動信号を発信するが、図9の場合には発信しないという状態が生じうる。したがって、図9の方が、スプリンクラ作動信号を発信するアリゴリズムをより厳しい条件にした、すなわち図9の方が、火災であることがより確実であると判断される条件のときにスプリンクラ作動信号を発信するアリゴリズムであるといえる。
【0035】
より厳しい条件としては、バラつきの影響がないようにするために、例えば回帰直線におけるスプリンクラ作動信号を発信する傾きの値を若干大きくするという条件変更もあり得る。
【0036】
次に、上記のように構成された本実施の形態の予作動式スプリンクラ消火設備1の動作を図2図10に基づいて説明する。
<監視状態>
監視状態では、圧力センサ45は常時二次側配管19の圧力を検知して、信号変換器47が圧力の変化率を演算している。しかし、演算した圧力の変化率が予め設定した所定値を越えない限り、信号変換器47はスプリンクラ作動信号を消火システム制御盤39へは送信しない。
【0037】
<火災時の動作>
火災時には、通常、まず火災感知器41が作動し(S1)、その信号が火災受信機43に入力され、火災受信機43が火災信号を消火システム制御盤39に送信する(S2)。
なお、ここでは、火災感知器41自体が火災であるかを判定した場合で説明する。つまり、火災感知器41が検出した出力値が所定値を上回り火災であると判定した場合に、火災感知器41は火災受信機43へ火災信号を送信する。なお、前述したように、火災受信機43が火災であるかを判断する場合であっても本発明は適用できる。この場合には、火災感知器41からはセンサ出力が火災受信機43へ送信され、そのセンサ出力と所定値とを比較して、火災受信機43が火災か否かを判断する。いずれの場合であっても、火災が発生した場合には、火災受信機43からの火災信号が消火システム制御盤39に入力される。
次に、火災の熱によってスプリンクラヘッド21が開放して二次側配管19の圧力が減圧すると(S3)、信号変換器47の演算値である圧力変化率が所定の値を越えるため、信号変換器47が消火システム制御盤39にスプリンクラ作動信号を送信する(S4)。
【0038】
上述したように、圧力センサ45は、常時極めて短い時間間隔で配管内の圧力値をサンプリングし、信号変換器47はこのサンプリング信号を入力して常時圧力の変化率を演算しているので、二次側配管19内の圧力が減圧して所定値に達する前に、圧力低下を検知でき、スプリンクラヘッド21が開放した後、きわめて早い時期に減圧状態を検知できる。
【0039】
消火システム制御盤39は、火災信号とスプリンクラ作動信号の両方の信号を入力すると、電動弁31を制御して予作動弁29を開放する(S5)。予作動弁29が開放すると、その後、給水本管7から継続して水が流れる状態となり、その水の流れを検知し、流水検知スイッチ35が作動して、流水信号を消火システム制御盤39に送信する(S6)。消火システム制御盤39が流水信号を受信すると(S7)、消火システム制御盤39から火災受信機43にも流水信号が送信される(S8)。
また予作動弁29が開放したときには、分岐管15における予作動弁29の一次側配管の圧力低下が生じ、これによって、圧力タンク9に設けた圧力スイッチ11が作動して、ポンプ制御盤13が消火ポンプ5を起動する。
消火ポンプ5が起動することで、加圧された消火水が給水本管7を通じて二次側配管19に供給されて作動したスプリンクラヘッド21から放水されて消火が行われる(S9)。
【0040】
<火災感知器の誤動作の場合>
火災感知器41が非火災によって動作した場合、消火システム制御盤39には火災信号は入力されるがスプリンクラ作動信号は入力されない。したがって、消火システム制御盤39は予作動弁29の開放をしない。このため、二次側配管19に消火水が供給されることはなく、水抜き作業が発生することはない。
【0041】
<圧力センサが故障の場合>
圧力センサ45が故障すると、火災であるにも拘わらずスプリンクラ作動信号が発信されない場合がありうる。しかし、スプリンクラヘッド21が開放したことで、二次側配管19内の減圧が生ずるので、二次側配管19内の圧力が所定値まで減圧すると圧力スイッチ33が作動して、圧力スイッチ33の信号が信号変換器47を介して消火システム制御盤39に入力される。
火災の場合、消火システム制御盤39には火災信号が入力されているので、消火システム制御盤39は圧力スイッチ33からの信号の入力があると、例え信号変換器47からのスプリンクラ作動信号が入力されていなくても予作動弁29を開放する。
【0042】
このように、本実施の形態では、圧力センサ45が故障したような場合でも、火災時に放水が行われないという最悪の事態を確実に回避することができ、消火設備としての信頼性が高い。
【0043】
<火災感知器や火災受信機が故障した場合>
火災感知器41や火災受信機43が故障すると、図11に示すように、火災受信機43は消火システム制御盤39に故障信号を送信する。消火システム制御盤39は故障信号を受信すると、故障信号を信号変換器47に送信すると共に、その後は、火災信号の入力がなくても、信号変換器47の信号又は圧力スイッチ33の信号のいずれかの信号の入力があったときに電動弁31を制御して、予作動弁29を開放する。
【0044】
そして、信号変換器47は消火システム制御盤39から故障信号を受信すると、上述した第2機能によって、より厳しい条件によってスプリンクラ作動信号の発信要否の判定を行うようになる。
【0045】
火災感知器41又は火災受信機43が故障した場合の動作を図11図12に基づいて説明する。
火災感知器41又は火災受信機43が故障すると、火災受信機43が故障信号を消火システム制御盤39に発信する(S11)。この信号を受信すると消火システム制御盤39は、火災信号がなくても二次側配管19内の圧力低下があれば予作動弁29を開放する単独モードに切り替わる(S12)。
【0046】
この状態で、火災が発生し、スプリンクラヘッド21が作動すると(S13)、信号変換器47の演算値である圧力変化率が所定の値を越えるため、信号変換器47が消火システム制御盤39にスプリンクラ作動信号を送信する(S14)。消火システム制御盤39は、火災信号の入力がなくても、スプリンクラ作動信号の信号を入力すると、電動弁31を制御して予作動弁29を開放する(S15)。予作動弁29が開放すると、流水検知スイッチ35が作動して、流水信号が消火システム制御盤39に送信され(S16)、消火システム制御盤39は信号変換器47を介して流水信号を受信する(S17)。
予作動弁29が開放した後は、図10において説明したのと同様の動作がおこなわれて消火が行われる(S18)。
【0047】
このように、火災感知器41や火災受信機43が故障した場合、消火システム制御盤39の単独での動作によって予作動弁29を動作させるようにすることで、火災感知器41や火災受信機43が故障した場合であっても、火災時に放水が行われないという最悪の事態を確実に回避することができ、消火設備としての信頼性が高い。
しかも、信号変換器47によるスプリンクラ作動信号の発信のアリゴリズムをより厳しい条件のものに切り替えているので、非火災のときにスプリンクラ作動信号が発信されることを防止できるという効果もある。
【0048】
[実施の形態2]
実施の形態1においては、火災感知器41又は火災受信機43が故障した場合であったが、消火システム制御盤39が故障する場合も考えられ、本実施の形態は消火システム制御盤39が故障した場合の対策を講じたスプリンクラ消火設備に関するものである。
【0049】
本実施の形態のスプリンクラ消火設備が実施の形態1と異なる点は、信号変換器47の機能に関し、本実施の形態の信号変換器47は、図13に示すように、消火システム制御盤39との通信が不能になると、消火システム制御盤39に代わって電動弁31を制御して、予作動弁29を開放するように構成されている。
【0050】
また、信号変換器47が予作動弁29を開放する条件は、消火システム制御盤39との通信が成立している場合よりも、より厳しい条件となるようにしている。
ここでいう、より厳しい条件とは、実施の形態1で説明したのと同様である。
なお、信号変換器47は、圧力スイッチ33からの情報も得ており、圧力スイッチ33が作動したら予作動弁29を開放するように構成されている。
【0051】
信号変換器47が予作動弁29の開放制御を行う場合の動作は、火災感知器41又は火災受信機43が故障した場合の動作を示した図12の場合と基本的に同様であり、制御主体が消火システム制御盤39から信号変換器47に代わる点が異なるのみである。
【0052】
なお、上記の実施の形態では、圧力スイッチ33の代わりとして圧力センサ45を使用し、圧力センサ45がサンプリングした圧力値を信号変換器47に送信するようしているが、例えば、圧力センサ45からサンプリングした圧力値を、消火システム制御盤39にも送信するように構成してもよい。
この場合には、消火システム制御盤が、二次側配管内の圧力値を直接表示できる表示部を有し、管理者が一定時間における圧力値の変化を視認できるようにすることで、例えば夏季において、配管内の圧力上昇があるときは、管理者が、試験弁23を開放するなどして、配管内の圧力を低下させることができる。
また本実施の形態では、火災受信機43と消火システム制御盤39をそれぞれ設けたが、これらの盤が有する機能を一つにまとめた一体盤で構成するようにしてもよい。
【0053】
さらに、上記の実施の形態では、圧力センサ45が故障する場合に備えて圧力スイッチ33を設けるようにしているが、本発明においては、圧力スイッチ33は必須ではなく、本発明は、圧力センサ45の情報のみに基づいて予作動弁29を開放制御するものを含む。
【符号の説明】
【0054】
1 予作動式スプリンクラ消火設備
3 貯水槽
5 消火ポンプ
7 給水本管
9 圧力タンク
11 圧力スイッチ(圧力タンク)
13 ポンプ制御盤
15 分岐管
17 予作動式流水検知装置
19 二次側配管
21 スプリンクラヘッド
23 試験弁
25 コンプレッサ
27 空気配管
29 予作動弁
31 電動弁
33 圧力スイッチ(予作動式流水検知装置)
35 流水検知スイッチ
39 消火システム制御盤
41 火災感知器
43 火災受信機
45 圧力センサ
47 信号変換器
49 非常電源装置
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13