(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-03-27
(45)【発行日】2024-04-04
(54)【発明の名称】双極板、セルフレーム、電池セル、セルスタック、及びレドックスフロー電池
(51)【国際特許分類】
H01M 8/18 20060101AFI20240328BHJP
H01M 8/0247 20160101ALI20240328BHJP
【FI】
H01M8/18
H01M8/0247
(21)【出願番号】P 2022553263
(86)(22)【出願日】2020-09-29
(86)【国際出願番号】 JP2020036934
(87)【国際公開番号】W WO2022070260
(87)【国際公開日】2022-04-07
【審査請求日】2023-03-22
(73)【特許権者】
【識別番号】000002130
【氏名又は名称】住友電気工業株式会社
(74)【代理人】
【識別番号】100100147
【氏名又は名称】山野 宏
(74)【代理人】
【識別番号】100116366
【氏名又は名称】二島 英明
(72)【発明者】
【氏名】寒野 毅
【審査官】守安 太郎
(56)【参考文献】
【文献】国際公開第2016/208482(WO,A1)
【文献】特開平02-148659(JP,A)
【文献】特表2015-505147(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01M 8/18
H01M 8/02
(57)【特許請求の範囲】
【請求項1】
互いに向かい合う第一面と第二面とを備える双極板であって、
前記第一面及び前記第二面の各々は、第一縁と、第二縁と、中央領域とを備え、
前記第一縁は、電解液が供給される側に位置する縁であり、
前記第二縁は、前記電解液が排出される側に位置する縁であり、
前記中央領域は、中央線から前記第一縁及び前記第二縁の各々に向かって縁間隔の20%以内の領域であり、
前記中央線は、前記第一縁と前記第二縁との間を二等分する線であり、
前記縁間隔は、前記第一縁と前記第二縁との間隔であり、
前記第一面及び前記第二面の少なくとも一方における前記中央領域は、前記電解液が流通される複数の溝部を備え、
前記中央領域は、前記双極板を特定方向に切断した特定断面を備え、
前記特定方向は、前記第一縁から前記第二縁に向かう方向と直交する方向であり、
前記特定断面は、断面積比B/(A+B)が0.05以上0.60以下である断面であり、
前記Aは、前記双極板の
実体部分の断面積であり、
前記Bは、前記複数の溝部の合計断面積である、
双極板。
【請求項2】
前記双極板の厚さが2mm以上15mm以下である請求項1に記載の双極板。
【請求項3】
前記複数の溝部の各々における断面積は、0.8mm
2以上8mm
2以下である請求項1又は請求項2に記載の双極板。
【請求項4】
前記複数の溝部の各々における溝深さは、0.7mm以上7mm以下である請求項1から請求項3のいずれか1項に記載の双極板。
【請求項5】
前記複数の溝部の各々における溝幅は、0.6mm以上6mm以下である請求項1から請求項4のいずれか1項に記載の双極板。
【請求項6】
隣り合う前記溝部間の距離は、1mm以上10mm以下である請求項1から請求項5のいずれか1項に記載の双極板。
【請求項7】
前記複数の溝部における80%以上の溝部は、同じ断面形状を有する請求項1から請求項6のいずれか1項に記載の双極板。
【請求項8】
前記複数の溝部の各々における溝深さは、前記双極板の厚さの15%以上33%以下であり、
前記複数の溝部の各々における溝幅は、1.2mm以上3mm以下であり、
前記複数の溝部の各々における断面積は、1.5mm
2
以上3mm
2
以下である請求項1から請求項7のいずれか1項に記載の双極板。
【請求項9】
前記複数の溝部の個数は、240以上400以下である請求項1から請求項8のいずれか1項に記載の双極板。
【請求項10】
前記断面積比B/(A+B)が0.07以上である請求項1から請求項9のいずれか1項に記載の双極板。
【請求項11】
請求項1から請求項
10のいずれか1項に記載の双極板と、
前記双極板の外周に設けられる枠体とを備える、
セルフレーム。
【請求項12】
請求項
11に記載のセルフレームを備える、
電池セル。
【請求項13】
請求項
12に記載の電池セルを複数備える、
セルスタック。
【請求項14】
請求項
12に記載の電池セル、又は請求項
13に記載のセルスタックを備える、
レドックスフロー電池。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、双極板、セルフレーム、電池セル、セルスタック、及びレドックスフロー電池に関する。
【背景技術】
【0002】
特許文献1は、互いに向かい合う第一面及び第二面の少なくとも一方の面に、電解液が流通される複数の溝部を備える双極板を開示する。双極板は、双極板の外周に枠体が配置されて、セルフレームと呼ばれる形態でレドックスフロー電池に利用される。
【先行技術文献】
【特許文献】
【0003】
【発明の概要】
【0004】
本開示の双極板は、
互いに向かい合う第一面と第二面とを備える双極板であって、
前記第一面及び前記第二面の各々は、第一縁と、第二縁と、中央領域とを備え、
前記第一縁は、電解液が供給される側に位置する縁であり、
前記第二縁は、前記電解液が排出される側に位置する縁であり、
前記中央領域は、中央線から前記第一縁及び前記第二縁の各々に向かって縁間隔の20%以内の領域であり、
前記中央線は、前記第一縁と前記第二縁との間を二等分する線であり、
前記縁間隔は、前記第一縁と前記第二縁との間隔であり、
前記第一面及び前記第二面の少なくとも一方における前記中央領域は、前記電解液が流通される複数の溝部を備え、
前記中央領域は、前記双極板を特定方向に切断した特定断面を備え、
前記特定方向は、前記第一縁から前記第二縁に向かう方向と直交する方向であり、
前記特定断面は、断面積比B/(A+B)が0.05以上0.60以下である断面であり、
前記Aは、前記双極板の断面積であり、
前記Bは、前記複数の溝部の合計断面積である。
【0005】
本開示のセルフレームは、
本開示の双極板と、
前記双極板の外周に設けられる枠体とを備える。
【0006】
本開示の電池セルは、本開示のセルフレームを備える。
【0007】
本開示のセルスタックは、本開示の電池セルを複数備える。
【0008】
本開示のレドックスフロー電池は、本開示の電池セル、又は本開示のセルスタックを備える。
【図面の簡単な説明】
【0009】
【
図1】
図1は、実施形態に係る双極板を示す平面図である。
【
図3】
図3は、実施形態に係るセルフレームを示す平面図である。
【
図4】
図4は、実施形態に係るレドックスフロー電池の基本構造を模式的に示す説明図である。
【
図5】
図5は、実施形態に係る電池セル及び実施形態に係るセルスタックの概略を示す斜視図である。
【発明を実施するための形態】
【0010】
[本開示が解決しようとする課題]
レドックスフロー電池の運転時、双極板には、電解液が流通されることによる熱応力が作用する。この双極板の熱応力に対して、セルフレームが損傷しないことが求められる。また、レドックスフロー電池では、電流効率が高いことが求められる。
【0011】
そこで、本開示は、熱応力によるセルフレームの損傷を抑制でき、かつ電流効率が高い電池セルが得られる双極板を提供することを目的の一つとする。また、本開示は、熱応力によるセルフレームの損傷を抑制でき、かつ電流効率が高い電池セルが得られるセルフレームを提供することを別の目的の一つとする。更に、本開示は、熱応力によるセルフレームの損傷を抑制でき、かつ電流効率が高い電池セル、セルスタック、及びレドックスフロー電池を提供することを別の目的の一つとする。
【0012】
[本開示の効果]
本開示の双極板及びセルフレームは、熱応力によるセルフレームの損傷を抑制でき、かつ電流効率が高い電池セルが得られる。本開示の電池セル、セルスタック、及びレドックスフロー電池は、熱応力によるセルフレームの損傷を抑制でき、かつ電流効率が高い。
【0013】
[本開示の実施形態の説明]
単体の双極板は、厚いと剛性を含む機械的特性が高くなり、熱応力によって損傷が生じ難くなる。しかし、双極板を枠体と組み合わせてセルフレームとして電池セルに利用する場合、双極板が厚いと、双極板と枠体との接合部及びその近傍に損傷が生じ得ることが判明した。他に、双極板が厚いと、電池セルの電流効率が低くなる傾向にある。
【0014】
溝部を備える双極板において、特定の領域における溝部の大きさを検討したところ、双極板と枠体との接合部及びその近傍に熱応力による損傷が生じることを抑制でき、かつ電流効率が高い電池セルが得られることがわかった。本開示は、上記知見に基づき、双極板の特定断面において、双極板と複数の溝部との断面積比を規定する。
最初に本開示の実施態様を列記して説明する。
【0015】
(1)本開示の一態様に係る双極板は、
互いに向かい合う第一面と第二面とを備える双極板であって、
前記第一面及び前記第二面の各々は、第一縁と、第二縁と、中央領域とを備え、
前記第一縁は、電解液が供給される側に位置する縁であり、
前記第二縁は、前記電解液が排出される側に位置する縁であり、
前記中央領域は、中央線から前記第一縁及び前記第二縁の各々に向かって縁間隔の20%以内の領域であり、
前記中央線は、前記第一縁と前記第二縁との間を二等分する線であり、
前記縁間隔は、前記第一縁と前記第二縁との間隔であり、
前記第一面及び前記第二面の少なくとも一方における前記中央領域は、前記電解液が流通される複数の溝部を備え、
前記中央領域は、前記双極板を特定方向に切断した特定断面を備え、
前記特定方向は、前記第一縁から前記第二縁に向かう方向と直交する方向であり、
前記特定断面は、断面積比B/(A+B)が0.05以上0.60以下である断面であり、
前記Aは、前記双極板の断面積であり、
前記Bは、前記複数の溝部の合計断面積である。
【0016】
断面積比が0.05以上である双極板は、溝部がある程度確保されていると言える。断面積比が0.05以上である双極板は、溝部が極めて少ない双極板に比較して、剛性が低い。双極板の剛性が低いことで、双極板に熱応力が作用したとしても、双極板と枠体との接合部及びその近傍において、双極板及び枠体の少なくとも一方に損傷が生じることを抑制できる。
【0017】
断面積比が0.60以下である双極板は、双極板を構成する実体部分がある程度確保されていると言える。よって、双極板の剛性が低くなり過ぎて、双極板自体に損傷が生じることを抑制できる。溝部が多く確保されると、双極板における電解液で濡れる面積が増加し、電解液が双極板に浸透することがあり得る。断面積比が0.60以下である双極板は、断面積比が0.60超である双極板即ち溝部が極めて多い双極板に比較して、電解液に濡れる面積が小さいと言える。この濡れる面積が小さいことで、電解液が双極板に浸透し難い。結果として、双極板の第一面と第二面との間で電解液が流通することを抑制できる。よって、第一面に流通される電解液と第二面に流通される電解液とが混合することを抑制できる。上記混合に起因して、電池セルにおいて自己放電が生じることを抑制できる。その結果、電池セルの電流効率が低くなることを抑制できる。
【0018】
(2)本開示の双極板の一例として、
前記双極板の厚さが2mm以上15mm以下である形態が挙げられる。
【0019】
双極板の厚さが2mm以上であることで、双極板を構成する実体部分を確保し易く、電解液が双極板に浸透することを抑制し易い。一方、双極板の厚さが15mm以下であることで、双極板の剛性が高くなり過ぎることを抑制し易い。また、双極板の厚さが15mm以下であることで、双極板の厚肉化を抑制し易く、電池セルの電流効率が低くなることを抑制し易い。
【0020】
(3)本開示の双極板の一例として、
前記複数の溝部の各々における断面積は、0.8mm2以上8mm2以下である形態が挙げられる。
【0021】
各溝部の断面積が0.8mm2以上であることで、双極板の剛性が高くなり過ぎることを抑制し易い。また、各溝部の断面積が0.8mm2以上であることで、電解液の流通性を確保し易い。一方、各溝部の断面積が8mm2以下であることで、双極板を構成する実体部分を確保し易く、電解液が双極板に浸透することを抑制し易い。
【0022】
(4)本開示の双極板の一例として、
前記複数の溝部の各々における溝深さは、0.7mm以上7mm以下である形態が挙げられる。
【0023】
溝深さが0.7mm以上であることで、双極板の剛性が高くなり過ぎることを抑制し易い。また、溝深さが0.7mm以上であることで、電解液の流通性を確保し易い。一方、溝深さが7mm以下であることで、双極板を構成する実体部分を確保し易く、電解液が双極板に浸透することを抑制し易い。
【0024】
(5)本開示の双極板の一例として、
前記複数の溝部の各々における溝幅は、0.6mm以上6mm以下である形態が挙げられる。
【0025】
溝幅が0.6mm以上であることで、双極板の剛性が高くなり過ぎることを抑制し易い。また、溝幅が0.6mm以上であることで、電解液の流通性を確保し易い。一方、溝幅が6mm以下であることで、双極板を構成する実体部分を確保し易く、電解液が双極板に浸透することを抑制し易い。
【0026】
(6)本開示の双極板の一例として、
隣り合う前記溝部間の距離は、1mm以上10mm以下である形態が挙げられる。
【0027】
隣り合う溝部間の距離が1mm以上であることで、双極板を構成する実体部分を確保し易く、電解液が双極板に浸透することを抑制し易い。一方、隣り合う溝部間の距離が10mm以下であることで、溝部を確保し易く、双極板の剛性が高くなり過ぎることを抑制し易い。
【0028】
(7)本開示の双極板の一例として、
前記複数の溝部における80%以上の溝部は、同じ断面形状を有する形態が挙げられる。
【0029】
上記形態は、上記断面積比を満たす双極板を製造し易い。
【0030】
(8)本開示の一態様に係るセルフレームは、
上記(1)から(7)のいずれか一つの双極板と、
前記双極板の外周に設けられる枠体とを備える。
【0031】
本開示のセルフレームは、本開示の双極板を備えることで、双極板に熱応力が作用したとしても、双極板と枠体との接合部及びその近傍において、双極板及び枠体の少なくとも一方に損傷が生じることを抑制できる。また、本開示のセルフレームは、本開示の双極板を備えることで、電池セルの電流効率が低くなることを抑制できる。
【0032】
(9)本開示の一態様に係る電池セルは、上記(8)のセルフレームを備える。
【0033】
本開示の電池セルは、本開示のセルフレームを備えることで、熱応力によるセルフレームの損傷を抑制でき、かつ電流効率が高い。
【0034】
(10)本開示の一態様に係るセルスタックは、上記(9)の電池セルを複数備える。
【0035】
本開示のセルスタックは、本開示の電池セルを備えることで、熱応力によるセルフレームの損傷を抑制でき、かつ電流効率が高い。
【0036】
(11)本開示の一態様に係るレドックスフロー電池は、上記(9)の電池セル、又は上記(10)のセルスタックを備える。
【0037】
本開示のレドックスフロー電池は、本開示の電池セル又は本開示のセルスタックを備えることで、熱応力によるセルフレームの損傷を抑制でき、かつ電流効率が高い。
【0038】
[本開示の実施形態の詳細]
本開示の実施形態の双極板、セルフレーム、電池セル、セルスタック、及びレドックスフロー電池の詳細を、図面を参照して説明する。以下、レドックスフロー電池をRF電池と呼ぶ。図中の同一符号は、同一名称物を示す。
【0039】
<双極板>
〔概要〕
図1及び
図2を参照して、実施形態の双極板1を説明する。
図1は、双極板1を第一面1a側から見た平面図である。双極板1は、複数の溝部2を備える。
図1では、複数の溝部2のうち、隣り合う三つの溝部2のみを図示し、その他の溝部を「…(ドット)」で省略して示す。
図1では、分かり易いように、溝部2以外の領域にハッチングを付している。
図2は、双極板1の中央領域13(
図1)における特定断面14を示す。特定断面14において、双極板の断面積をAとし、複数の溝部2の合計断面積をBとする。実施形態の双極板1の特徴の一つは、特定断面14において、B/(A+B)で表される断面積比が、0.05以上0.60以下である点にある。
【0040】
〔基本構成〕
双極板1は、RF電池100(
図4)の構成部材である。双極板1は、電池セル100C(
図4)内に流通される正極電解液と負極電解液とを区画する導電性の平板である。双極板1は、
図1及び
図2に示すように、互いに向かい合う第一面1aと第二面1bとを備える。第一面1aは、
図1に示すように、第一縁11と第二縁12と中央領域13とを備える。第二面1bも、図示しないが、第一面1aと同様に、第一縁と第二縁と中央領域とを備える。
【0041】
双極板1は、双極板1の外周に後述する枠体80(
図3)が配置されて、セルフレーム8を構成する。第一縁11は、電解液が供給される側に位置する縁である。第一縁11は、セルフレーム8を構成した際、
図3に示すように、双極板1の縁のうち、枠体80に設けられる供給路のある側に位置する縁である。枠体80における供給路は、給液マニホールド82、83と、給液スリット82s、83sと、給液整流部86とを備える。
【0042】
第二縁12は、電解液が排出される側に位置する縁である。第二縁12は、セルフレーム8を構成した際、
図3に示すように、双極板1の縁のうち、枠体80に設けられる排出路のある側に位置する縁である。枠体80における排出路は、排液マニホールド84、85と、排液スリット84s、85sと、排液整流部87とを備える。
【0043】
第一縁11と第二縁12とは、向かい合って位置する。本例の双極板1は、
図1に示すように、矩形状の平板である。そのため、本例では、第一縁11及び第二縁12は、互いに向かい合う直線状の縁である。よって、本例では、第一縁11と第二縁12との間隔は、第一縁11又は第二縁12の長手方向に沿って一様である。以下、第一縁11と第二縁12との間隔を縁間隔6と呼ぶ。
【0044】
双極板1の平面形状は、矩形状以外に、六角形状や八角形状等の多角形状や、円形状、楕円形状等でもよい。双極板1の平面形状によっては、第一縁11及び第二縁12は、直線状の縁ではなく、折れ線状や曲線状の縁であることもある。この場合、縁間隔6は、第一縁11又は第二縁12の長手方向に沿って異なることがある。
【0045】
中央領域13は、
図1に示すように、中央線5から第一縁11及び第二縁12の各々に向かって縁間隔6の20%以内の領域である。中央線5は、第一縁11と第二縁12との間を二等分する線である。本例の中央線5は、直線である。双極板1の平面形状によっては、中央線5は、直線ではなく、折れ線や曲線であることもある。縁間隔6は、一定の値を採用する。縁間隔6が第一縁11又は第二縁12の長手方向に沿って異なる場合、縁間隔6として最大値を採用する。例えば、双極板1の平面形状が円形状の場合、縁間隔6は直径を採用する。中央領域13における中央線5の長手方向と直交する方向の長さは、中央線5の長手方向に沿って一様である。
【0046】
第一面1a及び第二面1bの少なくとも一方における中央領域13は、複数の溝部2を備える。本例では、
図2に示すように、第一面1a及び第二面1bの各々の中央領域13(
図1)に、複数の溝部2が設けられている。
【0047】
〔溝部〕
複数の溝部2には、電解液が流通される。第一面1aに設けられる複数の溝部2には、正極電解液が流通される。第二面1bに設けられる複数の溝部2には、負極電解液が流通される。各溝部2の形状や寸法が調整されることで、電解液の流れが調整される。
【0048】
本例の各溝部2は、
図1に示すように、第一縁11と第二縁12とをつなぐように構成されている。本例の各溝部2は、第一縁11と第二縁12とをつなぐ単一の溝で構成されている。中央領域13における各溝部2は、上記単一の各溝部2の一部である。本例では、全ての溝部2が、第一縁11から第二縁12に向かう方向に沿った直線状の溝で構成されている。各溝部2の幅は、溝部2の長手方向に一様であってもよいし、第一縁11から第二縁12に向かって広くなっていたり、逆に狭くなっていたり、溝部2の長手方向に異なっていてもよい。また、各溝部2は、溝部2の長手方向に分断されていてもよい。また、各溝部2は、溝部2の長手方向に屈曲していたり、湾曲していたりしてもよい。各溝部2の深さは、溝部2の長手方向に一様であってもよいし、第一縁11から第二縁12に向かって深くなっていたり、逆に浅くなっていたり、溝部2の長手方向に異なっていてもよい。
【0049】
複数の溝部2は、第一縁11又は第二縁12の長手方向に沿って並んで設けられている。双極板1は、後述するように、双極板1の外周に枠体80が配置されて、セルフレーム8と呼ばれる形態で利用される(
図3から
図5)。電解液は、双極板1における枠体80から露出される露出領域を流通する。よって、複数の溝部2は、上記露出領域に均一的に設けられていることが挙げられる。双極板1における枠体80に重なる被覆領域15(
図2)には、電解液は流通されない。被覆領域15は、第一面1aと第二面1bの両面に枠体80が重なる場合と、第一面1aと第二面1bのいずれかの面にのみ枠体80が重なる場合とがある。複数の溝部2は、上記露出領域の中央は勿論、被覆領域15近傍にまで設けられていることが挙げられる。
【0050】
隣り合う溝部2間には、畝部3が構成される。畝部3は、双極板1の最表面の大部分を構成する。後述する電池セル100C(
図4、
図5)を構築すると、第一面1aにおける畝部3が正極電極104に接触し、第二面1bにおける畝部3が負極電極105に接触する。電池セル100Cにおいて、双極板1上での電解液の流れは、各溝部2に沿った流れと、畝部3を跨いで隣り合う溝部2間をわたるような流れとを構成する。
【0051】
双極板1の中央領域13は、双極板1を特定方向に切断した特定断面14(
図2)を備える。特定方向は、第一縁11から第二縁12に向かう方向と直交する方向である。第一縁11から第二縁12に向かう方向とは、双極板1全体でみたときの電解液の流通方向である。本例の電池セル100Cでは、
図5に示すように、鉛直方向下側から上側に向かう方向に電解液が流れる。よって、本例の特定方向は、水平方向である。特定断面14は、中央線5が直線、折れ線、曲線等のいずれの場合であっても、平面で構成される。また、特定断面14は、縁間隔6が第一縁11又は第二縁12の長手方向に沿って異なる場合であっても、平面で構成される。特定断面14は、部分的に中央領域13以外の領域を含まず、全域にわたって中央領域13を含む。
【0052】
特定断面14は、第一面1a及び第二面1bの少なくとも一方に、複数の溝部2を備える。本例の特定断面14は、
図2に示すように、第一面1a及び第二面1bの各々に、複数の溝部2を備える。
【0053】
第一面1a及び第二面1bの双方に複数の溝部2を備える場合、双極板1を平面視したときに、第一面1aに設けられる溝部2と第二面1bに設けられる溝部2とは、
図2に示すように、重なる位置にあってもよい。双極板1を平面視したときに、第一面1aに設けられる溝部2と第二面1bに設けられる溝部2とは、一部が重なっていてもよいし、互いにずれて重ならなくてもよい。
【0054】
特定断面14において、双極板1の断面積をAとする。双極板1の断面積Aは、双極板1の実体部分の断面積である。双極板1の断面積Aは、
図2に示すハッチング部分の断面積である。
【0055】
特定断面14において、複数の溝部2の合計断面積をBとする。各溝部2の断面積は、溝部2の開口縁同士を直線でつなぎ、その直線と溝部2の内周縁とで囲まれる断面積である。各溝部2の断面積は、
図2に示す白抜きの矩形状の部分の断面積である。複数の溝部2の合計断面積Bは、各溝部2の断面積の合計である。
【0056】
≪断面積比≫
特定断面14において、B/(A+B)で表される断面積比は、0.05以上0.60以下である。断面積比が0.05以上である双極板1は、溝部2がある程度確保されていると言える。溝部2がある程度確保されることで、電解液の流通性を確保し易い。また、溝部2がある程度確保されることで、溝部2の存在によって双極板1の剛性が高くなり過ぎることを抑制できる。双極板1の剛性が高過ぎないことで、双極板1に熱応力が作用したとしても、双極板1と枠体80との接合部及びその近傍において、双極板1及び枠体80の少なくとも一方に損傷が生じることを抑制できる。
【0057】
一方、断面積比が0.60以下である双極板1は、双極板1を構成する実体部分がある程度確保されていると言える。よって、双極板1の剛性が低くなり過ぎて、双極板1自体に損傷が生じることを抑制できる。また、断面積比が0.60以下である双極板1は、電解液に濡れる面積の増加が抑制されていると言える。双極板1は、電解液を通さない材料で構成されている。しかし、双極板1に溝部2を備える場合、双極板1における電解液に濡れる面積が増加し、電解液が双極板1に浸透することがあり得る。断面積比が0.60以下であることで、電解液が双極板1に浸透し難い。結果として、双極板1の第一面1aと第二面1bとの間で電解液が流通することを抑制できる。よって、第一面1aに流通される電解液と第二面1bに流通される電解液とが混合することを抑制できる。その結果、上記混合に起因して、電池セル100C(
図4、
図5)に自己放電が生じることを抑制できる。自己放電を抑制できることで、電池セル100Cの電流効率が低くなることを抑制できる。
【0058】
断面積比は、更に0.10以上0.40以下、特に0.15以上0.30以下であることが好ましい。
【0059】
中央領域13は、上記特定方向に切断した複数の断面を採取することができる。複数の断面のうち、少なくとも一つの断面が、上記断面積比を満たす特定断面14であればよい。中央領域13において、等間隔に5つ以上の断面を採取することが挙げられる。この場合、5つ以上の断面のうち、80%以上、更に90%以上、特に全ての断面が、上記断面積比を満たす特定断面14であることが好ましい。
【0060】
≪溝形状≫
特定断面14において、各溝部2の断面形状は、任意の形状を選択できる。各溝部2の断面形状としては、例えば、矩形状、半円形状、V字形状、U字形状、溝部2の開口幅が底面の幅よりも広い台形状、溝部2の開口幅が底面の幅よりも狭い蟻溝形状等が挙げられる。全ての溝部2の断面形状が同じであってもよいし、異なる断面形状の溝部2が含まれていてもよい。複数の溝部2の本数を100%とするとき、複数の溝部2における80%以上の溝部2が同じ断面形状であることが好ましい。同じ断面形状とは、各溝部2における長手方向の同じ位置での断面形状が合同又は相似であることである。複数の溝部2の80%以上が同じ断面形状を有することで、上記断面積比を満たす双極板1を製造し易い。特に、複数の溝部2の本数を100%とするとき、複数の溝部2における80%以上の溝部2が合同であることが好ましい。複数の溝部2の80%以上が合同であることで、電解液の流通状態が均一的になり易い。上述の製造の容易性の観点から、複数の溝部2の85%以上、更に90%以上が同じ断面形状を有してもよい。また、上述の製造の容易性、及び電解液の流通状態の均一性の観点から、複数の溝部2の85%以上、更に90%以上が合同であってもよい。全ての溝部2の断面形状が同じでもよい。
【0061】
≪溝断面積≫
特定断面14において、各溝部2の断面積は、0.8mm2以上8mm2以下であることが好ましい。各溝部2の断面積が0.8mm2以上であることで、電解液の流通性を確保し易い。また、各溝部2の断面積が0.8mm2以上であることで、双極板1の剛性が高くなり過ぎることを抑制し易い。一方、各溝部2の断面積が8mm2以下であることで、双極板1の全体にわたって均一的に溝部2が位置し易い。そうすることで、双極板1に剛性の偏りが生じることを抑制し易い。各溝部2の断面積は、更に1mm2以上4mm2以下、特に1.5mm2以上3mm2以下であることが好ましい。複数の特定断面14を採取した場合、特定断面14の各々が、上記各溝部2の断面積を満たすことが好ましい。
【0062】
≪溝深さ≫
特定断面14において、各溝部2の溝深さDは、0.7mm以上7mm以下であることが好ましい。溝深さDは、溝部2の開口縁同士をつないだ直線から溝底の最も遠い箇所までの長さとする。溝深さDが0.7mm以上であることで、電解液の流通性を確保し易い。また、溝深さDが0.7mm以上であることで、双極板1の剛性が高くなり過ぎることを抑制し易い。一方、溝深さDが7mm以下であることで、双極板1を構成する実体部分を確保し易く、電解液が双極板1に浸透することを抑制し易い。各溝部2の溝深さDは、更に、1mm以上4mm以下、1mm以上3mm以下、特に1mm以上2mm以下であることが好ましい。各溝部2の溝深さDは、1.4mm以上でもよい。複数の特定断面14を採取した場合、特定断面14の各々が、上記各溝部2の溝深さDを満たすことが好ましい。
【0063】
特定断面14において、各溝部2の溝深さDは、双極板1の厚さTの12%以上39%以下であることが好ましい。溝深さDが双極板1の厚さTの12%以上であることで、電解液の流通性を確保し易い。また、溝深さDが双極板1の厚さTの12%以上であることで、双極板1の剛性が高くなり過ぎることを抑制し易い。一方、溝深さDが双極板1の厚さTの39%以下であることで、双極板1を構成する実体部分を確保し易く、電解液が双極板1に浸透することを抑制し易い。各溝部2の溝深さDは、更に、双極板1の厚さTの15%以上33%以下、特に18%以上25%以下であることが好ましい。
【0064】
≪溝幅≫
特定断面14において、各溝部2の溝幅Wは、0.6mm以上6mm以下であることが好ましい。溝幅Wは、溝部2の開口縁から溝底に向かって一様でない幅を有する場合、最も広い幅とする。溝幅Wが0.6mm以上であることで、電解液の流通性を確保し易い。また、溝幅Wが0.6mm以上であることで、双極板1の剛性が高くなり過ぎることを抑制し易い。一方、溝幅Wが6mm以下であることで、双極板1を構成する実体部分を確保し易く、電解液が双極板1に浸透することを抑制し易い。各溝部2の溝幅Wは、更に、1mm以上4mm以下、特に1.2mm以上3mm以下であることが好ましい。複数の特定断面14を採取した場合、特定断面14の各々が、上記各溝部2の溝幅Wを満たすことが好ましい。
【0065】
≪溝間距離≫
特定断面14において、隣り合う溝部2間の溝間距離Mは、1mm以上10mm以下であることが好ましい。溝間距離Mは、畝部3の幅である。溝間距離Mが1mm以上であることで、双極板1を構成する実体部分を確保し易く、電解液が双極板1に浸透することを抑制し易い。一方、溝間距離Mが10mm以下であることで、溝部2を確保し易く、双極板1の剛性が高くなり過ぎることを抑制し易い。溝間距離Mは、更に、1.1mm以上7mm以下、特に1.2mm以上5mm以下であることが好ましい。溝間距離Mは、1.5mm以上7mm以下、特に2mm以上5mm以下であってもよい。複数の特定断面14を採取した場合、特定断面14の各々が、上記溝間距離Mを満たすことが好ましい。
【0066】
≪双極板の厚さ≫
双極板1の厚さTは、2mm以上15mm以下であることが好ましい。双極板1の厚さTは、双極板1における枠体80(
図4、
図5)からの露出領域での第一面1a及び第二面1bの最表面間の長さである。双極板1の厚さTが2mm以上であることで、双極板1を構成する実体部分を確保し易く、電解液が双極板1に浸透することを抑制し易い。一方、双極板1の厚さTが15mm以下であることで、双極板1の剛性が高くなり過ぎることを抑制し易い。また、双極板1の厚さが15mm以下であることで、双極板1の厚肉化を抑制し易く、電池セル100C(
図4、
図5)の電流効率が低くなることを抑制し易い。双極板1の厚さTは、更に、3mm以上10mm以下、特に4mm以上8mm以下であることが好ましい。
【0067】
本例の双極板1は、枠体80(
図4、
図5)が配置される被覆領域15と、枠体80から露出される露出領域とが、実質的に同じ厚さTで構成されている。他に、被覆領域15は、露出領域よりも薄く構成されていてもよい。例えば、枠体80に凹部(図示せず)が設けられている場合、この凹部に薄肉部で構成された被覆領域15を嵌め込むことで、双極板1と枠体80とを一体化することができる。
【0068】
≪双極板の構成材料≫
双極板1の構成材料は、例えば有機複合材、いわゆる導電性プラスチック等が挙げられる。有機複合材は、例えば、炭素系材料や金属等の導電性材料と熱可塑性樹脂等の有機材とを含むものが挙げられる。双極板1は、例えば公知の方法によって板状に成形することで得られる。導電性プラスチックの成形方法は、例えば射出成形、プレス成形、真空成形等が挙げられる。複数の溝部2は、双極板1を板状に成形する際に同時に成形することが挙げられる。他に、平坦な平板材に切削加工等を行って複数の溝部2を形成することもできる。
【0069】
<セルフレーム>
図3を参照して、実施形態のセルフレーム8を説明する。セルフレーム8は、双極板1と枠体80とを備える。双極板1は、上述した実施形態の双極板1である。枠体80は、双極板1の外周に設けられる。枠体80は、双極板1を支持する。
【0070】
枠体80は、双極板1の表裏に配置される正極電極104及び負極電極105(
図4、
図5)へ電解液を供給すると共に、正極電極104及び負極電極105から電解液を排出することに利用される。枠体80は、窓部81と、電解液の供給路と、電解液の排出路とを備える。窓部81は、枠体80の中央部に設けられて、双極板1における正極電極104及び負極電極105が配置される領域を露出させる。
図2は、枠体80として、外形が長方形であり、かつ窓部81の形状も長方形である場合を例示する。枠体80の外形、及び窓部81の形状は適宜選択できる。
【0071】
代表的には、枠体80は、第一面に正極電解液の供給路及び排出路を備え、第二面に負極電解液の供給路及び排出路を備える。正極電解液の供給路は、給液マニホールド82と、給液スリット82sと、給液整流部86とを備える。本例の給液整流部86は、枠体80の内周縁に形成された切欠きで構成されている。給液スリット82sは、給液マニホールド82と給液整流部86とをつなぐ。給液整流部86は、給液スリット82sから供給される正極電解液を双極板1における第一縁11の長手方向に沿って拡散させる。正極電解液の排出路は、排液マニホールド84と、排液スリット84sと、排液整流部87とを備える。本例の排液整流部87は、枠体80の内周縁に形成された切欠きで構成されている。排液スリット84sは、排液マニホールド84と排液整流部87とをつなぐ。排液整流部87は、双極板1から排出される正極電解液を集約して排液スリット84sに導く。負極電解液の供給路は、正極電解液の供給路と同様に、給液マニホールド83と、給液スリット83sと、給液整流部(図示せず)とを備える。また、負極電解液の排出路は、正極電解液の排出路と同様に、排液マニホールド85と、排液スリット85sと、排液整流部(図示せず)とを備える。本例の枠体80には、周方向に沿ってシール溝88が設けられている。シール溝88には、シール部材89(
図4、
図5)が配置される。
【0072】
枠体80は、電気絶縁材料からなる。電気絶縁材料は、例えば、熱可塑性樹脂といった各種の樹脂が挙げられる。熱可塑性樹脂は、例えば、塩化ビニルが挙げられる。枠体80は、例えば、分割片を組み合わせることで構成できる。セルフレーム8は、例えば、双極板1を挟むように分割片を組み合わせて適宜接合することで構成できる。接合方法としては、熱融着や、シール部材(図示せず)を介して圧縮することが挙げられる。他に、セルフレーム8は、枠体80の窓部81に双極板1を嵌め込むことで構成できる。他に、セルフレーム8は、双極板1の外周に枠体80を射出成形等で成形することで構成できる。
【0073】
<RF電池>
図4及び
図5を参照して、実施形態のRF電池100を説明する。RF電池100は、電解液循環型の蓄電池の一つである。RF電池100は、電池セル100C又はセルスタック200と、電池セル100Cに電解液を供給する循環機構とを備える。RF電池100は、電池セル100Cに電解液を供給しながら、充放電を行う。
【0074】
RF電池100は、代表的には、変電設備700、交流/直流変換器600を介して、発電部800と負荷900とに接続される。RF電池100は、発電部800を電力供給源として充電を行い、負荷900を電力提供対象として放電を行う。発電部800は、例えば、太陽光発電機、風力発電機、その他一般の発電所等が挙げられる。負荷900は、例えば、電力系統や電力の需要家等が挙げられる。RF電池100は、負荷平準化、瞬低補償や非常用電源、太陽光発電や風力発電といった自然エネルギー発電の出力平滑化等に利用される。
【0075】
<電池セル>
電池セル100Cは、隔膜101で正極セル102と負極セル103とに分離されている。正極セル102には、正極電解液が供給される正極電極104が内蔵されている。負極セル103には、負極電解液が供給される負極電極105が内蔵されている。電池セル100Cは、一組のセルフレーム8に挟まれて構成される。セルフレーム8は、上述した実施形態のセルフレーム8である。正極電極104及び負極電極105は、例えば、炭素系材料の繊維集合体、多孔質の金属部材等が挙げられる。炭素系材料の繊維集合体は、例えば、カーボンフェルト、カーボンペーパー、カーボンクロス等が挙げられる。隔膜101は、例えば、イオン交換膜等が挙げられる。
【0076】
RF電池100が一つの電池セル100Cを備える単セル電池である場合、RF電池100は、セルフレーム8、正極電極104、隔膜101、負極電極105、セルフレーム8という順に積層された積層物を備える。RF電池100が複数の電池セル100Cを備える多セル電池である場合、RF電池100は、セルフレーム8、正極電極104、隔膜101、負極電極105という順に繰り返し積層された積層物を備える。この積層物がセルスタック200である。セルスタック200は、所定の出力電圧を得るために、上記の構造の電池セル100Cが積層されて直列接続される。
【0077】
<セルスタック>
セルスタック200は、代表的には、複数の電池セル100Cを備える上述の積層物と、一対のエンドプレート210、220と、締結部材230とを備える。締結部材230は、長ボルト等の連結材及びナット等が挙げられる。一対のエンドプレート210、220は、締結部材230によって締め付けられる。この締付力によって、上記積層体は、積層された状態に保持される。
【0078】
セルスタック200は、所定数の電池セル100Cをサブスタック(図示せず)とし、複数のサブスタックを積層した形態で利用される。セルスタック200では、サブスタックやセルスタック200における電池セル100Cの積層方向の両端に位置するセルフレーム8に接して、給排板(図示せず)が配置される。
【0079】
<循環機構>
循環機構は、正極セル102に正極電解液を循環させる正極循環機構と、負極セル103に負極電解液を循環させる負極循環機構とを備える。正極循環機構は、正極電解液タンク106と、往路配管108と、復路配管110と、ポンプ112とを備える。正極電解液タンク106は、正極電解液を貯留する。往路配管108及び復路配管110は、正極電解液タンク106と正極セル102との間をつなぐ。ポンプ112は、供給側の往路配管108に設けられる。負極循環機構は、負極電解液タンク107と、往路配管109と、復路配管111と、ポンプ113とを備える。負極電解液タンク107は、負極電解液を貯留する。往路配管109及び復路配管111は、負極電解液タンク107と負極セル103との間をつなぐ。ポンプ113は、供給側の往路配管109に設けられる。
【0080】
正極電解液は、正極電解液タンク106から往路配管108を介して正極電極104に供給され、正極電極104から復路配管110を介して正極電解液タンク106に戻される。負極電解液は、負極電解液タンク107から往路配管109を介して負極電極105に供給され、負極電極105から復路配管111を介して負極電解液タンク107に戻される。正極電極104に正極電解液を循環させると共に、負極電極105に負極電解液を循環させることで、電池セル100Cは、各極の電解液中の活物質イオンの価数変化反応に伴って充放電を行う。
【0081】
上述したRF電池100の基本構成は、公知の構成を適宜利用できる。
【0082】
<電解液>
電解液には、活物質となるイオンを含む溶液が利用できる。代表的な電解液は、上記イオンと、酸とを含む水溶液が挙げられる。電解液は、正負の活物質としてバナジウムイオンを含む全バナジウム系RF電池、正極活物質としてマンガンイオンを含み、負極活物質としてチタンイオンを含むMn-Ti系RF電池等、公知の組成の電解液を利用することができる。
【0083】
[試験例]
表裏面の中央領域に複数の溝部を備える双極板を用いて、複数のRF電池を作製した。本例では、
図1に示すように、双極板の表裏面の各面に設けられる複数の溝部は、第一縁から第二縁に向かう方向に沿った直線状の溝で構成した。また、本例では、
図2に示すように、複数の溝部は、以下の条件(1)から(3)を満たす。(1)双極板の表面に設けられる溝部の個数と裏面に設けられる溝部の個数とが同じである。表1に記載の溝部の個数は、双極板の表面の溝部と裏面の溝部との合計数である。(2)双極板を平面視したときに、表面に設けられる溝部と裏面に設けられる溝部とが重なるように各溝部が設けられている。(3)各溝部の断面形状は矩形状である。本例では、全ての溝部を同じ断面形状かつ同じ寸法とした。本例では、表1に示すように、双極板の厚さT、各溝部の溝深さD、溝幅W、溝部の個数を変えた試験体Aから試験体Hを作製した。各溝部の断面積は、溝深さDと溝幅Wとの積で表される。表1に示す各数値は、四捨五入した概算値を含む。各溝部の寸法は、
図2を参照する。双極板の幅は、いずれも600mmとした。双極板の幅は、
図2の左右方向の長さである。
【0084】
【0085】
各試験体のRF電池を用いて充放電を行い、双極板への電解液の浸透具合と、双極板と枠体との接合具合とを調べた。充放電は、50℃にて、正負極間の差圧を0.1MPaとして行った。電解液の浸透具合は、充放電を行った後に、電解液に含まれる元素が双極板中に含まれるか否かを、双極板の断面を観察することで調べた。具体的には、エネルギー分散型X線分析装置(EDX)を用いて上記断面を元素分析し、電解液に含まれる元素をマッピングする。電解液に含まれる元素における双極板の表面又は裏面からの深さを測定した。電解液に含まれる元素としては、硫酸中の硫黄を用いた。上記断面において電解液の浸透が見られない場合をA、断面の70%未満の領域に浸透が見られる場合をB、断面の70%以上に浸透が見られる場合をCと評価する。双極板と枠体との接合具合は、充放電を行った後に、目視にて確認した。双極板と枠体との間に剥離が見られない場合をA、小さな剥離が見られる場合をB、大きな剥離が見られる場合をCと評価する。また、充放電を行ったときの電流効率を測定した。電流効率は、(放電時間/充電時間)×100(%)で求めた。その結果を表2に示す。
【0086】
【0087】
表1及び表2より、断面積比が0.05以上である試験体Aから試験体Gは、双極板と枠体との間に大きな剥離は見られなかった。特に、断面積比が0.15以上である試験体Aから試験体Eは、双極板と枠体との間に実質的に剥離は見られなかった。断面積比が大きいほど、溝部が多く確保され、溝部の存在によって双極板の剛性が高くなり過ぎることを抑制できたからと考えられる。双極板の剛性が高過ぎないことで、双極板における枠体から露出される領域に熱応力が作用したとしても、双極板や枠体に損傷が生じることを抑制でき、双極板と枠体との剥離が抑制されたと考えられる。
【0088】
表1及び表2より、断面積比が0.60以下である試験体Bから試験体Hは、双極板の全域にわたる電解液の浸透は見られなかった。特に、断面積比が0.30以下である試験体Dから試験体Hは、双極板への電解液の浸透は実質的に見られなかった。断面積比が小さいほど、双極板を構成する実体部分が多く確保され、かつ双極板における電解液で濡れる面積が増加することが抑制できたからと考えられる。
【0089】
表2に示す電流効率を見ると、断面積比が0.05以上0.60以下である試験体Bから試験体Gは、電流効率が90%以上であり、電流効率が高いことがわかる。試験体Bから試験体Gは、双極板の剛性を適度に確保できると共に、双極板への電解液の浸透を抑制できたからと考えられる。
【0090】
断面積比が0.69である試験体Aは、双極板の全域にわたって電解液が浸透していた。そのため、試験体Aは、電流効率が65%と低かった。試験体Aは、双極板に電解液が浸透したことで、双極板の第一面に流通される正極電解液と第二面に流通される負極電解液とが混合し、自己放電が生じたからと考えられる。断面積比が0.04である試験体Hは、双極板と枠体との間に大きな剥離が見られた。そのため、試験体Hは、電流効率が77%と低かった。試験体Hは、双極板と枠体とが大きく剥離したことで、双極板と枠体との接合部分で正極電解液と負極電解液とが混合し、自己放電が生じたからと考えられる。
【0091】
本発明はこれらの例示に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。例えば、試験例において、双極板の幅及び厚さT、各溝部の溝深さD、溝幅W、個数、形状、溝間距離M等を適宜変更できる。
【符号の説明】
【0092】
1 双極板
1a 第一面、1b 第二面
11 第一縁、12 第二縁
13 中央領域、14 特定断面、15 被覆領域
2 溝部、3 畝部
5 中央線、6 縁間隔
T 厚さ、D 溝深さ、W 溝幅、M 溝間距離
8 セルフレーム
80 枠体、81 窓部
82、83 給液マニホールド、84、85 排液マニホールド
82s、83s 給液スリット、84s、85s 排液スリット
86 給液整流部、87 排液整流部
88 シール溝、89 シール部材
100 RF電池
100C 電池セル
101 隔膜
102 正極セル、103 負極セル
104 正極電極、105 負極電極
106 正極電解液タンク、107 負極電解液タンク
108、109 往路配管、110、111 復路配管
112、113 ポンプ
200 セルスタック、 210、220 エンドプレート、230 締結部材
600 交流/直流変換器、700 変電設備、800 発電部、900 負荷