IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社FLOSFIAの特許一覧

特許7462143積層構造体、積層構造体を含む半導体装置および半導体システム
<>
  • 特許-積層構造体、積層構造体を含む半導体装置および半導体システム 図1
  • 特許-積層構造体、積層構造体を含む半導体装置および半導体システム 図2
  • 特許-積層構造体、積層構造体を含む半導体装置および半導体システム 図3
  • 特許-積層構造体、積層構造体を含む半導体装置および半導体システム 図4
  • 特許-積層構造体、積層構造体を含む半導体装置および半導体システム 図5
  • 特許-積層構造体、積層構造体を含む半導体装置および半導体システム 図6
  • 特許-積層構造体、積層構造体を含む半導体装置および半導体システム 図7
  • 特許-積層構造体、積層構造体を含む半導体装置および半導体システム 図8
  • 特許-積層構造体、積層構造体を含む半導体装置および半導体システム 図9
  • 特許-積層構造体、積層構造体を含む半導体装置および半導体システム 図10
  • 特許-積層構造体、積層構造体を含む半導体装置および半導体システム 図11
  • 特許-積層構造体、積層構造体を含む半導体装置および半導体システム 図12
  • 特許-積層構造体、積層構造体を含む半導体装置および半導体システム 図13
  • 特許-積層構造体、積層構造体を含む半導体装置および半導体システム 図14
  • 特許-積層構造体、積層構造体を含む半導体装置および半導体システム 図15
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-03-28
(45)【発行日】2024-04-05
(54)【発明の名称】積層構造体、積層構造体を含む半導体装置および半導体システム
(51)【国際特許分類】
   H01L 29/786 20060101AFI20240329BHJP
   H01L 29/24 20060101ALI20240329BHJP
   H01L 29/12 20060101ALI20240329BHJP
   H01L 29/78 20060101ALI20240329BHJP
   H01L 21/336 20060101ALI20240329BHJP
   H01L 21/28 20060101ALI20240329BHJP
   H01L 21/316 20060101ALI20240329BHJP
【FI】
H01L29/78 618B
H01L29/24
H01L29/78 652T
H01L29/78 617T
H01L29/78 652K
H01L29/78 658E
H01L21/28 301B
H01L21/316 Y
H01L29/78 301B
H01L29/78 301F
【請求項の数】 35
(21)【出願番号】P 2020530247
(86)(22)【出願日】2019-07-11
(86)【国際出願番号】 JP2019027443
(87)【国際公開番号】W WO2020013261
(87)【国際公開日】2020-01-16
【審査請求日】2022-06-28
(31)【優先権主張番号】P 2018132759
(32)【優先日】2018-07-12
(33)【優先権主張国・地域又は機関】JP
(31)【優先権主張番号】P 2018132760
(32)【優先日】2018-07-12
(33)【優先権主張国・地域又は機関】JP
(31)【優先権主張番号】P 2018132764
(32)【優先日】2018-07-12
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】511187214
【氏名又は名称】株式会社FLOSFIA
(72)【発明者】
【氏名】杉本 雅裕
(72)【発明者】
【氏名】▲高▼橋 勲
(72)【発明者】
【氏名】四戸 孝
【審査官】岩本 勉
(56)【参考文献】
【文献】国際公開第2016/013554(WO,A1)
【文献】特開2013-058637(JP,A)
【文献】特開2010-171137(JP,A)
【文献】特開2006-190716(JP,A)
【文献】特開2015-228495(JP,A)
【文献】特開2017-224794(JP,A)
【文献】国際公開第18/043503(WO,A1)
【文献】国際公開第18/004008(WO,A1)
【文献】国際公開第16/031633(WO,A1)
【文献】国際公開第13/035842(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
H01L 29/786
H01L 29/24
H01L 29/12
H01L 29/78
H01L 21/336
H01L 21/28
H01L 21/316
(57)【特許請求の範囲】
【請求項1】
酸化ガリウムまたはその混晶を主成分として含むp型酸化物半導体膜上に、周期律表第15族の少なくとも1種の元素を含む酸化膜が積層されていることを特徴とする積層構造体。
【請求項2】
絶縁膜と、酸化ガリウムまたはその混晶を主成分として含むp型酸化物半導体膜と、前記p型酸化物半導体膜上に周期律表第15族の少なくとも1種の元素を含む酸化膜とを備え、前記酸化膜は前記絶縁膜および前記p型酸化物半導体膜と接していることを特徴とする積層構造体。
【請求項3】
さらに、ソース電極を備え、前記ソース電極上端が前記酸化膜上面より上方に位置する請求項1または2に記載の積層構造体。
【請求項4】
前記元素がリンである請求項1~3のいずれかに記載の積層構造体。
【請求項5】
前記酸化膜が、さらに、周期律表第13族の1種または2種以上の金属を含む請求項1~4のいずれかに記載の積層構造体。
【請求項6】
前記金属が、ガリウムである請求項5記載の積層構造体。
【請求項7】
前記酸化膜が不動態皮膜である請求項1~6のいずれかに記載の積層構造体。
【請求項8】
前記酸化膜の膜厚が100nm以下である請求項1~7のいずれかに記載の積層構造体。
【請求項9】
前記絶縁膜が、ゲート絶縁膜である請求項2記載の積層構造体。
【請求項10】
前記酸化ガリウムまたはその混晶が、コランダム構造を有する請求項1~9のいずれかに記載の積層構造体。
【請求項11】
コランダム構造を有するp型酸化物半導体膜上に、周期律表第15族の少なくとも1種の元素を含む酸化膜が積層され、前記酸化膜が不動態皮膜であることを特徴とする積層構造体。
【請求項12】
絶縁膜と、コランダム構造を有するp型酸化物半導体膜と、前記p型酸化物半導体膜上に周期律表第15族の少なくとも1種の元素を含む酸化膜とを備え、前記酸化膜は不動態皮膜であり、前記酸化膜は前記絶縁膜および前記p型酸化物半導体膜と接していることを特徴とする積層構造体。
【請求項13】
さらに、ソース電極を備え、前記ソース電極上端が前記酸化膜上面より上方に位置する請求項11または12に記載の積層構造体。
【請求項14】
前記元素がリンである請求項11~13のいずれかに記載の積層構造体。
【請求項15】
前記酸化膜が、さらに、周期律表第13族の1種または2種以上の金属を含む請求項11~14のいずれかに記載の積層構造体。
【請求項16】
前記金属が、ガリウムである請求項15記載の積層構造体。
【請求項17】
前記酸化膜の膜厚が100nm以下である請求項11~16のいずれかに記載の積層構造体。
【請求項18】
前記絶縁膜が、ゲート絶縁膜である請求項12記載の積層構造体。
【請求項19】
前記p型酸化物半導体膜が、酸化ガリウムまたはその混晶を主成分として含む請求項11~18のいずれかに記載の積層構造体。
【請求項20】
酸化ガリウムまたはその混晶を主成分として含むp型酸化物半導体膜と、水素拡散を防止する水素拡散防止膜とを備える積層構造体であって、前記水素拡散防止膜が周期律表第15族の少なくとも1種の元素を含む酸化膜であることを特徴とする積層構造体。
【請求項21】
絶縁膜と、酸化ガリウムまたはその混晶を主成分として含むp型酸化物半導体膜と、前記p型酸化物半導体膜上に水素拡散を防止する水素拡散防止膜とを備える積層構造体であって、前記水素拡散防止膜が周期律表第15族の少なくとも1種の元素を含む酸化膜であり、前記水素拡散防止膜は前記絶縁膜および前記p型酸化物半導体膜と接していることを特徴とする積層構造体。
【請求項22】
前記元素がリンである請求項20または21に記載の積層構造体。
【請求項23】
前記酸化膜が、さらに、周期律表第13族の1種または2種以上の金属を含む請求項2022のいずれかに記載の積層構造体。
【請求項24】
前記金属が、ガリウムである請求項23記載の積層構造体。
【請求項25】
前記酸化膜の膜厚が100nm以下である請求項2024のいずれかに記載の積層構造体。
【請求項26】
前記p型酸化物半導体膜がコランダム構造を有する請求項2025のいずれかに記載の積層構造体。
【請求項27】
前記絶縁膜が、ゲート絶縁膜である請求項21記載の積層構造体。
【請求項28】
請求項1~27のいずれかに記載の積層構造体を含む半導体装置。
【請求項29】
MOSFETである請求項28記載の半導体装置。
【請求項30】
パワーデバイスである請求項28または29に記載の半導体装置。
【請求項31】
半導体装置を備える半導体システムであって、前記半導体装置が、請求項2830のいずれかに記載の半導体装置である半導体システム。
【請求項32】
請求項1~27のいずれかに記載の積層構造体を含む電気化学素子。
【請求項33】
コンデンサ、センサー、キャパシター、電池、表示素子または記録素子である請求項32記載の電気化学素子。
【請求項34】
請求項32または33に記載の電気化学素子を含む電子機器。
【請求項35】
請求項34記載の電子機器を含むシステム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、パワーデバイス等として有用な半導体装置およびそれを備える半導体システムに関する。
【背景技術】
【0002】
高耐圧、低損失および高耐熱を実現できる次世代のスイッチング素子として、バンドギャップの大きな酸化ガリウム(Ga)を用いた半導体装置が注目されており、インバータなどの電力用半導体装置への適用が期待されている。しかも、広いバンドギャップからLEDやセンサー等の受発光装置としての応用も期待されている。当該酸化ガリウムは非特許文献1によると、インジウムやアルミニウムをそれぞれ、あるいは組み合わせて混晶することによりバンドギャップ制御することが可能であり、InAlGaO系半導体として極めて魅力的な材料系統を構成している。ここでInAlGaO系半導体とはInAlGa(0≦X≦2、0≦Y≦2、0≦Z≦2、X+Y+Z=1.5~2.5)を示し、酸化ガリウムを内包する同一材料系統として俯瞰することができる。
【0003】
そして、近年においては、酸化ガリウム系のp型半導体が検討されており、例えば、特許文献1には、β-Ga系結晶を、MgO(p型ドーパント源)を用いてFZ法により形成したりすると、p型導電性を示す基板が得られることが記載されている。また、特許文献2には、MBE法により形成したα-(AlGa1-x単結晶膜にp型ドーパントをイオン注入してp型半導体を形成することが記載されている。しかしながら、これらの方法では、p型半導体の作製は実現困難であり(非特許文献2)、実際に、これらの方法でp型半導体の作製に成功したとの報告はなされていない。そのため、実現可能なp型酸化物半導体及びその製造方法が待ち望まれていた。
【0004】
また、非特許文献3や非特許文献4に記載されているように、例えばRhやZnRh等をp型半導体に用いることも検討されているが、Rhは、成膜時に特に原料濃度が薄くなってしまい、成膜に影響する問題があり、有機溶媒を用いても、Rh単結晶が作製困難であった。また、ホール効果測定を実施してもp型とは判定されることがなく、測定自体もできていない問題もあり、また、測定値についても、例えばホール係数が測定限界(0.2cm/C)以下しかなく、実用上の問題となった。また、ZnRhは移動度が低く、バンドギャップも狭いため、LEDやパワーデバイスに用いることができない問題があり、これらは必ずしも満足のいくものではなかった。
【0005】
ワイドバンドギャップ半導体として、RhやZnRh等以外にも、p型の酸化物半導体が種々検討されている。特許文献3には、デラフォサイトやオキシカルコゲナイド等をp型半導体として用いることが記載されている。しかしながら、これらの半導体は、移動度が1cm/V・s程度かまたはそれ以下であり、電気特性が悪く、α-Ga等のn型の次世代酸化物半導体とのpn接合がうまくできない問題もあった。
【0006】
さらに、特許文献4には、イリジウム触媒としてIrを用いることが記載されている。また、特許文献5には、Irを誘電体に用いることが記載されている。また、特許文献6には、電極にIrを用いることが記載されている。しかしながら、Irをp型半導体に用いることは知られていなかったが、最近になって、本出願人らにより、p型半導体として、Irを用いることが検討されていることが記載されている(特許文献7)。そのため、p型半導体の研究開発が進み、酸化ガリウム(Ga)等の優れた半導体材料を効果的に用いて、高耐圧、低損失および高耐熱を実現できる半導体装置が待ち望まれていた。
【先行技術文献】
【特許文献】
【0007】
【文献】特開2005-340308号公報
【文献】特開2013-58637号公報
【文献】特開2016-25256号公報
【文献】特開平9-25255号公報
【文献】特開平8-227793号公報
【文献】特開平11-21687号公報
【文献】国際公開2018/043503号公報
【非特許文献】
【0008】
【文献】金子健太郎、「コランダム構造酸化ガリウム系混晶薄膜の成長と物性」、京都大学博士論文、平成25年3月
【文献】竹本達哉、EE Times Japan“パワー半導体 酸化ガリウム”熱伝導率、P型……課題を克服して実用化へ、[online]、2014年2月27日、アイティメディア株式会社、[平成28年6月21日検索]、インターネット〈URL:http://eetimes.jp/ee/articles/1402/27/news028_2.html〉
【文献】F.P.KOFFYBERG et al., "optical bandgaps and electron affinities of semiconducting Rh2O3(I) and Rh2O3(III)", J. Phys. Chem. Solids Vol.53, No.10, pp.1285-1288, 1992
【文献】細野秀雄、”酸化物半導体の機能開拓”、物性研究・電子版 Vol.3、No.1、031211(2013年11月・2014年2月合併号)
【発明の概要】
【発明が解決しようとする課題】
【0009】
本発明の目的の1つとして、半導体装置や電気化学素子に有用な酸化膜および/または酸化膜を含む積層構造体を提供することを目的とする。また、本発明の別の目的として、半導体装置や電気化学素子に有用な水素拡散防止膜を提供することを目的とする。
【課題を解決するための手段】
【0010】
本発明者らは、上記目的を達成すべく鋭意検討した結果、p型半導体層とゲート絶縁膜との間にリンを含む酸化膜を形成すると、水素拡散防止膜として有用であること、を見出した。また、本発明で得られる酸化膜および/または酸化膜を含む積層構造体が、半導体装置だけでなく、電気化学素子等にも有用であることを見出し、本発明者らは、上記知見を得た後、さらに検討を重ねて本発明を完成させるに至った。
【0011】
すなわち、本発明は、以下の発明に関する。
[1] 酸化ガリウムまたはその混晶を主成分として含む酸化物半導体膜上に、周期律表第15族の少なくとも1種の元素を含む酸化膜が積層されていることを特徴とする積層構造体。
[2] 前記元素がリンである前記[1]記載の酸化膜。
[3] 前記酸化膜が、さらに、周期律表第13族の1種または2種以上の金属を含む前記[1] または[2]に記載の積層構造体。
[4] 前記金属が、ガリウムである前記[3]記載の積層構造体。
[5] 前記酸化膜が不動態皮膜である前記[1]~[4]のいずれかに記載の積層構造体。
[6] 前記酸化膜の膜厚が100nm以下である前記[1]~[5]のいずれかに記載の積層構造体。
[7] 前記酸化膜上に、さらに絶縁膜が積層されている前記[1]~[6]のいずれかに記載の積層構造体。
[8] 前記絶縁膜が、ゲート絶縁膜である前記[7]記載の積層構造体。
[9] 前記酸化ガリウムまたはその混晶が、コランダム構造を有する前記[1]~[8]のいずれかに記載の積層構造体。
[10] 前記酸化物半導体膜が、p型半導体膜である前記[1]~[9]のいずれかに記載の積層構造体。
[11] コランダム構造を有する酸化物半導体膜上に、周期律表第15族の少なくとも1種の元素を含む酸化膜が積層されていることを特徴とする積層構造体。
[12] 前記元素がリンである前記[11]記載の積層構造体。
[13] 前記酸化膜が、さらに、周期律表第13族の1種または2種以上の金属を含む前記[11]または[12]に記載の積層構造体。
[14] 前記金属が、ガリウムである前記[13]記載の積層構造体。
[15] 前記酸化膜が不動態皮膜である前記[11]~[14]のいずれかに記載の積層構造体。
[16] 前記酸化膜の膜厚が100nm以下である前記[11]~[15]のいずれかに記載の積層構造体。
[17] 前記酸化膜上に、さらに絶縁膜が積層されている前記[11]~[16]のいずれかに記載の積層構造体。
[18] 前記絶縁膜が、ゲート絶縁膜である前記[17]記載の積層構造体。
[19] 前記酸化物半導体膜が、酸化ガリウムまたはその混晶を主成分として含む前記[11]~[18]のいずれかに記載の積層構造体。
[20] 前記酸化物半導体膜が、p型半導体膜である前記[11]~[19]のいずれかに記載の積層構造体。
[21] 水素拡散を防止する水素拡散防止膜であって、周期律表第15族の少なくとも1種の元素を含む酸化膜であることを特徴とする水素拡散防止膜。
[22] 前記元素がリンである前記[21]記載の積層構造体。
[23] 前記酸化膜が、さらに、周期律表第13族の1種または2種以上の金属を含む前記[21]または[22]に記載の水素拡散防止膜。
[24] 前記金属が、ガリウムである前記[23]記載の水素拡散防止膜。
[25] 前記酸化膜の膜厚が100nm以下である前記[21]~[24]のいずれかにのいずれかに記載の水素拡散防止膜。
[26] 半導体層上に前記[21]~[25]のいずれかに記載の水素拡散防止膜が積層されている積層構造体。
[27] 前記半導体層がp型半導体層である前記[26]記載の積層構造体。
[28] 前記半導体層が酸化物半導体膜からなる前記[26]または[27]に記載の積層構造体。
[29] 前記酸化物半導体膜が酸化ガリウムまたはその混晶を主成分として含む前記[28]記載の積層構造体。
[30] 前記酸化物半導体膜がコランダム構造を有する前記[28]または[29]に記載の積層構造体。
[31] 前記水素拡散防止膜上に絶縁膜が積層されている前記[26]~[30]のいずれかに記載の積層構造体。
[32] 前記絶縁膜が、ゲート絶縁膜である前記[31]記載の積層構造体。
[33] 前記[1]~[20]および前記[26]~[32]のいずれかに記載の積層構造体または前記[21]~[25]のいずれかに記載の水素拡散防止膜を含む半導体装置。
[34] MOSFETである前記[33]記載の半導体装置。
[35] パワーデバイスである前記[33]または[34]に記載の半導体装置。
[36] 半導体装置を備える半導体システムであって、前記半導体装置が、前記[33]~[35]のいずれかに記載の半導体装置である半導体システム。
[37] 前記[1]~[20]および前記[26]~[32]のいずれかに記載の積層構造体または前記[21]~[25]のいずれかに記載の水素拡散防止膜を含む電気化学素子。
[38] コンデンサ、センサー、キャパシター、電池、表示素子または記録素子である前記[37]記載の電気化学素子。
[39] 前記[37]または[38]に記載の電気化学素子を含む電子機器。
[40] 前記[39]記載の電子機器を含むシステム。
【発明の効果】
【0012】
本発明の酸化膜、および/または前記酸化膜を含む積層構造体は、半導体素子や電気化学素子に有用である。
【図面の簡単な説明】
【0013】
図1】本発明の半導体装置の一例として、模式的な上面図の一部を示す。
図2】本発明の半導体装置の第1態様を示す断面図であって、例えば、図1のA-A断面図である。
図3】本発明の半導体装置の第2態様を示す断面図であって、例えば、図1のA-A断面図である。
図4】本発明の半導体装置の一例として、模式的な上面図の一部を示す。
図5】本発明の半導体装置の第3態様を示す断面図であって、例えば、図4のB-B断面図である。
図6】本発明の半導体装置の第4態様を示す断面図であって、例えば、図4のB-B断面図である。
図7】本発明の半導体装置の第5態様を示す、半導体装置の部分断面図である。
図8】第5態様において作製された半導体装置であるMOSFETを上面から見た写真を示す。
図9】第5態様として作製された半導体装置におけるIV測定結果を示す図である。
図10】第5態様として作製された半導体装置におけるSIMS測定結果を示す図である。
図11】本発明の半導体装置の一例として、縦型半導体装置の第1面側のソース電極とソース電極下の絶縁層の一部を取り除いた第1面側からの部分透視図(600a’)と、第1面側のソース電極とソース電極下の絶縁層も含めた半導体装置の部分断面図(600c)を示す図である。
図12】電源システムの好適な一例を模式的に示す図である。
図13】システム装置の好適な一例を模式的に示す図である。
図14】電源装置の電源回路図の好適な一例を模式的に示す図である。
図15】本発明の実施例において用いられる成膜装置(ミストCVD装置)の概略構成図を示す。
【発明を実施するための形態】
【0014】
本発明の第1の態様に係る酸化膜は、周期律表第15族の元素から選択される少なくとも1種の元素を含むことを特長とする。反転チャネル領域を少なくとも有する半導体装置であって、前記反転チャネル領域が、少なくとも酸化ガリウムを含有する結晶を含む酸化物半導体膜が用いられていることを特長とする。前記酸化膜が、周期律表第15族の少なくとも1種の元素および周期律表第13族の1種または2種以上の金属を少なくとも含むのがより好ましい。前記元素としては、例えば、窒素、リン、アンチモン、ビスマスなどが挙げられるが、中でも窒素またはリンが好ましく、リンがより好ましい。前記金属としては、例えば、アルミニウム(Al)、ガリウム(Ga)、インジウム(In)などが挙げられるが、中でも、Gaおよび/またはAlが好ましく、Gaがより好ましい。また、前記酸化膜は、薄膜であるのが好ましく、膜厚100nm以下であるのがより好ましく、膜厚50nm以下であるのが最も好ましい。前記酸化膜の形成手段としては、例えば公知の手段などが挙げられ、より具体的には例えば、ドライ法やウェット法などが挙げられるが、例えばリン酸による前記反転チャネル領域上への表面処理であるのが好ましく、酸化ガリウムまたはその混晶上へのリン酸による表面処理であるのがより好ましい。このようにして周期律表第15族の少なくとも1種の前記元素を含む酸化膜を形成することにより、良質な不動態膜を得ることができる。また、本発明の第2の態様として、前記酸化膜が水素拡散を防止する水素拡散防止膜であって、周期律表第15族の少なくとも1種の元素を含む酸化膜であることを特長とする。さらに、本発明の第3の態様に係る積層構造体は、コランダム構造を有する酸化物半導体膜上に、周期律表第15族の少なくとも1種の元素を含む前記酸化膜が積層されていることを特長とする。
【0015】
前記反転チャネル領域は、少なくとも酸化ガリウムを含有する結晶を含む酸化物半導体膜が用いられていれば特に限定されず、前記酸化物半導体膜は、p型半導体膜であってもよいし、n型半導体膜であってもよい。前記酸化ガリウムとしては、例えば、α-Ga、β-Ga、ε-Gaなどが挙げられるが、中でもα-Gaが好ましい。また、前記結晶は、混晶であってもよい。前記の酸化ガリウムの混晶としては、前記酸化ガリウムと、1種または2種以上の金属酸化物との混晶が挙げられ、前記金属酸化物の好適な例としては、例えば、酸化アルミニウム、酸化インジウム、酸化イリジウム、酸化ロジウム、酸化鉄などが挙げられる。本発明の半導体装置の態様において、前記結晶の主成分が、酸化ガリウムであるのが好ましい。なお、「主成分」とは、例えば酸化物半導体膜がα-Gaを主成分として含む場合、前記酸化物半導体膜の金属元素中のガリウムの原子比が0.5以上の割合で含まれていればそれでよい。本発明においては、前記酸化物半導体膜の金属元素中のガリウムの原子比が0.7以上であることが好ましく、0.8以上であるのがより好ましい。また、前記結晶が混晶である場合においても、前記酸化物半導体膜の主成分が酸化ガリウムであるのが好ましい。例えば、酸化物半導体膜がα-(AlGa)を主成分として含む場合も、前記酸化物半導体膜の金属元素中のガリウムの原子比が0.5以上の割合で含まれていればそれでよい。本発明においては、前記酸化物半導体膜の金属元素中のガリウムの原子比が0.7以上であることが好ましく、0.8以上であるのがより好ましい。
【0016】
また、本発明の実施態様に係る半導体装置は、コランダム構造を有する結晶を含む酸化物半導体膜を有する半導体装置であって、前記酸化物半導体膜が反転チャネル領域を含むことを特長とする。コランダム構造を有する酸化物半導体膜は、通常、金属酸化物を主成分として含んでおり、該金属酸化物としては、例えば、酸化ガリウム、酸化アルミニウム、酸化インジウム、酸化イリジウム、酸化ロジウム、酸化鉄などが挙げられる。本発明においては、前記結晶が、少なくとも酸化ガリウムを含有することが好ましい。前記結晶は混晶であってもよい。少なくとも酸化ガリウムを含むコランダム構造を有する混晶としては、例えば、酸化アルミニウム、酸化インジウム、酸化イリジウム、酸化ロジウム、および酸化鉄から選択される少なくとも1つをさらに含んでいてもよい。上記のように、本発明の半導体装置の態様において、前記酸化物半導体膜の主成分が、酸化ガリウムであるのが好ましく、前記結晶がコランダム構造を有することが好ましい。なお、「主成分」については上記を参照する。
【0017】
また、前記反転チャネル領域は、通常、酸化物半導体膜に含まれる領域であるが、本発明の目的を阻害しない限り、半導体装置の中に2つ以上の反転チャネル領域を配置してもよい。前記反転チャネル領域は、前記酸化物半導体膜の一部であるので、少なくとも酸化ガリウムを含有する結晶を含んでおり、前記酸化物半導体膜と同じ主成分を有している。前記酸化物半導体膜を有する半導体装置に電圧が印加されると、前記酸化物半導体膜の一部である反転チャネル領域が反転する。例えば、前記酸化物半導体膜がp型半導体膜である場合、反転チャネル領域はn型に反転する。また、前記酸化物半導体膜は通常膜状であり、また、半導体層であってよい。前記酸化物半導体膜の厚さは、特に限定されず、1μm以下であってもよいし、1μm以上であってもよいが、本発明においては、1μm以上であるのが好ましく、1μm~40μmであるのがより好ましく、1μm~25μmであるのが最も好ましい。前記酸化物半導体膜の表面積は特に限定されないが、1mm以上であってもよいし、1mm以下であってもよい。なお、前記酸化物半導体膜は、通常、単結晶であるが、多結晶であってもよい。また、前記酸化物半導体膜は、単層膜であってもよいし、多層膜であってもよい。
【0018】
前記酸化物半導体膜は、ドーパントが含まれているのが好ましい。前記ドーパントは、特に限定されず、公知のものであってよい。前記ドーパントとしては、例えば、スズ、ゲルマニウム、ケイ素、チタン、ジルコニウム、バナジウムまたはニオブ等のn型ドーパント、またはMg、ZnまたはCa等のp型ドーパントなどが挙げられる。本発明においては、前記ドーパントが、Sn、GeまたはSiであるのが好ましい。ドーパントの含有量は、前記酸化物半導体膜の組成中、0.00001原子%以上であるのが好ましく、0.00001原子%~20原子%であるのがより好ましく、0.00001原子%~10原子%であるのが最も好ましい。
【0019】
本発明の実施態様においては、前記酸化物半導体膜が反転チャネル領域を含んでいる。前記酸化物半導体膜がp型半導体膜である場合、半導体装置に電圧が印加されると、前記酸化物半導体膜の反転チャネル領域がn型に反転するチャネル領域であるのが好ましく、前記p型半導体膜が、少なくとも酸化ガリウムを含有する結晶を含む酸化物半導体膜であるのがより好ましい。本発明の実施態様において、前記酸化物半導体膜はp型半導体膜であるのが好ましく、前記p型ドーパントを含むのがより好ましい。なお、前記p型ドーパントは、前記酸化物半導体膜をp型半導体膜として導電性を付与できるものであれば特に限定されず、公知のものであってよい。前記p型ドーパントとしては、例えば、Mg、H、Li、Na、K、Rb、Cs、Fr、Be、Ca、Sr、Ba、Ra、Mn、Fe、Co、Ni、Pd、Cu、Ag、Au、Zn、Cd、Hg、Tl、Pb、N、P等及びこれらの2種以上の元素などが挙げられるが、本発明においては、前記p型ドーパントが、Mg、ZnまたはCaであるのが好ましい。
【0020】
以下、本願に係る半導体装置の実施の態様を図面に基づいて詳細に説明する。なお、図面は、半導体装置を模式的に表したものであり、実物の寸法および寸法比と図面上の寸法および寸法比は必ずしも一致しなくてよい。複数の実施態様において重複する内容の説明は省略する場合がある。また、本願の技術的範囲は以下で説明する各実施の態様には限定されず、請求の範囲の記載内容とその均等物に及ぶ点に留意されたい。また、「上面」「下面」「上方」「下方」などの用語は、図に示された1つの要素、領域または膜(層)と別の要素、領域または膜(層)との関係を示す相対的な用語として用いられる場合があるが、図示された方向だけでなく、装置が図示とは異なる方向に配置された場合も内包することに留意されたい。
【0021】
図1は、本発明の半導体装置の一例として、半導体装置の模式的な上面図の一部を示しているが、半導体装置の電極の数、形状、および配置については、適宜選択可能である。
【0022】
図2は、本発明の半導体装置の第1態様を示す断面図であって、例えば、図1のA-A断面図である。半導体装置100は、少なくとも酸化ガリウムを含有する結晶を含む酸化物半導体膜2を有している。酸化物半導体膜2は反転チャネル領域2aを含んでいる。前記結晶が、酸化ガリウムを主成分として含んでいる。前記結晶が混晶であってもよい。前記半導体装置100は、反転チャネル領域2aに接触する位置に、酸化膜2bを有している。
【0023】
図3は、本発明の半導体装置の第2態様を示す断面図である。半導体装置200は、少なくとも酸化ガリウムを含有する結晶を含む酸化物半導体膜2を有しており、酸化物半導体膜2は反転チャネル領域2aを含んでいる。前記結晶はコランダム構造を有している。さらに、半導体装置200は、第1の半導体領域1aと第2の半導体領域1bとを有している。本実施態様では、図1で示すように、反転チャネル領域2aが、平面視で、第1の半導体領域1aと第2の半導体領域1bとの間に位置している。半導体装置200に電圧を印加すると、酸化物半導体膜2の反転チャネル領域が反転することで、第1の半導体領域1aと第2の半導体領域1bとが通電する。また、本実施態様において、第1の半導体領域1aと第2の半導体領域1bとは、酸化物半導体膜2内に位置しており、第1の半導体領域1aの上面と、第2の半導体領域1bの上面と、反転チャネル領域2aの上面とが面一になるように、酸化物半導体膜2内に配置されている。半導体装置200の第1面側200aにおいて、第1の半導体領域1aと、反転チャネル領域2aとを含む酸化物半導体膜2と、第2の半導体領域1bとが、平坦面を構成することで、電極の配置を含めた設計が容易となり、半導体装置の薄型化にもつながる。なお、以下に示すように、酸化物半導体膜2が、反転チャネル領域2a2に接触して設けられる酸化膜2bを有する場合には、第1の半導体領域1aと、反転チャネル領域2aを含む酸化物半導体膜2と、第2の半導体領域1bとが平坦面を有する場合に含まれる。第1の半導体領域1aと第2の半導体領域1bは、酸化物半導体膜2に埋め込まれていてもよいし、イオン注入により酸化物半導体膜2内に配置してもよい。また、本実施態様における酸化物半導体膜2はp型半導体膜であり、第1の半導体領域1aと第2の半導体領域1bはn型である。前記酸化物半導体膜2がp型ドーパントを含んでいてもよい。さらに、半導体装置200は、反転チャネル領域2a上に配置される酸化膜2bを有していてもよい。本発明の実施態様において、酸化膜2bが、コランダム構造が属する三方晶系に属する結晶構造を有しているのも好ましい。酸化膜2bは、周期律表第15族の元素の少なくとも1つを含んでおり、リンを含むのが好ましい。また、別の実施態様として、酸化膜2bは、さらに周期律表第13族の元素の少なくとも1つを含んでいてもよく、導体装置200は、第1の半導体領域1aと電気的に接続される第1の電極5bと、第2の半導体領域1bと電気的に接続される第2の電極5cとを有している。さらに、半導体装置200は、第1の電極5bと第2の電極5cの間で、反転チャネル領域2aから絶縁膜4aによって離間された第3の電極5aを有している。また、図面で示すように、第1の電極5bと、第2の電極5cと、第3の電極5aとが、半導体装置200の第1面側200aに配置されている。詳細には、半導体装置200は、反転チャネル領域2a上の酸化膜2bの上に配置された絶縁膜4aを有し、第3の電極5aは絶縁膜4a上に配置されている。また、半導体装置200において、第1の電極5bと第1の半導体領域1aとは電気的に接続されているが、第1の電極5bと第1の半導体領域1aとの間に部分的に位置する絶縁膜4bを有していてもよい。また、第2の電極5cと第2の半導体領域1bとは電気的に接続されているが、第2の電極5cと第2の半導体領域1bとの間にも部分的に位置する絶縁膜4bを有していてもよい。さらに、半導体装置200は、半導体装置200の第2面側200b、すなわち酸化物半導体膜2の下面側に、別の層を有していてもよく、図3で示すように、基板9を有していてもよい。また、図1で示すように、前記第1の半導体領域1aが、平面視で、第1の電極5bとオーバーラップする部分と、第3の電極5aとにオーバーラップする部分とを有している。また、第2の半導体領域1bが、平面視で、第2の電極5cとオーバーラップする部分と、第3の電極5aとにオーバーラップする部分とを有している。本実施態様において、第3の電極5aに、第1の電極5bに対して正の電圧が印加されると、酸化物半導体膜2の反転チャネル領域2aがp型からn型に反転してn型のチャネル層が形成されて、第1の半導体領域1aと第2の半導体領域1bとが導通し、電子がソース電極からドレイン電極に流れる。また、第3の電極5bの電圧をゼロにすることにより、反転チャネル領域に2aにチャネル層ができなくなり、ターンオフとなる。本実施態様において、例えば、第1の電極5bがソース電極、第2の電極5cがドレイン電極、第3の電極5aがゲート電極であってもよい。この場合、絶縁膜4aはゲート絶縁膜であり、絶縁膜4bはフィールド絶縁膜である。
【0024】
図4は、本発明の半導体装置の一例として、半導体装置の模式的な上面図の一部を示しているが、半導体装置の電極の数、形状、および配置については、適宜選択可能である。
【0025】
図5は、本発明の半導体装置の第3態様を示す断面図であって、例えば、図4のB-B断面図である。半導体装置300は、少なくとも酸化ガリウムを含有する結晶を含む酸化物半導体膜2を有している。酸化ガリウムを含む結晶は混晶であってもよい。前記結晶がコランダム構造を有している。本実施態様において、第1の半導体領域1aと第2の半導体領域1bとが、酸化物半導体膜2上に配置されている。本実施態様において、反転チャネル領域2aは、平面視で、第1の半導体領域1aと第2の半導体領域1bとの間に位置しており、さらに、反転チャネル領域2aと第2の半導体領域1bとの間に第3の半導体領域6としてn型半導体層が配置されていてもよい。反転チャネル領域2aと第2の半導体領域1bとの間に第3の半導体領域6を配置することで、酸化物半導体膜2および半導体装置300の高耐圧化を図ることができる。さらに、半導体装置300は、別の層を有していてもよい。例えば、半導体装置300は、図5で示すように、酸化物半導体装置300の第2面側300bに絶縁層を有していてもよく、第1面側300aにさらに別の層を有していてもよい。
【0026】
図6は、本発明の第4の態様を示す断面図であって、例えば、図4のB-B断面図である。半導体装置400は、少なくとも酸化ガリウムを含有する結晶を含む酸化物半導体膜2を有しており、酸化物半導体膜2は反転チャネル領域2aを含んでいる。前記結晶がコランダム構造を有している。さらに、半導体装置400は、第1の半導体領域1aと第2の半導体領域1bとを有している。本実施態様では、反転チャネル領域2aが、平面視で、第1の半導体領域1aと第2の半導体領域1bとの間に位置している。また、第1の半導体領域1aの上面と第2の半導体領域1bの上面は、酸化物半導体膜2内に埋設されており、酸化物半導体膜1aの上面の少なくとも一部と面一になるように、酸化物半導体膜2内に配置されていてもよい。この場合の酸化物半導体膜2の上面が酸化膜2bを含んだ上面であってもよい。さらに、酸化物半導体膜2の反転チャネル領域2aと第2の半導体領域1bとの間にn型半導体層6が配置されていてもよく、本実施態様の半導体装置は、薄型化だけでなく高耐圧化も期待できる構造を示している。半導体装置は、さらに基板9と、基板9上に配置された金属酸化物膜3とを有している。金属酸化物膜3は、酸化ガリウムを含み、主成分として酸化ガリウムを含んでいてもよい。金属酸化物膜3は、酸化物半導体膜2よりも高抵抗の膜であるのが好ましい。
【0027】
図7は、本発明の第5の態様を示す半導体装置の部分断面図である。半導体装置500は、少なくとも酸化ガリウムを含有する結晶を含む酸化物半導体膜2を有しており、酸化物半導体膜2は反転チャネル領域2aを含んでいる。さらに、半導体装置500は、第1の半導体領域1aと第2の半導体領域1bとを有している。本実施態様では、反転チャネル領域2aが、平面視で、第1の半導体領域1aと第2の半導体領域1bとの間に位置している。また、第1の半導体領域1aと第2の半導体領域1bは、酸化物半導体膜2上に配置されている。半導体装置は、さらに基板9と、基板9上に配置された金属酸化物膜3とを有している。金属酸化物膜3は、酸化ガリウムを含み、主成分として酸化ガリウムを含んでいてもよい。金属酸化物膜3は、酸化物半導体膜2よりも高抵抗の膜であるのが好ましい。図7の半導体装置はMOSFETであり、詳細には横型のMOSFETであり、酸化物半導体膜2がp型半導体膜であって、酸化物半導体膜2内に設けられており、かつ表面にリンを含む酸化膜2bが形成されている反転チャネル領域2aを有している。本実施態様において、第1の半導体領域1aはn+型半導体層(n+型ソース層)である。また、第2の半導体領域1bはn+型半導体層(n+型ドレイン層)である。第1の電極5bはソース電極であり、第2の電極5cはドレイン電極で、第3の電極5aはゲート電極である。
【0028】
図11は、本発明の半導体装置の一例として、縦型半導体装置の第1面側600aの第1の電極5bと第1の電極5b下の絶縁層4aの一部を取り除いた第1面側600aからの部分透視図(600a’)と、半導体装置600の部分断面図(600c)を示す図である。なお、見やすさを重視して、第1面側600aからの部分透視図600a’には、第2面側600bに位置する第2の半導体領域1bと第2の電極5cは含めていないが、部分断面図600cには第1の電極5bと絶縁層4aと、第2の半導体領域1bと第2の電極5cを含めて表示されている。本実施態様の半導体装置600は、半導体装置600の第1面側600aと第2面側600bに電極を配置した縦型のデバイス構造を示している。半導体装置600は、少なくとも酸化ガリウムを含有する結晶を含む酸化物半導体膜2を有し、前記酸化物半導体膜2は酸化膜2bを有し、酸化膜2bに接触する位置に反転チャネル領域2aを含んでいる。さらに、半導体装置600は、酸化物半導体膜2の第1面側に配置されている第1の電極5bと、酸化物半導体膜2の第2面側に配置されている第2の電極5cと、酸化物半導体膜2の第1面側に位置して、断面視で、第1の電極5bと第2の電極5cとの間に少なくとも部分的に位置する第3の電極5aとを有している。なお、第3の電極5aは、図11の600cで示すように、絶縁膜4aを介して第1の電極5bから離間されており、第2の電極5cからも、図示されたように複数の層を介して離間された位置にある。本実施態様における半導体装置は、縦型のMOSFETとして用いることができる。例えば、酸化物半導体膜2がp型半導体膜であって、かつ表面にリンを含む酸化膜2bが配置されている反転チャネル領域2aを有している場合、第1の電極5bはソース電極で、第2の電極5cはドレイン電極で、第3の電極5aはゲート電極である。さらに半導体装置600は、酸化物半導体膜2に埋設された第1の半導体領域1aと、酸化物半導体膜2の少なくとも一部が埋設された第3の半導体領域6、第3の半導体領域6の第2面に接触して第2の半導体領域1b、第2の半導体領域1bに接触して第2の電極5cが配置されている。なお、50bは、第1の電極のコンタクト面を示し、酸化物半導体膜2と、酸化物半導体膜2に埋設された第1の半導体領域1aとに部分的に接触している。第2の電極5cは、半導体装置600の第2面側600bに位置している。本実施態様において、第1の半導体領域1aはn+型半導体層(n+型ソース層)である。また、第2の半導体領域1bはn+型半導体層(n+型ドレイン層)である。本実施態様においても、酸化物半導体膜2がp型半導体膜であって、酸化物半導体膜2内に設けられており、反転チャネル領域2aに接触して、かつ第3の電極5a(ゲート電極)に近い位置にリンを含む酸化膜2bが形成されている。この構造により、ゲートリーク電流をより効果的に抑制することができる。ゲートリーク電流が抑制されれば、ゲートリーク電流によって反転チャネル領域ができにくい問題が解消でき、より優れた半導体特性を持つ半導体装置600を得ることができる。また、第6実施態様のように、第1の電極(ソース電極)を半導体装置の第1面側600aに、第2の電極(ドレイン電極)を第2面側600bに配置して半導体装置を縦型にすることで、半導体装置の一方の側(第1面側600aまたは第2面側600b)に第1の電極(ソース電極)および第2の電極(ドレイン電極)を配置した横型の半導体装置に比べて、半導体装置の小型化を図ることができる。さらに、縦型の半導体装置は、ダイオードを含む縦型デバイスと組み合わせて用いる場合、同じ縦型のデバイスであることから容易に回路設計ができる。
【0029】
酸化ガリウムを含有する結晶を含む酸化物半導体膜および/またはコランダム構造を有する結晶を含む酸化物半導体膜は、エピタキシャル結晶成長の方法を用いて成膜することにより得ることができる。前記エピタキシャル結晶成長の方法は、本発明の目的を阻害しない限り、特に限定されず、公知の手段であってよい。前記エピタキシャル結晶成長の方法としては、例えば、CVD法、MOCVD(Metal Organic Chemical Vapor)法、MOVPE(Metalorganic Vapor-phase epitaxy)法、ミストCVD法、ミスト・エピタキシー法、MBE(Molecular Beam Epitaxy)
法、HVPE(Hydride Vapor Phase Epitaxy)法またはパルス成長法などが挙げられる。本発明の実施態様においては、前記エピタキシャル結晶成長により酸化物半導体膜を形成する場合、ミストCVD法またはミスト・エピタキシー法を用いるのが好ましい。
【0030】
本発明においては、前記成膜を、金属を含む原料溶液を霧化し(霧化工程)、液滴を浮遊させ霧化液滴を得て、得られた霧化液滴をキャリアガスでもって前記基体近傍まで搬送し(搬送工程)、ついで、前記霧化液滴を熱反応させること(成膜工程)により行うのが好ましい。
【0031】
(原料溶液)
原料溶液は、成膜原料として金属を含んでおり、霧化可能であれば特に限定されず、無機材料を含んでいてもよいし、有機材料を含んでいてもよい。前記金属は、金属単体であっても、金属化合物であってもよく、本発明の目的を阻害しない限り特に限定されないが、ガリウム(Ga)、イリジウム(Ir)、インジウム(In)、ロジウム(Rh)、アルミニウム(Al)、金(Au)、銀(Ag)、白金(Pt)、銅(Cu)、鉄(Fe)、マンガン(Mn)、ニッケル(Ni)、パラジウム(Pd)、コバルト(Co)、ルテニウム(Ru)、クロム(Cr)、モリブデン(Mo)、タングステン(W)、タンタル(Ta)、亜鉛(Zn)、鉛(Pb)、レニウム(Re)、チタン(Ti)、スズ(Sn)、ガリウム(Ga)、マグネシウム(Mg)、カルシウム(Ca)およびジルコニウム(Zr)から選ばれる1種または2種以上の金属などが挙げられるが、本発明においては、前記金属が、少なくとも周期律表第4周期~第6周期の1種または2種以上の金属を含むのが好ましく、少なくともガリウム、インジウム、アルミニウム、ロジウムまたはイリジウムを含むのがより好ましく、少なくともガリウムを含むのが最も好ましい。このような好ましい金属を用いることにより、半導体装置等により好適に用いることができるエピタキシャル膜を成膜することができる。
【0032】
本発明においては、前記原料溶液として、前記金属を錯体または塩の形態で有機溶媒または水に溶解または分散させたものを好適に用いることができる。錯体の形態としては、例えば、アセチルアセトナート錯体、カルボニル錯体、アンミン錯体、ヒドリド錯体などが挙げられる。塩の形態としては、例えば、有機金属塩(例えば金属酢酸塩、金属シュウ酸塩、金属クエン酸塩等)、硫化金属塩、硝化金属塩、リン酸化金属塩、ハロゲン化金属塩(例えば塩化金属塩、臭化金属塩、ヨウ化金属塩等)などが挙げられる。
【0033】
前記原料溶液の溶媒は、本発明の目的を阻害しない限り特に限定されず、水等の無機溶媒であってもよいし、アルコール等の有機溶媒であってもよいし、無機溶媒と有機溶媒との混合溶媒であってもよい。本発明においては、前記溶媒が水を含むのが好ましい。
【0034】
また、前記原料溶液には、ハロゲン化水素酸や酸化剤等の添加剤を混合してもよい。前記ハロゲン化水素酸としては、例えば、臭化水素酸、塩酸、ヨウ化水素酸などが挙げられる。前記酸化剤としては、例えば、過酸化水素(H)、過酸化ナトリウム(Na)、過酸化バリウム(BaO)、過酸化ベンゾイル(CCO)等の過酸化物、次亜塩素酸(HClO)、過塩素酸、硝酸、オゾン水、過酢酸やニトロベンゼン等の有機過酸化物などが挙げられる。前記添加剤の配合割合は、特に限定されないが、好ましくは、原料溶液に対し、0.001体積%~50体積%であり、より好ましくは、0.01体積%~30体積%である。
【0035】
前記原料溶液には、ドーパントが含まれていてもよい。前記ドーパントは、本発明の目的を阻害しない限り、特に限定されない。前記ドーパントとしては、例えば、上記したn型ドーパントまたはp型ドーパントなどが挙げられる。ドーパントの濃度は、通常、約1×1016/cm~1×1022/cmであってもよいし、また、ドーパントの濃度を例えば約1×1017/cm以下の低濃度にしてもよい。また、さらに、本発明によれば、ドーパントを約1×1020/cm以上の高濃度で含有させてもよい。
【0036】
(霧化工程)
前記霧化工程は、金属を含む原料溶液を調整し、前記原料溶液を霧化し、霧化した液滴を浮遊させ、霧化液滴を発生させる。前記金属の配合割合は、特に限定されないが、原料溶液全体に対して、0.0001mol/L~20mol/Lが好ましい。霧化方法は、前記原料溶液を霧化できさえすれば特に限定されず、公知の霧化方法であってよいが、本発明においては、超音波振動を用いる霧化方法であるのが好ましい。本発明で用いられるミストは、空中に浮遊するものであり、例えば、スプレーのように吹き付けるのではなく、初速度がゼロで、空間に浮かびガスとして搬送することが可能なミストであるのがより好ましい。ミストの液滴サイズは、特に限定されず、数mm程度の液滴であってもよいが、好ましくは50μm以下であり、より好ましくは1~10μmである。
【0037】
(搬送工程)
前記搬送工程では、前記キャリアガスによって前記霧化液滴を前記基体へ搬送する。キャリアガスの種類としては、本発明の目的を阻害しない限り特に限定されず、例えば、酸素、オゾン、不活性ガス(例えば窒素やアルゴン等)、または還元ガス(水素ガスやフォーミングガス等)などが好適な例として挙げられる。また、キャリアガスの種類は1種類であってよいが、2種類以上であってもよく、キャリアガス濃度を変化させた希釈ガス(例えば10倍希釈ガス等)などを、第2のキャリアガスとしてさらに用いてもよい。また、キャリアガスの供給箇所も1箇所だけでなく、2箇所以上あってもよい。キャリアガスの流量は、特に限定されないが、前記搬送を供給律速となるような流量が好ましく、より具体的には1LPM以下が好ましく、0.1~1LPMがより好ましい。
【0038】
(成膜工程)
成膜工程では、前記霧化液滴を反応させて、前記基体上に成膜する。前記反応は、前記霧化液滴から膜が形成される反応であれば特に限定されないが、本発明においては、熱反応が好ましい。前記熱反応は、熱でもって前記霧化液滴が反応すればそれでよく、反応条件等も本発明の目的を阻害しない限り特に限定されない。本工程においては、前記熱反応を、通常、原料溶液の溶媒の蒸発温度以上の温度で行うが、高すぎない温度以下が好ましく、650℃以下がより好ましい。また、熱反応は、本発明の目的を阻害しない限り、真空下、非酸素雰囲気下、還元ガス雰囲気下および酸素雰囲気下のいずれの雰囲気下で行われてもよく、また、大気圧下、加圧下および減圧下のいずれの条件下で行われてもよいが、本発明においては、大気圧下で行われるのが蒸発温度の計算がより簡単になり、設備等も簡素化できる等の点で好ましい。また、膜厚は成膜時間を調整することにより、設定することができる。
【0039】
(基体)
前記基体は、前記半導体膜を支持できるものであれば特に限定されない。前記基体の材料も、本発明の目的を阻害しない限り特に限定されず、公知の基体であってよく、有機化合物であってもよいし、無機化合物であってもよい。前記基体の形状としては、どのような形状のものであってもよく、あらゆる形状に対して有効であり、例えば、平板や円板等の板状、繊維状、棒状、円柱状、角柱状、筒状、螺旋状、球状、リング状などが挙げられるが、本発明においては、基板が好ましい。基板の厚さは、本発明においては特に限定されない。
【0040】
前記基板は、板状であって、前記半導体膜の支持体となるものであれば特に限定されない。絶縁体基板であってもよいし、半導体基板であってもよいし、金属基板や導電性基板であってもよいが、前記基板が、絶縁体基板であるのが好ましく、また、表面に金属膜を有する基板であるのも好ましい。前記基板としては、例えば、コランダム構造を有する基板材料を主成分として含む下地基板、またはβ-ガリア構造を有する基板材料を主成分として含む下地基板、六方晶構造を有する基板材料を主成分として含む下地基板などが挙げられる。ここで、「主成分」とは、前記特定の結晶構造を有する基板材料が、原子比で、基板材料の全成分に対し、好ましくは50%以上、より好ましくは70%以上、更に好ましくは90%以上含まれることを意味し、100%であってもよい。
【0041】
基板材料は、本発明の目的を阻害しない限り、特に限定されず、公知のものであってよい。前記のコランダム構造を有する基板材料としては、例えば、コランダム構造を有する結晶を少なくとも表面に有する基板であればよく、コランダム構造を有する結晶の例として、α-Al、α-Ga、および少なくともガリウムを含みコランダム構造を有する混晶が挙げられる。コランダム構造を有する基板としては、α-Al(サファイア基板)またはα-Ga基板が好適に挙げられ、a面サファイア基板、m面サファイア基板、r面サファイア基板、c面サファイア基板や、α型酸化ガリウム基板(a面、m面またはr面)などがより好適な例として挙げられる。β-ガリア構造を有する基板材料を主成分とする下地基板としては、例えばβ-Ga基板、又はGaとAlとを含みAlが0wt%より多くかつ60wt%以下である混晶体基板などが挙げられる。また、六方晶構造を有する基板材料を主成分とする下地基板としては、例えば、SiC基板、ZnO基板、GaN基板などが挙げられる。
【0042】
本発明においては、前記成膜工程の後、アニール処理を行ってもよい。アニールの処理温度は、本発明の目的を阻害しない限り特に限定されず、通常、300℃~650℃であり、好ましくは350℃~550℃である。また、アニールの処理時間は、通常、1分間~48時間であり、好ましくは10分間~24時間であり、より好ましくは30分間~12時間である。なお、アニール処理は、本発明の目的を阻害しない限り、どのような雰囲気下で行われてもよいが、好ましくは非酸素雰囲気下であり、より好ましくは窒素雰囲気下である。
【0043】
また、本発明においては、前記基体上に、直接、前記半導体膜を設けてもよいし、バッファ層(緩衝層)や応力緩和層等の他の層を介して前記半導体膜を設けてもよい。各層の形成方法は、特に限定されず、公知の方法であってよいが、本発明においては、ミストCVD法またはミスト・エピタキシー法が好ましい。
【0044】
以下、図面を用いて、前記ミストCVD法またはミスト・エピタキシー法に好適に用いられる成膜装置19を説明する。図15の成膜装置19は、キャリアガスを供給するキャリアガス源22aと、キャリアガス源22aから送り出されるキャリアガスの流量を調節するための流量調節弁23aと、キャリアガス(希釈)を供給するキャリアガス(希釈)源22bと、キャリアガス(希釈)源22bから送り出されるキャリアガス(希釈)の流量を調節するための流量調節弁23bと、原料溶液24aが収容されるミスト発生源24と、水25aが入れられる容器25と、容器25の底面に取り付けられた超音波振動子26と、成膜室30と、ミスト発生源24から成膜室30までをつなぐ石英製の供給管27と、成膜室30内に設置されたホットプレート(ヒーター)28とを備えている。ホットプレート28上には、基板20が設置されている。
【0045】
そして、図15に示すとおり、原料溶液24aをミスト発生源24内に収容する。次に、基板20を用いて、ホットプレート28上に設置し、ホットプレート28を作動させて成膜室30内の温度を昇温させる。次に、流量調節弁23(23a、23b)を開いてキャリアガス源22(22a、22b)からキャリアガスを成膜室30内に供給し、成膜室30の雰囲気をキャリアガスで十分に置換した後、キャリアガスの流量と、キャリアガス(希釈)の流量とをそれぞれ調節する。次に、超音波振動子26を振動させ、その振動を、水25aを通じて原料溶液24aに伝播させることによって、原料溶液24aを微粒子化させて霧化液滴24bを生成する。この霧化液滴24bが、キャリアガスによって成膜室30内に導入され、基板20まで搬送され、そして、大気圧下、成膜室30内で霧化液滴24bが熱反応して、基板20上に膜が形成する。
【0046】
本発明においては、前記成膜工程にて得られた膜を、そのまま半導体装置に用いてもよいし、前記基体等から剥離する等の公知の方法を用いた後に半導体装置に用いてもよい。
【0047】
また、本発明において好ましく用いられるp型半導体膜である前記酸化物半導体膜は、例えば、金属を含む原料溶液にp型ドーパントと臭化水素酸とを加え、ミストCVD法により得ることができる。ここで、添加剤として臭化水素酸を前記原料溶液に加えることが肝要である。なお、前記ミストCVD法の各工程ならびに各方法および各条件については、上記した霧化・液滴化工程、搬送工程および成膜工程ならびに各方法および各条件等と同様であってよい。このようにして得られたp型半導体膜は、n型半導体とのpn接合も良好であり、前記反転チャネル領域に好適に用いることができる。
【0048】
前記反転チャネル領域は、通常、異なるタイプの導電性を示す半導体領域の間に設けられる。例えば、前記反転チャネル領域が、p型半導体層内に設けられる場合には、通常、n型半導体からなる半導体領域の間のp型半導体層内に設けられ、また、前記反転チャネル領域が、n型半導体層内に設けられる場合には、通常、p型半導体からなる半導体領域の間のn型半導体層内に設けられる。なお、各半導体領域の形成方法は、前記の酸化物半導体膜の形成方法と同様であってよい。
【0049】
また、本発明においては、前記反転チャネル領域上に、周期律表第15族の少なくとも1種の元素を含む酸化膜が積層されているのが好ましい。前記元素としては、例えば、窒素(N)、リン(P)などが挙げられるが、本発明においては、窒素(N)またはリン(P)が好ましく、リン(P)がより好ましい。例えば、ゲート絶縁膜と前記反転チャネル領域との間に、リンを少なくとも含む酸化膜を前記反転チャネル領域上に積層することにより、水素の酸化物半導体膜への拡散を防止することができ、さらに界面準位を下げることもできるので、半導体装置、とりわけワイドバンドギャップ半導体の半導体装置に対し、より優れた半導体特性を与えることができる。なお、本発明においては、前記酸化膜が、周期律表第15族の少なくとも1種の前記元素および周期律表第13族の1種または2種以上の金属を少なくとも含むのがより好ましい。前記金属としては、例えば、アルミニウム(Al)、ガリウム(Ga)、インジウム(In)などが挙げられるが、中でも、Gaおよび/またはAlが好ましく、Gaがより好ましい。また、前記酸化膜は、薄膜であるのが好ましく、膜厚100nm以下であるのがより好ましく、膜厚50nm以下であるのが最も好ましい。このような酸化膜を積層することにより、ゲートリーク電流をより効果的に抑制することができ、半導体特性をより優れたものにすることができる。すなわち、この膜によればゲートリーク等によって反転チャネル層が形成できない問題が容易に解消できる。前記酸化膜の形成方法としては、例えば公知の方法が挙げられる。より具体的には例えば、ドライ法やウェット法などが挙げられるが、リン酸等による前記反転チャネル領域上への表面処理であるのが好ましい。
【0050】
また、本発明においては、前記反転チャネル領域および前記酸化膜上に、所望によりゲート絶縁膜を介して、ゲート電極が設けられているのが好ましい。前記ゲート絶縁膜は本発明の目的を阻害しない限り特に限定されず、公知の絶縁膜であってよい。前記ゲート絶縁膜としては、例えば、SiO、Si、Al、GaO、AlGaO、InAlGaO、AlInZnGaO、AlN、Hf、SiN、SiON、MgO、GdO、リンを少なくとも含む酸化膜等の酸化膜が好適な例として挙げられる。前記ゲート絶縁膜の形成方法は、公知の方法であってよく、このような公知の形成方法としては、例えば、ドライ法やウェット法などが挙げられる。ドライ法としては、例えば、スパッタ、真空蒸着、CVD(Chemical Vapor Deposition)、ALD(Atomic Laser Deposition)、PLD(Pulsed Laser Deposition)等の公知の方法が挙げられる。ウェット法としては、例えば、スクリーン印刷やダイコート等の塗布方法が挙げられる。
【0051】
前記ゲート電極は、公知のゲート電極であってよく、かかる電極材料も導電性無機材料であってもよいし、導電性有機材料であってもよい。本発明においては、前記電極材料が金属であるのが好ましい。前記金属としては、特に限定されないが、好適には例えば、周期律表第4族~第11族から選ばれる少なくとも1種の金属などが挙げられる。周期律表第4族の金属としては、例えば、チタン(Ti)、ジルコニウム(Zr)、ハフニウム(Hf)などが挙げられるが、中でもTiが好ましい。周期律表第5族の金属としては、例えば、バナジウム(V)、ニオブ(Nb)、タンタル(Ta)などが挙げられる。周期律表第6族の金属としては、例えば、クロム(Cr)、モリブデン(Mo)およびタングステン(W)等から選ばれる1種または2種以上の金属などが挙げられるが、本発明においては、よりスイッチング特性等の半導体特性がより良好なものとなるのでCrが好ましい。周期律表第7族の金属としては、例えば、マンガン(Mn)、テクネチウム(Tc)、レニウム(Re)などが挙げられる。周期律表第8族の金属としては、例えば、鉄(Fe)、ルテニウム(Ru)、オスミウム(Os)などが挙げられる。周期律表第9族の金属としては、例えば、コバルト(Co)、ロジウム(Rh)、イリジウム(Ir)などが挙げられる。周期律表第10族の金属としては、例えば、ニッケル(Ni)、パラジウム(Pd)、白金(Pt)などが挙げられるが、中でもPtが好ましい。周期律表第11族の金属としては、例えば、銅(Cu)、銀(Ag)、金(Au)などが挙げられる。前記ゲート電極の形成方法としては、例えば公知の方法などが挙げられ、より具体的には例えば、ドライ法やウェット法などが挙げられる。ドライ法としては、例えば、スパッタ、真空蒸着、CVD等の公知の方法が挙げられる。ウェット法としては、例えば、スクリーン印刷やダイコート等が挙げられる。
【0052】
なお、本発明においては、ゲート電極だけでなく、通常、ソース電極およびドレイン電極を備えるが、前記ソース電極およびドレイン電極はいずれも、前記ゲート電極と同様に、それぞれ公知の電極であってよく、電極形成方法もそれぞれ公知の方法であってよい。
【0053】
前記半導体装置は、とりわけ、パワーデバイスに有用である。前記半導体装置としては、例えば、トランジスタなどが挙げられるが、中でもMOSFETが好ましい。
【0054】
本発明の半導体装置は、上記した事項に加え、さらに公知の方法を用いて、パワーモジュール、インバータまたはコンバータとして好適に用いられ、さらには、例えば電源装置を用いた半導体システム等に好適に用いられる。前記電源装置は、公知の方法を用いて、配線パターン等に接続するなどすることにより、前記半導体装置からまたは前記半導体装置として作製することができる。図12は、複数の前記電源装置171、172と制御回路173を用いて構成された電源システム170を示す。前記電源システム170は、図13に示すように、電子回路181と電源システム182とを組み合わせてシステム装置180に用いることができる。なお、電源装置の電源回路図の一例を図14に示す。図14は、パワー回路と制御回路からなる電源装置の電源回路を示しており、インバータ192(MOSFETA~Dで構成)によりDC電圧を高周波でスイッチングしACへ変換後、トランス193で絶縁及び変圧を実施し、整流MOSFET(A~B’)で整流後、DCL195(平滑用コイルL1,L2)とコンデンサにて平滑し、直流電圧を出力する。この時に電圧比較器197で出力電圧を基準電圧と比較し、所望の出力電圧となるようPWM制御回路196でインバータ192及び整流MOSFET194を制御する。
【0055】
また、例えば、水素の拡散を防止したい導電性膜や絶縁性膜上に、例えば公知の方法を用いて、前記水素拡散防止膜を設けることにより、コンデンサ、センサー、キャパシター、電池、表示素子または記録素子等の電気化学素子に好適に用いられる。このようにして前記水素拡散防止膜が用いられた電子機器やシステムは、水素の拡散による問題が容易に工業的有利に解消され得る。
【実施例
【0056】
(実施例1)図7に示されるMOSFETの作製
1.p型半導体層の形成
1-1.成膜装置
図15の成膜装置19を用いた。
【0057】
1-2.原料溶液の作製
0.1M臭化ガリウム水溶液に臭化水素酸を体積比で20%含有させ、さらにMgを1体積%の割合で加え、これを原料溶液とした。
【0058】
1-3.成膜準備
上記1-2.で得られた原料溶液24aをミスト発生源24内に収容した。次に、基板20として、表面にノンドープのα-Ga膜が形成されているサファイア基板をサセプタ21上に設置し、ヒーター28を作動させて成膜室30内の温度を520℃にまで昇温させた。次に、流量調節弁23a、23bを開いて、キャリアガス源であるキャリアガス供給装置22a、キャリアガス(希釈)供給装置22bからキャリアガスを成膜室30内に供給し、成膜室30の雰囲気をキャリアガスで十分に置換した後、キャリアガスの流量を1LPMに、キャリアガス(希釈)の流量を1LPMにそれぞれ調節した。なお、キャリアガスとして窒素を用いた。
【0059】
1-4.半導体膜形成
次に、超音波振動子26を2.4MHzで振動させ、その振動を、水25aを通じて原料溶液24aに伝播させることによって、原料溶液24aを霧化させてミストを生成した。このミストが、キャリアガスによって成膜室30内に導入され、大気圧下、520℃にて、成膜室30内でミストが反応して、基板20上に半導体膜が形成された。なお、膜厚は0.6μmであり、成膜時間は15分間であった。
【0060】
1-5.評価
XRD回折装置を用いて、上記1-4.にて得られた膜の相の同定を行ったところ、得られた膜はα-Gaであった。
【0061】
2.n+型半導体領域の形成
0.1M臭化ガリウム水溶液に体積比で臭化水素酸10%および臭化スズ8%をそれぞれ含有させ、これを原料溶液としたこと、ならびに成膜温度を580℃および成膜時間を5分間としたこと以外、上記1.と同様にして、上記1.で得られたp型半導体層上にn+型半導体膜を成膜した。得られた膜につき、XRD回折装置を用いて、膜の相の同定を行ったところ、得られた膜はα-Gaであった。
【0062】
3.絶縁膜および各電極の形成
ゲート部に対応する領域のn+型半導体層(1aと1bとの間)をリン酸でエッチングし、さらに、半導体膜上にリンを少なくとも含む酸化膜が形成されるようにリン酸で処理した後、スパッタにてSiOを成膜した。また、フォトリソグラフィー、エッチング処理、電子ビーム蒸着処理等に付し、図7の部分断面図に示すとおり、MOSFETを作製した。なお、電極にはいずれもTiを用いた。また、得られたMOSFETにつき、参考までに上面からみた写真を図8に示す。
【0063】
(評価)
得られたMOSFETにつき、IV測定を実施した。IV測定結果を図9に示す。図9から明らかなとおり、反転チャネル層が形成され、酸化ガリウム半導体のMOSFETがトランジスタとして良好に動作することが世界で初めて実証された。そして、得られたIV特性から求められたゲート電圧閾値電圧は、7.9Vであった。
なお、上記3.において、リンを少なくとも含む酸化膜がp型半導体層とゲート絶縁膜(SiO膜)との間に形成されているのかどうかにつき、SIMS測定で実施して確認した。SIMS測定結果を図10に示す。図10から、p型半導体層とゲート絶縁膜との間にリンを含む酸化膜が形成されており、さらには、ゲート絶縁膜の水素のp型半導体層への拡散を良好に防いでいることがわかる。すなわち、p型半導体層とゲート絶縁膜との間にリンを含む酸化膜を配置すると、水素拡散防止膜として有用である。
【産業上の利用可能性】
【0064】
本発明の半導体装置は、半導体(例えば化合物半導体電子デバイス等)、電子部品・電気機器部品、光学・電子写真関連装置、工業部材などあらゆる分野に用いることができるが、とりわけ、パワーデバイスに有用である。
【符号の説明】
【0065】
1a 第1の半導体領域
1b 第2の半導体領域
2 酸化物半導体膜
2a 反転チャネル領域
2b 酸化膜
2c 酸化物半導体膜の第2面
3 金属酸化物膜
4a 絶縁膜
5a 第3の電極
5b 第1の電極
5c 第2の電極
6 第3の半導体領域
9 基板
19 成膜装置
20 基板
21 サセプタ
22a キャリアガス供給装置
22b キャリアガス(希釈)供給装置
23a 流量調節弁
23b 流量調節弁
24 ミスト発生源
24a 原料溶液
25 容器
25a 水
26 超音波振動子
27 供給管
28 ヒーター
29 排気口
50b 第1の電極のコンタクト面
100 半導体装置
170 電源システム
171 電源装置
172 電源装置
173 制御回路
180 システム装置
181 電子回路
182 電源システム
192 インバータ
193 トランス
194 MOSFET
195 DCL
196 PWM制御回路
197 電圧比較器
200 半導体装置
300 半導体装置
400 半導体装置
500 半導体装置
600 半導体装置

図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15