(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-03-28
(45)【発行日】2024-04-05
(54)【発明の名称】飛行体管理システム
(51)【国際特許分類】
G08B 25/10 20060101AFI20240329BHJP
G08B 21/16 20060101ALI20240329BHJP
G08B 31/00 20060101ALI20240329BHJP
B64F 1/36 20240101ALI20240329BHJP
【FI】
G08B25/10 A
G08B21/16
G08B31/00 B
B64F1/36
(21)【出願番号】P 2022019811
(22)【出願日】2022-02-10
【審査請求日】2023-06-29
【早期審査対象出願】
(73)【特許権者】
【識別番号】000000284
【氏名又は名称】大阪瓦斯株式会社
(74)【代理人】
【識別番号】110001818
【氏名又は名称】弁理士法人R&C
(72)【発明者】
【氏名】三浦 悟
(72)【発明者】
【氏名】片山 千聖
(72)【発明者】
【氏名】赤尾 雅嗣
【審査官】山岸 登
(56)【参考文献】
【文献】特開2019-202682(JP,A)
【文献】国際公開第2021/176585(WO,A1)
【文献】国際公開第2018/008675(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
B64B1/00-1/70
B64C1/00-99/00
B64D1/00-47/08
B64F1/00-5/60
B64G1/00-99/00
G08B19/00-31/00
(57)【特許請求の範囲】
【請求項1】
施設の監視を行う複数の飛行体を管理する飛行体管理システムであって
、
前記飛行体それぞれの経時的位置を含む飛行情報を管理する飛行情報管理部と、
前記飛行体に搭載された監視機器によって生成された前記施設の監視データを取得する監視データ取得部と、
前記施設または前記施設の周辺で生じた異常事象を決定する異常事象決定部と、
決定された前記異常事象の経時挙動を推定する経時挙動推定部と、
前記経時挙動推定部によって推定された前記経時挙動と前記飛行情報とに基づいて、異常事態発生時の前記飛行体それぞれのための特殊飛行ルートを生成する特殊飛行ルート生成部と、を備え
、
前記飛行体に搭載された飛行体自位置算出部によって算出された飛行体自位置を取得する飛行体自位置取得部が備えられ、
前記飛行情報管理部は、前記飛行体それぞれのために生成された飛行計画を取得し、前記飛行計画に含まれている時刻と飛行位置とに基づいて、前記飛行体それぞれの前記経時的位置を算出し、当該経時的位置は取得した前記飛行体自位置によって修正される飛行体管理システム。
【請求項2】
前記異常事象決定部は、前記飛行体に搭載された前記監視機器による前記監視データ、地上走行車に搭載された監視機器による監視データ、前記施設に配置された監視機器による監視データ、監視サービスセンタから与えられる監視データの少なくとも1つに基づいて、前記異常事象を決定する請求項1に記載の飛行体管理システム。
【請求項3】
前記施設周辺の気象情報を取得する気象情報取得部が備えられ、
前記経時挙動推定部は、前記経時挙動の推定時に前記気象情報を参照し、前記特殊飛行ルート生成部は前記特殊飛行ルートの生成時に前記気象情報を参照する請求項1または2に記載の飛行体管理システム。
【請求項4】
前記異常事象の種類と前記異常事象の発生場所とによって規定されている異常事象発生時の前記飛行体の飛行パターンを抽出可能に記録している異常事象時飛行パターン記録部が備えられ、
前記特殊飛行ルート生成部は、前記異常事象の種類と前記異常事象の発生場所とに基づいて抽出された前記飛行パターンを参照して前記飛行体それぞれのための特殊飛行ルートを生成する請求項1から
3のいずれか一項に記載の飛行体管理システム。
【請求項5】
前記飛行パターンには、複数の前記飛行体によって前記異常事象を監視するための異常事象監視飛行パターンと、複数の前記飛行体が前記異常事象から避難するための緊急避難飛行パターンとが含まれている請求項
4に記載の飛行体管理システム。
【請求項6】
前記監視機器にはガス検知器が含まれており、前記異常事象にガス漏れが含まれている場合、前記経時挙動推定部は前記経時挙動を推定する際に前記施設周辺の風向き及び風速を参照する請求項1から
5のいずれか一項に記載の飛行体管理システム。
【請求項7】
前記特殊飛行ルート生成部は前記特殊飛行ルートを生成する際に前記風向き及び前記風速を参照する請求項
6に記載の飛行体管理システム。
【請求項8】
前記飛行体の前記施設の監視活動は、風速を含む気象情報に基づいて制限される請求項1から
7のいずれか一項に記載の飛行体管理システム。
【請求項9】
前記異常事象にガス漏れが含まれている場合、前記ガス漏れに対する着火の可能性を有する前記飛行体による監視活動を禁止し、風速及び風向きに基づいて推定される前記ガス漏れが及ぶ範囲からの避難を促す請求項1から
8のいずれか一項に記載の飛行体管理システム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、施設の監視を行う複数の飛行体を管理する飛行体管理システムに関する。
【背景技術】
【0002】
ガス製造プラントや発電プラントなどのインフラ施設の健全性を維持する上で、これらの施設に設けられた各種設備の監視が必要不可欠である。近年、インフラ施設などの大規模施設の点検を行う際に、無人移動車や無人飛行体を利用する試みがなされている。
【0003】
特許文献1には、監視エリアに設けられた設備を点検して当該監視エリアを監視する無人飛行体及びその飛行制御方法が提案されている。この飛行制御方法は、設備を点検するために予め設定された飛行ルートに従って無人飛行体を飛行させるステップや、設備から漏洩した漏洩対象を無人飛行体に設けられたセンサにより検知するステップ、漏洩対象が漏洩したと判断された場合に無人飛行体の飛行が危険な危険エリアを決定するステップ、決定された危険エリアを回避する新たな飛行ルートを設定するステップ、設定された新たな飛行ルートに従って無人飛行体を飛行させるステップなどを行うようになっている。
【0004】
特許文献2には、飛行体(防災ドローン)とサーバ装置とを備える情報処理システムが開示されている。飛行体は、災害の原因となる事象の発生及び当該災害を受ける地域を示す防災情報を取得してサーバ装置に送信する送信部と、飛行の飛行制御を行う制御部と、取得された防災情報が示す災害に関する報知を飛行中に行う報知部とを備えている。サーバ装置は、送信されてきた防災情報が示す地域を飛行する飛行経路を決定する決定部と、決定した飛行経路での飛行を飛行体に指示する指示部とを備える。
【先行技術文献】
【特許文献】
【0005】
【文献】特開2019-202682号公報
【文献】特開2019-086902号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
エネルギー製造施設や化学プラント施設などの大規模施設における設備の監視中に、異常事象が発生した場合、複数の監視点からの監視が要求されるので、複数の飛行体による監視が必要となる。また、火災やガス漏れのような急速に監視すべき領域が拡がる異常事象の場合、時間経過とともに変化する異常事象の範囲を考慮した複数の飛行体の配置が要求される。しかしながら、特許文献1による飛行制御方法や特許文献2によるシステムでは、検出された異常事象に対して、時間経過とともに変化する異常事象の範囲を考慮して、複数の飛行体の飛行経路を設定するといった方策は提案されていない。
【0007】
本発明は、以上の実情に鑑みなされたものであり、時間経過とともに変化する異常事象の範囲を考慮して、監視飛行を行う複数の飛行体を管理する飛行体管理システムの提供を、目的とする。
【課題を解決するための手段】
【0008】
施設の監視を行う複数の飛行体を管理する、本発明による飛行体管理システムは、前記飛行体それぞれの経時的位置を含む飛行情報を管理する飛行情報管理部と、前記飛行体に搭載された監視機器によって生成された前記施設の監視データを取得する監視データ取得部と、前記施設または前記施設の周辺で生じた異常事象を決定する異常事象決定部と、決定された前記異常事象の経時挙動を推定する経時挙動推定部と、前記経時挙動推定部によって推定された前記経時挙動と前記飛行情報とに基づいて、異常事態発生時の前記飛行体それぞれのための特殊飛行ルートを生成する特殊飛行ルート生成部と、を備え、前記飛行体に搭載された飛行体自位置算出部によって算出された飛行体自位置を取得する飛行体自位置取得部が備えられ、前記飛行情報管理部は、前記飛行体それぞれのために生成された飛行計画を取得し、前記飛行計画に含まれている時刻と飛行位置とに基づいて、前記飛行体それぞれの前記経時的位置を算出し、当該経時的位置は取得した前記飛行体自位置によって修正される。
【0009】
この構成によれば、施設または施設の周辺での異常事象の発生が異常事象決定部によって決定されると、当該異常事象の経時挙動が推定される。さらに、複数の飛行体の監視機器(カメラユニットやレーダ機器や気体検出器など)を用いて、複数の監視位置から異常事象を監視することができる。その際、異常事象の種類と異常事象の発生場所と異常事象の経時的挙動、及び飛行体の経時的位置を含む飛行情報に基づいて、この異常事態の監視に適した特殊飛行ルートが複数の飛行体のそれぞれに対して生成されるので、発生した異常事象に適した、複数の飛行体による監視飛行が行われる。また、異常事態によっては、飛行体が異常事象の発生現場から退避するような特殊飛行ルートが生成される。飛行体は、通常、時刻と飛行位置との関係を記述した飛行計画に基づいて飛行する。この飛行計画から、各飛行体の経時的位置を推定することができる。さらに、この経時的位置は、飛行体に搭載されている飛行体自位置取得部によって取得された飛行体自位置によって修正することで、より正確な飛行体の時刻と飛行位置との関係を把握することができ、各飛行体のために生成される特殊飛行ルートがより正確なものとなる。
【0010】
本発明では、前記異常事象決定部は、前記飛行体に搭載された前記監視機器による前記監視データ、地上走行車に搭載された監視機器による監視データ、前記施設に配置された監視機器による監視データ、監視サービスセンタから与えられる監視データの少なくとも1つに基づいて、前記異常事象を決定する。これにより、種々の監視データを用いて、多角的な視点から、監視対象地域における、異常事態の発生を、迅速かつ正確に見つけ出すことができる。
【0011】
火災やガス漏れのような異常事象の場合、気候条件、特に風向きや風速によって、異常現象の範囲や異常現象が及ぼす悪影響の範囲(ガス漏れの濃度分布など)が変化する。このため、本発明では、前記施設周辺の気象情報を取得する気象情報取得部が備えられ、前記経時挙動推定部は、前記経時挙動の推定時に前記気象情報を参照し、前記特殊飛行ルート生成部は前記特殊飛行ルートの生成時に前記気象情報を参照する。
【0014】
適正な特殊飛行ルートは、多数の条件を設定して、シミュレーションすることで、生成することが可能である。しかしながら、大規模な施設では、異常事象の種類と異常事象の発生場所は、千差万別であり、それに適応する特殊飛行ルートの種類も膨大となるので、そのようなシミュレーションのための高速な演算装置が必要となる。この問題を解決するためには、予め、異常事象の種類と異常事象の発生場所との組み合わせで、基本となる飛行体の飛行パターンを求め、抽出可能に記録し、必要時には、適正に抽出した飛行パターンに基づいて、実際に用いる飛行体の特殊飛行ルートを生成することが好ましい。このことから、本発明では、前記異常事象の種類と前記異常事象の発生場所とによって規定されている異常事象発生時の前記飛行体の飛行パターンを抽出可能に記録している異常事象時飛行パターン記録部が備えられ、前記特殊飛行ルート生成部は、前記異常事象の種類と前記異常事象の発生場所とに基づいて抽出された前記飛行パターンを参照して前記飛行体それぞれのための特殊飛行ルートを生成する。
【0015】
異常事象の種類と規模によっては、異常事象の現場の近くまたは遠くから異常事象の監視を続ける必要がある。逆に、異常事象の種類と規模によっては、飛行体は、監視活動を中止して緊急避難する必要がある。そのような監視活動の続行や緊急避難は、異常事象の発生にともなう混乱を避けるために、前もって規定されたルートで行われることが重要である。このことから、本発明では、前記飛行パターンには、複数の前記飛行体によって前記異常事象を監視するための異常事象監視飛行パターンと、複数の前記飛行体が前記異常事象から避難するための緊急避難飛行パターンとが含まれている。なお、異常事象が大規模な場合、多数の飛行体によって異常事象を監視する必要がある。このような場合、同じ監視サービスセンタに管理されている飛行体や別別な監視サービスセンタに管理されている飛行体に対して応援派遣を要請し、共同する編隊を組んで、異常事象を監視することが好ましい。応援派遣された飛行体と一体となった共同監視飛行のための共同異常事象監視飛行パターンも、この異常事象監視飛行パターンに含めることができる。また、逆に、別な施設からの応援派遣の要請を受けて、応援監視飛行を行うための応援異常事象監視飛行パターンも、この異常事象監視飛行パターンに含めることができる。
【0016】
火災など異常事象では、ガス漏れは二次災害を引き起こす可能性が高いので、ガス漏れの監視は重要である。しかも、ガス漏れ被害が及ぶ範囲(ガス濃度段階に基づく範囲)は、風向き及び風速に大きく影響される。このことから、本発明では、前記監視機器にはガス検知器が含まれており、前記異常事象にガス漏れが含まれている場合、前記経時挙動推定部は前記経時挙動を推定する際に前記施設周辺の風向き及び風速を参照することが提案される。
【0017】
飛行体は強風等の天候の影響を受け易く、それにより飛行性能が悪化し、最悪の場合、墜落の可能性もある。飛行体の墜落は、二次災害を引き起こすので、回避しなければならない。このため、本発明では、前記特殊飛行ルート生成部は前記特殊飛行ルートを生成する際に前記風向き及び前記風速を参照する。これにより、強風の場合、その影響が最小限となる飛行ルートが採用される。
【0018】
飛行体による監視飛行は、気候条件、特に風速の影響を受けるため、監視対象地域の風速情報によって、制限される。例えば、風速により飛行体を飛ばすかどうかが判定される。このため、本願発明では、前記飛行体の前記施設の監視活動は、風速を含む気象情報に基づいて制限される。さらに、ガス漏れを伴うような異常事象が発生すれば、飛行体はガス漏れの着火源になる可能性がある。このため、ガス漏れの発生場所だけでなく、風速と風向きによって推定されるガス漏れの拡がりも考慮して、飛行体を発生した異常事象の監視のために活動させるかどうか判定しなければならない。場合によっては、避難する必要もある。このため、本発明では、前記異常事象にガス漏れが含まれている場合、前記ガス漏れに対する着火の可能性を有する前記飛行体による監視活動を禁止し、風速及び風向きに基づいて推定される前記ガス漏れが及ぶ範囲からの避難を命じる。
【0019】
本発明のその他の特徴、作用及び効果は、以下の図面を用いた本発明の説明によって明らかにされる。
【図面の簡単な説明】
【0020】
【
図1】施設の監視を行っている飛行体を示す図である。
【
図2】異常事象発生時に施設や施設周辺の監視を行う複数の飛行体の1つの形態を示す図である。
【
図3】地上走行車によって運ばれる複数の飛行体を説明する図である。
【
図4】飛行体管理システムの実施形態の概略構成を示す機能ブロック図である。
【
図5】飛行体管理システムの機能ブロック間のデータや情報の流れを示す情報流れ図である。
【
図6】飛行体管理システムにおける監視活動の基本ルーチンの一例を示すフローチャートである。
【
図7】異常事象発生時処理の一例を示すフローチャートである。
【
図8】異常事象発生時の飛行体のフォーメーションの一例を示す模式図である。
【
図9】異常事象時飛行パターンの一例を示す模式図である。
【
図10】異常事象時飛行パターンに基づいて作り出された実際の飛行体のフォーメーションの一例を示す模式図である。
【発明を実施するための形態】
【0021】
以下、図面を参照して本発明の一実施形態に係る飛行体管理システムについて説明する。
【0022】
〔飛行体管理システムの概要〕
本実施形態に係る飛行体管理システムでは、通常は
図1に示すように、移動基地(母艦)としての地上走行車1から発進した飛行体3が、監視対象となる施設の周辺を単独でまたは少数で飛行し、異常事態が発生していないかどうか監視を行う。異常事態が検知されると、
図2に示すように、地上走行車1から発進した複数の飛行体3が、異常事態の発生領域を監視するために、所定のフォーメーションで監視飛行を行う。複数の飛行体3は、相互衝突の防止や効果的な監視のために、地上走行車1の制御ユニット2によって群制御(協調制御)される。
【0023】
この実施形態では、
図3に示すように、複数の飛行体3は、地上走行車1に設けられた離着陸用ポート20に駐機して、地上走行車1によって監視対象領域に運ばれる。地上走行車1は、車輪式の走行車であり、道路等を高速で移動することができる。地上走行車1は、地上走行車1と無線通信回線を通じてデータ交換可能な監視サービスセンタ100によって、その動きは管理されている。飛行体3の群制御は、地上走行車1に搭載された制御ユニット2によって行われるが、大編隊の飛行体3による監視飛行の場合、地上走行車1の制御ユニット2が中継基地となって、監視サービスセンタ100によって、飛行体3の群制御を行うことも可能である。いずれにせよ、飛行体3の監視飛行は、監視サービスセンタ100によって管理される。監視サービスセンタ100は、高性能な大型コンピュータシステムを備えている。
【0024】
なお、この実施形態において、監視対象は、ガスタンクなどを備えたガス関連プラントであるが、これに限られるものではなく、化学コンビナートや発電プラントなどのインフラ施設といった大規模施設が広く監視対象施設となり得る。
【0025】
〔飛行体管理システムの構成〕
図4と
図5とに示すように、本実施形態における飛行体管理システムは、地上走行車1と、飛行体3とを備えており、補助的に監視サービスセンタ100が用意されている。地上走行車1と、飛行体3と、監視サービスセンタ100との間では、各種データや情報、各種指令が、無線通信で送受信可能である。また、監視サービスセンタ100は、インターネット等のデータ回線を通じて、監視対象となる施設内に構築されている情報提供サーバや遠隔地の情報提供サーバとデータ交換可能に接続可能である。
【0026】
飛行体3は、通信部30、飛行体自位置算出部31、飛行制御部32、監視機器33を備えている。通信部30は、他の飛行体3、地上走行車1、飛行体管理ユニット5などと、通信を行う。飛行体自位置算出部31は、飛行体3に搭載されている衛星測位デバイスや慣性航法デバイスからの測位信号を用いて、自身の現在位置である飛行体自位置を算出する。飛行体自位置は、自らの飛行制御のために用いられるとともに、通信部30を通じて、他の飛行体3、地上走行車1に送られる。さらに、地上走行車1は、監視サービスセンタ100ともデータ交換を行う。飛行制御部32は、自らが備える飛行制御プログラム、地上走行車1から送られてくる飛行指令に基づいて、場合によっては、地上走行車1を中継基地として監視サービスセンタ100から送られてくる飛行指令に基づいて、飛行体3の飛行を制御する。
【0027】
本実施形態では、飛行体3に搭載された監視機器33として、ガス検知器331とカメラユニット332とが備えられている。カメラユニット332は、カメラ本体、カメラ本体を姿勢変更可能に支持するカメラマウント、撮影画像を画像処理し、カメラ姿勢と飛行体自位置とを属性値とする撮影画像データを生成する。撮影画像データには、静止画像及び動画が含まれる。ガス検知器331によるガス検知結果と撮影画像データとは、空中監視データとして、通信部30を通じて、地上走行車1や監視サービスセンタ100に送られる。カメラユニット332は、飛行障害物の検出にも利用することができる。また、レーザ等の専用の飛行障害物検出機器を備えてもよい。検出された飛行障害物(他の飛行体3も含まれる)の情報は、障害物回避のために飛行制御部32に与えられる。
【0028】
地上走行車1は、車両制御ユニット10と飛行体管理ユニット5とを備えている。車両制御ユニット10には、通信部16、移動体自位置算出部11、移動制御部12、監視機器13、気象情報取得部14、監視情報作成部15が含まれている。通信部16は、他の地上走行車1や監視サービスセンタ100との間の通信、施設内の情報提供サーバや遠隔地の情報提供サーバとの間の通信を行う。地上走行車1は、自動走行可能な車両に備えられているナビゲーションユニットと同様な測位ユニットを搭載しており、自車の現在位置である移動体自位置を算出することができる。したがって、この測位ユニットに移動体自位置算出部11が含まれている。移動体自位置は、自らの移動制御のために用いられるとともに、通信部16を通じて、他の地上走行車1や飛行体3や監視サービスセンタ100に送られる。移動制御部12は、自動走行可能な車両に備えられている自動走行制御部と同等な機能を有し、自らが備える自動走行制御プログラム、監視サービスセンタ100から送られてくる移動指令に基づいて、地上走行車1の移動(走行)を制御する。なお、地上走行車1には、手動走行制御部も備えられており、運転者による操縦によって走行制御することも可能である。なお、地上走行車1のカメラユニット132も、移動障害物の検出にも利用することができる。また、レーザや超音波等の専用の移動障害物検出機器を備えてもよい。検出された移動障害物の情報は、障害物回避のために移動制御部12に与えられる。
【0029】
地上走行車1に搭載された監視機器13として、ガス検知器131とカメラユニット132とを備えている。カメラユニット132は、カメラ本体、カメラ本体を姿勢変更可能に支持するカメラマウント、撮影画像を画像処理し、カメラ姿勢と移動体自位置とを属性値とする撮影画像データを生成する。撮影画像データには、静止画像及び動画が含まれる。但し、地上走行車1に搭載されているカメラユニット132は、飛行体3に搭載されているカメラユニット132とは、異なる大型であり、解像度の高い大画面の画像を取得することができる。このガス検知器131によるガス検知結果と撮影画像データとは、移動体監視データとして、通信部16を通じて、他の地上走行車1や監視サービスセンタ100に送られる。
【0030】
気象情報取得部14は、気象サービスサーバや施設内の気象情報検出装置から送られてくる気象情報を取得する。監視情報作成部15は、飛行体3の監視飛行で取得された監視データや、地上走行車1の監視走行で取得された監視データに基づいて作成された監視情報を作成し、監視サービスセンタ100に送る。
【0031】
飛行体管理ユニット5は、通信部50、飛行体自位置取得部52、監視データ取得部54、異常事象決定部55、経時挙動推定部58、飛行計画データベース63、特殊飛行ルート生成部70、異常事象時飛行パターン記録部71、飛行情報管理部6を備えている。
【0032】
飛行体自位置取得部52は、飛行体3に備えられている飛行体自位置算出部31から送られてくる飛行体自位置を取得する。
【0033】
飛行情報管理部6は、飛行体3の経時的位置や飛行可能時間(残燃料や残バッテリ容量などに基づく)を含む飛行情報を取得して飛行体3の監視飛行を管理する。飛行情報管理部6は、飛行体位置追跡部61と飛行指令生成部62とを備えている。さらに、飛行情報管理部6は、飛行計画データベース63を利用する。飛行計画データベース63は、地上走行車1の制御ユニット2に構築されてもよいし、他の外部のコンピュータに構築されてもよい。飛行体位置追跡部61は、各飛行体3のために設定されている飛行計画を飛行計画データベース63から読み出し、当該飛行計画に記述されている時刻と飛行位置とに基づいて、各飛行体3の経時的位置(現在位置)を推定して記録する。さらに、この経時的位置は、飛行体自位置取得部52によって取得された飛行体自位置によって修正される。飛行指令生成部62は、飛行体自位置が飛行計画における時刻と飛行位置とに一致するように、飛行体3に飛行指令を与える。さらに、飛行指令生成部62は、異常事態発生時に、各飛行体3に割り当てられる特殊飛行ルートに沿って飛行するように、飛行体3に飛行指令を与える。
【0034】
具体的な飛行計画の一例では、飛行計画には、予め監視ルート及び監視開始日時が記述されており、監視開始日時になると自動的に待機場所から飛行・走行を開始して点検を始め、終了後は駐機場所に自動的に戻る。ただし、飛行情報管理部6は、気象情報に基づき監視開始日時の変更や監視ルートの変更を、任意のタイミングで行うことができる。
【0035】
監視データ取得部54と、異常事象決定部55と、経時挙動推定部58とは、飛行体3から送られてくる空中監視データに基づいて異常事象を決定する機能を実現する。空中監視データは、監視時刻と飛行体自位置算出部31によって算出された監視時刻での飛行体自位置とにリンクしている。監視データ取得部54は、取得した空中監視データを監視時刻と監視位置とで処理して、時系列で整理された監視データを生成して、異常事象決定部55に与える。異常事象決定部55は、監視データ取得部54から与えられた監視データ及び当該監視データから生成された特徴データに基づいて、監視対象の施設において、何らかの異常事象が発生しているかどうかを、決定する。さらに、経時挙動推定部58は、異常事象決定部55によって決定された異常事象の経時挙動、例えば、異常事象の拡がりを推定する。その際、異常事象が風の影響を受ける火災やガス漏れのような場合、気象情報に基づく異常事象の発生場所周辺の風向き及び風速が参照される。
【0036】
飛行情報管理部6は、異常事態発生時の飛行体3の特殊飛行ルートを生成する機能を実現するために、特殊飛行ルート生成部70と異常事象時飛行パターン記録部71とを備えている。異常事象時飛行パターン記録部71は、異常事象時飛行パターンを抽出可能に記録している。
【0037】
異常事象時飛行パターン記録部71には、異常事象の種類と異常事象の発生場所とによって規定されている異常事象発生時の飛行体3の多数の飛行パターンが記録されている。この飛行パターンは、異常事象の状況を空中から監視するために適切である飛行体3の三次元空間におけるフォーメーションを示している。
【0038】
特殊飛行ルート生成部70は、まず、異常事象の種類、異常事象の発生場所、異常事象の広がり、異常事象の危険度、利用可能な飛行体3の数量、利用可能な飛行体3に搭載されている監視機器33の種類などを抽出条件として、最適な飛行パターンを抽出する。さらに、特殊飛行ルート生成部70は、抽出された飛行パターンをベースとして、飛行体3の特殊飛行ルートを生成し、飛行情報管理部6の飛行指令生成部62に与える。飛行体3は、風の影響を受けるので、強風が発生している場合には、異常事象が発生している施設周辺の風向き及び風速が特殊飛行ルートの生成の際に考慮される。飛行指令生成部62は、特殊飛行ルートと利用可能な飛行体3の現在位置とに基づいて、各飛行体3に対する飛行指令を生成して、各飛行体3に与える。つまり、異常事象が発生した場合、当該異常事象の経時的な挙動も考慮して、異常事象が飛行体3の監視活動に影響を与えるかどうかが判定され、影響がないと判定された場合、飛行体3の監視活動が継続され、影響があると判定された場合、飛行体3の監視活動が中止される。
【0039】
なお、車両制御ユニット10または監視サービスセンタ100に、異常事象の地上走行車1の走行ルートを生成する特殊移動ルート生成部が備えられてもよい。そのような特殊移動ルート生成部は、異常事象の種類、異常事象の発生場所、異常事象の広がり、異常事象の危険度、利用可能な地上走行車1の数量、利用可能な地上走行車1に搭載されている監視機器13の種類などを抽出条件として、最適な移動パターンを抽出する。さらに、抽出された移動パターンをベースとして、地上走行車1の特殊移動ルートが生成され、特殊移動ルート基づく移動指令が移動制御部12に与えられる。つまり、異常事象が発生した場合、当該異常事象の経時的な挙動も考慮して、異常事象が地上走行車1の監視活動に影響を与えるかどうかが判定され、影響がないと判定された場合、地上走行車1の監視活動が継続され、影響があると判定された場合、地上走行車1の監視活動が中止される。
【0040】
異常事象の種類と規模によっては、地上走行車1や飛行体3は、監視活動を中止して緊急避難する必要がある。このような緊急避難も、現場の混乱を回避するために、異常事象の種類と規模に応じた適切なフォーメーションをとる必要がある。このため、特殊飛行ルート生成部70が特殊飛行ルートの作成のために用いる飛行パターンには、飛行体3が異常事象を監視するための異常事象監視飛行パターンだけでなく、飛行体3が異常事象から避難するための緊急避難飛行パターンも含まれている。同様に、地上走行車1に対しても、地上走行車1が異常事象を監視するための異常事象監視移動ルートだけでなく、地上走行車1が異常事象から避難するための緊急避難移動ルートが与えられるとよい。
【0041】
具体的な一例では、飛行体3に搭載されているガス検知器331がガス漏れを検知した場合は、飛行ルートに応じて設定されている安全場所への自動退避を行うとともに飛行体管理ユニット5にガス漏れの場所、濃度等の情報を含む監視データを伝送する。飛行体3に搭載されているカメラユニット332による撮影画像も監視データとして、飛行体管理ユニット5に送られる。飛行体3に監視機器13だけでなく、異常事象決定部55の機能もそなえられている場合、監視機器13による設備監視から異常事象が検知されると、飛行体3から飛行体管理ユニット5に設備異常を即時通報することも可能である。飛行体管理ユニット5は、ガス漏れ、火災情報、強風・降雨等気象情報、点検対象設備の異常を受け取った場合、特殊飛行ルート生成部70によって生成された特殊飛行ルートに基づく飛行を飛行体3に指令する。
【0042】
次に、
図6のフローチャートを用いて、本実施形態の飛行体管理システムによる施設監視活動の基本的なルーチンを説明する。まず、地上走行車1の駐屯所において、地上走行車1の離着陸用ポート20に所定台数の飛行体3を積み込んで、監視対象の施設に向けて出発する(#01)。
【0043】
少なくとも1台の地上走行車1が、監視対象の施設に到着すると、通常の地上監視計画に基づく地上走行車1の通常監視移動が開始される(#02)。地上走行車1が飛行体3による監視活動が予定されているエリアに達すると(#03のYes分岐)、飛行体3が地上走行車1の離着陸用ポート20から離陸する(#04)。
図8に示すように、各飛行体3は単独飛行を行い、割り当てられた飛行計画に沿って空中監視を行う(#05)。各飛行体3は、空中監視の間、監視機器13によって生成された監視データを、地上走行車1の飛行体管理ユニット5に送る。各飛行体3から地上走行車1の飛行体管理ユニット5に送られた監視データは、監視データ取得部54に取得される(#06)。
【0044】
監視データ取得部54は、飛行計画に基づいて監視飛行を行う飛行体3から取得した空中監視データを異常事象決定部55に与える。異常事象決定部55は、飛行体3に搭載された監視機器33による空中監視データ、地上走行車1に搭載された監視機器13による地上監視データ、施設に配置された監視機器による施設監視データ、監視サービスセンタ100などの外部情報サービスから与えられる外部監視データの少なくとも1つに基づいて、異常事象が発生しているかどうか判定する(#07)。異常事象の発生が認められない場合(#08のNo分岐)、全ての飛行体3の飛行計画に基づく監視活動が終了したどうかチェックされる(#09)。全ての飛行体3の監視活動が終了するまで、ステップ#06からステップ#08の処理が行われる。ステップ#07の異常事象発生の判定において、異常事象が発生していると決定された場合(#08のYes分岐)、後述の異常事象発生時処理が行われる(#50)。
【0045】
このような通常飛行ルートでの空中監視が終了すると、飛行体3は、離着陸用ポート20に着陸する(#10)。全ての飛行体3が離着陸用ポート20に着陸すると、地上走行車1は、次の監視対象となる施設があるかどうかチェックする(#11)。次の監視対象となる施設があれば(#11のNo分岐)、ステップ02に分岐して、地上走行車1は次の巡回走行を行う。次の監視対象となる施設がなければ(#11のYes分岐)、地上走行車1と飛行体3とは、駐屯所に帰還する(#12)。
【0046】
図6のステップ#08における異常事象発生の判定で、異常事象が発生しているとみなされると、(#08のYes分岐)、
図7で示された異常事象発生時処理がスタートする(#50)。異常事象発生時処理では、まず、経時挙動推定部58が異常事象の経時的な挙動を推定する(#51)。この異常事象の経時的挙動は、異常事象の種類、この異常事象に関する経時的な監視データ群、気象情報に基づく異常事象の発生場所周辺の風向き及び風速、さらには、ガス漏れ発報、火災情報、強風・降雨等に関する気象情報、点検対象設備の異常の信号などを入力パラメータとして、推定される。例えば、ガス漏れのような場合、現時点及びその後の濃度分布が推定される。次に、このように推定された異常事象の経時的挙動に適合する飛行パターンが、異常事象時飛行パターン記録部71から抽出される(#52)。さらに、各飛行体3の現在位置が取得される(#53)。この異常事象の経時的挙動に適合する飛行パターンが異常事象時飛行パターン記録部71から抽出される移動パターンは複数の飛行体3の監視飛行における安全かつ効率的な飛行フォーメーションのベースとなるものである。そのような飛行パターンの一例が
図9に示されている。
図9に示す飛行パターンは、簡略されたものであるが、4機の飛行体3が、異常事象の経時的挙動の領域境界から所定距離だけ離れながら、かつ互いに所定の間隔をあけて時計方向に旋回飛行するパターンである。実際は、経時的挙動の領域境界は複雑な形状であり、その結果、飛行パターンも複雑な形状となる。また、
図9では、図示の関係上、飛行パターンは平面的に示されているが、実際の飛行パターンは三次元空間で表される。
【0047】
特殊飛行ルート生成部70は、得られた飛行パターンと、飛行体位置追跡部61と移動体位置追跡部64とから取得された飛行体3及び地上走行車1との現在位置とに基づいて、監視活動に参加する飛行体3が、当該飛行パターンで示された飛行フォーメーションを倣うべく飛行するための特殊飛行ルートを生成する(#54)。そのような特殊飛行ルートで監視飛行を行っている複数の飛行体3の実際の飛行フォーメーションが
図10に示されている。
図10に示された複数飛行体3の飛行フォーメーションは、簡略されたものであるが、
図9の飛行パターンをベースとした飛行フォーメーションであり、実際は、より複雑な形態となる。また、実際の飛行フォーメーションも三次元空間で表されるものである。
【0048】
特殊飛行ルートに基づく特殊飛行指令が飛行体3に送られると(#55)、全ての飛行体3は特殊飛行指令に基づいて飛行フォーメーションを組んで、飛行を行う。ここで、飛行体3に適用されている飛行パターンが異常事象を監視する異常事象監視移動パターンであっても、あるいは異常事象避難移動パターンであっても、その飛行中に、監視機器33を用いた空中監視が行われる(#56)。このため、監視データ取得部54は、異常事象発生時においても、引き続き、空中監視データを取得することができる(#57)。
【0049】
飛行体3による異常事象発生時の監視が続行しておれば(#58のNo分岐)、ステップ#51からステップ#57までの処理が繰り返される。飛行体3による異常事象発生時の監視が不要または不可能になれば(#57のYes分岐)、この異常事象発生時処理が終了する。
【0050】
地上走行車1に搭載されたカメラユニット132や飛行体3に搭載されたカメラユニット332で取得される撮影画像は、画像処理を施すことにより、異常事象の検知にとって優れたデータとなるが、監視活動では、太陽との位置関係で逆光や暗がりなど撮影条件が不利となることが少なくない。このため、この実施形態では、カメラ本体の姿勢変更だけでは、撮影条件が改善されない場合には、太陽の向き等を考慮して、地上走行車1や飛行体3の姿勢変更、移動ルートや飛行ルートの変更により、撮影条件を改善する制御機能も備えられている。
【0051】
発生した異常事象が大規模であり、また異常事象の広がりが広範囲に及ぶと推定される場合、異常事象の発生現場近くを走行している地上走行車1や異常事象の発生現場近くを飛行している飛行体3だけでは、十分な監視を行うことができない。そのようなケースでは、地上走行車1または監視サービスセンタ100が管理している他の地上走行車1や飛行体3に直接応援要請をするか、あるいは別の監視サービスセンタ100に登録されている地上走行車1や飛行体3に対する応援派遣を別の監視サービスセンタ100を通じて求めることができる。その際には、応援部隊に含まれる地上走行車1や飛行体3との共同監視のための走行ルートや飛行ルートが、適用される。特に、異常事象時飛行パターン記録部71には、共同監視のための飛行ルートを作成するためのベースとなる異常事象監視飛行パターンが記録されている。特殊飛行ルート生成部70は、異常事象の種類や範囲から抽出された最適な異常事象監視飛行パターンと、応援派遣される飛行体数を参照して、共同異常事象監視飛行ルートを作成する。各飛行体3には、共同異常事象監視飛行ルートに基づく飛行指令が与えられる。
【0052】
以上の記載から明らかなように、異常事象が発生した場合、異常事象の種類に応じて、以下に例示するような方策が講じることも可能である。
(1)飛行体3に搭載されたガス検知器331がガス漏れを検知したケース:
飛行体3が搭載したガス検知器331が爆発等の危険性の高いガスのガス漏れを検知すると、当該飛行体3は特殊飛行ルートに基づいて自動的に安全場所へ退避し、制御ユニット2または監視サービスセンタ100にガス漏れの場所及び濃度を通知する。制御ユニット2または監視サービスセンタ100は、他の飛行中の飛行体3や移動中の地上ロボットを含む地上走行車1に対して以下の遠隔制御を行う。
a)風向風速計の計測値とガス漏れ検知場所とガス漏れ濃度を元に推定された異常事象の経時挙動において、飛行体3の走行ルートや地上走行車1の移動ルートが漏洩したガスの爆発下限界濃度(メタンの爆発限界濃度の5~15%)に至る可能性があると判定される場合、着火源になる飛行体3には漏洩ガスの及ばないと判定した直近の安全場所へ退避させ、飛行体3の電源を停止させる。
b)上記以外の飛行体3に対しては、漏洩ガスの影響を安全離隔外から当該箇所を監視するように監視ルートが変更される。
【0053】
(2)構内火災、津波・高潮等の災害発生が発生したケース:
プラント設備監視所の中央監視制御システムからの火災、津波・高潮等の災害発生情報を受信した制御ユニット2または監視サービスセンタ100は、異常事象時飛行パターンや異常事象時移動パターンに基づき、他の飛行中の飛行体3や移動中の地上走行車1に対して以下の指令を与える。
a)火災の放射熱による被害を受ける可能性がある飛行体3には安全離隔外へ退避させ、安全離隔外から火災状況の監視を行わせる。
b)津波・高潮の被害を受ける飛行体3は、飛行高度を上昇させて安全高度から被害状況を監視させる。津波・高潮による浸水被害想定箇所を移動ルートとする地上走行車1は安全な場所に退避させる。
c)上記以外の飛行体3及び地上走行車1に対しては、安全離隔外から当該場所を監視するようにその監視ルートは変更される。
【0054】
(3)監視対象施設(設備)の異常を検知したケース:
監視データにより制御ユニット2または監視サービスセンタ100が監視対象設備の異常事象を検知した場合、待機中や監視活動中の飛行体3及び地上走行車1に対して、異常事象の発生場所付近に接近して、詳細監視を行うように指令する。ここでの詳細点検とは、複数の飛行体3及び地上走行車1が、それぞれ別の角度、距離から異常事象を監視することである。
【0055】
さらに、制御ユニット2または監視サービスセンタ100は、気象情報に連動して飛行体3及び地上走行車1の監視活動を遠隔制御する。例えば、
(a)風向風速計からの計測値が、飛行体3及び地上走行車1の動作保証限界値を超えると推定された場合、該当箇所の飛行体3及び地上走行車1による監視活動をキャンセルする。さらに、飛行体3及び地上走行車1は制御ユニット2または監視サービスセンタ100から点検開始指示を受けた場合は点検を開始する。
(b)地上走行車1の飛行体管理ユニット5または監視サービスセンタ100が気象情報と飛行体3の飛行位置や飛行姿勢とに基づいて、飛行体3に搭載されたカメラユニット332のカメラ本体及び光学センサが太陽の向き、角度により直射日光の影響を受ける可能性があると判定された場合、飛行体3の点検ルートの変更または飛行体3の飛行ルートや飛行体3の姿勢を変更させる飛行指令を飛行体3に与えることができる。
(c)風向風速計からの計測値により、制御ユニット2または監視サービスセンタ100が飛行中の飛行体3に対して追い風または向かい風になると判断した場合、飛行体3のバッテリー消耗対策として当該飛行体3に対して飛行ルートの変更を指令する。
【0056】
〔別実施の形態〕
(1)上述した実施形態では、飛行体3は自動制御飛行体として構成したが、少なくとも部分的にはリモコン操縦されるリモコン制御飛行体として構成されてもよい。リモコン制御飛行体の場合、リモコン操縦時には、飛行指令などの情報は操縦支援情報としてモニタ等を通じてリモコン操作者に報知される。
【0057】
(2)上述の実施形態における異常事象発生時処理では、異常事象発生時には、複数の飛行体3が監視飛行フォーメーションを組んで、監視活動を行うとし、地上走行車1は、安全な場所で待機するとした。しかしながら、地上走行車1も、監視機器13を搭載しているので、異常事象発生場所に近づける場合には、異常事象時移動パターン基づいて作成された特殊移動ルートに基づいて。監視活動に参加してもよい。このことから、地上走行車1のための異常事象時移動パターン記録部や特殊移動ルート生成部が制御ユニット2に備えられてもよい。
【0058】
(3)上述した実施形態では、地上走行車1に搭載される監視機器13及び飛行体3に搭載される監視機器33は、ガス検知器131、331とカメラユニット132、332であったが、その他の機器、例えば気圧センサ、超音波センサ、レーダなどが用いられてもよい。カメラユニット132、332のカメラ本体として、可視光カメラや赤外線カメラなど種々のカメラの利用が可能である。また、複数の種類の監視機器33が、それぞれ複数搭載されてもよいし、一種類の監視機器33だけが搭載されてもよい。
【0059】
(4)上述した実施形態では、経時挙動推定部58は、異常事象決定部55によって決定された異常事象の経時挙動、つまり異常事象の未来予測を行っていたが、さらに、異常事象の過去の推定、つまり異常事象の原因推定、例えば、ガス漏れであれば、ガス漏れ源を推定するように構成されてもよい。さらには、ガス検知器131として、地上走行車1にカメラ型のガス検知器が搭載されてもよい。このカメラ型のガス検知器によって、飛行体3の離陸方向にガス漏れが及んでいないかどうかの確認が可能である。また、ガス検知器331として、飛行体3にレーザ式ガス検知器が搭載されてもよい。このレーザ式ガス検知器により飛行体3の飛行方向にガス漏れが及んでいないかどうかの確認が可能である。また、同一場所の設置されたガス漏れ検知器と風向風速計とからの測定データが取得できる場合、ガス漏れ検知器の濃度値と風向風速計の数値とからガス漏れ箇所とガス漏れ濃度とを推定することも可能である。
【0060】
(5)上述した実施形態では、飛行体管理ユニット5は、地上走行車1に搭載されていたが、地上走行車1から独立して、別な場所、例えば管理サービス会社などに設置されているコンピュータに備えられてもよい。また、飛行体管理ユニット5は、ポータブルなコンピュータに備えられ、自由に移動可能としてもよい。さらには、飛行体管理ユニット5に構築された各機能部は、複数のコンピュータに分散されてもよいし、その一部が、地上走行車1や飛行体3に備えられてもよい。
【0061】
(6)上述した実施形態では、飛行体3が駐機する離着陸用ポート20が地上走行車1に設けられていた。これに代えて、離着陸用ポート20が専用の離着陸用ポート車両に設けられてもよい。また、地上に設置された固定式の離着陸用ポート20が用いられてもよい。
【0062】
なお、上記実施形態(別実施形態を含む、以下同じ)で開示される構成は、矛盾が生じない限り、他の実施形態で開示される構成と組み合わせて適用することが可能であり、また、本明細書において開示された実施形態は例示であって、本発明の実施形態はこれに限定されず、本発明の目的を逸脱しない範囲内で適宜改変することが可能である。
【産業上の利用可能性】
【0063】
本発明は、施設の監視を行う複数の飛行体を管理する飛行体管理システムに適用することができる。
【符号の説明】
【0064】
1 :地上走行車
2 :制御ユニット
3 :飛行体
5 :飛行体管理ユニット
6 :飛行情報管理部
14 :気象情報取得部
15 :監視情報作成部
20 :離着陸用ポート
31 :飛行体自位置算出部
33 :監視機器
331 :ガス検知器
332 :カメラユニット
52 :飛行体自位置取得部
54 :監視データ取得部
55 :異常事象決定部
58 :経時挙動推定部
61 :飛行体位置追跡部
62 :飛行指令生成部
64 :移動体位置追跡部
70 :特殊飛行ルート生成部
71 :異常事象時飛行パターン記録部
100 :監視サービスセンタ