(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-03-29
(45)【発行日】2024-04-08
(54)【発明の名称】表示装置、表示方法、プログラム、記録媒体
(51)【国際特許分類】
G09F 19/18 20060101AFI20240401BHJP
G09F 19/20 20060101ALI20240401BHJP
H05H 1/24 20060101ALI20240401BHJP
G09G 3/02 20060101ALI20240401BHJP
H01S 3/00 20060101ALI20240401BHJP
【FI】
G09F19/18 Z
G09F19/20
H05H1/24
G09G3/02 A
H01S3/00 A
(21)【出願番号】P 2019196784
(22)【出願日】2019-10-29
【審査請求日】2022-10-24
(31)【優先権主張番号】P 2018229461
(32)【優先日】2018-12-06
(33)【優先権主張国・地域又は機関】JP
(31)【優先権主張番号】P 2019023058
(32)【優先日】2019-02-12
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】000001007
【氏名又は名称】キヤノン株式会社
(74)【代理人】
【識別番号】110003133
【氏名又は名称】弁理士法人近島国際特許事務所
(72)【発明者】
【氏名】芦邊 恒徳
(72)【発明者】
【氏名】藤村 秀彦
(72)【発明者】
【氏名】渡部 勝博
(72)【発明者】
【氏名】森本 弘之
(72)【発明者】
【氏名】久保山 俊介
(72)【発明者】
【氏名】西口 敏司
【審査官】金田 理香
(56)【参考文献】
【文献】特開2015-156080(JP,A)
【文献】特許第4891450(JP,B1)
【文献】特表2009-510536(JP,A)
【文献】特開平09-307139(JP,A)
【文献】特開2007-011870(JP,A)
【文献】特開2001-312237(JP,A)
【文献】特開平02-293890(JP,A)
【文献】特開昭57-027290(JP,A)
【文献】特開2003-009184(JP,A)
【文献】特開2009-186654(JP,A)
【文献】特開2003-233339(JP,A)
【文献】特開2007-206588(JP,A)
【文献】特開2010-008163(JP,A)
【文献】中国特許出願公開第103324023(CN,A)
【文献】中国特許出願公開第102854620(CN,A)
【文献】国際公開第2003/069590(WO,A1)
【文献】国際公開第2016/152300(WO,A1)
【文献】米国特許出願公開第2017/0293259(US,A1)
【文献】籾内 正幸,空中可視像形成技術 -スクリーンレス三次元ディスプレイ-,日本画像学会誌,日本画像学会,2017年08月10日,第56巻 第4号,p.360-365
(58)【調査した分野】(Int.Cl.,DB名)
G09F 19/18 - 19/20
H05H 1/00-15/00
H01S 3/00-3/30
G09G 3/02
(57)【特許請求の範囲】
【請求項1】
気体中の位置に波長が380nm以上780nm以下のレーザ光を照射して前記位置にプラズマを形成し、前記位置に、前記レーザ光の照射方向に対して、30°以上、330°以下の角度範囲に前記プラズマにより前記レーザ光を散乱するカラー表示画素を形成する少なくとも1つのレーザ照射装置と、
前記位置において前記カラー表示画素の輝度が変化するよう、前記少なくとも1つのレーザ照射装置が照射するレーザ光の強度を制御する制御装置と、を備え
、
前記制御装置は、前記位置における光強度を380nm以上780nm以下の波長範囲においてCIE1931のXYZ三刺激値に変換した場合に、前記位置において前記プラズマが発するプラズマ光のY値が、前記プラズマ光を除いた前記レーザ光の散乱光のY値の1%以上95%以下の範囲となるよう、前記レーザ照射装置が前記位置に照射するレーザ光の強度を制御する、
ことを特徴とする表示装置。
【請求項2】
気体中の位置に波長が380nm以上780nm以下のレーザ光を照射し、前記位置に、前記レーザ光の照射方向に対して、30°以上、330°以下の角度範囲に前記レーザ光を散乱するカラー表示画素を形成する少なくとも1つのレーザ照射装置と、
前記位置において前記カラー表示画素の輝度が変化するよう、前記少なくとも1つのレーザ照射装置が照射するレーザ光の強度を制御する制御装置と、を備え、
前記少なくとも1つのレーザ照射装置は、前記位置に前記レーザ光を照射して前記位置にプラズマを形成し、
前記制御装置は、前記プラズマが発するプラズマ光を、380nm以上780nm以下の波長範囲においてCIE1931のXYZ三刺激値に変換して、前記プラズマ光のY値を取得し、
前記制御装置は、前記レーザ光が前記プラズマにより散乱された散乱光を、380nm以上780nm以下の波長範囲においてCIE1931のXYZ三刺激値に変換して、前記散乱光のY値を取得し、
前記位置において前記プラズマが発するプラズマ光のY値が、前記散乱光のY値の1%以上95%以下の範囲となるよう、前記レーザ照射装置が前記位置に照射する前記レーザ光の強度を制御する、
ことを特徴とする表示装置。
【請求項3】
前記レーザ照射装置が、可視光レーザ光源と、前記可視光レーザ光源が出力するレーザ光のビーム径を拡大するビームエキスパンダと、前記ビームエキスパンダによりビーム径が拡大されたレーザ光を前記位置に集光する集光装置と、を備える、
ことを特徴とする請求項1または2に記載の表示装置。
【請求項4】
前記レーザ光を走査する走査装置を更に備える、
ことを特徴とする請求項1から3のいずれか1項に記載の表示装置。
【請求項5】
前記レーザ照射装置のレーザ光の照射方向に対して、30°以上、330°以下の角度範囲においては、前記角度範囲の外に比べて前記カラー表示画素の色純度が高い、
ことを特徴とする請求項1から4のいずれか1項に記載の表示装置。
【請求項6】
前記位置における前記レーザ照射装置の照射するレーザ光のパワー密度がプラズマ形成閾値の1.5倍以上4倍以下の範囲となるよう、前記制御装置が前記レーザ光の強度を制御する、
ことを特徴とする請求項1から5のいずれか1項に記載の表示装置。
【請求項7】
前記位置における前記レーザ照射装置の照射するレーザ光のパワー密度を測定する測定器をさらに備え、前記制御装置が前記測定器の測定したパワー密度に基づき、前記レーザ光の強度を制御する、
ことを特徴とする請求項6に記載の表示装置。
【請求項8】
前記プラズマ形成閾値が、前記レーザ照射装置の照射するレーザ光のレーザスポット径、パルス幅、およびレーザ波長、の少なくとも1つに基づき設定されている、
ことを特徴とする請求項6または7に記載の表示装置。
【請求項9】
前記少なくとも1つのレーザ照射装置は複数のレーザ照射装置を有し、前記複数のレーザ照射装置の各々は互いに異なる波長のレーザ光を照射する、
ことを特徴とする請求項1または2に記載の表示装置。
【請求項10】
少なくとも1つのレーザ照射装置から気体中の位置に波長が380nm以上780nm以下のレーザ光を照射して前記位置にプラズマを形成し、
前記位置に前記レーザ照射装置のレーザ光の照射方向に対して、30°以上、330°以下の角度範囲に前記プラズマにより前記レーザ光を散乱するカラー表示画素を発生させ、
前記位置における光強度を380nm以上780nm以下の波長範囲においてCIE1931のXYZ三刺激値に変換した場合に、前記位置において前記プラズマが発するプラズマ光のY値が、前記プラズマ光を除いた前記レーザ光の散乱光のY値の1%以上95%以下の範囲となり、前記カラー表示画素の輝度が変化するよう、前記少なくとも1つのレーザ照射装置が照射するレーザ光の強度を制御する、
ことを特徴とする表示方法。
【請求項11】
少なくとも1つのレーザ照射装置から気体中の位置に波長が380nm以上780nm以下のレーザ光を照射して前記位置にプラズマを形成し、
前記位置に前記レーザ照射装置のレーザ光の照射方向に対して、30°以上、330°以下の角度範囲に前記プラズマにより前記レーザ光を散乱する散乱場を発生させ、
前記位置における光強度を380nm以上780nm以下の波長範囲においてCIE1931のXYZ三刺激値に変換した場合に、前記位置において前記プラズマが発するプラズマ光のY値が、前記プラズマ光を除いた前記レーザ光の散乱光のY値の1%以上95%以下の範囲となり、前記散乱場による散乱光の強度が変化するよう、前記少なくとも1つのレーザ照射装置が照射するレーザ光の強度を制御する、
ことを特徴とする表示方法。
【請求項12】
少なくとも1つのレーザ照射装置から気体中の位置に波長が380nm以上780nm以下のレーザ光を照射し、
前記位置に前記レーザ照射装置のレーザ光の照射方向に対して、30°以上、330°以下の角度範囲に前記レーザ光を散乱するカラー表示画素を発生させ、
前記カラー表示画素の輝度が変化するよう、前記少なくとも1つのレーザ照射装置が照射するレーザ光の強度を制御し、
前記少なくとも1つのレーザ照射装置は、前記位置に前記レーザ光を照射して前記位置にプラズマを形成し、
前記プラズマが発するプラズマ光を、380nm以上780nm以下の波長範囲においてCIE1931のXYZ三刺激値に変換して、前記プラズマ光のY値を取得し、
前記レーザ光が前記プラズマにより散乱された散乱光を、380nm以上780nm以下の波長範囲においてCIE1931のXYZ三刺激値に変換して、前記散乱光のY値を取得し、
前記プラズマ光のY値が、前記散乱光のY値の1%以上95%以下の範囲となるよう、前記少なくとも1つのレーザ照射装置が照射する前記レーザ光の強度を制御する、
ことを特徴とする表示方法。
【請求項13】
少なくとも1つのレーザ照射装置から気体中の位置に波長が380nm以上780nm以下のレーザ光を照射し、
前記位置に前記レーザ照射装置のレーザ光の照射方向に対して、30°以上、330°以下の角度範囲に前記レーザ光を散乱する散乱場を発生させ、
前記散乱場による散乱光の強度が変化するよう、前記少なくとも1つのレーザ照射装置が照射するレーザ光の強度を制御し、
前記少なくとも1つのレーザ照射装置は、前記位置に前記レーザ光を照射して前記位置にプラズマを形成し、
前記プラズマが発するプラズマ光を、380nm以上780nm以下の波長範囲においてCIE1931のXYZ三刺激値に変換して、前記プラズマ光のY値を取得し、
前記レーザ光が前記プラズマにより散乱された散乱光を、380nm以上780nm以下の波長範囲においてCIE1931のXYZ三刺激値に変換して、前記散乱光のY値を取得し、
前記プラズマ光のY値が、前記散乱光のY値の1%以上95%以下の範囲となるよう、前記少なくとも1つのレーザ照射装置が照射する前記レーザ光の強度を制御する、
ことを特徴とする表示方法。
【請求項14】
前記位置における前記少なくとも1つのレーザ照射装置の照射するレーザ光のパワー密度がプラズマ形成閾値の1.5倍以上4倍以下の範囲となるよう前記レーザ光の強度を制御する、
ことを特徴とする請求項10から13のいずれか1項に記載の表示方法。
【請求項15】
前記少なくとも1つのレーザ照射装置は複数のレーザ照射装置を有し、前記複数のレーザ照射装置の各々は互いに異なる波長のレーザ光を照射する、
ことを特徴とする請求項10から14のいずれか1項に記載の表示方法。
【請求項16】
前記レーザ光を走査する、
ことを特徴とする請求項10から15のいずれか1項に記載の表示方法。
【請求項17】
請求項10から16のいずれか1項に記載の表示方法を、コンピュータに実行させるためのプログラム。
【請求項18】
請求項17に記載のプログラムを格納したコンピュータ読み取り可能な記録媒体。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、気体中の照射点に波長が380nm以上780nm以下のレーザ光を照射し、前記照射点に所望の表示色の表示画素を形成する表示装置、および表示方法に関する。
【背景技術】
【0002】
従来より、レーザビームを集光させて空中に画像を描く技術が提案されている。例えば、特許文献1には不可視域のレーザビームにより空気中の気体に絶縁破壊を起こさせて局所的に高密度のプラズマ状態とし、これにより局所的に閃光(プラズマ光)を発生させて表示を行う技術が開示されている。この技術によると、走査手段によってレーザビームを走査し、プラズマ光を発生させる位置を制御し、空中に画像を形成することができる。なお、特許文献1では、プラズマの発生と共に衝撃音が生じることも開示されている。
【0003】
上記のようにプラズマ光を直接、表示に用いる場合、プラズマ光で得られる光は白色であり、表示画像は白黒画像となる。また、特許文献1には、不可視域レーザを集光することにより大気中の所望の表示位置にゆらぎを発生させ、そこに有色のレーザを投射してカラー画像の表示画素として用いることが開示されている。
【0004】
また、特許文献2のように、液体中でプラズマ光を発生させ、レーザの前方側で有色の発光体を視認させるカラー画像形成装置も提案されている。
【先行技術文献】
【特許文献】
【0005】
【文献】特開2003-233339号公報
【文献】特開2009-186654号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
この種のレーザを用いた空中画像の表示は、例えば様々な観察方向から立体像として観察できる3D表示を行える可能性があり、実用に支障のない画像形成方法と装置が望まれている。しかしながら、発明者らの再現実験によると、特許文献1の手法、特に、不可視域レーザを用いて表示位置にプラズマの発生を伴わない気体のゆらぎを発生させ、有色レーザで着色する手法ではカラー、有色の発光体を作成することができなかった。
【0007】
このことから、例えば、ゆらぎ程度の大気の加熱状態では、レーザを散乱させて表示に用いることは非常に困難であることが推察される。一方で、特許文献1に開示されるような閃光と共に衝撃音が生じるようなプラズマ発光体では、プラズマのエネルギー、輝度が非常に高いため着色はかなり困難であることがわかった。また、視認できるほど高い輝度のプラズマを生成する場合は、閃光時に衝撃音が発生するため、例えば、液晶ディスプレイなどのように屋内で気軽に使用できる表示装置を構成するのが難しい、という問題がある。また、特許文献2の技術は、液体、従って、それを収容した容器内での表示であって、例えば、観衆の上空の空中で自在にカラー画像を描画するような用途には用いることができない。
【0008】
以上に鑑み、本発明の課題は、気体中の表示位置に、所定波長域のレーザ光を照射し前記表示位置に、安定して所望の表示色の表示画素を形成できるようにすることにある。
【課題を解決するための手段】
【0009】
本発明の一つの態様は、気体中の位置に波長が380nm以上780nm以下のレーザ光を照射し、前記位置に、前記レーザ光の照射方向に対して、30°以上、330°以下の角度範囲に前記レーザ光を散乱するカラー表示画素を形成する少なくとも1つのレーザ照射装置と、前記位置において前記カラー表示画素の輝度が変化するよう、前記少なくとも1つのレーザ照射装置が照射するレーザ光の強度を制御する制御装置と、を備え、前記少なくとも1つのレーザ照射装置は、前記位置に前記レーザ光を照射して前記位置にプラズマを形成し、前記制御装置は、前記プラズマが発するプラズマ光を、380nm以上780nm以下の波長範囲においてCIE1931のXYZ三刺激値に変換して、前記プラズマ光のY値を取得し、前記制御装置は、前記レーザ光が前記プラズマにより散乱された散乱光を、380nm以上780nm以下の波長範囲においてCIE1931のXYZ三刺激値に変換して、前記散乱光のY値を取得し、前記位置において前記プラズマが発するプラズマ光のY値が、前記散乱光のY値の1%以上95%以下の範囲となるよう、前記レーザ照射装置が前記位置に照射する前記レーザ光の強度を制御する、ことを特徴とする表示装置である。
【0010】
また、本発明の別の一つの態様は、少なくとも1つのレーザ照射装置から気体中の位置に波長が380nm以上780nm以下のレーザ光を照射し、前記位置に前記レーザ照射装置のレーザ光の照射方向に対して、30°以上、330°以下の角度範囲に前記レーザ光を散乱するカラー表示画素を発生させ、前記カラー表示画素の輝度が変化するよう、前記少なくとも1つのレーザ照射装置が照射するレーザ光の強度を制御し、前記少なくとも1つのレーザ照射装置は、前記位置に前記レーザ光を照射して前記位置にプラズマを形成し、前記プラズマが発するプラズマ光を、380nm以上780nm以下の波長範囲においてCIE1931のXYZ三刺激値に変換して、前記プラズマ光のY値を取得し、前記レーザ光が前記プラズマにより散乱された散乱光を、380nm以上780nm以下の波長範囲においてCIE1931のXYZ三刺激値に変換して、前記散乱光のY値を取得し、前記プラズマ光のY値が、前記散乱光のY値の1%以上95%以下の範囲となるよう、前記少なくとも1つのレーザ照射装置が照射する前記レーザ光の強度を制御する、ことを特徴とする表示方法である。
【発明の効果】
【0011】
上記構成により、気体中の表示位置に、所定波長域のレーザ光を照射し表示位置に、安定して所望の表示色の表示画素を形成することができる。
【図面の簡単な説明】
【0012】
【
図1】本発明の実施形態に係る表示装置の概略構成を示した説明図である。
【
図2】本発明の実施形態に係る表示装置の観察視野を示した説明図である。
【
図3】本発明の実施形態に係る表示装置により動画ないし立体画像表示を行う構成例を示した説明図である。
【
図4】本発明の実施形態に係る表示装置の構成例を詳細に示した説明図である。
【
図5】本発明の実施形態に係る表示装置の照射エネルギー密度を分光器の積算時間2msecとして測定した放射エネルギー密度により示した線図である。
【
図6】本発明の実施形態に係る表示装置の照射エネルギー密度を、分光器の積算時間1secとして測定した放射エネルギー密度により示した線図である。
【
図7】本発明の実施形態に係る表示装置のレーザ光波長における放射エネルギー密度とレーザ光のパワーの関係を示した線図である。
【
図8】本発明の実施形態に係る表示装置のレーザ光波長における放射エネルギー密度とレーザ光のパワーの関係を異なる放射エネルギー密度領域で示した線図である。
【
図9】本発明の実施形態に係る表示装置において、波長532nmのレーザで空中に発光体を形成し、照射方向より45°の位置から分光器により200msの間、測定したスペクトルを示した線図である。
【
図10】本発明の実施形態に係る表示装置において、波長532nmのレーザで空中に発光体を形成し、照射方向より45°の位置から分光器により10000msの間、測定したスペクトルを示した線図である。
【
図11】レーザにより空中に形成したプラズマを分光器により測定したスペクトルを示した線図である。
【
図12】CIE1931のXY色度図を示した説明図である。
【
図13】本発明の実施形態に係る表示装置において、波長532nmのレーザにより空中に形成した発光体の観察色をレーザ出力ごとに示した表図である。
【
図14】本発明の実施形態に係る表示装置において、波長532nmのレーザにより空中に形成した発光体の観察色と、その時のプラズマ発光のY値/レーザ波長付近のY値の比率をレーザ出力ごとに示した表図である。
【
図15】本発明の実施形態に係る表示装置において、緑色レーザにより空中に形成した発光体の視認される観察色と、その時のプラズマ発光のY値/レーザ波長付近のY値の比率の詳細を、測定角度ごとに示した表図である。
【
図16】本発明の実施形態に係る表示装置において、青色レーザにより空中に形成した発光体の視認される観察色と、その時のプラズマ発光のY値/レーザ波長付近のY値の比率の詳細を、測定角度ごとに示した表図である。
【
図17】本発明の実施形態に係る表示装置において、赤色レーザにより空中に形成した発光体の視認される観察色と、その時のプラズマ発光のY値/レーザ波長付近のY値の比率の詳細を、測定角度ごとに示した表図である。
【
図18】比較例1において、プラズマ発光のY値/レーザ波長付近のY値の比率が主に5%以下あるいは100%を超える範囲となるよう、緑色レーザにより空中に形成した発光体の観察色を、測定角度ごとに示した表図である。
【
図19】比較例2において、プラズマ発光のY値/レーザ波長付近のY値の比率が主に5%以下あるいは100%を超える他の範囲となるよう、青色レーザにより空中に形成した発光体の観察色を、測定角度ごとに示した表図である。
【
図20】比較例3において、プラズマ発光のY値/レーザ波長付近のY値の比率が主に5%以下あるいは100%を超える種々の範囲となるよう、赤色レーザにより空中に形成した発光体の観察色を、測定角度ごとに示した表図である。
【
図21】本発明の実施形態に係る表示装置の制御系の詳細な構成例を示したブロック図である。
【
図22】本発明の実施形態に係るカラー表示装置の概略構成を示した説明図である。
【
図23】本発明の実施形態に係るカラー表示装置により動画ないし立体画像表示を行う構成例を示した説明図である。
【発明を実施するための形態】
【0013】
以下、添付図面を参照して本発明を実施するための形態につき説明する。なお、以下に示す構成はあくまでも一例であり、例えば細部の構成については本発明の趣旨を逸脱しない範囲において当業者が適宜変更することができる。また、本実施形態で取り上げる数値は、あくまでも例である。
【0014】
以下の実施形態1および実施形態2では、カラー空中表示に必要な原色の画素を、可視光レーザの発光色で表示する構成につき説明する。実施形態3では、実施形態1および実施形態2で説明したR、G、B、3原色の可視光レーザをそれぞれ照射するレーザ照射装置を備えたカラー表示装置につき説明する。実施形態3のカラー表示装置によれば、画素の表示位置付近の照射点に照射し、加法混色によって表示位置に任意の発光色を持つカラー画素を表現することができる。
【0015】
[実施形態1]
(レーザ照射装置)
本実施形態の表示装置(画像形成装置)では、所定波長域、特に可視光領域のレーザを使用し、主にその発光色を観察者に視認させる。この所定波長域、可視光領域の波長範囲には諸説あり、また、観察者の個人差も存在すると考えられるが、本実施形態では、便宜上、380nm以上780nm以下の波長域を可視光領域と考える。ただし、後述の数値の例示から0~数十nm程度の範囲で異なる所定波長域(可視光領域)においても、後述の例示と同様の構成あるいは制御を実施してほぼ同様の作用効果を期待できるのはいうまでもない。
本実施形態は、不可視領域のレーザを用いてプラズマを発生させ、そのプラズマ光で表示を行う手法、あるいは、不可視領域のレーザを用いてプラズマを伴わないゆらぎを気体中に発生させて可視光領域のレーザで着色する、等の従来の手法とは異なる。
【0016】
本実施形態の場合、空中、即ち、雰囲気(大気)の気体中に表示させる色は使用するレーザの可視光域の色となる。原理的には、赤、緑、青色をそれぞれ発光するレーザの発光体を、同じ、ないし近接する空中の位置に形成することにより、フルカラーの表示画素を実現でき、多数の表示画素を形成することにより三次元的な立体像を表現することができる。本実施形態は、このフルカラーの表示画素を実現するための基礎となる、単色のレーザ光による表示画素を実現するための構成および制御を取り扱う。
【0017】
表示に用いるレーザについては、高出力のレーザ、即ち短パルスレーザが好適である。短パルスレーザとしては、固体レーザ、ファイバーレーザ、半導体レーザ、ガスレーザなどが知られている。これらのうち、例えば、レーザ安定性が良好な固体レーザ及びファイバーレーザが好ましい、と考えられる。
【0018】
(カラー画像表示のメカニズム)
ここで本実施形態における、立体的なカラー画像表示のメカニズムについて説明する。
図1~
図4に、本実施形態の表示装置(画像形成装置)の概略構成を示す。
図1において、レーザ光源101は後述するような可視光レーザ光源であり、この可視光レーザ光源が照射するレーザビーム201を用いて、表示位置301に表示画素を発生させる。表示画素を発生させると、観察者にとっては表示位置にあたかも発光体が出現したように視認される。しかし、後述するように、表示位置から届いて観察者に視認される光の大部分は、レーザ光源101が出力した可視レーザ光が表示位置に発生させた微弱なプラズマにより、当該可視レーザ光が散乱された散乱光である。観察者にとっては、あたかも発光体が出現したように視認されることから、本明細書では、表示位置にて可視レーザ光が強く散乱されている空間領域を、発光体と記載する場合がある。なお、本明細書では、表示位置において表示される色について、白色以外を有色(ないしカラー)と云うことがある。また、表図などにおいて、便宜上、白色のプラズマ光などを無色と云う場合があるが、これは透明であることを意味するのではなく、単に上記の有色(ないしカラー)ではない、という意味に過ぎない。
【0019】
図1のレーザ照射装置100は、レーザ光源101、ビームエキスパンダ102、偏光板103、ビームスプリッタ104、集光レンズ105(集光装置)を備える。
図1のレーザ光源101は可視光領域、例えば波長532nmのレーザビーム201を発振させる。このレーザビームは凡そ緑色に視認される。このレーザビーム201を
図1に示す光学路に入射する。この光学路は、例えばレーザ径を拡大するビームエキスパンダ102、偏光板103、ビームスプリッタ104(偏光ビームスプリッタ)、集光レンズ105から成る。この光学路は、所定距離にある表示位置、例えば、集光レンズ105の先端から90mmの表示位置にレーザビーム203を集光するよう調整される。ビームエキスパンダ102は、例えば10倍程度にレーザビーム201の径を拡大し、レーザビーム202を得る。ただし、焦点距離により倍率を変更するなどの目的で、ビームエキスパンダ102に他の倍率のものを用いても構わない。
【0020】
図1において、レーザ光源101のレーザ光の照射強度は制御部1010によって制御される。制御部1010は、例えば、レーザ光源101の駆動電力を制御することにより、レーザ光源101のレーザ光の発光強度を制御することができる。また、制御部1010は、実施形態2で詳述するように、偏光板103の偏向方向とビームエキスパンダ102の組合せを変更することにより、レーザ光の照射強度を制御することができる。また、
図1に1021で示したような他のレーザ照射強度の制御手段を配置してもよい。この制御手段1021は、例えば液晶シャッタのように光透過率を変化させることができるような素子により構成することができる。
【0021】
ここで、
図21に、制御部1010を構成する制御系の具体的な構成の一例を示しておく。
図21の制御系は、主制御手段としてのCPU1601、記憶装置としてのROM1602、およびRAM1603を備えたPCハードウェアなどによって構成することができる。ROM1602には、後述する制御手順を実現するためのCPU1601の制御プログラムや定数情報などを格納しておくことができる。また、RAM1603は、その制御手順を実行する時にCPU1601のワークエリアなどとして使用される。また、
図21の制御系には、外部記憶装置1606が接続されている。外部記憶装置1606は、本発明の実施には必ずしも必要ではないが、HDDやSSD、ネットワークマウントされた他のシステムの外部記憶装置などから構成することができる。
【0022】
本実施形態のレーザ出力制御を実現するためのCPU1601の制御プログラムは、上記の外部記憶装置1606や、ROM1602の(例えばEEPROM領域)のような記憶部に格納しておくことができる。その場合、本実施形態の制御手順を実現するためのCPU1601の制御プログラムは、ネットワークインターフェース1607を介して、上記の各記憶部に供給し、また新しい(別の)プログラムに更新することができる。あるいは、後述の制御手順を実現するためのCPU1601の制御プログラムは、各種の磁気ディスクや光ディスク、フラッシュメモリなどの記憶手段と、そのためのドライブ装置を経由して、上記の各記憶部に供給し、またその内容を更新することができる。本実施形態の制御手順を実現するためのCPU1601の制御プログラムを格納した状態における各種の記憶手段、記憶部、ないし記憶デバイスは、本発明の制御手順を格納したコンピュータ読み取り可能な記録媒体を構成することになる。
【0023】
CPU1601には、
図1のレーザ光源101が接続される。
図21では、簡略化のため、レーザ光源101はCPU1601に直接接続されているように図示されているが、周知のインターフェースを介して接続されていてよい。また、レーザ光源101は、ネットワークインターフェース1607、ネットワーク1608を介して接続される構成であってもよい。
【0024】
ネットワークインターフェース1607は、例えばIEEE 802.3のような有線通信、IEEE 802.11、802.15のような無線通信による通信規格を用いて構成することができる。CPU1601は、ネットワークインターフェース1607を介して、他の装置1104、1121と通信することができる。装置1104、1121は、例えば統轄制御装置や、管理サーバなどに相当し、本表示装置の表示を用いた演出などに係る制御やロギングを行う。
【0025】
また、
図21の制御系は、UI装置1604(ユーザーインターフェース装置)を備える。このUI装置1604は、操作部や表示装置から構成される。操作部は、ハンディターミナルのような端末、あるいはキーボード、ジョグダイアル、ポインティングデバイスなどのデバイス(あるいはそれらを備えた制御端末)によって構成することができる。また、表示装置には、例えば液晶方式の他、表示出力できるものであれば任意の方式のディスプレイ装置を用いることができる。
【0026】
UI装置1604の表示装置では、レーザ光源101の駆動条件に係る各種のデータのモニタ表示を行うことができる。また、UI装置1604の表示装置では、本実施形態のレーザ表示装置で、例えば空中に表示している立体画像に対応する表示を出力することもできる。その場合、空中に表示している立体画像に対応する表示とともに、上記のレーザ光源101の駆動条件に係るデータを表示してもよい。
【0027】
図21において、測定器1605は
図4の高速カメラ6、分光器7、カロリメータ8などから成る測定系に相当する。測定器1605は、例えばCPU1601がレーザ照射強度を閉ループ制御によって決定するために用いることができる。測定器1605を構成する高速カメラ6、分光器7、カロリメータ8などについては、後述の実施形態2で詳細に説明する。
【0028】
図2は、集光レンズ105の照射方向(光軸方向)を0°とし、20°、30°、45°…と図中時計廻りに配置した観察角度で分光器による測定を行う様子を示している。ここで、レーザの出力を偏光板103及びビームスプリッタ104を用いて照射エネルギーの調整を行うと、表示位置301に緑色の発光体(レーザ光が強く散乱される空間領域)を視認可能な観察領域があることを確認した(後述の
図13)。
【0029】
特に、緑色の発光体を分光器(例えばアバンテス社製、AvaSpec-ULS2048CL)で、光源からの距離50mm、
図2の測定角度が45°の位置でレーザ出力1500mWのとき200msの時間測定したところ
図9のようなスペクトルを得た。
図9のスペクトルでは、特に光源である532nm付近の光が、他の波長域よりも強く検出されており、この表示(観察)方向における観察者の緑色の表示色の視認色と一致する。
【0030】
しかしながら、緑(532nm)レーザを集光して空中に緑色の発光体(レーザ光が強く散乱される空間領域)を形成するには、特定の条件が必要である。例えば、
図9の分光測定データを確認すると、わずかながら、他の可視光領域にも発光が含まれていることが判る。この光は微弱であるため、10000ms(10秒)の間、分光測定を行い、その結果をグラフ化した線図を
図10に示す。この
図10で判ることは、比較的広汎な可視光領域に光が発生していることである。一方、
図11は、特許文献1に見られるような閃光と共に衝撃音が生じるような強度のプラズマ発光体を測定したものである。
図10および
図11を比較すると波形の形状が似通っており、
図10に示す本実施形態の測定では、微弱なプラズマ発光が発生していると考えられる。
【0031】
即ち、空中に有色(例えば緑色)として視認可能な発光体を形成する条件の1つは、可視光レーザにより出力を制御し、微弱なプラズマ領域を空中に発生させること、と考えてよい。この微弱なプラズマは屈折率が気体(本実施形態では空気)とわずかに異なることで、光の散乱場を作ることができ、その散乱場に有色(緑色)のレーザが散乱され、有色(緑色)の発光体が確認できると考えられる。このように微弱なプラズマを利用し発光体を形成する手法によると、通常のオフィス環境などにおいても、プラズマ発生に起因する騒音をほぼ発生させずに、通常のディスプレイ装置、例えば液晶ディスプレイなどと同じような用途で使用することができる。
【0032】
発明者らは、観察者が有色(緑色)の発光体を確認できる、プラズマ光の発光強度と可視光レーザの散乱光強度の組合せの条件を実験した結果、
図14に示すような結果を得た。この実験では、380nm以上780nm以下の波長範囲において、波長1nm毎の発光強度をCIE1931のXYZ三刺激値に変換したときのプラズマ光のみの発光のY値とプラズマ光を除いた可視光レーザの散乱光Y値の比率を評価した。
【0033】
そして、発明者らの実験によると、平均的な観察者に有色(緑色)の発光体を視認させるには、プラズマ光のみの発光のY値が、プラズマ光を除いた可視光レーザの散乱光Y値の1%以上95%以下となるようレーザ照射条件を制御することが必要であった。例えば、プラズマ光のみの発光のY値が1%より小さい場合にはプラズマの散乱場が弱く、レーザ散乱も弱いので、観察者には有色の散乱光が見えにくい、と考えられる。より好ましくは25%以上であり、25%以上であれば有色の発光体が目視しやすくなる。また、プラズマ光のみの発光のY値が95%を超えた場合にはプラズマの発光強度が強すぎて、有色の散乱光がプラズマの白色光の強度に比べて小さくなり、有色が混合されていたとしても、観察者には白色光として認識される、と考えられる。プラズマ光を除いた可視光レーザ(
図9:緑の場合)の散乱光のY値を算出する場合、有色(緑色)のレーザの散乱光そのもののY値を測定する。そのため、532nmのレーザを用いる場合、
図2のように配置する分光器の出力としては、レーザ波長の前後10nm(この場合は522nmから542nm)の出力データを使用し、それ以外の出力データは0とする。
【0034】
プラズマ光のみの発光のY値については、有色が確認される条件下では微弱なため、測定時間を例えば10000msとして積算することによってプラズマ光が確認できる。しかしながら、この測定では、有色のレーザが相対的に強くなるため、
図10のように515nmから603nm付近まで有色レーザの光強度の裾野が拡大するが、この時のXYZ値を算出するとレーザ光を多く含むものになる。これは、プラズマ光に対しレーザ光が強すぎるため、レーザ波長に近い波長領域にレーザ光が影響を及ぼしてしまうためである。このとき、532nmのみの光強度を除去したとしても裾野部分の光強度が強すぎるため、プラズマ光のみのY値とは異なってしまう。そこで、プラズマ光のみのY値を算出するため、分光器の出力するスペクトルの波形を確認し、10nmの範囲内で波長が長い側の光強度(本実施形態の装置ではカウント数)が2倍になる波長を確認する。本実施形態に係る実験では、515nmのカウント数が1061、505nmのカウント数が521であった。
【0035】
次に、分光器の出力するスペクトルの波形を確認し10nmの範囲内で波長が長い側の光強度(本実施形態の装置ではカウント数)が1/2倍になる波長を確認する。本実施形態に係る実験では、603nmのカウント数が1190で613nmのカウント数が212であった。この時、レーザの波長は532nmであるが、積算による裾野の広がりは515nmから603nmと広いものであった。
【0036】
これを取り除いて0にした場合、プラズマのみのY値より低く算出されるため、プラズマのみの波形カーブ(例えば
図11)となるように、
図10の波形に波長が短い側は505nm、波長が長い側は613nm付近を結ぶ直線501を引く。そして、この直線501を用いて、波長が短い側は505nm、波長が長い側は613nmのカウントの値からその間の1nm毎の値を含んだ数値を得る。本実施形態の
図10では、有色レーザの測定(
図9)の50倍の時間、測定したので、それぞれの波長のカウント数は1/50としてXYZを算出し、プラズマ発光のY値の測定値を得る。
【0037】
また、プラズマ発光が強い場合で、有色レーザの散乱光強度がプラズマの光に埋もれるような条件においては、測定時間を伸ばす必要はない。ここで、CIE1931のXYZ値(三刺激値)とは可視光域のそれぞれの光の波長の強さを人間の目の感度から実験的に算出された赤、緑、青の色の強度を示す指標であり、特にY値については色の明るさを表す指標とされている。
【0038】
本実施形態において、表示状態を各波長での光の強さではなく、XYZ三刺激値で評価するのは、あくまでも人間の色として認識する状態が重要だからであり、XYZ三刺激値は人間が色及び光の強さを表す手段として最適であるためである。
【0039】
次に、発光体から届く光の方向依存性について考察する。本実施形態において、前方散乱方向とは、
図2の402に示すように、集光レンズ105の光軸方向に対し、0°から30°未満、および330°から0(360)°の範囲をいう。一方、
図2の401は、本実施形態において、表示位置301で散乱されるレーザ光を高い色純度で観察できる好適な表示角度範囲で、上記の前方散乱方向(402)を除いた30°以上、330°以下の範囲に相当する。
【0040】
不可視域レーザによるプラズマ発光実験において空中に発生させたプラズマ発光を上記の前方散乱方向から観察すると、プラズマ発光の白色ではなく緑色が観察されることを発明者らは確認している。この緑色の波長は約500nmである。これは空気中の窒素や酸素の原子ないし分子がプラズマ化したときの発光色と考えられる。前方散乱方向のプラズマ光の色が緑色となる理由は不明であるが、この実験から、表示色を管理するには表示方向(観察方向)が重要であることが判明した。
【0041】
例えば、緑色レーザの照射による発光体を前方散乱方向から観察する場合、レーザ光が散乱した532nmの光と、気体の組成に起因するプラズマ発光の約500nmの光が混色する、と考えられる。これにより、同じ緑色でも発光画素のXYの値が異なるものとなり、意図したレーザ波長のものとは異なる発光色となり、所望の色表現が困難になる。また、他の有色レーザ(例えば赤や青など)の照射による発光体においては、レーザ照射方向に対し0°~30°未満および330°~360°の前方散乱方向では、気体の組成に起因する約500nmのプラズマ発光と散乱光の混色が生じる。このため、表示色の純度が低下する可能性がある。
【0042】
そこで、本実施形態では、レーザ照射方向に対し0°から30°未満および330°から0(360)°の前方散乱方向を除く範囲を表示方向とする。これにより混色が起こらず、表示装置の有色レーザそのものの発光色を表示色としてユーザに観察させることができる。
【0043】
即ち、本実施形態では、
図2において、表示方向は30°以上330°以下とすることが好ましい。そのためには、例えば、
図2のような光軸配置においては、30°以上135°以下、および225°以上330°以下の範囲からしか発光体を観察できないよう、表示を視認する観衆(観察者群)を配置するためのガイドを設ける。あるいは、表示を視認する観衆(観察者群)の視野角を、
図2のような光軸配置においては、30°以上135°以下、および225°以上330°以下の範囲に制限するような遮蔽壁、遮蔽板、遮光板、などの遮蔽装置を配置する。
【0044】
このような遮蔽装置を配置することにより、プラズマによる雰囲気の発光との混色に影響されることなく、表示装置の有色レーザそのものの発光色を表示色として使用することができる。なお、特許文献2における液体中の表示では、上記の前方散乱方向の混色を積極的に利用した表示である、と考えられる。空中の画像形成には本発明の画像形成装置の表示方向が好ましい、と考えられる。
【0045】
(発光体の分光測定方法)
上述のようにして空中に形成した発光体を、測定装置として分光器(例えばアバンテス社製、商品名:AvaSpec-ULS2048CL)を使用し、
図2の各測定角度から各波長の光の強さを測定した。レーザ光の波長以外の波長は非常に強度が低いため測定は1nmごとに行う。なお、上記の分光器が出力する各波長の光の強さの数値はカウント数であり輝度とは異なるが光の強度として用いることができる。
【0046】
この測定では、レーザ照射方向(集光レンズ105の光軸方向)を0°とし、20°、30°、45°、90°、135°、225°、270°、315°、330°、340°の各角度で測定した。また、
図2は、光軸を含む平面内の角度を示しているが、測定(観察も同様)を行う角度は、例えば光軸廻りの円周の周方向に関しては任意の角度を選んでも同じである。もちろん、この光軸廻りの測定(観察も同様)を行う周方向の角度は、本発明を限定するものではない。
【0047】
(CIEのXYZ三刺激値およびxyの計算)
XYZ三刺激値の計算方法は分光測定した380nm以上780nm以下の波長域のカウント数をCIEの数値に入れXYZを算出した。算出方法は(CIE 1931 2-deg、 XYZ CMFs)の等色関数を用いて1nmごとのデータを積分する。
【0048】
また、xyはXYZから算出したもので、その計算式を下式(1)、(2)に示す。
【0049】
【0050】
上式(1)、(2)のx、yは色を表し、本実施形態の発光体の色の区分はCIExy色度図(
図12)で判断した。本実施形態においては、xy色度図(
図12)による判断として、白色(無彩色)はxが0.24~0.40、yが0.24~0.41の範囲とした。また赤はxが0.50~0.74、yが0.20~0.35の範囲、緑はxが0~0.23、yが0.40~0.84の範囲、青はxが0.16~0.30、yが0~0.30の範囲として判断した。なお、
図12のようなCIExy色度図は本来、カラー表現によって座標系における発色を表わすものである。しかしながら、本実施形態の
図12では、図示に白黒表現を用いるための便宜として、白色(無彩色)、赤、青、緑の各色が占める凡その座標範囲をそれぞれ示すため、「W」、「R」、「G」、「B」のような文字を色度図中に示してある。
【0051】
(空中画像表示)
レーザを走査して空中に画像を形成する場合、
図3のようなレーザ照射装置100を用いることができる。
図3に示す2つのミラー装置106としては、例えばデジタルガルバノスキャナー(例えばキヤノン株式会社、GM-1020)を2台使用し、そのモータードライバには(例えばキヤノン株式会社、GC-211)等を使用することができる。基本的には有色のレーザビームの径をビームエキスパンダ102により拡大し、所望の表示位置に対応する焦点距離を有する集光レンズ105によって集光させる。これにより、表示位置301に、可視像、即ち、白色ではない、有色の表示画素を形成する。
【0052】
また、光路中に集光点を所望の空中の位置に移動させるミラー装置106を設置しておけば、空中に画像を描画することができる。このミラー装置106には、ガルバノミラー、ポリゴンミラーなどを用いることができる。また、空中に2D/3Dの画像表示を行う場合、表示位置の距離を選択するため、焦点距離を変更するズームレンズや移動式レンズを使用することができる。なお、これらの表示位置の制御には、上記に例示した以外の構成を用いても構わない。
【0053】
以下では、それぞれG(緑)、B(青)、R(赤)の可視波長域のレーザ光源を用いて、そのレーザ発光色とほぼ同じ色の表示画素を表示位置に形成し、観察者に観察させることができる条件を考察する。
【0054】
以下の実施例1~3および比較例1~3においては、以下の各レーザ光源のいずれかを用いている。
【0055】
レーザ光源(L1):緑色、波長532nmの短パルスレーザで、ピーク出力100kw、エネルギー60μJ、繰り返し45kHz、パルス幅650ps、オーテックス社製のHNG-50F(商品名)。
レーザ光源(L2):青色、447nmの短パルスレーザで、他の仕様は上記同様である。
レーザ光源(L3):赤色、635nmの短パルスレーザで、他の仕様は上記同様である。
【0056】
(実施例1)
本例では、緑色のレーザ光源(L1)を用いてレーザ出力を変更しながら45°の角度で分光カーブを測定した。さらに
図2の各観察角度から、分光カーブを測定した。レーザビームを照射し、集光部のエネルギーを偏光板及びビームスプリッタで変えながら、この時の発光体のそれぞれの522nm~542nmのY値とプラズマのY値を比較し出力調整した(発光体の測定位置は45°、距離は50mm)。このときのレーザ出力は1500mWであった。
【0057】
この発光体については、角度30°~330°の観察方向の範囲内において緑色の発光体を確認できた。また、発光体のxy値をXYZ(このXYZはレーザ散乱光とプラズマ発光含む)より算出した結果を
図15に示す。
図15に示すように、この例では、すべて緑色の範囲(緑はxが0~0.23、yが0.40~0.84)を視認できた。このように、発光体のプラズマ光のY値と、レーザ波長付近のY値との比率の選び方により、白色ではなく、レーザの発光色(例えば緑色)を持つ発光体を観察者に視認させることができる。
【0058】
また、角度20°(
図15左端)の観察方向では、緑色であったがレーザの主波長である532nm以外に約500nmの光が観測された。純粋な緑色ではなく2色が混合された色が観測され、そのxy値もやや青側に移動している。このように色が混色してしまうと、赤、緑、青色を用いたフルカラーでの画像表示を行う場合、色の調整が困難となるため、本実施形態では、照射方向(集光レンズ105の光軸方向)を0°としたとき、その±30°の範囲内の観察角度を用いないようにする。そのためには、前述のように、表示を視認する観衆(観察者群)の視野を、30°以上135°以下、および225°以上330°以下の範囲に制限するような遮蔽壁、遮蔽板、遮光板、などの遮蔽装置を配置する。
【0059】
また、0°から30°未満および330°から360°の前方散乱方向においてプラズマ光のみの発光のY値がプラズマ光を除いた可視光レーザの散乱光Y値の95%を超えた場合を調べた。この場合でも、30°以上135°以下、および225°以上330°以下の範囲では、観察色は白色にはならない。これは先に述べた現象が発生しプラズマの白色が発生しないからである。
【0060】
また、
図15の照射条件で緑色の表示画素を形成する場合、騒音はほぼ発生しなかった。例えば、精密騒音計(例えば株式会社アコー製、商品名:TYPE6224)により、発光点から1mの距離で測定した音圧レベルは40dB以下であった。また、
図3の装置でガルバノミラーによりレーザを走査し、緑色の表示画素を用いて、画像を空中に描画することが可能であった。
【0061】
(実施例2)
本例の実施条件は、上記の青色のレーザ光源(L2)を用いたこと以外は実施例1と同じである。本例では、レーザ光源(L2)からレーザビームを発射し、集光部のエネルギーを偏光板及びビームスプリッタで変えながら、この時の発光体のそれぞれの主波長付近のY値とプラズマのY値を比較し95%以下となるように調整した。この結果、
図2の角度30°~330°の観察方向の範囲内において目視で青色の発光体を確認することができた。この時の表示位置の発光体のxy値をXYZ値から算出した結果を
図16に示す。同図に示すように、全て青色の範囲(xが0.16~0.30、yが0~0.30)の発光色が確認された。
【0062】
また、角度20°の観察方向では、青色と緑色の混合色である青緑色が観察された(
図16左端)。レーザの主波長である447nm以外に約500nmの光が発光され、純粋な青色ではなく2色が混合されたものとなっていた。xy値も青側から青緑側に移動した値となっている。青色レーザ光源を用いた場合でも緑色に起因する色が観察されるのは、空気中の気体分子や原子、例えば窒素のプラズマ発光が原因と考えられる。
【0063】
この例から、混色を生じず、また白色ではなく、レーザの発光色(例えば青色)を持つ発光体を観察者に視認させることができる観察角度の範囲は、青色レーザの場合でも緑色レーザと同様の角度範囲で良いことが判る。この角度範囲は、照射方向を0°として、その±30°の範囲内の角度を除いた30°以上135°以下、および225°以上330°以下の範囲である。
【0064】
また、
図16に示した青色レーザの照射条件でも、騒音はほぼ発生せず、精密騒音計(例えば株式会社アコー製、商品名:TYPE6224)により、発光点から1mの距離で測定した音圧レベルは40dB以下であった。また、
図3の装置でガルバノミラーでレーザを走査し、青色の表示画素を用いて、画像を空中に描画することが可能であった。
【0065】
(実施例3)
本例の実施条件は、赤色のレーザ光源(L3)を用いたこと以外は実施例1と同じである。本例では、レーザ光源(L3)からレーザビームを発射し、集光部のエネルギーを偏光板及びビームスプリッタで変えながら、この時の発光体のそれぞれの主波長付近のY値とプラズマのY値を比較し50%以下となるように調整した。この結果、
図2の角度30°~330°の観察方向の範囲内において目視で赤色の発光体を確認した。この時の表示位置の発光体のxy値をXYZより算出した結果を
図17に示す。同図に示すように、全て赤色の範囲(xが0.50~0.74、yが0.20~0.35)の発光色が確認された。
【0066】
また、この例でも角度20°の観察方向では赤色と緑色の混合色である黄色(オレンジ色)が観察された。レーザの波長である635nm以外に約500nm付近の色が混合され、純粋な赤色ではなく2色が混色された色調が観察された。xy値も赤側から黄色側に移動した値となっている。赤色レーザ光源を用いた場合でも緑色に起因する混色が観察されるのは上述同様に、空気中の気体分子や原子、例えば窒素などのプラズマ発光が原因と考えられる。
【0067】
この例から、混色を生じず、また白色ではなく、他の発光色(例えば赤色)を持つ発光体を観察者に視認させることができる観察角度の範囲は、赤色レーザの場合でも緑色レーザと同様の角度範囲で良いことが判る。この角度範囲は、照射方向を0°として、その±30°の範囲内の角度を除いた30°以上135°以下、および225°以上330°以下の範囲である。
【0068】
また、
図17に示した赤色レーザの照射条件でも、騒音はほぼ発生せず、精密騒音計(例えば株式会社アコー製、商品名:TYPE6224)により、発光点から1mの距離で測定した音圧レベルは40dB以下であった。また、
図3の装置でガルバノミラーによりレーザを走査し、赤色の表示画素を用いて、画像を空中に描画することが可能であった。
【0069】
(比較例1)
比較例1の評価結果を
図18に示す。緑色のレーザ光源(L1)を用い、実施例1と同じ光学系を使用した。レーザビームを発射し、集光部のエネルギーを偏光板及びビームスプリッタで調整しながら、この時の発光体のレーザ光の主波長付近のY値とプラズマのY値を比較し、前者に対して後者が95%超になるよう調整した。この結果、角度30°~330°の観察方向の範囲内においても、目視で無色(白色)の発光体を確認した。またxy値をXYZより算出した結果は
図18の通りであり、全て緑色の範囲から外れた無彩色(白色)の範囲となった。即ち、緑色レーザを用いているにもかかわらず、主波長付近のY値とプラズマのY値を比較しプラズマのY値が95%付近を超えると観察色は無彩色となってしまう。
【0070】
また、角度20°(
図18左端)の観察方向では緑色が観察された。レーザの主波長である532nmばかりではなく約500nmの発光、即ちレーザ光の色ではない発光色が観察され、その時のxy値も実施例1とは異なる値であった。この波長が約500nmの発光は、上述のように空気中の元素のプラズマ発光と考えられる。
【0071】
また、表示時の騒音に関しては、主波長付近のY値とプラズマのY値を比較し、プラズマのY値が120%を超えるとごくわずかにジリジリ音が聞こえ始めた。プラズマのY値が200%となると、衝撃音と感じられる範囲の騒音が発生し、その音圧レベルは発光点から1mの距離で精密騒音計(株式会社アコー製、商品名:TYPE6224)により測定すると90dB以上であった。
【0072】
また、
図3の装置でガルバノミラーによりレーザを走査し、空中に形成した表示画素を用いて、画像を空中に描画することが可能であったが、その表示色はいずれも無色(白色)であった。
【0073】
(比較例2)
比較例2の評価結果を
図19に示す。この例では、青色のレーザ光源(L2)を用い、実施例1と同じ光学系を使用した。この例でも、レーザビームを発射し、集光部のエネルギーを偏光板及びビームスプリッタで変えながら、この時の発光体のレーザ光の主波長付近のY値とプラズマのY値を比較し、前者に対する後者の値が120%付近となるよう調整した。この結果、角度30°~330°の観察方向の範囲内において目視で無色(白色)の発光体を確認した。またxy値をXYZより算出した結果は
図19の通りであり、全て青色の範囲から外れた無彩色(白色)の範囲となった。即ち、青色のレーザを用いているにもかかわらず、主波長付近のY値とプラズマのY値を比較しプラズマのY値が95%付近を超過すると無彩色となってしまった。
【0074】
また、この例では、角度20°の観察方向では447nm(青)のレーザ照射をしているにも拘らず、500nm付近の発光色、緑色が観察された。この波長が約500nmの発光は、上述のように空気中の元素のプラズマ発光と考えられる。
【0075】
また、表示時の騒音に関しては、主波長付近のY値とプラズマのY値を比較し、プラズマのY値が120%を超えるとごくわずかにジリジリ音が聞こえ始めた。プラズマのY値が200%となると、衝撃音と感じられる範囲の騒音が発生し、その音圧レベルは発光点から1mの距離で精密騒音計(株式会社アコー製、商品名:TYPE6224)により測定すると90dB以上であった。
図3の装置でガルバノミラーによりレーザを走査し、空中に形成した表示画素を用いて、画像を空中に描画することが可能であったが、その表示色はいずれも無色(白色)であった。
【0076】
(比較例3)
比較例3の評価結果を
図20に示す。この例では、赤色のレーザ光源(L3)を用い、実施例1と同じ光学系を使用した。この例でも、レーザビームを発射し、集光部のエネルギーを偏光板及びビームスプリッタで変えながら、この時の発光体のレーザ光の主波長付近のY値とプラズマのY値を比較し、前者に対して後者が120%付近となるよう調整した。この結果、角度30°~330°の観察方向の範囲内において目視で無色(白色)の発光体を確認した。またxy値をXYZより算出した結果を
図20の通りであり、全て赤色の範囲から外れた無彩色(白色)の範囲となった。即ち、赤色のレーザを用いているにもかかわらず、主波長付近のY値とプラズマのY値を比較しプラズマのY値が95%付近を超過すると無彩色となってしまうことがわかった。
【0077】
また、この例では、角度20°や340°の観察方向では635nm(赤)のレーザ照射をしているにも拘らず、黄緑色が観察された。この、波長が赤よりも黄色、緑側に寄った発光は、上述のように空気中の元素のプラズマ発光と考えられる。
【0078】
この例の照射強度の範囲でも、表示時の騒音に関しては、主波長付近のY値とプラズマのY値を比較し、プラズマのY値が120%を超えるとごくわずかにジリジリ音が聞こえ始めた。プラズマのY値が200%となると、衝撃音と感じられる範囲の騒音が発生し、その音圧レベルは発光点から1mの距離で精密騒音計(株式会社アコー製、商品名:TYPE6224)により測定すると90dB以上であった。
【0079】
また、
図3の装置でガルバノミラーによりレーザを走査し、空中に形成した表示画素を用いて、画像を空中に描画することが可能であったが、その表示色はいずれも無色(白色)であった。
【0080】
[実施形態2]
(プラズマ形成閾値の測定)
図4に、測定およびレーザ出力制御系を含む表示装置の構成例を示す。
図4は、1色分のレーザ照射装置の構成のみを示しているが、後述の実施形態3において、レーザ照射装置1001~1003(
図22、
図23)にはそれぞれ
図4に示したものと同じ構成を適用できる。後述の実施形態3で示すカラー表示装置は、RGB3色のレーザは同軸照射ではなく、また、各々が結像される照射点は仮想的な表示画素の周囲の異なる位置に置かれる。従って、後述のレーザ照射装置1001~1003(
図22、
図23)の各々が、下記のような測定系を備えることにより、RGB各色の照射系は独立してレーザ照射強度を制御することができる。この点は、実施形態3のように、非同軸、空間的に独立した照射点を用いたレーザ照射方式により得られるメリットの1つである。
【0081】
図4のレーザ光源1には例えばYAGレーザを用い、そのレーザ波長は、可視光波長として2倍高調波である532nmを採用した。レーザ光源1のパルス幅は0.65ns、繰り返し周波数は12kHzとし、ビーム出射部でのビーム径はφ2mmとした。レーザ光源1で発生させる偏光はS偏光レーザを用いた。レーザ光源1のレーザ光はビームエキスパンダ2に入射される。
【0082】
ビームエキスパンダ2の後段には、出射するレーザのエネルギーを制御し、また、表示に用いる偏光成分を制御するため、1/2波長板3と偏光ビームスプリッタ(PBS)4が配置されている。1/2波長板3は、例えば回転駆動により所望のビーム偏向角を選択できる角度が可変な1/2波長板から構成する。1/2波長板3の回転角度は、制御部1010のCPU1601により制御できるものとする。1/2波長板3の回転角度は、例えば、1/2波長板3の光軸に対してθに設定すると偏光面が2θとなる。このようにして1/2波長板3により、レーザ光源1で発振されたS偏光のレーザがP偏光成分をもつことができる。偏光ビームスプリッタ(PBS)は例えば入射したP偏光成分を出射方向へ透過し、S偏光成分を全反射する光学素子である。
【0083】
従って、制御部1010のCPU1601で1/2波長板3の回転角度を制御することにより、偏光ビームスプリッタ4(PBS)から出射されるレーザビームのエネルギーを変更することができる。表示位置BPに集光させるレーザ出力を変更させるには、制御部1010のCPU1601がレーザ光源1の駆動条件を変更する手法を用いても良い。また、
図1に1021で示したような他のレーザ照射強度の制御手段を配置してもよい。この制御手段1021は、例えば液晶シャッタのように光透過率を変化させることができるような素子により構成することができる。所望の有色の表示画素を表示位置BPに形成するために必要なレーザ照射強度の制御手段としては、以上のような手段を用いることができる。
【0084】
また、
図4のレーザ照射装置100では、空中の所望の距離にある表示位置BPに表示画素を形成するため、ビームエキスパンダ2と、集光レンズ5が用いられている。ビームエキスパンダ2は、ビーム径を拡げるための光学素子で、本実施形態では例えば拡大倍率が9倍のものを用いた。集光レンズ5の焦点距離は60mmである。表示画素を形成する表示位置BPの距離を可変とする場合には、集光レンズ5をモータなどにより制御可能なズーム光学系とし、焦点距離を変更する構成を用いる。上述のレーザ照射強度の制御手段のいずれかあるいはその任意の組合せを用いて、エネルギーを調整したレーザを集光レンズ5で所望の表示位置BPに集光し、高エネルギー密度領域を形成する。
【0085】
図9で説明したようなレーザ照射強度は、
図4の構成に測定器として配置した高速カメラ6、分光器7、カロリメータ8などから成る測定系を用いて測定した。実際の表示用途では、表示位置BPへのレーザ照射強度は予め行った実験などにより選択したレーザ駆動条件などを用いて開ループで制御してもよい。
【0086】
また、実際に運用する表示装置においても、高速カメラ6、分光器7、カロリメータ8のような測定器を設けておき、表示位置BPへのレーザ照射強度を閉ループ制御によって制御することができる。空気(大気)中のプラズマの形成条件は、気圧や温、湿度、あるいはさらにレーザ光源1の照射波長などにより影響される可能性がある。そのため、表示位置BPへのレーザ照射強度を閉ループ制御するために、上記のような測定系を配置しておくことは有用である。
【0087】
高速カメラ6は、発生したプラズマ状態を観察するために用いることができる。分光器7は、発光部から届く光の波長毎の強度を計測するためのファイバープローブ型高速分光器である(例えばアバンテス社製、商品名AvaSpec-ULS2048CL)。カロリメータ8は、集光部のレーザエネルギーを計測するためのものであり、ある測定時間のレーザエネルギーW(単位:J/s)で表示するものである。レーザ光を吸収し熱に変換する原理を利用するものが使用可能である(例えば、オフィール社製のLA40(150)Aのセンサ本体に、StarBright等の制御及び表示器を接続したもの)。
以下にレーザのプラズマ発生形成閾値のエネルギー密度I(単位:W/m
2)を算出する方法を説明する。まず、カロリメータの測定値であるWをレーザの周波数F(単位:Hz)で1パルス当たりのエネルギーJ(単位:J)を算出する。次いで、このエネルギーJをレーザのパルス幅(単位:s)で除することにより、レーザのピーク出力Pp(単位:W)を得る。得られたピークパワーを集光点におけるビームスポット面積Sで除することによりエネルギー密度が得られる。ここで、ビームスポット面積Sは、ナイフエッジ式プロファイラを用いて計測可能である(例えば、コヒーレント社 BEAMMASTER-USB)。この方式は分解能が0.1μmであるので数μmのビーム径でも測定が可能である。また、レーザスポット径d(直径μm)は、集光レンズの焦点距離をf(mm)、レーザ波長をλ(μm)、集光前のレーザビーム径をD(mm)、ビーム品質をM
2、大気の屈折率をnとすると、次の式で算出できる。
d(μm)=4fλM
2/nπD
この値からビームスポット面積Sを算出(S=π・(d/2)
2)しても良い。プラズマ形成されたか否かについては、レーザ集光位置で目視あるいは入射レーザ光の散乱スペクトルを前述した分光器7により確認することができる。
図4の配置では、表示位置BPの前方側にカロリメータ8を配置しているが、予備実験などにおいては、実際に計測する場合は、集光レンズ5の出射部の位置で計測するように配置してもよい。集光レンズ5の出射部でのレーザのエネルギーを調整する事でプラズマ形成閾値のエネルギーを同定できる。
【0088】
図4の構成において、照射したレーザ(波長532nm)のエネルギーと、分光器7によって積算時間2msecで得た、表示位置BPにおける光強度の波長分散の結果を
図5に示す。
図5の測定時間では、入射レーザ光の散乱のみ観測されているような結果が得られている。しかしながら、分光器7の積算時間を1secにし計測してみたところ、
図6のように、入射光である532nm波長以外のブロード(広帯域)な発光スペクトルが観測された。このブロードな発光スペクトルは、プラズマが形成された場合に特有な発光スペクトルである。
【0089】
図4の装置を用いて入射レーザ光のエネルギーに対する発光スペクトルの依存性を計測した結果、プラズマ発光閾値エネルギーは1.1Wであった。また、プラズマ発光が観測されないと入射光である532nmのレーザの散乱が観測されないことも判明した。即ち、入射レーザ光を散乱させて、(有色)表示画素を形成するには、プラズマが形成されることが必要条件である。このプラズマ発光閾値を、表示位置での1パルス当りのエネルギー密度の時間ピーク値として算出すると2.6TW/cm
2であった。入射レーザ光は、集光レンズ5の作用により光軸に沿って進むに従いビーム断面積が絞られていく。そして、ビーム断面積が絞られて表示位置BPにおいてレーザビームのパワー密度が上記閾値を超えると、表示位置BPにおいて微弱なプラズマが発生して可視波長のレーザ光を散乱する。
【0090】
(散乱光強度とレーザパワーとの関係)
図7に、入射レーザ光が散乱された散乱光強度が、レーザ光源1から集光レンズ5を介して照射されるレーザパワーに対してどのように変化するか計測した結果を示す。
図7に示すように、縦軸のレーザ散乱光強度は、レーザパワーの1W付近を境に立ち上り、ほぼレーザパワーが2~4(ないし5)Wの範囲で安定領域を有する。さらに、それ以上のレーザパワー領域では、縦軸のレーザ散乱強度は再び上昇傾向を示す。一方、
図8に
図7に対応したレーザパワー範囲において測定したプラズマ発光スペクトルのピーク値(380nm)におけるプラズマ発光強度を示す。
図8に示すように、プラズマ発光の強度はレーザパワーの増加に伴ない、単純増加傾向を示す。
【0091】
図7、
図8を比較して明らかなように、上記構成では、レーザパワーは、散乱光強度が立ち上った安定領域の中でプラズマ発光の強度がそれ程大きくない範囲である例えば1ないし2W付近を選ぶのが適当と考えられる。
【0092】
ここで、
図4の構成において実施した実験結果の一例を
図13に示す。この実験では、レーザ光源1のレーザ波長は532nm(YAG2倍高調波)、そのパルス幅は0.65nsを用い、ビームエキスパンダ2には9倍のものを用いた。空中のビーム位置を変更しない状態で分光器7で取り込み時間1msで連続10秒間の散乱光強度を計測し、発光体を観測した。
図13では、レーザパワーを変更したときの発光体の見え方が表記されている。
【0093】
図13に示すように、表示位置におけるパワー密度がプラズマ形成閾値に対して1.5倍以上4倍以下の範囲となるよう、CPU1601によりレーザの照射強度を制御することによって、安定して視認可能な散乱光強度を得ることができる。これにより所期の発色(緑)の発光体を表示位置BPに形成することができ、安定した発色状態を得られる。また、
図3に示したような走査系を用いて空間をスキャンしカラー画像を形成しても目標の色を再現良く描画することができた。
【0094】
上記のプラズマ形成閾値は、レーザ照射装置の照射するレーザ光のレーザスポット径、パルス幅、またはレーザ波長、の少なくともいずれか1つに基づき設定しておくことができる。
【0095】
なお、散乱光強度に影響を与える因子としては、レーザ光源自身の出力の安定性や光学系の変動によるビーム形状の変化、あるいは大気の組成や温湿度などが考えられる。しかしながら、実際に運用する表示装置においても、
図4に示した測定系(6~8)を設けておき、レーザの照射強度が上記の範囲となるよう制御することにより、安定した散乱光強度と表示発色を得ることができる。その場合、
図4に示した測定系(6~8)の出力に応じて、表示制御中に閉ループ制御により、レーザの照射強度を決定する制御手法が考えられる。また、装置の初期設定時や保守を行うタイミングで、
図4に示した測定系(6~8)の出力に応じて、表示制御中に閉ループ制御によりレーザの照射強度を決定する制御手法を採用してもよい。
【0096】
[実施形態3]
以上では、カラー空中表示に必要な原色の画素を可視光レーザの発光色の単色で表示する構成につき説明した。以下では、RGB3原色の可視光レーザをそれぞれ独立に制御して照射するレーザ照射装置につき説明する。以下に示すカラー表示装置では、画素の表示位置付近の照射点にRGB3原色の可視光レーザを照射し、加法混色(加色混合)によって表示位置に任意の発光色を持つカラー画素を表現することができる。
【0097】
(装置構成)
本実施形態のカラー表示装置は、
図22ないし
図23に示すように、レーザ照射装置1001、1002、1003を備える。レーザ照射装置1001、1002、1003は、各々、上述の実施形態1および2において
図1~
図4で説明したレーザ照射装置100と同等の基本構成を有する。ただし、レーザ照射装置1001、1002、1003のレーザ光源の発光色は、例えばそれぞれ532nm(緑)、635nm(赤)、447nm(青)の各波長に選ばれる。
【0098】
図22、
図23のカラー表示装置は、各色のレーザ光を画素の表示位置付近の照射点に照射し、散乱光を重畳する加法混色によって表示位置に任意の発光色を持つフルカラーの表示画素を表現する。本実施形態のカラー表示の観察者は人間であり、そのため、空中のカラー画素の発光色は人間の可視光域の色に制御される。本実施形態では、概ね赤(R)、緑(G)、青(B)の各発光色を有するレーザ光を用い、その加法混色によってカラー表現を行う。ただし、上記の発光波長は一例であって、表示画素の加法混色に用いる可視領域のレーザ波長として、装置の用途などに応じて上記の値と異なる波長を選択しても構わない。
【0099】
実施形態1、2で説明したように、532nm(緑)の発光色を持つレーザ光を照射するレーザ照射装置1001の場合、プラズマ発光が強く生じないようにレーザ出力を制御することにより、レーザの発光色からの色ずれが抑制された表示画素を形成できる。その場合、好ましい表示画素の観察方向は
図2で説明した通りである。
【0100】
例えば、レーザ照射装置1001の場合、レーザ出力1500mWに合わせたレーザ光を光源からの距離50mmにある照射点を照射する。そして、照射点に表われる発光体を分光器(AvaSpec-ULS2048CL)を用いて角度45°から200msの時間、測定すると、発光スペクトルには、
図5に示すようなレーザ光の波長532nmに相当するピークが表われる。同様の出力制御によって、レーザ照射装置1002の635nmの赤色レーザについては、照射点(表示位置)に形成される表示画素では、635nm付近の光が強く散乱される。また、レーザ照射装置1003の447nmの青色レーザを用いた場合には、表示位置において447nm付近の光が強く散乱される。
【0101】
図22、
図23に示すように、レーザ照射装置1001、1002、1003を用いて、表示位置3010の表示中心Pの近傍の異なる照射点1011、1012、1013にそれぞれのレーザ光を集光させる。照射点1011、1012、1013に形成される弱いプラズマにより、G、R、B各色のレーザ光を散乱させ、それぞれの照射点付近で、G、R、B各色の発光体を形成する。
【0102】
表示中心Pと、照射点1011、1012、1013の各距離は、観察者の観察距離によっても異なるが、例えば1~数mm程度以内のごく近距離とする。これにより、表示位置3010の発光体を観察している観察者には、各色が混合した状態で認識されることになる。
【0103】
これは加色混合法に基づく原理と同様で、例えば赤い光と緑色の光を重ねると黄色味がかった表示色が得られる。この表示原理は、例えば、二次元ディスプレイなどで微視的には色が重なっていないドット表示であっても各色が充分近接した位置にあれば、適当な観察距離から観察すると、それが加色混合した色として認識されるのと同じである。
【0104】
図22、
図23のようなカラー表示装置によれば、さらに、照射点1011、1012、1013における各色の散乱光強度や散乱を生じさせるプラズマ領域の大きさを適宜調節する。これにより、任意の色を表示可能なカラーピクセルを空中に形成することができる。照射点1011、1012、1013における散乱光強度は各レーザ照射装置1001、1002、1003の出力を調節することにより制御できる。また、発光体の大きさは、集光レンズ1051、1052、1053(
図23)の合焦度を調節することにより制御することが考えられる。
【0105】
各色が分離せずに加色混合した状態で認識できる発光体までの最小距離は、発光強度や表示システムの規模により異なる。離れた位置にいる観察者からみてそれぞれの発光色が影響を及ぼしあう距離であれば加法混色の効果が得られる。
【0106】
例えば、波長532nmのレーザ(YAG2倍高調波)を用い、レーザのパルス幅650ns、拡大率9倍のビームエキスパンダ(2:
図4)を用いて、レーザ出力1500mWで照射して照射点に発光体を形成する。その場合、照射点の発光体の大きさは、数mm以下であるため、複数の発光色を影響させ合うためには、各色の発光体の照射位置が発光体の大きさ以下の距離に近接するよう制御する。
【0107】
(3D表示、ないし空中動画表示)
本発明において空中に3D表示、ないし動画表示を行うためには、画像を形成する形成手段として
図23に示すような照射制御装置を用いる。
図23の照射制御装置は、レーザ照射装置1001、1002、1003が照射するレーザ光の照射方向および/または結像距離を変化させて、表示位置3010を気体中(空間中)の任意の位置に制御するものである。
【0108】
表示位置3010を気体中の任意の位置に制御するため、走査装置1061、1062、1063によって同期的にレーザ照射装置1001、1002、1003が照射するレーザ光を走査させ照射点1011、1012、1013の位置を変更する。レーザ照射装置1001、1002、1003のための走査装置1061、1062、1063には、
図3で説明したように、例えばガルバノミラーやポリゴンミラーを用いることができる。
【0109】
また、表示距離を制御するためには、レーザ照射装置1001、1002、1003の
図1、
図3の集光レンズ105、
図4の集光レンズ5に相当する集光レンズ1051、1052、1053を可変焦点距離のズーム系などから構成すればよい。集光レンズ1051、1052、1053のズーム量は、例えばモータドライブなどにより制御装置(
図21のCPU1601)によって制御できるようにしておく。
【0110】
図23のような構成により空中の任意の3次元位置にある表示位置3010に任意の表示色を有する表示画素を形成できる。また、走査装置1061、1062、1063および集光レンズ1051、1052、1053を制御して、表示画素の位置を次々に変更すれば、空中に画像表示を行うことができる。この画像表示は、2D表現のみならず、観察方向が変れば別の形状に認識される立体(3D)表示としても実施可能である。
【0111】
図23に示すような構成によれば、照射点1011、1012、1013を、表示位置3010の観察色が影響し合う程度に近接させることで、各色の散乱光が任意の割合で混合された表示色を観察者に視認させることができる。また、
図23に示すような構成によれば、各色のレーザの照射点1011、1012、1013は、走査装置1061、1062、1063によって近接させたり離間させたりする微調整が可能である。これにより、発光体の色や輝度を変化させることができる。
【0112】
以下では、
図22ないし
図23のカラー表示装置の混色表示をより詳細に検証すべく、2色ずつのレーザ光を用いた混色表示に関する実施例4、5、6と比較例4につき説明する。以下の実施例および比較例では、レーザ照射装置1001、1002、1003のレーザ光源(L1、L2、L3)には、次のような構成を用いた。なお、ビームエキスパンダ(2:
図4)には拡大率9倍の装置を用いた。また、以下の実施例4~6および比較例において、分光測定には上述同様の分光器(AvaSpec-ULS2048CL)を用いた。
【0113】
レーザ光源(L1):緑色、波長532nmの短パルスレーザで、ピーク出力100kw、エネルギー60μJ、繰り返し45kHz、パルス幅650ps、オーテックス社製のHNG-50F(商品名)。
レーザ光源(L2):青色、447nmの短パルスレーザで、他の仕様は上記同様である。
レーザ光源(L3):赤色、635nmの短パルスレーザで、他の仕様は上記同様である。
【0114】
(実施例4)
レーザ照射装置1001(緑)、レーザ照射装置1003(赤)の2色のレーザ光を照射点1011、1013に照射した。すなわち、照射点1011、1013においてレーザパワー密度がプラズマ生成閾値を超えるようにレーザ光を照射した。照射点1011、1013間の距離は1mm以下の距離に設定した。その結果、観察者には、表示位置3010における表示画素の色は黄色の表示色として認識された。表示画素付近から到達する光の分光スペクトルでは、532nmと635nmに強い発光ピークが確認された。上記光源を用いて
図23の装置で走査装置1061、1063を動かすことにより空中に黄色の立体画像を描くことができた。
【0115】
(実施例5)
レーザ照射装置1001(緑)、レーザ照射装置1002(青)の2色のレーザ光を照射点1011、1012に照射した。すなわち、照射点1011、1012においてレーザパワー密度がプラズマ生成閾値を超えるようにレーザ光を照射した。照射点1011、1012間の距離は1mm以下の距離に設定した。その結果、観察者には、表示位置3010における表示画素の色はシアン色の表示色として認識された。表示画素付近から到達する光の分光スペクトルでは、532nmと447nmに強いピークが確認された。上記光源を用いて
図23の装置で走査装置1061、1062を動かすことにより空中にシアン色の立体画像を描くことができた。
【0116】
(実施例6)
レーザ照射装置1003(赤)、レーザ照射装置1002(青)の2色のレーザ光を照射点1013、1012に照射した。すなわち、照射点1013、1012においてレーザパワー密度がプラズマ生成閾値を超えるようにレーザ光を照射した。照射点1013、1012間の距離は1mm以下の距離に設定した。その結果、観察者には、表示位置3010における表示画素の色はマゼンタ色の表示色として認識された。表示画素付近から到達する光の分光スペクトルでは、447nmと635nmに強いピークが確認された。上記光源を用いて
図23の装置で走査装置1063、1062を動かすことにより空中にマゼンタ色の立体画像を描くことができた。
【0117】
(比較例4)
実施例4~6に示したように、充分近接した照射点に2色のレーザ光を照射することにより、2色の混色表示が行えることが検証された。また、その場合、観察者に観察される色は、まさに加法混色の原理通りであることが検証された。本比較例では、2色のレーザ光の照射点をより離間させた場合につき検証する。尚、本比較例は、加法混色を行う場合の上述した望ましい実施例に対する比較例を示すものであり、本発明の範疇から外れた例を示す意図ではない。本比較例は、混色を生じさせないで表示可能な限界解像度を求める際の指針ともなりえる。
【0118】
本比較例では、レーザ照射装置1001(緑)、レーザ照射装置1003(赤)の2色のレーザ光を10mm離れた照射点に照射した。すなわち、10mm離れた2つの照射点において、それぞれのレーザパワー密度がプラズマ生成閾値を超えるようにレーザ光を照射した。その場合、観察者には、緑と赤の表示画素がそれぞれ独立して視認された。分光測定によっても、10mm離れた2つの照射点から届く光の波長スペクトルではそれぞれ532nm(緑)、635nm(赤)が強く計測され、混色のスペクトルは確認できなかった。理論的には、表示画素の表示中心Pは2つの照射点間の中心であるはずであるが、このように照射点が10mm離間している場合には、観察者に混色表示を視認させることができなかった。
【0119】
以上のように、本実施形態3のカラー表示装置では、気体中の表示位置近傍の異なる(例えば距離1mm以下の)照射点に複数のレーザ照射装置から異なる波長のレーザ光を照射し、照射点に形成したプラズマで散乱させてカラー表示を行うのが望ましい。例えば3原色のレーザ光を用い、加法混色によって任意の表示色の表示画素を空中に形成することができる。
【0120】
また、
図23に示したような照射制御装置を用いてレーザ照射装置が照射するレーザ光の照射方向および/または結像距離を変化させて、表示位置3010を気体中の任意の位置に制御し、任意の表示色の表示画素を形成できる。これにより、空中に2Dのみならず3Dの静止画や動画の画像表示を行うことができる。
【0121】
本発明は、上述の実施形態ないし実施例の構成に限定されることなく、当業者において、装置、システム、ソフトウェアの細部に係る任意の設計変更が可能である。本発明は、上述の実施形態の1以上の機能を実現するプログラムを、ネットワーク又は記憶媒体を介してシステム又は装置に供給し、そのシステム又は装置のコンピュータにおける1つ以上のプロセッサーがプログラムを読出し実行する処理でも実現可能である。また、1以上の機能を実現する回路(例えば、ASIC)によっても実現可能である。
【符号の説明】
【0122】
100、1001、1002、1003…レーザ照射装置、101…レーザ光源、2、102…ビームエキスパンダ、103…偏光板、104…ビームスプリッタ、5、105…集光レンズ、106…ミラー装置、201、202、203…レーザビーム、1011、1012、1013…照射点、1021…制御手段、1051、1052、1053…集光レンズ(ズーム系)、1601…CPU、1602…ROM、1603…RAM、1604…UI装置、1605…測定器。