IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ キヤノン株式会社の特許一覧

特許7463165表示装置、表示装置の制御方法、制御プログラム、記録媒体
<>
  • 特許-表示装置、表示装置の制御方法、制御プログラム、記録媒体 図1
  • 特許-表示装置、表示装置の制御方法、制御プログラム、記録媒体 図2
  • 特許-表示装置、表示装置の制御方法、制御プログラム、記録媒体 図3
  • 特許-表示装置、表示装置の制御方法、制御プログラム、記録媒体 図4
  • 特許-表示装置、表示装置の制御方法、制御プログラム、記録媒体 図5
  • 特許-表示装置、表示装置の制御方法、制御プログラム、記録媒体 図6
  • 特許-表示装置、表示装置の制御方法、制御プログラム、記録媒体 図7
  • 特許-表示装置、表示装置の制御方法、制御プログラム、記録媒体 図8
  • 特許-表示装置、表示装置の制御方法、制御プログラム、記録媒体 図9
  • 特許-表示装置、表示装置の制御方法、制御プログラム、記録媒体 図10
  • 特許-表示装置、表示装置の制御方法、制御プログラム、記録媒体 図11
  • 特許-表示装置、表示装置の制御方法、制御プログラム、記録媒体 図12
  • 特許-表示装置、表示装置の制御方法、制御プログラム、記録媒体 図13
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-03-29
(45)【発行日】2024-04-08
(54)【発明の名称】表示装置、表示装置の制御方法、制御プログラム、記録媒体
(51)【国際特許分類】
   G09G 3/02 20060101AFI20240401BHJP
   G02B 26/10 20060101ALI20240401BHJP
   G02B 30/56 20200101ALI20240401BHJP
   G09F 9/00 20060101ALI20240401BHJP
   G09G 5/00 20060101ALI20240401BHJP
   G09G 5/02 20060101ALI20240401BHJP
   G09G 5/10 20060101ALI20240401BHJP
【FI】
G09G3/02 A
G02B26/10 C
G02B30/56
G09F9/00 357
G09F9/00 366G
G09G5/00 510A
G09G5/00 550C
G09G5/02 Z
G09G5/10 Z
【請求項の数】 16
(21)【出願番号】P 2020061432
(22)【出願日】2020-03-30
(65)【公開番号】P2020181188
(43)【公開日】2020-11-05
【審査請求日】2023-03-28
(31)【優先権主張番号】P 2019084270
(32)【優先日】2019-04-25
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】000001007
【氏名又は名称】キヤノン株式会社
(74)【代理人】
【識別番号】110003133
【氏名又は名称】弁理士法人近島国際特許事務所
(72)【発明者】
【氏名】久保 裕之
(72)【発明者】
【氏名】芦邊 恒徳
(72)【発明者】
【氏名】藤村 秀彦
【審査官】石本 努
(56)【参考文献】
【文献】特開2003-009184(JP,A)
【文献】特開2009-186654(JP,A)
【文献】米国特許出願公開第2017/0293259(US,A1)
【文献】米国特許出願公開第2016/0259298(US,A1)
【文献】特開2015-156080(JP,A)
【文献】特開2005-309162(JP,A)
【文献】特開2013-250407(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G02B26/10-30/60
G09F9/00
G09G3/00-3/08
3/12
3/16
3/19-3/26
3/30
3/34
3/38-5/42
(57)【特許請求の範囲】
【請求項1】
気体中の表示位置に所定波長域のレーザ光を照射し、前記表示位置にプラズマを形成するレーザ照射装置と、
前記表示位置と、前記表示位置で散乱または前記表示位置を通過したレーザ光の強度と、に基づき空間を決定する制御装置と、
前記空間における物体を検出する物体検出装置と、を備え
前記制御装置は、前記物体検出装置の検出結果に基づいて前記レーザ照射装置のレーザ光の照射を停止、またはレーザ出力を低減させる表示装置。
【請求項2】
請求項1に記載の表示装置において、前記物体検出装置が前記空間に前記物体を検出した場合、前記制御装置は、前記レーザ照射装置の出力を停止または低減させ、前記空間の位置又は形状を変更する表示装置。
【請求項3】
請求項1または2に記載の表示装置において、前記制御装置は、前記空間の位置又は形状を、前記レーザ照射装置のレーザ出力、レーザパルス幅、レーザパルスの繰り返し周波数、レーザ光のビーム径、焦点距離のうち少なくとも1つに応じて決定する表示装置。
【請求項4】
請求項1乃至3のいずれか1項に記載の表示装置において、前記空間の形状が前記レーザ光の照射光軸を中心軸とする回転体である表示装置。
【請求項5】
請求項1乃至4のいずれか1項に記載の表示装置において、前記制御装置が、前記空間の外縁部における光の強度が所定値になるよう前記レーザ照射装置の照射するレーザ光の照射強度を制御する表示装置。
【請求項6】
請求項5に記載の表示装置において、前記レーザ照射装置の照射するレーザ光の、前記表示位置におけるエネルギー密度を測定する測定器を備え、前記制御装置が、前記測定器の測定したエネルギー密度に基づき、前記レーザ光の照射強度を制御する表示装置。
【請求項7】
請求項1乃至6のいずれか1項に記載の表示装置において、前記物体が生体であり、前記物体検出装置が生体センサである表示装置。
【請求項8】
請求項1乃至7のいずれか1項に記載の表示装置において、前記レーザ照射装置が、前記レーザ光の照射光軸の方向を変化させて前記表示位置を変更する走査装置を備えた表示装置。
【請求項9】
請求項8に記載の表示装置において、前記走査装置による前記照射光軸の変化に追従して前記物体検出装置の検出方向を変化させる追従装置を備える表示装置。
【請求項10】
請求項8または9に記載の表示装置において、前記空間の形状が変更された場合に、変更された前記空間の形状に基づき、前記制御装置が、生成する画像の大きさを決定する表示装置。
【請求項11】
請求項1乃至10のいずれか1項に記載の表示装置において、前記制御装置が、前記表示位置における光強度を前記所定波長域を含む波長範囲において波長1nm毎にCIE1931のXYZ三刺激値に変換した場合に、前記プラズマが発するプラズマ光のY値が、前記レーザ光の散乱光のY値の1%以上95%以下の範囲となるよう、前記表示位置に対する前記レーザ照射装置の前記レーザ光の照射強度を制御する表示装置。
【請求項12】
請求項1乃至11のいずれか1項に記載の表示装置において、前記レーザ照射装置が、可視光レーザ光源と、前記可視光レーザ光源が出力するレーザ光のビーム径を拡大するビームエキスパンダと、前記ビームエキスパンダによりビーム径が拡大されたレーザ光を前記表示位置に集光する集光装置と、を備えた表示装置。
【請求項13】
請求項1乃至12のいずれか1項に記載の表示装置において、表示を観察者に視認させる方向を、前記レーザ照射装置のレーザ光の照射方向に対して、30°以上、330°以下の角度範囲に制限する遮蔽装置を備えた表示装置。
【請求項14】
気体中の表示位置に所定波長域のレーザ光を照射し、前記表示位置にプラズマを形成するレーザ照射装置を備えた表示装置の制御方法において、
物体検出装置が、前記表示位置と、前記表示位置で散乱または前記表示位置を通過したレーザ光の強度と、に基づき決定される所定空間における物体を検出する物体検出工程と、
制御装置が、前記物体検出装置が前記所定空間に前記物体を検出した場合、前記レーザ照射装置の出力を停止または低減させ、前記所定空間の位置又は形状を変更する制御工程と、
を含む表示装置の制御方法。
【請求項15】
請求項14に記載の表示装置の制御方法の各工程を前記制御装置を構成するコンピュータに実行させる制御プログラム。
【請求項16】
請求項15に記載の制御プログラムを格納したコンピュータ読み取り可能な記録媒体。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、表示装置、表示装置の制御方法、およびその制御プログラム等に関する。
【背景技術】
【0002】
従来から、レーザビームを空中の表示位置に集光して画像を表示する技術が提案されている。例えば、特許文献1には、レーザビームの照射により局所的にプラズマを形成し、そのプラズマ光を利用する表示方法が開示されている。この技術では、不可視域の波長のレーザビームを照射することにより空気中で局所的な絶縁破壊を生じさせ、局所的に気体が高密度のプラズマ状態を形成し、閃光(プラズマ発光)を生じさせて発光表示を行う。レーザビームを用いて空中に画像を表示するこの種の表示方法には、例えば、様々な方向から観察できる、平面像として観察可能な2D表示もしくは立体像として観察可能な3D表示を行える、等の可能性があり、実用化が期待されている。
【0003】
一般に、レーザビームを取り扱う場合には、人間や周囲環境中の物体を保護する措置が必要である。特に、レーザビームの照射によりプラズマ発光をさせる表示装置の場合には、比較的高出力なレーザビームの照射が必要であり、例えば皮膚や網膜等の人体や、環境中の物体やその塗装、皮膜などを確実に保護できることが求められる。
【0004】
特許文献1には、車体前方の目標位置にレーザビームを集光させてプラズマ発光表示を行う際に、目標位置(レーザビームを集光してプラズマ発光させる位置)に歩行者や他の車両などの物体が検出された場合に、表示を停止する構成が開示されている。
【先行技術文献】
【特許文献】
【0005】
【文献】特開2015-156080号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
特許文献1のように、目標位置(レーザビームを集光してプラズマ発光させる位置)に歩行者や他の車両などの物体が検出された場合に表示を停止する方法によれば、歩行者や他の車両にレーザビームが直接的に集光されることは防止できる。
【0007】
しかしながら、特許文献1の例では、歩行者に対するレーザビームの直接的な集光(照射)は防止できるものの、表示画像を視認する観察者(特許文献1の場合は、自動車の運転者)の保護については考慮されていない。また、特許文献1の方法では、周囲の状況によっては、表示の停止が頻発して、観察者(運転者)にとっての実用性が損なわれる可能性がある。
【0008】
そこで、気体中にプラズマを発生させるほど出力の大きなレーザビームを用いて表示を行う際に、観察者を適切に保護でき、しかも観察者保護のために行う表示停止の頻度を抑制できる方法が求められていた。
【課題を解決するための手段】
【0009】
本発明の第1の態様は、気体中の表示位置に所定波長域のレーザ光を照射し、前記表示位置にプラズマを形成するレーザ照射装置と、前記表示位置と、前記表示位置で散乱または前記表示位置を通過したレーザ光の強度と、に基づき空間を決定する制御装置と、前記空間における物体を検出する物体検出装置と、を備え、前記制御装置は、前記物体検出装置の検出結果に基づいて前記レーザ照射装置のレーザ光の照射を停止、またはレーザ出力を低減させる表示装置である。
【0010】
本発明の第2の態様は、気体中の表示位置に所定波長域のレーザ光を照射し、前記表示位置にプラズマを形成するレーザ照射装置を備えた表示装置の制御方法において、物体検出装置が、前記表示位置と、前記表示位置で散乱または前記表示位置を通過したレーザ光の強度と、に基づき決定される所定空間における物体の有無を検出する物体検出工程と、制御装置が、前記物体検出装置が前記所定空間に前記物体を検出した場合、前記レーザ照射装置の出力を停止または低減させ、前記所定空間の位置又は形状を変更する制御工程と、を含む表示装置の制御方法である。
【発明の効果】
【0011】
本発明によれば、気体中にプラズマを発生させるほど出力の大きなレーザビームを用いて表示を行う際に、観察者を適切に保護でき、しかも観察者保護のために行う表示停止の頻度を抑制することができる。
【図面の簡単な説明】
【0012】
図1】本発明の実施形態に係る表示装置の概略構成を示した説明図である。
図2】本発明の実施形態に係る表示装置の所定波長レーザで空中に発光体を形成し、分光器により放射エネルギー密度を測定した時の各照射方向と位置を示した説明図である。
図3】本発明の実施形態に係る表示装置により動画表示ないし立体画像表示を行う構成例を示した説明図である。
図4】本発明の実施形態に係る表示装置の構成例を詳細に示した説明図である。
図5】本発明の実施形態に係る表示装置の制御系の詳細な構成例を示したブロック図である。
図6】本発明の実施形態に係る表示制御の流れを示したフローチャート図である。
図7】本発明の実施形態に係る表示装置において、観察者や他の事物の進入制限を行う空間の形状を示した説明図である。
図8】本発明の実施形態に係る表示装置において、波長532nmのレーザで空中に発光体を形成し、照射方向より45°の位置から分光器により200msの間、測定したスペクトルを示した線図である。
図9】本発明の実施形態に係る表示装置において、波長532nmのレーザで空中に発光体を形成し、照射方向より45°の位置から分光器により10000msの間、測定したスペクトルを示した線図である。
図10】レーザにより空中に形成したプラズマを分光器により測定したスペクトルを示した線図である。
図11】CIE1931のXY色度図を示した説明図である。
図12】本発明の実施形態に係る表示装置において、波長532nmのレーザにより空中に形成した発光体の観察色と、その時のプラズマ発光のY値/レーザ波長付近のY値の比率をレーザ出力ごとに示した表図である。
図13】本発明の実施形態に係る表示装置において、緑色レーザにより空中に形成した発光体の視認される観察色と、その時のプラズマ発光のY値/レーザ波長付近のY値の比率の詳細を、測定角度ごとに示した表図である。
【発明を実施するための形態】
【0013】
以下、添付図面を参照して本発明を実施するための形態につき説明する。なお、以下に示す構成はあくまでも一例であり、例えば細部の構成については本発明の趣旨を逸脱しない範囲において当業者が適宜変更することができる。また、本実施形態で取り上げる数値は、例示である。
【0014】
[実施形態]
(レーザ照射装置)
本実施形態の画像表示装置(画像形成装置)では、所定波長域、特に可視光領域のレーザを使用し、主にその発光色を観察者に視認させる。この所定波長域、可視光領域の波長範囲には諸説あり、また、観察者の個人差も存在すると考えられるが、本実施形態では、便宜上、380nm以上780nm以下の波長域を可視光領域と考える。ただし、後述の数値の例示から0~数十nm程度の範囲で異なる所定波長域(可視光領域)においても、後述の例示と同様の構成あるいは制御を実施してほぼ同様の作用効果を期待できるのはいうまでもない。
【0015】
本実施形態の場合、空中、即ち、雰囲気(大気)の気体中に表示させる色は使用するレーザの可視光域の色となる。原理的には、赤色、緑色、青色をそれぞれ発光するレーザの発光体を、同じ、ないし近接する空中の位置に形成することにより、フルカラーの表示画素を実現でき、多数の表示画素を形成することにより三次元的な立体像を表現することができる。本実施形態は、このフルカラーの表示画素を実現するための基礎となる、単色のレーザ光による表示画素を実現するための構成および制御を取り扱う。
【0016】
表示に用いるレーザについては、高出力のレーザ、即ち短パルスレーザが好適である。短パルスレーザとしては、固体レーザ、ファイバーレーザ、半導体レーザ、ガスレーザなどが知られている。これらのうち、例えば、レーザ安定性が良好な固体レーザ及びファイバーレーザが好ましい、と考えられる。
【0017】
(カラー画像のメカニズム)
ここで本実施形態における、カラー画像(発光体)発生のメカニズムについて説明する。図1図4に、本実施形態の表示装置(画像形成装置)の概略構成を示す。図1において、レーザ光源101は後述するような可視光レーザ光源であり、この可視光レーザ光源が照射するレーザビーム201を用いて、表示位置301に表示画素を発生させる。
【0018】
表示画素を発生させると、観察者にとっては表示位置にあたかも発光体が出現したように視認される。しかし、後述するように、表示位置から届いて観察者に視認される光の大部分は、表示位置で発光する光ではなく、表示位置で散乱された可視波長域のレーザ光である。すなわち、レーザ光源が出力した可視波長域のレーザ光が微弱なプラズマを表示位置に発生させ、プラズマにより当該レーザ光が散乱されて観察者に到達するのである。観察者にとっては、あたかも発光体が出現したように視認されることから、本明細書では、表示位置にて可視波長域のレーザ光が強く散乱されている微小な空間領域を、発光体と記載する場合がある。なお、本明細書では、表示位置において表示される色について、白色以外を有色(ないしカラー)と云うことがある。また、表図などにおいて、便宜上、白色のプラズマ光などを無色と云う場合があるが、これは透明であることを意味するのではなく、単に上記の有色(ないしカラー)ではない、という意味に過ぎない。
【0019】
図1に示すレーザ照射装置100は、レーザ光源101、ビームエキスパンダ102、偏光板103、ビームスプリッタ104、集光レンズ105(集光装置)を備える。図1のレーザ光源101は可視光領域、例えば波長532nmのレーザビーム201を発振させる。このレーザビームは目視で確認すると凡そ緑色に視認される。このレーザビーム201を図1に示す光学路に入射する。この光学路は、例えばレーザ径を拡大するビームエキスパンダ102、偏光板103、ビームスプリッタ104(偏光ビームスプリッタ)、集光レンズ105から成る。この光学路は、所定距離にある表示位置、例えば、集光レンズ105の先端から90mmの表示位置にレーザビーム203を集光するよう調整される。ビームエキスパンダ102は、例えば10倍程度にレーザビーム201の径を拡大し、レーザビーム202を得る。ただし、焦点距離により倍率を変更するなどの目的で、ビームエキスパンダ102に他の倍率のものを用いて構わない。
【0020】
本実施形態の表示装置(画像形成装置)は、図1に示すように、物体検出装置として生体センサ107を設けている。この物体検出装置(生体センサ107)は、特定の空間範囲、例えば後述の保護空間404の内側について、物体(生体)の存在や進入の有無を検出する。生体センサ107は、生体の存在や進入を検知できれば、特に方式は限定されない。例えば、静電容量分布や赤外線の反射を用いたセンサ、あるいは、空間中にマトリクス状に検出光(赤外光など)を照射してその遮断によって物体(生体)の進入を検出する光学センサなどを用いることができる。
【0021】
図1において、レーザ光源101のレーザ光の照射強度は制御部1011によって制御される。制御部1011は、例えば、レーザ光源101の駆動電力を制御することにより、レーザ光源101のレーザ光の発光強度を制御することができる。また、制御部1011は、実施形態2で詳述するように、偏光板103の偏光方向とビームエキスパンダ102の組合せを変更することにより、レーザ光の照射強度を制御することができる。また、図1に1012で示したような、他の制御手段を配置してもよい。この制御手段1012は、例えば液晶シャッタのように光透過率を変化させることができる素子により構成することができる。
【0022】
ここで、図5に、制御部1011を構成する制御系の具体的な構成の一例を示しておく。図5の制御系は、主制御手段としてのCPU1601、記憶装置としてのROM1602、およびRAM1603を備えたPCハードウェアなどによって構成することができる。ROM1602には、後述する製造手順を実現するためのCPU1601の制御プログラムや定数情報などを格納しておくことができる。また、RAM1603は、その制御手順を実行する時にCPU1601のワークエリアなどとして使用される。また、図5の制御系には、外部記憶装置1606が接続されている。外部記憶装置1606は、本発明の実施には必ずしも必要ではないが、HDDやSSD、ネットワークマウントされた他のシステムの外部記憶装置などから構成することができる。
【0023】
本実施形態のレーザ出力制御を実現するためのCPU1601の制御プログラムは、上記の外部記憶装置1606や、ROM1602の(例えばEEPROM領域)のような記憶部に格納しておくことができる。その場合、本実施形態の制御手順を実現するためのCPU1601の制御プログラムは、ネットワークインターフェース1607(NIF)を介して、上記の各記憶部に供給し、また新しい(別の)プログラムに更新することができる。あるいは、後述の制御手順を実現するためのCPU1601の制御プログラムは、各種の磁気ディスクや光ディスク、フラッシュメモリなどの記憶手段と、そのためのドライブ装置を経由して、上記の各記憶部に供給し、またその内容を更新することができる。本実施形態の制御手順を実現するためのCPU1601の制御プログラムを格納した状態における各種の記憶手段、記憶部、ないし記憶デバイスは、本発明の制御手順を格納したコンピュータ読み取り可能な記録媒体を構成することになる。
【0024】
CPU1601には、図1のレーザ光源101が接続される。図5では、簡略化のため、レーザ光源101はCPU1601に直接接続されているように図示されているが、周知のインターフェースなどを介して接続されていてよい。また、レーザ光源101は、ネットワークインターフェース1607、ネットワーク1608を介して接続される構成であってもよい。
【0025】
ネットワークインターフェース1607は、例えばIEEE 802.3のような有線通信、IEEE 802.11、802.15のような無線通信による通信規格を用いて構成することができる。CPU1601は、ネットワークインターフェース1607を介して、他の装置1104、1121と通信することができる。装置1104、1121は、例えば統轄制御装置や、管理サーバなどに相当し、本表示装置の表示を用いた演出などに係る制御やロギングを行う。
【0026】
また、図5の制御装置は、UI装置1604(ユーザーインターフェース装置)を備える。このUI装置1604は、操作部や表示装置から構成される。操作部は、ハンディターミナルのような端末、あるいはキーボード、ジョグダイアル、ポインティングデバイスなどのデバイス(あるいはそれらを備えた制御端末)によって構成することができる。また、表示装置には、例えば液晶方式の他、表示出力できるものであれば任意の方式のディスプレイ装置を用いることができる。
【0027】
UI装置1604の表示装置では、レーザ光源101の駆動条件に係る各種のデータのモニタ表示を行うことができる。また、UI装置1604の表示装置の画面には、本実施形態のレーザ表示装置が空中に表示している立体画像に対応する画像を、3D表示することもできる。その場合、空中に表示している立体画像に対応する3D表示とともに、上記のレーザ光源101の駆動条件に係るデータ等を表示してもよい。
【0028】
図5において測定器1605は、図4の高速カメラ6、分光器7(図2の108)、カロリメータ8などから成る測定系に相当する。測定器1605は、例えばCPU1601がレーザ照射強度を閉ループ制御によって決定するために用いることができる。測定器1605を構成する高速カメラ6、分光器7、カロリメータ8などについては後述する。
【0029】
図2は、集光レンズ105の照射方向(光軸方向)を0°とし、30°、45°、90°…と図中、時計廻りに配置した観察角度で分光器108による測定を行う様子を示している。一方、図4では、図1のレーザ光源101、ビームエキスパンダ102、偏光板103およびビームスプリッタ104は、それぞれ参照符号、1、2、3、および4で示している。ここで、レーザの出力を偏光板103(3)及びビームスプリッタ104(4)を用いて照射エネルギーの調整を行うと、表示位置301にレーザ光源101の発光色、例えば緑色の発光体(レーザ光が強く散乱される空間領域)を視認可能な観察領域があることを確認した。
【0030】
特に、緑色の発光体を分光器(例えばアバンテス社製、AvaSpec-ULS2048CL)で、光源からの距離50mm、図2の測定角度が45°の位置でレーザ出力1500mWのとき200msの時間測定したところ、図8のようなスペクトルを得た。図8のスペクトルでは、特に光源である532nm付近の光が、他の波長域よりも強く検出されており、この表示(観察)方向において観察者が視認した緑色の表示色と一致する。
【0031】
しかしながら、緑色(532nm)のレーザを集光して空中に緑色の発光体(レーザ光が強く散乱される空間領域)を形成するには、特定の条件が必要である。例えば、図8の分光測定データを確認すると、わずかながら、他の可視光領域にも発光が含まれていることが判る。この光は微弱であるため、10000ms(10秒)の間、分光測定を行い、その結果をグラフ化した線図を図9に示す。この図9で判ることは、比較的広汎な可視光領域に光が発生していることである。一方、図10は、特許文献1に見られるような閃光と共に衝撃音が生じるような強度のプラズマ発光を測定したものである。図9および図10を比較すると波形の形状が似通っており、図9に示す本実施形態の測定では、微弱なプラズマ発光が発生していると考えられる。
【0032】
即ち、空中に有色(例えば緑色)として視認可能な発光体を形成する条件の1つは、可視光レーザにより出力を制御し、微弱なプラズマ領域を空中に発生させること、と考えてよい。この微弱なプラズマは屈折率が気体(本実施形態では空気)とわずかに異なることで、光の散乱場を作ることができ、その散乱場に有色(緑色)のレーザが散乱され、有色(緑色)の発光体が確認できると考えられる。このように微弱なプラズマを利用し発光体を形成する手法によると、通常のオフィス環境などではプラズマ発生に起因する騒音をほぼ発生させずに、通常のディスプレイ装置、例えば液晶ディスプレイなどと同じような用途で使用することができる。
【0033】
発明者らは、観察者が有色(緑色)の発光体を確認できる、プラズマ光の発光強度と可視光レーザの散乱による発光強度の組合せの条件を実験した結果、図12に示すような結果を得た。この実験では、380nm以上780nm以下の波長範囲において、波長1nm毎の発光強度をCIE1931のXYZ三刺激値に変換したときのプラズマ光のみの発光のY値とプラズマ光を除いた可視光レーザの散乱光Y値の比率を評価した。
【0034】
そして、発明者らの実験によると、観察者に有色(例えば緑色)の発光体を視認させる条件は、プラズマ光のみの発光のY値が、プラズマ光を除いた可視光レーザの散乱光Y値の1%以上95%以下となるよう、レーザ照射条件を制御することが必要であった。例えば、プラズマ光のみの発光のY値が1%より小さい場合にはプラズマの散乱場が弱く、レーザ散乱も弱いので、観察者には有色の散乱光が見えにくい、と考えられる。より好ましくは25%以上であり、25%以上であれば有色の発光体が目視しやすくなる。また、プラズマ光のみの発光のY値が95%を超えた場合には、プラズマの発光強度が強すぎて、有色の散乱光がプラズマの白色光の強度に負け、有色が混合されていたとしても、観察者には白色光として認識される、と考えられる。プラズマ光を除いた可視光レーザ(図8:緑の場合)の散乱光のY値を算出する場合、有色(緑色)のレーザの散乱光そのもののY値を測定する。そのため、532nmのレーザを用いる場合、図2のように配置する分光器の出力としては、レーザ波長の前後10nm(この場合は522nmから542nm)の出力データを使用し、それ以外の出力データは0とする。
【0035】
プラズマ光のみの発光のY値については有色が確認される条件下では微弱なため、測定時間を例えば10000msとして積算することによって、プラズマ光が確認できる。しかしながら、この測定では、有色のレーザが相対的に強くなるため、図9のように515nmから603nm付近まで有色レーザの光強度の裾野が拡大するが、この時のXYZ値を算出するとレーザ光を多く含むものになる。これは、プラズマ光に対しレーザ光が強すぎるため、レーザ波長に近い波長領域にレーザ光が影響を及ぼしてしまうためである。このとき、532nmのみの光強度を除去したとしても裾野部分の光強度が強すぎるため、プラズマ光のみのY値とは異なってしまう。そこで、プラズマ光のみのY値を算出するため、分光器の出力するスペクトルの波形を確認し、10nmの範囲内で波長が長い側の光強度(本実施形態の装置ではカウント数)が2倍になる波長を確認する。本実施形態に係る実験では、515nmのカウント数が1061、505nmのカウント数が521であった。
【0036】
次に、分光器の出力するスペクトルの波形を確認し10nmの範囲内で波長が長い側の光強度(本実施形態の装置ではカウント数)が1/2倍になる波長を確認する。本実施形態に係る実験では、603nmのカウント数が1190で613nmのカウント数が212であった。この時、レーザの波長は532nmであるが、積算による裾野の広がりは515nmから603nmと広いものであった。
【0037】
これを取り除いて0にした場合、プラズマ光のみのY値より低く算出されるため、プラズマ光のみの波形カーブ(例えば図10)となるように、図9の波形に波長が短い側は505nm、波長が長い側は613nm付近を結ぶ直線501を引く。そして、この直線501を用いて、波長が短い側は505nm、波長が長い側は613nmのカウントの値から、その間の1nm毎の値を含んだ数値を得る。本実施形態の図9では、有色レーザの測定(図8)の50倍の時間、測定したので、それぞれの波長のカウント数は1/50としてXYZを算出し、プラズマ発光のY値の測定値を得る。
【0038】
また、プラズマ発光が強い場合で、有色レーザの光強度がプラズマの光に埋もれるような条件においては、測定時間を伸ばす必要はない。ここで、CIE1931のXYZ値(三刺激値)とは、可視光域のそれぞれの光の波長の強さを人間の目の感度から実験的に算出された赤、緑、青の色の強度を用いて示す指標であり、特にY値については色の明るさを表す指標とされている。
【0039】
本実施形態において、表示状態を各波長での光の強さではなく、XYZ三刺激値で評価するのは、あくまでも観察者に色として認識される状態が重要だからであり、XYZ三刺激値は人間が色及び光の強さを表す手段として最適であるためである。
【0040】
次に、発光体から届く光の方向依存性について考察する。本実施形態において、前方散乱方向とは、図2または図7に示すように、集光レンズ105の光軸方向に対し、0°から30°未満、および330°を超えて0(360)°までの範囲(402)の散乱角度をいう。一方、本実施形態において、表示位置301で散乱されるレーザ光を高い色純度で観察できる好適な表示角度範囲は、上記の前方散乱方向(402)を除いた範囲、すなわち集光レンズ105の光軸方向に対して30°以上、330°以下の範囲である。
【0041】
なお、図2に示す破線、あるいは図7に示す実線は、後述の保護モードに係る保護空間404の外縁の形状を示す。保護空間404と保護モードに関しては、後に図6図7などを参照して詳細に説明する。
【0042】
不可視域レーザの発光実験において空中に発生させたプラズマ発光を上記の前方散乱方向から観察すると、プラズマ発光体の白色ではなく緑色となることを発明者らは確認している。この緑色の波長は約500nmである。これは空気中の窒素や酸素の原子ないし分子がプラズマ化したときの発光色と考えられる。前方散乱方向のプラズマ光の色が緑色となる理由は不明であるが、この実験から、表示色を管理するには表示方向(観察方向)が重要であることが判明した。
【0043】
例えば、緑色レーザの照射による発光体を前方散乱方向から観察する場合、レーザ光が散乱した532nmの光と、気体の組成に起因するプラズマ発光の約500nmの光が混色する、と考えられる。これにより、同じ緑色でも発光画素のXYの値が異なるものとなり、意図したレーザ波長のものとは異なる発光色となり、所望の色表現が困難になる。また、他の有色レーザ(例えば赤や青など)の照射による発光体においては、レーザ照射方向に対し0°~30°未満および330°~360°の前方散乱方向では、気体の組成に起因する約500nmのプラズマ発光と散乱光の混色が生じる。このため、表示色の純度が低下する可能性がある。
【0044】
そこで、本実施形態では、レーザ照射方向に対し0°から30°未満および330°から0(360)°の前方散乱方向を除く範囲を表示方向とする。これにより混色が起こらず、表示装置の有色レーザそのものの発光色を表示色としてユーザに観察させることができる。
【0045】
即ち、本実施形態では、図2において、表示方向は30°以上330°以下とすることが好ましい。そのためには、例えば、図2のような光軸配置においては、30°以上135°以下、および225°以上330°以下の範囲からしか発光体を観察できないよう、表示を視認する観衆(観察者群)を配置する。あるいは、表示を視認する観衆(観察者群)の視野角を、図2のような光軸配置においては、30°以上135°以下、および225°以上330°以下の範囲に制限するような遮蔽壁、遮蔽板、遮光板、などの遮蔽装置を配置する。
【0046】
このような遮蔽装置を配置することにより、プラズマによる雰囲気の発光との混色に影響されることなく、表示装置の有色レーザそのものの発光色を表示色として使用することができる。
【0047】
(発光体の分光測定方法)
上述のようにして空中に形成した発光体を、測定装置として分光器(例えばアバンテス社製、商品名:AvaSpec-ULS2048CL)を使用し、図2の各測定角度から各波長の光の強さを測定した。レーザ光の波長以外の波長は非常に強度が低いため、測定は1nmごとに行う。なお、上記の分光器が出力する各波長の光の強さの数値はカウント数であり、輝度とは異なるが光の強度、例えば分光放射照度と同等に光の強度として取り扱ってよい。
【0048】
この測定では、レーザ照射方向(集光レンズ105の光軸方向)を0°とし、20°、30°、45°、90°、135°、225°、270°、315°、330°、340°の各角度で測定した。また、図2は、光軸を含む平面内の角度を示しているが、測定(観察も同様)を行う角度は、例えば光軸廻りの円周の周方向に関しては任意の角度を選んでも同じである。もちろん、この光軸廻りの測定(観察も同様)を行う周方向の角度は、本発明を限定するものではない。
【0049】
(CIEのXYZ三刺激値およびxyの計算)
XYZ三刺激値の計算方法は分光測定した380nm以上780nm以下の波長域のカウント数をCIEの数値に入れXYZを算出した。算出方法は(CIE 1931 2-deg、 XYZ CMFs)の等色関数を用いて1nmごとのデータを積分する。
また、xyはXYZから算出したもので、その計算式を下式(1)、(2)に示す。
【0050】
【数1】
【0051】
上式(1)、(2)のx、yは色を表し、本実施形態の発光体の色の区分はCIExy色度図(図11)で判断した。本実施形態においては、xy色度図(図11)による判断として、白色(無彩色)はxが0.24~0.40、yが0.24~0.41の範囲とした。また赤はxが0.50~0.74、yが0.20~0.35の範囲、緑はxが0~0.23、yが0.40~0.84の範囲、青はxが0.16~0.30、yが0~0.30の範囲として判断した。なお、図11のようなCIExy色度図は、本来、カラー表現によって座標系における発色を表わすものである。しかしながら、本実施形態の図11では、図示に白黒表現を用いるための便宜として、白色(無彩色)、赤、緑、青の各色が占める凡その座標範囲をそれぞれ示すため、「W」、「R」、「G」、「B」のような文字を色度図中に示してある。
【0052】
(空中画像表示)
レーザを走査して空中に画像を形成する場合、図3のようなレーザ照射装置100を用いることができる。図3に示す2つのミラー装置106としては、例えばデジタルガルバノスキャナー(例えばキヤノン株式会社、GM-1020)を2台使用し、そのモータードライバ(例えばキヤノン株式会社、GC-211)等を使用することができる。基本的には有色のレーザビームの径をビームエキスパンダ102により拡大し、所望の表示位置に対応する焦点距離を有する集光レンズ105によって集光させる。これにより、表示位置301に、可視像、即ち、白色ではない、有色の表示画素を形成する。
【0053】
また、集光点を空中の所望の位置に移動させるミラー装置106を光路中に設置しておけば、空中に画像を描画することができる。このミラー装置106には、ガルバノミラー、ポリゴンミラーなどを用いることができる。また、空中に2D/3Dの画像表示を行う場合、表示位置の距離を選択するため、焦点距離を変更するズームレンズや移動式レンズを使用することができる。なお、これらの表示位置の制御には、上記に例示した以外の構成を用いても構わない。
【0054】
尚、図1に示した生体センサ107が感度指向性を有するなどの事情があれば、3次元空間中で表示位置を走査させる場合には、走査装置による照射光軸の変化に追従して、生体センサ107(物体検出装置)の検出方向を変化させる追従装置を設けておく。
【0055】
(分光放射照度)
緑色のレーザ光源(L1)を用いてレーザ出力を変更しながら、分光器7(108)を集光レンズ105の光軸方向から45°の角度に配置して分光カーブを測定した。さらに、図2に示した各観察角度から、分光器7(108)により分光放射照度を測定した。
【0056】
この時、レーザビームを照射し、集光部のエネルギーを偏光板及びビームスプリッタで変えながら、この時の発光体のそれぞれの522nm~542nmのY値とプラズマのY値を比較し、集光部のエネルギーを調整した。発光体の測定位置は、集光レンズ105の光軸方向から45°の方向で、発光体からの距離は50mmとした。この場合、レーザ出力は1500mWであった。この条件では、観察方向が30°~330°の範囲において、緑色の発光体を確認できた。
【0057】
また、この発光体のxy値をXYZ(このXYZはレーザ散乱光とプラズマ発光含む)より算出した結果を図13に示す。図13に示すように、この例では、すべて緑色の範囲(緑はxが0~0.23、yが0.40~0.84)の発光を視認できた。このように、発光体のプラズマ光のY値と、レーザ波長付近のY値との比率の選び方により、白色ではなく、レーザの発光色(例えば緑色)を持つ発光体を観察者に視認させることができる。
【0058】
また、角度20°(図13左端)の観察方向では、緑色であったがレーザの主波長である532nm以外に約500nmの光が観測された。純粋な緑色ではなく2色が混合された色が観測され、そのxy値もやや青側に移動している。このように色が混色してしまうと、赤、緑、青色を用いたフルカラーでの画像表示を行う場合、色の調整が困難となるため、本実施形態では、照射方向(集光レンズ105の光軸方向)を0°としたとき、その±30°の範囲内の観察角度を用いないようにする。また、照射方向を0°として、その±30°の範囲はレーザ照射方向のほぼ正面の範囲であり、観察者、特にその網膜などを保護する見地からも、この範囲の観察角度を制限する。そのためには、前述のように、表示を視認する観衆(観察者群)の視野を、30°以上135°以下、および225°以上330°以下の範囲に制限するような遮蔽壁、遮蔽板、遮光板、などの遮蔽装置を配置する。
【0059】
尚、集光レンズ105の光軸方向から30°以上135°以下、および225°以上330°以下の範囲では、プラズマ光のみの発光のY値がプラズマ光を除いた可視光レーザの散乱光のY値の95%を超えた場合でも、観察色は白色にはならない。これは、先に述べた現象が発生し、プラズマ光の白色が発生しないからである。また、図13の照射条件で緑色の表示画素を形成する場合、騒音はほぼ発生しなかった。例えば、精密騒音計(例えば株式会社アコー製、TYPE6224)により、発光点から1mの距離で測定した音圧レベルは40dB以下であった。また、図3の装置でガルバノミラーによりレーザを走査し、緑色の表示画素を用いて、画像を空中に描画することが可能であった。
【0060】
また、集光レンズ105の光軸方向から30°以上135°以下、および225°以上330°以下の範囲で、以下のような角度で、分光器108により発光体から100mmの距離から散乱光の放射エネルギー密度の計測を行った。計測結果は次の通りであった。
・45°(=315°)、距離100mmにおいて、200μW/cm/nm以下。
・90°(=270°)、距離100mmにおいて、100μW/cm/nm以下。
・135°(=225°)、距離100mmにおいて、80μW/cm/nm以下。
【0061】
この時に用いた分光器108は、発光体の波長毎の照射照度を計測するファイバープローブ型高速分光器であり、例えばアバンテス社製のAvaSpec-ULS2048CLである。
【0062】
ここで、参考のため、緑レーザポインタ(JIS C6802 クラス2)を使用して,照射方向0°(=レーザ伝播方向から直視)において、同じ分光器108を用いて距離100mmから測定した。その場合、分光放射照度(放射エネルギー密度)は400KμW/cm/nmであった。これより、集光レンズ105の光軸方向から45°(=315°)の観察角度で発光体からの距離100mmにおける散乱光の放射エネルギー密度は、緑レーザポインタ(クラス2)を直視する場合の放射エネルギー密度の20000分の1であることが判る。また、集光レンズ105の光軸方向から135°(=225°)の観察角度で発光体からの距離が100mmにおける散乱光の放射エネルギー密度は、緑レーザポインタ(クラス2)直視の場合の放射エネルギー密度の40000分の1であることが判る。
【0063】
(保護空間)
上記のように、レーザ出力1500mWの照射により形成した発光体の場合、集光レンズの光軸方向から45°(=315°)~135°(=225°)の観察角度範囲内において、発光体からの距離100mmであれば、散乱光の放射照度は比較的小さかった。これより、レーザ光の照射方向(光源から発光体に向けてのレーザ光の進行方向)に対して観察者が側方から表示位置(発光体)を観察する構成であれば、観察者の安全のために行われる表示の中断を抑制できる可能性があると理解できる。
【0064】
ただし、例えば画像信号の輝度情報等に応じてレーザ光の強度を変調すれば、発光体にて散乱されたレーザ光が過大な強度で到達する空間(範囲)が発光体の周囲に生じる可能性があり、しかもレーザ光強度を変調すればその空間の大きさは変化し得る。観察者を保護する観点に鑑みれば、特許文献1のように、レーザ光を合焦させる表示位置(プラズマ発生位置)における人の存否だけを検知して表示の断続を制御したのでは不十分である。すなわち、レーザ光を合焦させる表示位置(プラズマ発生位置)だけではなく、表示位置にて散乱されたレーザ光や表示位置を通過したレーザ光が高い強度で到達し得る空間における人の存在や当該空間内への人の進入を検知して、表示を制御するのが望ましい。
【0065】
例えば、表示位置の発光体から種々の方向に散乱する散乱光の強度が、所定の放射照度(放射エネルギー密度)以上である空間を保護空間(所定空間)とし、その保護空間内へ進入する物体(生体)を検出するのが望ましい。
【0066】
そして、保護空間内への物体の進入や存在を検出した場合、レーザ照射装置100のレーザ光の照射を停止、またはレーザ照射装置100のレーザ出力を低減させる保護モードを実行する。
【0067】
ここで、前述した測定結果、すなわち集光レンズの光軸方向(光源から発光体に向けてのレーザ光の進行方向)から45°(=315°)~135°(=225°)の角度範囲において、発光体からの距離100mmにおける放射照度の測定結果を再度評価する。レーザ光の照射方向(発光体に向けてのレーザ光の進行方向)を基準にして、発光体よりも前方側では放射照度が比較的大きく、側方側および後方側では前方側よりも放射照度が小さかった。即ち、発光体の位置を基準にして、レーザ光の照射方向(光源から発光体に向けてのレーザ光の進行方向)に対して45°(=315°)の方向では、散乱光の放射照度が比較的大きく、200μW/cm/nmである。これに対して、レーザ光の照射方向(光源から発光体に向けてのレーザ光の進行方向)に対して90°(=270°)の方向では、散乱光の放射照度が100μW/cm/nmと小さかった。また、レーザ光の照射方向(光源から発光体に向けてのレーザ光の進行方向)に対して135°(=225°)の方向では、放射照度は90°(=270°)の方向よりも更に小さな80μW/cm/nmとなっている。
【0068】
ここで、観察角度に依存して、散乱光の放射照度が同じ大きさとなる位置、すなわち発光体からの距離が異なる点を考慮する。例えば、観察角度が135°(=225°)、発光体からの距離が100mmの位置における放射照度は80μW/cm/nmであるが、観察角度が90°(=270°)の場合には、これと同じ放射照度となる位置の発光体からの距離は、100mmより大きい。また、観察角度が45°(=315°)では、同じ放射照度となる位置の発光体からの距離は、観察角度が90°(=270°)の場合よりもさらに大きい、と考えられる。
【0069】
同様にして、観察角度ごとに散乱光の放射照度が所定値以上となる範囲を求め、それらを集合した空間を保護空間とする。すなわち、人体の安全を確保するためには超えるべきではない放射照度を所定値とし、放射照度が所定値以上となる範囲である保護空間に人が進入したり存在したりする場合は、保護モードを実行する。
【0070】
図7に保護空間404の外縁を実線で示すが、保護空間404の形状は、レーザ光の照射光軸を中心軸とした回転体の形状となり、照射光軸に沿って発光体(表示位置301)から前方側に離れてゆくにつれて保護空間404の直径は大きくなる。尚、図7では、保護空間404は、表示位置301の後方側で比較的直径が小さく、前方側で比較的直径が大きい先太の形状を示しているが、これは一例に過ぎない。保護空間404の形状、大きさ、位置は、レーザ光の強度、照射位置、集光条件等の照射条件によって変化し得るものであり、例えばレーザ光の照射条件に応じてCPU1601が演算によって決定してもよい。
【0071】
保護空間404を決定するには、例えば、種々の照射条件について、予め行った実測に基づき観察角度の各々の方向における放射照度を実測し、その放射照度のプロットから補間処理によって得た関数、あるいはテーブルデータを取得しておく。この関数、あるいはテーブルデータに基づき、CPU1601は所定の放射照度(放射エネルギー密度)となる空間の形状、大きさを演算することができる。その場合、CPU1601は、レーザ照射装置100のレーザパルス幅、レーザパルスの繰り返し周波数、レーザ光のビーム径、および焦点距離などのうち、少なくとも1つに応じて保護空間の形状、大きさを演算する。また、保護空間の形状が変更された場合には、変更された保護空間の形状に基づき、レーザ光の照射条件を変更することができる。例えば、変更された保護空間の形状に基づき、ミラー装置106がレーザ光の照射光軸の方向を変化させて表示位置301を変更することができる。また、空間の形状が変更された場合には、制御装置は変更された空間の形状に基づき、空中に描画(生成)されている画像の大きさを決定する。そして、ミラー装置106がレーザ光の走査距離を変化させることにより、その決定された大きさで表示位置301に画像を表示することができる。
【0072】
また、保護空間の外縁部を規定する所定の放射照度(保護空間内の照度の最小値)としては、例えば、上記の光軸の後方側の135°(=225°)の80μW/cm/nmの放射照度などを採用することが考えられる。しかしながら、保護空間の外縁部を規定する所定ないし一定の放射照度値は、当業者によって製品仕様などに応じて数10μW/cm~数100mW/cmなどの任意の範囲の値を採用してよい。
【0073】
また、R、G、Bの3原色の加法混合によって、表示位置ないしその近傍に任意の表示色の発光体を表示することが考えられる。その場合、所望の表示条件に応じてR、G、Bの各色のレーザ照射装置100の例えばレーザ出力が異なるものとなる可能性がある。これにより、保護空間の形状、大きさがR、G、Bの各色について、互いに異なるものとなる可能性がある。その場合には、R、G、Bの各色について計算された保護空間を合成してその最も外側の外縁をR、G、Bの3色合成表示に係る全体の保護空間の形状とすることが考えられる。
【0074】
例えば、各色のレーザ光についての散乱光の強度を加算し、加算された散乱光強度が人体の安全を確保するためには超えるべきではない放射照度(所定値)以上となる空間範囲を保護空間としてもよい。
【0075】
尚、図7において、集光レンズ105から表示位置301に向かう、コリメートされたレーザ光403が通過する円錐形状の空間4041も、保護空間の一部として含めてよい。また、上述のように照射光軸を中心とする330°~0°~30°の60°の狭角の範囲内は、上述のように遮蔽装置などによって観察視野を制限するのが好ましい。しかしながら、下記のような物体(生体)検出に基づく保護モードの制御を実施する場合には、この遮蔽装置は省略できる可能性がある。
【0076】
本実施形態の表示装置において、保護モードは、次のような制御によって実現される。
(検出工程)
レーザ照射装置100から照射されるレーザ光、および表示位置で散乱、または表示位置を通過したレーザ光の強度が所定値以上になる空間の内側への物体の進入を検出する。例えば、生体センサ107を用いて、保護空間への生体の進入や、保護空間内における生体の存在を検出する。
(保護制御工程)
上記空間の内側への物体の進入を検出した場合、レーザ照射装置100のレーザ光の照射を停止、またはレーザ照射装置100のレーザ出力を低減させる。保護空間への生体の進入や、保護空間内における生体の存在を検出した場合には保護モードに移行し、レーザ光の照射条件を変更することにより保護空間の形状や位置が変更されるようにする。その際、変更後の保護空間には生体が存在しなくなるようにレーザ光の照射条件を変更する。保護モードにおいて実施するレーザ光の照射条件の変更は、レーザ光の照射停止、照射強度の低減、照射(集光)位置の変更、表示画像のサイズや形状の変更を含むことができる。
【0077】
保護モードに移行した後、直ちにレーザ光の照射を停止してもよいが、照射強度の低減、照射(集光)位置の変更、表示画像のサイズや形状の変更、等を行いながら、後述するステップS14とステップS16を繰り返すことも可能である。この方法によれば、生体(観察者)を保護するために表示を停止させる頻度を抑制できるため、観察者の保護と表示の実用性を両立させることが可能である。
【0078】
図6は、保護モードを含む本実施形態に係る表示制御手順の一例を示すフローチャートである。図6に示すステップS12では、レーザ照射装置100から表示位置に向けてレーザ光を照射する表示処理を示している。この表示処理(S12)は、図3に示すような走査装置によるレーザ走査過程を含んでいてよい。また、表示処理(S12)が進行している間は、ステップS10の物体検出工程を繰り返し実施する。
【0079】
物体検出工程(S10)は、例えば物体検出装置として設けた生体センサ107(図1)によって実行する。この生体センサ107は、例えば図7の保護空間404の範囲の内側に物体、この場合は生体が進入したか否かを判定する。生体センサ107が、保護空間404の範囲の内側に生体が進入したことを検出すると(S10:YES)、ステップS10からステップS14への遷移が生じ、保護モードを実施する。
【0080】
この保護モード(保護制御工程)では、例えば、レーザ照射装置100のレーザ光の照射を停止、またはレーザ照射装置100のレーザ出力を低減させる。変更されたレーザ光の照射条件に応じて、保護空間の形状が変更され、変更された保護空間に対してステップS16では生体センサ107による物体検出工程が実行される。
【0081】
そして、物体検出工程(S16)において、依然として保護空間の範囲の内側で生体を検出している場合には、保護モード(S14)と物体検出工程(S16)が繰り返し実行される。物体検出工程(S16)において生体検出がオフになると(S16:YES)、ステップS16からS12に遷移し、表示処理に復帰する。
【0082】
以上のような保護モード制御によって、保護空間404の範囲の内側に物体(生体)が進入した場合、レーザ照射装置100のレーザ光の照射を停止、またはレーザ照射装置100のレーザ出力を低減させる等の処理ができる。これにより、表示環境中の物体の損傷を防ぎ、また、生体、例えば観察者の皮膚や網膜を確実に保護することができる。上述のように、保護空間404は、その外縁面において、レーザ光の照射ないし散乱に係る放射照度(光強度)が所定値であり、その内側では放射照度がそれより大きくなるような形状として計算される。そのため、一定以上の光強度の照射ないし散乱レーザ光の被曝から物体や生体を確実に保護することができる。
【0083】
[他の実施形態]
尚、本発明は、以上説明した実施形態に限定されるものではなく、本発明の技術的思想内で多くの変形や組み合わせが可能である。
【0084】
保護空間に係る保護モードを用いた表示制御は、表示位置に対してレーザ照射を行う表示装置であればレーザ表示方式を問わず適用可能である。本実施形態の構成および制御を実施可能なレーザ表示方式としては、例えば不可視波長領域のレーザを用いてプラズマを発生させ、そのプラズマ光で可視像の表示を行う方式が考えられる。また、本実施形態の構成および制御は、不可視波長領域のレーザにより発生させた気体のゆらぎを可視光のレーザで着色するような方式であっても実施可能である。また、高出力のレーザ光でプラズマ光を発生させて表示に用いる他の方式でも、本実施形態の構成、制御は適用可能である。上述した本実施形態でも、これらの表示方式においても、レーザ光が表示位置で散乱されて様々な方向を照射するのは同じであるから、本実施形態の保護空間を用いる保護モードの制御を同様に実施することができる。
【0085】
尚、本発明を実施した表示装置は、会議室、シアター、教室をはじめとする様々な施設に設置することが可能である。
また、本発明を実施した表示装置は、ドローン等の移動体に搭載して、空中に画像を表示することが可能である。
【0086】
また、本発明を実施した表示装置を自動車等の車両に搭載すれば、例えば運転を支援するための画像を運転者に表示する、あるいは画像の観察者である歩行者に警告等の情報を表示する目的で、車両の周囲空間に画像を表示することができる。
【0087】
また、本発明を実施した表示装置は、コピー、プリンター、スキャナー、及びファクス等の多機能を備えた複合機としての画像形成装置に搭載することも可能である。画像形成装置に搭載した場合は、空中に操作画面やジョブリスト画像を表示したり、空中に印刷イメージを表示したり、その空中に表示された印刷イメージを加工して新たに印刷データを作成することも可能である。
【0088】
本発明は、上述の1以上の機能を実現するプログラムをネットワーク又は記憶媒体を介してシステムまたは装置に供給し、そのシステムまたは装置のコンピュータにおける1つ以上のプロセッサがプログラムを読出し実行する処理でも実現可能である。また、1以上の機能を実現する回路(例えば、ASIC)によっても実現可能である。
【符号の説明】
【0089】
100…レーザ照射装置、101…レーザ光源、2、102…ビームエキスパンダ、103…偏光板、7、108…分光器、104…ビームスプリッタ、5、105…集光レンズ、106…ミラー装置、107…生体センサ、201、202、203…レーザビーム、1601…CPU、1602…ROM、1603…RAM、1604…UI装置、1605…測定器。
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13