(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-03-29
(45)【発行日】2024-04-08
(54)【発明の名称】ホモグラフィ再サンプリング変換による再投影および逆投影のためのシステムおよび方法
(51)【国際特許分類】
A61B 6/03 20060101AFI20240401BHJP
【FI】
A61B6/03 550X
A61B6/03 550H
【外国語出願】
(21)【出願番号】P 2021082002
(22)【出願日】2021-05-13
【審査請求日】2021-07-20
【審判番号】
【審判請求日】2023-02-14
(32)【優先日】2020-07-31
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】319011672
【氏名又は名称】ジーイー・プレシジョン・ヘルスケア・エルエルシー
(74)【代理人】
【識別番号】100105588
【氏名又は名称】小倉 博
(74)【代理人】
【識別番号】100129779
【氏名又は名称】黒川 俊久
(74)【代理人】
【識別番号】100151286
【氏名又は名称】澤木 亮一
(72)【発明者】
【氏名】シリル・リデル
(72)【発明者】
【氏名】マリオン・サバニエ
(72)【発明者】
【氏名】エミリー・シューズヌー
(72)【発明者】
【氏名】ジャン-クリストフ・ペスケ
【合議体】
【審判長】樋口 宗彦
【審判官】伊藤 幸仙
【審判官】櫃本 研太郎
(56)【参考文献】
【文献】特開2004-230172(JP,A)
【文献】特表2005-522304(JP,A)
【文献】米国特許第5848114(US,A)
【文献】米国特許第6351514(US,B1)
【文献】米国特許第6339632(US,B1)
【文献】米国特許第11670017(US,B2)
【文献】欧州特許出願公開第3992914(EP,A1)
(58)【調査した分野】(Int.Cl.,DB名)
A61B 6/00 - 6/58
(57)【特許請求の範囲】
【請求項1】
複数の発散X線に対応する画像データを取得するステップであって、前記画像データは、複数のX線検出器ビンにおいて測定された複数の投影を含む、前記ステップと、
ホモグラフィ再サンプリング変換の集合のための単一の関数を選択するステップと、
前記単一の関数に基づいて前記画像データの対象の複数の分布サンプルと複数のX線検出器ビンの投影との間の相互作用の重みを決定するステップであって、
前記複数の分布サンプルの各々は、軸(458)上の複数の点(460)のサンプル値のうちのある一点の位置におけるサンプル値であり、前記複数の点(460)が各々がボクセルに対応し、
各ボクセルの減衰係数は、前記複数の投影に基づいて計算される、前記ステップと、
前記相互作用の重みに基づいて前記ホモグラフィ再サンプリング変換を実行して画像を再構成するステップであって、前記ホモグラフィ再サンプリング変換は、対称プロジェクタ/バックプロジェクタ対を形成し、前記ホモグラフィ再サンプリング変換の実行により、分布サンプルを投影に変換する前方投影と投影を分布サンプルに変換する逆投影とが行われる、前記ステップと
、
所望のレベルの精度を得るための1次元基底関数の集合を使用するステップ
と、
を含み、前記1次元基底関数は、補間方式の違いに応じて定義される
、方法。
【請求項2】
前記相互作用の重みの各重みが、前記1次元基底関数の集合のそれぞれの1次元基底関数と関連付けられる、請求項
1に記載の方法。
【請求項3】
前記取得された画像データから既知の点を補間することによって補間された点を決定するステップと、
前記補間された点に対応する1次元基底関数の集合を形成するステップと、
を含む、請求項
2に記載の方法。
【請求項4】
前記画像データが、湾曲したX線検出器により収集される、請求項1乃至
3のいずれかに記載の方法。
【請求項5】
前記画像データが、フラットパネル検出器ベースのコーンビーム断層撮影幾何形状でサンプリングされる、請求項1乃至
3のいずれかに記載の方法。
【請求項6】
前記ホモグラフィ変換が、前記画像データを取得する前に定義される、請求項1乃至
5のいずれかに記載の方法。
【請求項7】
前記画像を再構成するステップが、前記相互作用の重みに基づいて決定された対称プロジェクタ/バックプロジェクタのオペレータ対で前記画像を反復再構成するステップを含む、請求項1乃至
6のいずれかに記載の方法。
【請求項8】
前記相互作用の重みが並列に決定される、請求項1乃至
7のいずれかに記載の方法。
【請求項9】
医療画像システム(200)
の制御手段が、請求項1乃至8のいずれかに記載の方法を実行する、医療画像システム(200)の作動方法において、前記制御手段が前記再構成された画像に描写された病変を識別するステップを
実行することをさらに含む、
医療画像システム(200)の作動方法。
【請求項10】
X線源(104)と、
前記X線源(104)によって放射され、対象の物体によって減衰したX線放射を検出するように構成されたX線検出器アレイ(108)と、
前記X線検出器アレイ(108)に通信可能に結合され、非一時的メモリに命令を記憶するコントローラ(210)と
を備える、医療画像システム(200)であって、前記命令が、
前記X線検出器アレイ(108)のサンプリンググリッドおよびビンにわたってサンプリングされたサンプリング画像データを取得するステップであって、前記サンプリング画像データは、前記ビンにおいて測定された複数の投影を含む、前記ステップと、
所望のレベルの精度に基づいてホモグラフィ再サンプリング変換の集合のための基底関数の集合を選択するステップと、
前記基底関数の集合のそれぞれの係数の集合を並列に決定するステップと、
前記係数の集合に基づいて前記サンプリング画像データを反復再投影および逆投影することによって前記対象の物体を描写する画像を再構成するステップであって、前記ホモグラフィ再サンプリング変換は、対称プロジェクタ/バックプロジェクタ対を形成し、前記ホモグラフィ再サンプリング変換の実行により、複数のボクセルの減衰係数の集合である分布サンプルを投影に変換する前方投影と投影を分布サンプルに変換する逆投影とが行われる、前記ステップと、
前記再構成された画像を表示するステップと
を実行可能であ
り、
前記命令が、前記所望のレベルの精度に基づいて前記基底関数の集合用の補間方式を選択するようにさらに実行可能である、システム(200)。
【請求項11】
前記基底関数の集合の各基底関数が大域的に連続し、独立して計算される、請求項1
0に記載のシステム(200)。
【請求項12】
前記コントローラ(210)が複数のGPGPU(236)にさらに通信可能に結合され、前記複数のGPGPU(236)が前記命令の少なくともいくつかを並列に実行するように構成される、請求項1
0または11に記載のシステム(200)。
【請求項13】
前記画像が、深層学習ベースの画像再構成アルゴリズムを使用して再構成される、請求項1
0乃至1
2のいずれかに記載のシステム(200)。
【発明の詳細な説明】
【技術分野】
【0001】
本明細書に開示される主題の実施形態は、医療画像に関し、より詳細には、1次元ホモグラフィ再サンプリング変換による対象の物体の再投影および逆投影に関する。
【背景技術】
【0002】
コンピュータ断層撮影(CT)は、非侵襲的医療画像技法として使用される場合がある。具体的には、CT画像データ取得は、X線ビームが減衰するように患者などの物体をX線ビームが通過するようにすることと、次いで、減衰したX線ビームをX線検出器アレイで収集することとを含んでよい。取得されたCT画像データは、物体の減衰係数の分布に対応する線積分測定値の集合であってよい。分布は、分析または反復の再構成アルゴリズムにおける逆投影または後方投影のステップを介して、線積分測定値の集合から視認可能な画像として再構成されてよい。反復再構成アルゴリズムの場合、再構成された分布は、次いで、再投影または前方投影のステップを介して計算された線積分の更新された集合にマッピングされてよく、その後、逆投影および再投影のステップが必要に応じて反復されてよい。
【0003】
CT画像データに対応する積分線の幾何学的表現を符号化するために、断層撮影のオペレータまたはプロジェクタが選択されてよい。逆投影ステップの場合、これは代数的に
【0004】
【0005】
ここで、piはI個の線積分測定値のi番目の線積分測定値であり、rijはi番目の測定値をj番目の減衰係数(すなわち、J個のサンプリング点のうちのj番目のサンプリング点における減衰係数)に対応するサンプリング点fjに逆投影する断層撮影オペレータの行列式Rの要素である。随伴(Rが実数であるため、転置)演算は、
【0006】
【数2】
として表される再投影ステップを構成する。
【0007】
画像再構成のために多数のそのような幾何学ベースのモデルが存在し、その選択は精度、したがって最終的な画像品質を規定する。計算速度は、たとえば、グラフィックス処理装置(GPU)上での大規模並列化によって達成され得る追加の要因である。しかしながら、幾何学ベースのモデルは、GPUコンピューティングフレームワークにわたって実装およびスケーリングすることが困難な場合がある。精度と計算速度の両方は、深層学習技法を介して画像再構成を駆動する際の重要な要因であり得る。
【先行技術文献】
【特許文献】
【0008】
【文献】米国特許出願公開第20040013294号明細書
【発明の概要】
【0009】
一実施形態では、方法は、複数の発散X線に対応する画像データを取得することと、複数の発散X線に単一の関数形式を割り当てることと、ホモグラフィ変換を介して、単一の関数形式に基づいて複数の分布サンプルと複数のX線検出器ビンとの間の相互作用の重みを決定することと、相互作用の重みに基づいて画像を再構成することとを含んでよい。
【0010】
上記の簡単な説明は、発明を実施するための形態においてさらに記載される概念の選択を簡略化した形で紹介するために提供されていることを理解されたい。特許請求される主題の重要または本質的な特徴を識別することは意図されておらず、主題の範囲は発明を実施するための形態に続く特許請求の範囲によって一意的に定義される。さらに、特許請求される主題は、上記または本開示の任意の部分で言及される任意の欠点を解決する実装形態に限定されない。
【0011】
本開示は、添付の図面を参照して非限定的な実施形態の以下の説明を読むことから、より良く理解されるであろう。
【図面の簡単な説明】
【0012】
【
図1】一実施形態による、例示的な医療画像システムの絵画図である。
【
図2】一実施形態による、例示的な医療画像システムの概略ブロック図である。
【
図3】例示的な幾何学ベースの距離駆動画像再構成モデルの概略図である。
【
図4A】一実施形態による、例示的なフラットパネル検出器ベースのコーンビーム断層撮影幾何形状の概略図である。
【
図4B】一実施形態による、例示的な1次元ホモグラフィ再サンプリング変換の概略図である。
【
図5】一実施形態による、例示的な1次元ホモグラフィ再サンプリング変換で再サンプリングされた連続関数の基底集合近似の概略図である。
【
図6】一実施形態による、例示的なホモグラフィベースモデルによる反復画像再構成のための方法のフローチャートである。
【発明を実施するための形態】
【0013】
以下の説明は、医療画像システムの様々な実施形態、ならびに対称プロジェクタ/バックプロジェクタのオペレータ対を介して対象の物体を再投影および逆投影するための方法の実施形態に関する。コンピュータ断層撮影(CT)医療画像データを取得するように構成された1つのそのような医療画像システムが
図1および
図2に描写され、対称プロジェクタ/バックプロジェクタのオペレータ対による(反復)再投影および逆投影のための1つのそのような方法が
図6に提供され、そこから、たとえば複数のグラフィックス処理装置(GPU)などの大規模並列コンピューティングアーキテクチャ上で、再構成された画像が正確かつ効率的に取得されてよい。
【0014】
対象の物体の画像は、分析または反復の再構成方法を介して複数の線積分測定値から再構成されてよい。各方法は、逆投影オペレータまたはバックプロジェクタを活用して、複数の線積分測定値を対象の物体の減衰係数の分布にマッピングする。反復再構成方法は、投影オペレータまたはプロジェクタと呼ばれるバックプロジェクタの随伴行列をさらに活用して、線積分測定値と比較され得る複数の計算された線積分として減衰係数の分布を作り直すことができる。
【0015】
プロジェクタ/バックプロジェクタ対は、それに沿って複数の線積分測定値が取得される複数の積分線の幾何学的表現を符号化することができる。幾何学ベースの画像再構成モデルは、幾何学的表現を活用して、そこから視認可能な画像が取得され得る所与の対象の物体の減衰係数の分布を再構成することができる。そのような幾何学ベースの画像再構成モデル、いわゆる距離駆動モデルの一例が
図3に概略的に描写される。
【0016】
画像再構成方式(たとえば、分析または反復)に応じて、プロジェクタ/バックプロジェクタ対の対称性に関する数学的制約は、適切なモデルの選択を制限する可能性がある。幾何学ベースの画像再構成モデルはそのような制約を満たすが、大規模並列コンピューティングアーキテクチャ上での実装の固有の困難さの結果として、計算スケーラビリティが妨げられる可能性がある。
【0017】
したがって、本明細書に記載される実施形態では、ホモグラフィ変換を介して連続関数を再サンプリングするためのシステムおよび方法が提供される。1つのそのようなホモグラフィベースの画像再構成モデルの態様は、
図4Aの例示的なフラットパネル検出器ベースのコーンビーム断層撮影幾何形状との関連で説明され、例示的な1次元ホモグラフィ再サンプリング変換は
図4Bに概略的に描写される。
図5にさらに概略的に描写されるように、このようにしてホモグラフィ変換を活用することにより、プロジェクタ/バックプロジェクタ対の対称性を犠牲にすることなく、連続関数の基底集合拡張を介して任意のレベルの精度が提供される。そのため、積分線の幾何学的表現に関して仮定は行われていない。幾何学的表現を作り直すか、または完全に回避することにより、幾何学ベースの画像再構成モデルに固有の大規模並列実装の問題が回避され得る。実際、ホモグラフィベースの画像再構成モデルは、有利なことに、幾何学ベースの画像再構成モデルがそうではない並列化に適する場合がある。結果として、ホモグラフィベースの画像再構成モデルは、画像再構成のための深層学習パラダイムに容易に適合され得る。このようにして、ホモグラフィ変換による対象の物体の対称再投影および逆投影のためのより一般化された画像再構成モデルが提供される。
【0018】
画像システムの1つの例示的な実施形態は、プロジェクタ/バックプロジェクタのオペレータ対の行列表現の係数を実質的に並列に決定するように構成された大規模並列GPUアーキテクチャを含む場合がある。そのため、本明細書に記載されたホモグラフィベースの画像再構成モデルは、(並列化することが困難であるか、より限定された範囲まで並列化可能であるか、または全く並列化可能でないループを利用することができる)幾何学ベースの画像再構成モデルよりも効率的な画像データの処理を可能にすることができる。
【0019】
さらに、基底集合拡張のサイズおよび構造を変えることによって再投影および逆投影が実行され得る任意のレベルの精度は、(上記で説明されたように)容易かつ大規模に並列化可能な係数決定を介して処理効率の向上を維持しながらも、幾何学ベースの画像再構成モデルに比べてホモグラフィベースの画像再構成モデルの精度を向上させることを可能にすることができる。このようにして、本明細書に記載されたホモグラフィベースの画像再構成モデルは、画像再構成アルゴリズムの処理効率および精度を同時に改善することにより、コンピュータ機能に対する技術的改善を実現することができる。さらに、大規模並列GPUアーキテクチャ上の実装は、画像忠実度をさらに改善することができる深層学習画像再構成技法とのインターフェースによく適している場合がある。そのため、いくつかの実施形態では、より忠実度の高い再構成された画像が生成される場合があり、それは同時に、再構成された画像によって描写された医療問題の診断におけるより高い精度を促進することができる。
【0020】
次に
図1を参照すると、一実施形態による例示的な画像システム100が描写される。図示された実施形態では、画像システム100は、CT画像化を実行するように構成されたX線画像システムである。図示された実施形態は医療画像を能動的に取得するが、他の実施形態は医療画像を能動的に取得しないことが理解される。代わりに、実施形態は、画像システムによって以前に取得された画像または画像データを取り出し、本明細書に記載されたように画像データを処理することができる。
【0021】
画像システム100は、患者、無生物、1つもしくは複数の製造部品、ならびに/または体内に存在する歯科用インプラント、ステント、および/もしくは造影剤などの異物などの被写体112を画像化するように構成されてよい。一実施形態では、画像システム100はガントリ102を含んでよく、ガントリ102は、テーブル114に横たわる被写体112を画像化する際に使用するためのX線放射ビーム106(
図2を参照)を投影するように構成された少なくとも1つのX線源104をさらに含んでよい。具体的には、X線源104は、ガントリ102の反対側に配置された検出器アレイ108に向けてX線106を投影するように構成されてよい。
図1は湾曲した検出器アレイ108を描写するが、いくつかの実施形態では、フラットパネル検出器が採用される場合がある。
図1は単一のX線源104を描写するが、いくつかの実施形態では、異なるエネルギーレベルまたは角度方位において被写体112に対応する投影データを取得するための複数のX線放射ビーム106を投影するために、複数のX線源および/または検出器が採用される場合がある。いくつかのCT画像化の実施形態では、X線源104は、高速ピークキロボルト(kVp)スイッチングによって二重エネルギー画像化を可能にすることができる。いくつかの実施形態では、採用されるX線検出器は、異なるエネルギーのX線光子を区別することが可能な光子計数検出器である。他の実施形態では、二重エネルギー投影を生成するために2組のX線源および検出器が使用され、1つの組は低kVp設定で取得され、他の組は高kVp設定で取得される。したがって、本明細書に記載される方法は、単一エネルギー取得技法ならびに二重エネルギー取得技法実装され得ることが諒解されるべきである。
【0022】
いくつかの実施形態では、画像システム100は、反復もしくは分析の画像再構成方法、または両方の組合せを使用して、被写体112の目標量の画像を再構成するように構成された画像プロセッサユニット110をさらに含む。たとえば、いくつかのCT画像の用途では、画像プロセッサユニット110は、フィルタ逆投影(FBP)などの分析画像再構成手法を使用して、患者の目標量の画像を再構成することができる。別の例として、画像プロセッサユニット110は、高度統計反復再構成(ASIR)またはモデルベース反復再構成(MBIR)などの反復画像再構成手法を使用して、被写体112の目標量の画像を再構成することができる。いくつかの例では、画像プロセッサユニット110は、反復画像再構成手法に加えて、FBPなどの分析画像再構成手法の両方を使用することができる。一実施形態では、下記で詳細に説明されるように、画像プロセッサユニット110は、1次元ホモグラフィ再サンプリング変換を活用する反復画像再構成手法を使用することができる。
【0023】
いくつかのCT画像システム構成では、X線源は、(一般に「画像面」と呼ばれる)デカルト座標系のX-Y-Z平面内にあるように視準が合わされた円錐形のX線放射ビームを投影する。X線放射ビームは、患者または被写体などの画像化される物体を通過する。X線放射ビームは、物体によって減衰した後に、放射線検出器のアレイに衝突する。検出器アレイにおいて受光される減衰したX線放射ビームの強度は、物体によるX線放射ビームの減衰に依存する。アレイの各検出器素子は、検出器の場所におけるX線ビーム減衰の測定値(たとえば、線積分測定値)である別個の電気信号を生成する。すべての検出器素子からの減衰測定値は、透過プロファイルを生成するために個別に取得される。
【0024】
いくつかのCT画像システムでは、X線源および検出器アレイは、放射線ビームが物体と交差する角度が絶えず変化するように、画像化面のまわりおよび画像化される物体のまわりをガントリとともに回転する。ガントリの1つの角度位置にある検出器アレイからのX線放射減衰測定値、たとえば投影データのグループは、「ビュー」と呼ばれる。物体の「スキャン」は、物体のまわりのX線源および検出器の1回転の間に異なる角度位置またはビュー角度で行われた一組のビューを含む。本明細書に記載された方法の利益は、多くの医療画像モダリティに生じると考えられ、したがって本明細書で使用される「ビュー」という用語は、1つのガントリ角度からの投影データに関して上述された使用に限定されない。「ビュー」という用語は、CT、X線放射線画像化、陽電子放出断層撮影(PET)、もしくは単一光子放出CT(SPECT)取得、および/または未だ開発されていないモダリティを含む任意の他のモダリティ、ならびに融合された実施形態におけるそれらの組合せのいずれからであっても、異なる角度からの複数のデータ取得が存在するときの1つのデータ取得を意味するように使用される。
【0025】
投影データは、物体を通って撮られた1つまたは複数の2次元スライスに対応する画像を再構成するために処理され、または、拡張された軸方向のカバレージ、たとえばZ軸の照明を含むいくつかの例では、物体の3次元画像ボリュームを再構成するために処理される。一組の投影データから画像を再構成するための1つの方法は、当技術分野では、フィルタ逆投影技法と呼ばれる。透過および放射の断層撮影再構成技法には、最尤期待値最大化(MLEM)および順序付きサブセット期待値最大化再構成技法、ならびに反復再構成技法などの統計的反復方法も含まれる。このプロセスは、スキャンからの減衰測定値を(CT画像システムの場合「CT数」または「ハウンズフィールド単位」と呼ばれる)整数に変換し、それはディスプレイデバイス上の対応するピクセルの輝度を制御するために使用される。
【0026】
総スキャン時間を短縮するために、「ヘリカル」スキャンが実行されてよい。「ヘリカル」スキャンを実行するために、患者は、規定された軸方向カバレージについてのデータが取得される間移動する。そのようなシステムは、コーンビームヘリカルスキャンから単一のらせんを生成する。コーンビームによってマッピングされたらせんは、各々の規定されたスライス内の画像が再構成され得る投影データをもたらす。
【0027】
本明細書で使用される「画像を再構成する」というフレーズは、画像を表すデータは生成されるが、可視画像は生成されない本発明の実施形態を除外するものではない。したがって、本明細書で使用される「画像」という用語は、広範囲に可視画像および可視画像を表すデータの両方を指す。しかしながら、多くの実施形態は、少なくとも1つの可視画像を生成する(または、生成するように構成される)。
【0028】
次に
図2を参照すると、
図1の画像システム100に類似する例示的な画像システム200が描写される。図示されたように、画像システム200は複数の構成要素を含んでよい。構成要素は、互いに結合して単一の構造を形成してもよく、別個であるが共通の部屋内に配置されてもよく、互いに対して遠く離れて配置されてもよい。たとえば、本明細書に記載されたモジュールのうちの1つまたは複数は、画像システム200の他の構成要素に対して別個かつ遠方の位置を有するデータサーバ内で動作することができる。
【0029】
本開示の態様によれば、画像システム200は、被写体204(たとえば、
図1の被写体112)を画像化するために構成されてよい。一実施形態では、画像システム200は、検出器アレイ108(
図1参照)を含んでよい。検出器アレイ108は、(患者などの)被写体204を通過するX線放射ビーム106を一緒に検知して対応する投影データを取得する複数の検出器素子202をさらに含んでよい。したがって、一実施形態では、検出器アレイ108は、複数列のセルの行または検出器素子202を含むマルチスライス構成で組み立てられてよい。そのような構成では、検出器素子202の1つまたは複数の追加の行は、投影データを取得するために、並列構成で配置されてよい。
【0030】
ガントリ102は、対向する端部に互いに向かい合って取り付けられたX線源104および検出器アレイ108を移動可能に支持することができる。被写体204は、それに応じて、テーブル114によって支持されるX線源104と検出器アレイ108との間に配置されてよい。
【0031】
いくつかの実施形態では、テーブル114は、所望の画像取得を達成するためにさらに移動可能であってよいことが認識されよう。画像データのそのような取得の間に、ガントリ102は、被写体204に対するX線源104および/または検出器アレイ108の位置および/または向きを変更するために移動可能であってよい。
【0032】
したがって、いくつかの実施形態では、ガントリ102は、被写体204の単一の2D投影を画像化するために、所与の画像化セッション中に固定されたままであってよい。そのような実施形態では、ガントリ102および/またはテーブル114の位置は、被写体204の別のビューを画像化するために、画像化セッション中に調整されてよい。
【0033】
CT画像化用途などのさらに他の実施形態では、画像システム200は、所望の投影データを取得するために被写体204のまわりの様々な角度位置を横断するように構成されてよい。したがって、ガントリ102およびそこに取り付けられた構成要素は、たとえば異なるエネルギーレベルで投影データを取得するために、回転の中心206のまわりを回転するように構成されてよい。あるいは、被写体204に対する投影角度が時間の関数として変化する実施形態では、取り付けられた構成要素は、円のセグメントに沿ってではなく、一般的な曲線に沿って移動するように構成されてよい。
【0034】
そのような実施形態では、X線源104および検出器アレイ108が回転するとき、検出器アレイ108は減衰したX線ビームのデータを収集することができる。検出器アレイ108によって収集されたデータは、スキャンされた被写体204の減衰係数の線積分を表すようにデータを調整および処理するために、前処理および較正を受けることができる。処理されたデータは一般的に投影と呼ばれる。
【0035】
いくつかの例では、検出器アレイ108の個々の検出器または検出器素子202は、個々の光子の相互作用を1つまたは複数のエネルギービンに登録する光子計数検出器を含んでよい。本明細書に記載された方法は、エネルギー積分検出器によって実施されてもよいことが諒解されるべきである。
【0036】
取得された投影データの集合は、基底物質分解(BMD)に使用されてよい。BMDの間、測定された投影は物質密度投影の集合に変換されてよい。物質密度投影は、骨、軟組織、および/または造影剤のマップなどの、それぞれの基底物質の物質密度マップまたは画像のペアまたは集合を形成するために再構成されてよい。次に、物質密度マップまたは画像は、画像化されたボリューム内の基底物質、たとえば、骨、軟組織、および/または造影剤のボリュームレンダリングを形成するために関連付けられてよい。
【0037】
再構成されると、画像システム200によって生成された基底物質画像は、2つの基底物質の密度で表現された被写体204の内部の特徴を明らかにすることができる。密度画像、または複数の密度画像の組合せは、これらの特徴を示すように表示されてよい。疾患の状態などの医学的状態を診断し、より一般的に医学的事象を診断するための伝統的な手法では、放射線技師または医師は、密度画像のハードコピーもしくはディスプレイ、またはそれらの組合せを検討して、対象の特徴を識別する。そのような特徴には、特定の生体構造または器官の病変、サイズ、および形状、ならびに個々の開業医のスキルおよび知識に基づいて画像内で識別可能な他の特徴が含まれてよい。
【0038】
一実施形態では、画像システム200は、ガントリ102の回転およびX線源104の動作などの構成要素の動きを制御するために制御機構208を含んでよい。いくつかの実施形態では、制御機構208は、X線源104に電力およびタイミング信号を提供するように構成されたX線コントローラ210をさらに含んでよい。さらに、制御機構208は、画像化要件に基づいてガントリ102またはその様々な構成要素(たとえば、X線源104、検出器アレイ108など)の回転速度および/または位置を制御するように構成されたガントリモータコントローラ212を含んでよい。
【0039】
いくつかの実施形態では、制御機構208は、検出器素子202から受信されたアナログデータをサンプリングし、後の処理のためにアナログデータをデジタル信号に変換するように構成されたデータ取得システム(DAS)214をさらに含んでよい。光子計数画像システムの場合、DAS214は、検出器アレイ108から1つまたは複数のエネルギービン内の測定された光子数をダウンロードすることができる。DAS214は、本明細書においてさらに記載されるように、検出器素子202のサブセットからのアナログデータをいわゆるマクロ検出器の中に選択的に集約するようにさらに構成されてよい。
【0040】
DAS214によってサンプリングおよびデジタル化されたデータは、コンピュータまたはコンピューティングデバイス216に送信されてよい。図示された実施形態では、コンピューティングデバイス216は、画像システム200の様々な構成要素とインターフェースするように構成されてよい。そのため、コンピューティングデバイス216は、画像システム200の動作を制御するように構成されてよい。様々な実施形態では、コンピューティングデバイス216は、メインフレームコンピュータ、サーバコンピュータ、デスクトップコンピュータ、ラップトップコンピュータ、タブレットデバイス、ネットワークコンピューティングデバイス、モバイルコンピューティングデバイス、モバイル通信デバイス、などの形態をとることができる。一実施形態では、コンピューティングデバイス216は、
図2の様々な構成要素の間をインターフェースするためのエッジデバイスの形態をとることができる。いくつかの実施形態では、X線放射を取得するように構成された画像システム200の1つまたは複数の構成要素は、ユーザとインターフェースし、様々な計算プロセス(たとえば、画像化または非画像化)を実行するようにさらに構成されたコンピューティングシステムであり得る、全体的な画像システム200のX線画像サブシステム(たとえば、X線源104、検出器アレイ108など)と見なされてよい。したがって、画像システム200の他の構成要素(たとえば、コンピューティングデバイス216など)は、X線画像サブシステムに通信可能に結合されてよい。
【0041】
いくつかの実施形態では、コンピューティングデバイス216は、ストレージデバイスまたは大容量ストレージ218にデータを記憶することができ、いずれもコンピューティングデバイス216に含まれる(そのような例では、コンピューティングデバイス216はコントローラと呼ばれる場合がある)か、またはコンピューティングデバイス216に通信可能に結合された別のデバイスに含まれる(そのような例では、コンピューティングデバイス216はプロセッサと呼ばれる場合がある)。ストレージデバイス218は、リムーバブルメディアおよび/または内蔵デバイスを含んでよい。具体的には、ストレージデバイス218は、本明細書に記載された方法を実施するためにデータおよび/またはコンピューティングデバイス216による実行が可能な命令を保持するように構成された1つまたは複数の物理的で非一時的なデバイスを含んでよい。したがって、そのような方法が実施されるとき、ストレージデバイス218の状態は、(たとえば、異なるデータまたは変更されたデータを保持するために)変換されてよい。ストレージデバイス218には、たとえば、磁気抵抗ランダムアクセスメモリ(MRAM)、ハードディスクドライブ、フロッピーディスクドライブ、テープドライブ、コンパクトディスク読取り/書込み(CD-R/W)ドライブ、デジタル多用途ディスク(DVD)ドライブ、高解像度DVD(HD-DVD)ドライブ、Blu-Rayドライブ、フラッシュドライブ、および/またはソリッドステートストレージドライブが含まれてよい。ストレージデバイス218が非一時的記憶媒体であってよいことが諒解されよう。
【0042】
さらに、コンピューティングデバイス216は、データの取得および/または処理などのシステム動作を制御するために、DAS214、X線コントローラ210、およびガントリモータコントローラ212のうちの1つまたは複数にコマンドおよびパラメータを提供することができる。いくつかの実施形態では、コンピューティングデバイス216は、たとえば、ユーザインターフェース234によるオペレータ入力に基づいてシステム動作を制御する。コンピューティングデバイス216は、コンピューティングデバイス216に動作可能に結合されたオペレータコンソール220を介して、たとえばコマンドおよび/またはスキャンパラメータを含むオペレータ入力を受け取る。オペレータコンソール220は、オペレータがコマンドおよび/またはスキャンパラメータを指定することを可能にする物理的なキーボード、マウス、タッチパッド、および/またはタッチスクリーンを含んでよい。
【0043】
いくつかの実施形態では、コンピューティングデバイス216は、1つもしくは複数のマルチコアCPUまたは複数の汎用GPU(GPGPU)236を含むか、またはそれらに結合されてよく、複数のGPGPU236は、高度に並列化されたデータおよび計算ストリームを介してコンピューティングデバイス216の非一時的メモリ(たとえば、ストレージデバイス218)に記憶された命令を実行するように構成されてよい。
【0044】
図2は、ただ1つのオペレータコンソール220を示しているが、たとえば、システムパラメータを入力もしくは出力し、検査を要求し、データをプロットし、かつ/または画像を閲覧するために、2つ以上のオペレータコンソール220が画像システム200に結合されてよい。さらに、いくつかの実施形態では、画像システム200は、インターネットおよび/または仮想プライベートネットワーク、ワイヤレス電話ネットワーク、ワイヤレスローカルエリアネットワーク、有線ローカルエリアネットワーク、ワイヤレスワイドエリアネットワーク、有線ワイドエリアネットワークなどの1つまたは複数の構成可能な有線および/またはワイヤレスのネットワークを介して、ローカルまたはリモートに、たとえば、施設もしくは病院内に、または全く異なる場所に配置された複数のディスプレイ、プリンタ、ワークステーション、および/または同様のデバイスに結合されてよい。
【0045】
一実施形態では、たとえば、画像システム200は、ピクチャ保管通信システム(PACS)224を含むか、またはそれに結合されてよい。例示的な実装形態では、PACS224は、様々な場所のオペレータがコマンドおよびパラメータを供給し、かつ/または画像データにアクセスできるように、放射線医学情報システム(たとえば、RIS)、電子健康もしくは医療記録および/または病院情報システム(たとえば、EHR/HIS)、ならびに/あるいは内部または外部のネットワーク(図示せず)などのリモートシステムにさらに結合されてよい。
【0046】
コンピューティングデバイス216は、オペレータによって供給され、かつ/またはシステムによって定義されたコマンドおよびパラメータを使用して、テーブルモータコントローラ226を動作させることができ、テーブルモータコントローラ226は、電動テーブルであり得るテーブル114を制御することができる。具体的には、テーブルモータコントローラ226は、被写体204の目標量に対応する投影データを取得するために、ガントリ102内で被写体204を適切に位置決めするためにテーブル114を移動させることができる。
【0047】
前述されたように、DAS214は、検出器素子202によって取得された投影データをサンプリングおよびデジタル化する。その後、画像再構成器230は、サンプリングおよびデジタル化されたX線データを使用して高速再構成を実行する。
図2は画像再構成器230を別個のエンティティとして示しているが、いくつかの実施形態では、画像再構成器230はコンピューティングデバイス216の一部を形成する場合がある。あるいは、画像再構成器230は、画像システム200に存在しない場合があり、代わりに、コンピューティングデバイス216が画像再構成器230の1つまたは複数の機能を実行することができる。その上、画像再構成器230は、ローカルまたはリモートに配置されてもよく、有線またはワイヤレスのネットワークを使用して画像システム200に動作可能に結合されてもよい。たとえば、一実施形態は、画像再構成器230のために「クラウド」ネットワーククラスタ内のコンピューティングリソースを使用することができる。
【0048】
一実施形態では、画像再構成器230は、再構成された画像を、
図2に示されたようにコンピューティングデバイス216を介して、または直接接続(図示せず)を介して、ストレージデバイス218に記憶することができる。あるいは、画像再構成器230は、診断および評価のための有用な患者情報を生成するために、再構成された画像をコンピューティングデバイス216に送信することができる。いくつかの実施形態では、コンピューティングデバイス216は、再構成された画像および/または患者情報を、コンピューティングデバイス216および/または画像再構成器230に通信可能に結合されたディスプレイまたはディスプレイデバイス232に送信することができる。いくつかの実施形態では、再構成された画像は、短期または長期の保管のために、コンピューティングデバイス216または画像再構成器230からストレージデバイス218に送信されてよい。
【0049】
本明細書にさらに記載される(
図6を参照して後述される方法などの)様々な方法またはプロセスは、画像システム200内のコンピューティングデバイス(もしくはコントローラ)上にあるか、またはコンピューティングデバイス(もしくはプロセッサ)と通信する非一時的メモリに実行可能命令として記憶されてよい。一実施形態では、画像再構成器230は、非一時的メモリ内のそのような実行可能命令を含んでよく、本明細書に記載された方法を適用してスキャンデータから画像を再構成することができる。別の実施形態では、コンピューティングデバイス216は、非一時的メモリ内の命令を含んでよく、画像再構成器230から再構成された画像を受信した後に、本明細書に記載された方法を再構成された画像に少なくとも部分的に適用することができる。さらに別の実施形態では、本明細書に記載された方法およびプロセスは、画像再構成器230およびコンピューティングデバイス216にわたって分散されてよい。
【0050】
動作中、コンピューティングデバイス216は、たとえば、ディスプレイデバイス232上のユーザインターフェース234を介してユーザ(たとえば、医療専門家)への表示用に変換され得る画像化データおよび他の医療データを取得することができる。一例として、医療データは、画像システム200のすべての実装形態にわたって標準化され得るか、または所与の施設、部門、専門、もしくは個々のユーザに固有であり得るユーザ向けのグラフィックおよび/またはテキストフォーマットとして変換され、ディスプレイデバイス232に表示されてよい。別の例として、画像データ(たとえば、3次元(3D)ボリュームデータセット、2次元(2D)画像化スライスなど)は、コンピューティングデバイス216において1つまたは複数の画像を生成するために使用されてよく、それらは、次いで、ディスプレイデバイス232においてオペレータまたはユーザに表示されてよい。そのため、ディスプレイデバイス232は、オペレータが画像化された生体構造を評価することを可能にすることができる。ディスプレイデバイス232はまた、オペレータが後のスキャンまたは処理のために、たとえば、グラフィカルユーザインターフェース(GUI)を介して対象のボリューム(VOI)を選択し、かつ/または患者情報を要求することを可能にすることができる。
【0051】
CT画像システムのための画像再構成アルゴリズムは、断層撮影オペレータまたはプロジェクタの離散化のまわりに構造化されてよい。CT画像データは、対象の物体の減衰係数の分布に対応する複数の線積分測定値の形態で取得されてよい。具体的には、CT画像システムなどのX線画像システムは、円錐などの幾何学的物体に属する線の集合で収集された測定値を取得することができる。たとえば、X線ビームは、X線源(たとえば、X線管)の焦点から発散してよく、X線源を出るとコリメーションウィンドウによって円錐として成形されてよい。対象の物体を通過した後、発散したX線ビームコーンは、次いでX線検出器によって完全に捕捉されてよい。したがって、X線検出器の全体的な形状および構成は、発散したX線ビームコーンとの交差面を画定することができる。交差面に形成される画像は、投影(たとえば、複数の線積分測定値)と呼ばれる場合がある。交差面は、いくつかの幾何形状(たとえば、湾曲、平坦など)を呈することができるが、原理的には任意であってよい。いくつかの例では、CT画像データの取得中に、X線画像システムの複数の位置で複数の投影が取得されてよい。
【0052】
断層撮影オペレータは、それらに沿って複数の線積分測定値が取得される(いくつかの例では、光線とも呼ばれる)複数の積分線の幾何学的表現を符号化するように選択されてよい。しかしながら、深度に依存する分解能の歪み、(たとえば、低エネルギー光子の選択的減衰による)光線に沿ったX線スペクトルの硬化、および/または放射断層撮影モダリティに固有の考慮事項などの追加または代替の要因は、複数の線積分測定値を取得する際に考慮されてよく、積分測定値は所与の光線に沿った累積放射能活動を表すことができることが諒解されよう。
【0053】
実際には、有限数Iの投影piが収集されてよく、有限数Iは、X線検出器上の位置の有限数と(本明細書ではビンとも呼ばれる)測定点の有限数の積であってよい。有限数Jの分布サンプルfjを取得するために、有限数の点で対象の分布(たとえば、対象の物体の減衰係数の分布)もサンプリング(たとえば、計算)されてよい。しかしながら、投影piとは対照的に、有限数Jの分布サンプルfjおよび対象の分布が計算されるそのそれぞれの位置は、(真の対象の分布が連続的であるので)任意であってよい。本明細書で使用される、関数、パラメータ、または他の尺度に言及するときの「連続的」は、あらゆる場所で(たとえば、無限集合の位置において)定義されることを意味してよく、本明細書で関数、パラメータ、または他の尺度に言及するときに、有限集合の位置において定義されることを意味してよい「離散的」とは反対である。
【0054】
一般性を失うことなく、X線画像システム内の単一の位置の場合が考慮されてよい。プロジェクタの離散化は、それぞれのサンプル値(たとえば、基底集合拡張)によってスケーリングされた基底オブジェクトの和として連続量を分解することにより、有限数Iの投影piを有限数Jの分布サンプルfjに結合することができる。
【0055】
離散化は、X線検出器の視点および対象の分布の視点という2つの視点から見ることができる。X線検出器に関して、上述されたように、検出は有限数のビンで行われてよく、各ビンは対象のボリューム全体のサブセットに対応する。ビンの各々は比較的小さいサイズを有する場合があるので、i番目のビンで測定された投影piは、i番目のビンの中心として設定された位置uiに由来するi番目の線または光線にわたる線積分であってよい。数値積分アルゴリズムは、i番目の線をS個のセグメントに分解することができ、各セグメントは、
【0056】
【数3】
のように長さl
sおよび分布値f
sを有することができる。
【0057】
ここで、f(l)は、i番目の線に沿った対象の(連続的な)分布である。
【0058】
対象の分布に関して、有限数Jの分布サンプルまたはグリッドサンプルfj(たとえば、離散集合)は、J個の規則的に離間した位置xj(しかしながら、他の例では、位置xjは可変的に離間してよい)の3次元(3D)デカルトグリッド上に定義されてよい。したがって、発散したX線ビームコーンでは、位置xjの所与の整列と同じ方向を有する光線はほとんど存在しない可能性がある。具体的には、デカルトグリッド上で、位置xjは、少なくとも3つの方向(たとえば、次元ごとの自由度、ならびに平面内の45°の角度などの追加の可能な線など)に沿って整列してよいが、発散する一組の光線は、位置xjとの位置合わせが実現され得ないように、X線源と検出器との間のすべての方向をカバーすることができる。位置xjに配置されたグリッドサンプルfjを分布値fsに結合するために、対象の分布のモデル化は、各グリッドサンプルxjを(たとえば、分布サンプルfjに対応する)均一強度fjのボクセルの中心と見なすことによって拡張されてよい。ボクセルは、(1つの寸法が正方形ピクセルの平面を画定する2つの残りの等しい寸法と同じであっても異なっていてもよい)正方形の直方体などの幾何形状物体として成形されてよい。i番目の光線とj番目のボクセルとの間の交点として複数のセグメントlijを定義することによって数値積分が進められてよく、
【0059】
【0060】
代数的定式化では、すべての投影piのベクトルpは、p=Rfであるように、オペレータRとすべての分布サンプルfjのベクトルfの積として表されてよい。したがって、Rは、係数r1≦i≦I,1≦j≦Jを記憶するI行J列の行列として表されてよく、プロジェクタまたはフォワードプロジェクタと呼ばれる場合がある。前方投影演算の行列ベクトル積は、
【0061】
【0062】
係数rijは実数なので、Rの随伴演算子は転置行列であり、バックプロジェクタと呼ばれる。後方投影演算の行列ベクトル積は、
【0063】
【0064】
採用され得る離散化モデルの1つのクラスは、いわゆる光線駆動モデルを含む。光線駆動モデルは幾何学的表現を利用することができ、複数の線は、複数の位置uiに由来し、X線源の焦点を横切るI個の光線によって形成される。
【0065】
光線駆動モデルは、光線駆動多重線形補間として知られるいくつかの数値積分方式のうちの1つを採用することができる。一例として、各グリッド軸に沿ってサンプリングレートが1の立方体サンプリンググリッドが使用されてよい。積分長は1に設定されてもよく、その結果、固定長セグメントが取得されてよい。したがって、式(4)は、
【0066】
【数7】
のように簡略化することができ、ここで、分布値f
sはi番目の光線にわたって規則的に離間してよい。それに応じて、分布値f
sは、各グリッド軸の方向に最も近い2つのサンプルから線形補間されてよい。光線駆動モデルではボクセルに対して形状は想定されていないことに留意されたい。さらに、多重線形補間は分離可能であり得るので、d次元を有するサンプリンググリッドに対してd回の線形補間が定式化されてよい。
【0067】
Josephの方法は、光線駆動多重線形補間の1つの簡略化である。Josephの方法では、数値積分は依然として固定長セグメントに依存するが、より大きいサイズのセグメントが使用されてよい。より大きいサイズのセグメントを定義するために、対象の分布は、サンプリンググリッドの1つの軸に直交する平行な超平面の集合として成型されてよく、平行な超平面の集合は、間隔δ(たとえば、δ=1)でグリッド軸に沿って規則的に離間してよい。i番目の線(光線)に沿った2つの連続する超平面間の長さlθiはまた、i番目の線とグリッド軸との間の角度θiに応じて一定であってよい。グリッド軸は、δ≦lθi≦δ√2となるような角度θiをもたらすように選択されてよい。
【0068】
したがって、分布値fsの位置は、超平面に直交するグリッド軸に沿った分布サンプルfjの位置と一致してよい。他の各グリッド軸に対して、分離可能な線形補間が採用されてよい。したがって、d次元グリッドの場合、Josephの方法は、(たとえば、上述された光線駆動多重線形補間より1回少ない)d-1回の線形補間を利用することができる。Josephのモデルは、たとえば、CT画像によく適している場合があるが、グラフィックおよびディスプレイには、光線駆動多重線形補間から生じる冗長性が望ましい場合がある。
【0069】
光線駆動モデルの1つの望ましい特性は、サンプリンググリッドから(たとえば、再投影中に)計算されるか、または(たとえば、逆投影中に)分割されるビンの100%を(たとえば、i番目のビンごとに)活用することであり、それは、
【0070】
【0071】
しかしながら、ボクセルが同様に100%を占めるという保証はない可能性がある。数学的には、これは、
【0072】
【0073】
数Iの値に応じて、ボクセルは、アンダーサンプリングまたはオーバーサンプリングされる場合がある(それぞれ、穴または冗長性が生じる)。
【0074】
ボクセルを構成するために、ボクセル駆動モデルが使用されてよい。(上記で詳細に説明された)離散化に対する光線駆動手法とは対照的に、ボクセル駆動モデルは、X線検出器に対する各分布サンプルfjの100%寄与を活用する。したがって、ボクセル駆動モデルは、測定値(ビン)に対する各分布サンプルfjの寄与の決定がどのように行われるかによって特徴付けられてよい。
【0075】
ボクセル駆動モデルでは、線形補間は、各j番目の分布サンプルfjを通過する線積分、たとえば、X線源の焦点をj番目のグリッドサンプルxjに接合する線に沿った積分を構成する。X線検出器との線の交点は連続関数u(x)によって定義されてよく、それは必ずしもi番目のビンの中心の位置uiに対応しなくてよく、代わりに、より一般的に、i番目のビンの位置u(xj)に対応してよい(したがって、線は、検出器における位置u(xj)によってX線源に対して定義され得るので、線u(xj)と本明細書では呼ばれる場合がある)。線u(xj)は、X線源およびX線検出器の所与の位置に対して、j番目のグリッドサンプルxjおよびX線源の焦点を通過する唯一の線であり得るので、分布サンプルfjは線u(xj)に対して100%寄与することができる(たとえば、分布サンプルfjは、X線源を位置u(xj)に接合することによって画定された線にわたって位置u(xj)で行われる測定に対して100%寄与することができる)。次いで、隣接する位置uiへの寄与は、線u(xj)および2つの最も近い隣接する位置uiから推論された線形補間係数に従って分布サンプルfjを分割することによって決定されてよい。したがって、所与の位置uiがまた複数の線u(xj)と相互作用するようにモデル化されるように、所与の線u(xj)は複数の位置uiと相互作用するようにモデル化され得るので、(オペレータRによって符号化されるように)ボクセル駆動モデルに非対称線形依存性が存在してよい。
【0076】
複数のボクセルを記述するために幾何学モデルが選択されてよい。たとえば、上述されたように、複数のボクセルの各々は、均一強度fjの正方形の直方体として形成されてよい。ボクセル駆動モデルでは、X線検出器上のボクセルの投影または足跡は、各ボクセルの形状によって決定されてよく、それは、正方形の直方体の場合、投影角度の関数として変化する幅を有する台形である。X線検出器に対して幾何学モデルが選択されてもよい。たとえば、X線検出器は、均一なビンに分割されてよい。したがって、(離散化)係数rijは、位置xjにおける所与のボクセルの足跡とX線検出器のi番目のビンに由来する支持体との間の相互作用の定量化として解釈されてよい。そのような相互作用は、いわゆる距離駆動モデルを形成する。
【0077】
次に
図3を参照すると、例示的な距離駆動モデルにおける相互作用を示す概略
図300が示されている。例示的な距離駆動モデルは、積分線の幾何学的表現に基づくボクセル駆動モデルであり、2組の線、(i)(たとえば、破線308で)X線源の焦点324から複数のボクセル304のそれぞれの縁部306まで延在する複数の原点線302、および(ii)X線源の焦点324からX線検出器の複数のビン314のそれぞれの縁部316まで延在する複数の宛先線312(X線源の焦点324までの複数の宛先線312の完全な延長は明確にするために図示されていない)を考慮することができる。投影軸322は、その長さが複数のボクセル304および複数のビン314のそれぞれの投影(たとえば、足跡)の値を重み付けすることができる線分(たとえば、本明細書では支持体とも呼ばれる線302、312)の集合を定義することにより、複数のボクセル304および複数のビン314の相対位置用の基準として機能することができる。さらに、複数のボクセル304および複数のビン314は、比較的単純な幾何形状物体として成型され得るので、投影軸322に沿った投影は、幾何学的視点から完全に記述されてよい。しかしながら、複数の原点線302は、二組の線302、312が異なるサンプリング方式(それぞれ、複数のボクセル304および前記複数のビン314)に基づく結果として、複数の宛先線312とは異なる情報密度を有してよい。したがって、異なる情報密度を構成することによってそれらの間の非対称線形依存性を除去する補間方式が、2つの投影を統合するために必要であり得る。
【0078】
光線駆動モデルとは対照的に、ボクセル駆動モデルでは、(たとえば、j番目のボクセルごとに)ボクセルの100%がビン上で検出および共有されてよく、それは数学的に、
【0079】
【0080】
しかしながら、やはり光線駆動モデルとは対照的に、ボクセル駆動モデルでは、ビンが同様に100%を占めるという保証はない可能性がある。数学的に、これは
【0081】
【0082】
数Jの値に応じて、ビンは、アンダーサンプリングまたはオーバーサンプリングされる場合がある(それぞれ、穴または冗長性が生じる)。
【0083】
不十分なビンサンプリングに起因して、ボクセル駆動モデルにおける線形補間は、不正確なプロジェクタモデルであり、再投影および反復画像再構成(式(2)を参照)には適さない可能性がある。しかしながら、100%ボクセルサンプリングは、逆投影および分析画像再構成(後者は1つの逆投影を採用し、再投影を採用しない)にボクセル駆動モデルを適合させることができる。さらに、隣接するビンにわたるグリッドサンプルxjにおける分布サンプルfjの寄与の分割とは対照的に、ボクセル駆動モデルにおける線形補間は、分布サンプルfjに対する線u(xj)に沿った検出器測定値の合計として解釈されてよい(すべての検出器測定値が連続関数u(x)を形成するという仮定の下で、連続関数u(x)から線u(xj)に沿った検出器測定値は線形補間を介して決定されてよい)。
【0084】
距離駆動モデルは、(式(6)を検証するために相互作用が選択されるので)100%ボクセルサンプリング(たとえば、式(8))および100%ビンサンプリングの両方の条件を達成することができる。したがって、距離駆動モデルは、再投影および逆投影に等しく適している可能性があり、したがって、反復画像再構成アルゴリズムにおける利用に成功することができる。しかしながら、正確な画像化および大規模並列実装は、距離駆動モデルが代わりに(サンプリング)グリッド軸の連続スキャンによる交差位置の順序付き決定に依存することができるように、連続関数u(x)の省略によって排除されてよい。
【0085】
本明細書に記載された実施形態によれば、1次元再サンプリング変換は、分離可能な補間のためのより一般的なフレームワークを提供することができる。1次元再サンプリング変換は多次元幾何学的形状を想定しなくてよいので、代わりにサンプルの1次元サブセットが考慮されてよく、各サンプルはサンプリング位置を有し、幾何学的形状の代わりに1次元基底関数を有する。
【0086】
画像変換との関連で、再サンプリング変換は、変換、回転、および拡大として採用されてよい。そのような再サンプリング変換は、ホモグラフィ変換の特殊ケースである。したがって、ホモグラフィ変換は、フラットパネル検出器ベースのコーンビーム断層撮影幾何形状で取得された投影の再サンプリングに理想的に適している可能性があり、そのため、投影は拡大および回転として関連してよい。さらに、すべてのホモグラフィ変換の可逆性は、再サンプリングに望ましい場合がある。
【0087】
ホモグラフィ再サンプリング変換は、変数の変化として見られてよい。たとえば、ホモグラフィ再サンプリング変換hは、変数xを変数uと置き換えることができ、たとえば、u=h(x)である。引き換えに、変数uは、x=h-1(u)を介して変数xと置き換えられてよい。
【0088】
本明細書では、再サンプリング変換との関連で使用される表記は、それぞれ、x(u(x))=xおよびu(x(u))=uであるようなu(x)およびx(u)を採用することによって簡略化されてよい。したがって、線形である投影演算は、(p○u=f、たとえば、p(u(x))=f(x)であるような)ホモグラフィ再サンプリング変換u(x)を介して、1つの軸への分布fの制限、たとえばf(x)に対するxの制限の再サンプリングとして計算された投影p(u)を合計することに分解されてよい
x∈]-∞,+∞[用の(実数値)関数u(x)は、
【0089】
【数12】
によって定義される1次元ホモグラフィであり、ここで、h
11、h
12、h
21、およびh
22は、変換行列H、たとえば、
【0090】
【0091】
中間座標s(x)=h21x+h22を使用して、実数値行列関係は、
【0092】
【数14】
のように、同次座標su(x)=s(x)u(x)およびs(x)で取得されてよい。
【0093】
λが実数の非ゼロスカラ値である行列Hλ=λHを考慮すると、同じ再サンプリングが取得されてよい。
【0094】
【数15】
(しかしながら、H
λの場合、異なる中間座標s
λ(x)=λs(x)が採用されてよい。)λは非ゼロであるように選択されるので、変換行列Hは可逆であり、したがって再サンプリングに適していると想定されてよい。
【0095】
特に、一般性を失うことなく、変換行列Hは、たとえば、h11h22-h12h21=1または|H|=1であるようなユニモジュラ行列であるようにさらに選択されてよい。
【0096】
変換行列Hは可逆であるので、逆再サンプリング(たとえば、関数x(u))は行列H-1に関連付けられてよく、それは、
【0097】
【0098】
その理由は、変換行列Hは2×2行列であるからである。u(x)に対して定義された中間座標s(x)と同様に、中間座標t(u)=-h21u+h11は、(上記の説明と同様に)
【0099】
【数17】
のようになる(したがって、それは、tx(u)=t(u)×(u)となる)。
【0100】
導関数u’(x)およびx’(u)は、ホモグラフィの局所近似を提供することができ、それぞれ、
【0101】
【0102】
【数19】
のように与えられてよい。したがって、xにおける拡大係数はs
2(x)であってよく、uにおける逆拡大係数は[t
2(u)]
-1であってよい。さらに、h
21=0の場合、|H|=h
11h
22=1であり、xおよびuにおける拡大係数は、たとえば、
【0103】
【0104】
したがって、フラットパネル検出器ベースのコーンビーム断層撮影幾何形状では、空間内の点(x,y,z)と検出平面上のその投影(u(x,y,z),v(x,y,z))との間の関係は、3×4の投影行列Pを介して同次座標s(x,y,z)、su(x,y,z)=s(x,y,z)u(x,y,z)、およびsv(x,y,z)=s(x,y,z)v(x,y,z)で、
【0105】
【0106】
そのような形式は、上記で説明された補間方式に適合してよい。たとえば、光線駆動モデルは、線(光線)を介してループして、
【0107】
【数22】
を介して空間内のi番目の線の方程式を取得することができる。
【0108】
同様に、ボクセル駆動モデルは、ボクセルを介してループして、
【0109】
【数23】
のように、ボクセル(x
j,y
j,z
j)の投影(u(x
j,y
j,z
j),v(x
j,y
j,z
j))を直接計算することができる。
【0110】
代わりに1次元再サンプリング変換を採用することにより、投影演算は変換の線形結合に分解されてよく、各変換は、空間内の1つの自由変数(たとえば、x)とX線検出器の表面上の1つの自由変数(たとえば、u)とを関係付ける。たとえば、(たとえば、上述されたようにu(x)形式による)再サンプリングは、
【0111】
【0112】
したがって、任意の対(i,j)に対して、6つの可能な再サンプリング変換:u(x)、v(x)、u(y)、v(y)、u(z)、およびv(z)が存在してよい。投影分解は、(i,j)にわたってループすることと、ループごとに6つの再サンプリング変換のうちの1つを選択することとを含んでよい。得られた再サンプリング変換のサブセットは、可逆的ホモグラフィを有するように選択されてよい。たとえば、ボクセル駆動モデルにおけるループ方式は、最初にjを介してループすることと、最初にz=zjを固定し、次いでy=yjを固定することと、次いで、すべてのiに対して、(独立しており、互いに分離可能である)u(x)とv(x)との間の補間を分割することとを含んでよい。軸x、y、およびzは、それぞれの軸x、y、およびzに沿ってボクセルをループさせるために、前述のループ方式において必要に応じて交換されてよい。iがjと交換される場合、光線駆動モデル用のループが取得されてよい。
【0113】
したがって、一般性を失うことなく、以下の説明は、例示としてu(x)およびx(u)を参照する。したがって、(jでインデックス付けされ、有限数Jに等しいサイズを有する)複数のボクセルのうち、軸x上にあるサブセットは、lでインデックス付けされ、有限数Lに等しいサイズを有することができる。同様に、(iでインデックス付けされ、有限数Iに等しいサイズを有する)複数のビンのうち、軸u上にあるサブセットは、kでインデックス付けされ、有限数Kに等しいサイズを有することができる。そのため、u(x)に従ってrlk=rijであるように、インデックスkはインデックスiをサブサンプリングすることができ、インデックスlはインデックスjをサブサンプリングすることができる。
【0114】
画像再構成では、前方投影(再投影)は、表面上に体積をマッピングすることとして記述されてよく、逆投影は、体積上に表面を逆にマッピングすることとして記述されてよい。そのようなマッピングは、所与の画像再構成モデルが投影(表面)の線上の体積の単一の線の投影として記述されてよく、その逆も同様であるように、より単純な分離可能なマッピングの和に分解されてよい。
【0115】
たとえば、
図4Aおよび
図4Bを参照して下記で説明されるように、本開示のホモグラフィベースのモデルは、単一の軸にわたる単一(1次元)のホモグラフィ再サンプリング変換を用いて完全に記述されてよい。したがって、1次元ホモグラフィ再サンプリング変換の集合は、画像再構成アルゴリズム内で活用され得る(たとえば、表面におけるボクセル-ビン相互作用の行列として)対称プロジェクタ/バックプロジェクタ対を形成することができる。
【0116】
次に
図4Aを参照すると、例示的なフラットパネル検出器ベースのコーンビーム断層撮影幾何形状を示す概略
図400が示されている。二組の線がサンプリングされている積分線を幾何学的に表すことができる:(i)(たとえば、軸xと平行な破線408に沿って)X線源の焦点424からボクセル404のサブセットのそれぞれの中心410まで延在する複数の破線402、および(ii)(たとえば、X線検出器上の線418、軸uと平行な表面418に沿って)X線源の焦点424からビン414のサブセットのそれぞれの中心420まで延在する複数の線412。しかしながら、
図3を参照して記載された幾何学ベースの視点とは対照的に、ホモグラフィベースの視点(2次元ではなく、ボクセルおよびビンの投影面)でサンプリングされた積分線の各々に対して(たとえば、中心410、420の)単一の1次元点のみが考慮される必要がある。具体的には、ボクセル404のサブセットの中心410およびビン414のサブセットの中心420においてサンプリングされた積分線にそれぞれ対応する1次元点の各々は、(
図4Bを参照して後述されるように)1次元ホモグラフィ再サンプリング変換を介して単一の連続関数にマッピングされてよい。したがって、ホモグラフィベースの視点では、積分線の幾何学的表現(たとえば、線402、412)は全く考慮されない場合がある。
【0117】
次に
図4Bを参照すると、例示的な1次元ホモグラフィ再サンプリング変換476を示す概略
図450が示されている。複数の点460(たとえば、ボクセルのサブセットの中心)は、軸458に沿った分布474の複数のサンプル462のそれぞれの位置を表すことができる。同様に、複数の点470(たとえば、X線検出器のビンのサブセットの中心)は、軸468に沿った分布478の複数のサンプル452のそれぞれの位置を表すことができる。図示されたように、分布474は、1次元ホモグラフィ再サンプリング変換476を介して分布478にマッピング(たとえば、変換)されてよい。このようにして、1次元ホモグラフィ再サンプリング変換は、画像再構成アルゴリズムにおける積分線の幾何学的表現に完全に取って代わることができる。
【0118】
(「ソースサンプル」と呼ばれる)固定された既知の位置xmにあるM個のサンプルgmから任意の位置xに単一の連続関数gを再サンプリングするために、x∈]-∞,+∞[に対して定義された基底関数β(x,m)は、位置xmに関する関数gを記述するために、xmごとに導入されてよい。したがって、gの連続近似は、M個の基底関数の有限和によって与えられてよい。
【0119】
g(x)=Σmgmβ(x,m) (23)
いくつかの例では、各基底関数β(x,m)は、β(x,m)=β(x-xm)として効率的に表されてよい。
【0120】
線形補間方式では、基底関数β(x,m)は、
【0121】
【数25】
のように定義された基底関数β
1(x)であってよい。
【0122】
最近傍補間方式では、基底関数β(x,m)は、
【0123】
【数26】
のように定義された基底関数β
0(x)であってよい。
【0124】
番号付きインデックス「0」および「1」は、次数nのBスプラインと呼ばれる関数のファミリに従って基底関数をインデックス付けする。具体的には、次数n>0の補間基底関数は、
βn=βn-1*β0 (26)
のように次数nのBスプラインに基づいて再帰的に定義されてよく、ここで、「*」は畳み込みを意味する。たとえば、
β1=β0*β0 (27)
である。
【0125】
さらに、次数nのBスプライン内の各基底関数は、
βn(x)=βn(-x) (28)
を検証することができる。
【0126】
連続領域では、ホモグラフィu(x)およびx(u)は、p(u)=f(x)であるように、分布fのボクセルの所与の線(サブセット)と投影pのビンの所与の線(サブセット)との間の同じ関係を記述することができる。幾何学的視点では、ボクセルおよびビンの線は空間内の異なる位置にあるが、関数u(x)およびx(u)は、一方の変数を他方の変数と(たとえば、xをuと、またはその逆に)置き換えることにより、f(x)およびp(u)を同じ軸にマッピングする。具体的には、関数u(x)は、関数f(x)およびp(u)の両方を軸uに沿ってマッピングし、関数x(u)は、関数f(x)およびp(u)の両方を軸xに沿ってマッピングする。しかしながら、軸xに沿ったサンプリングは軸uに沿ったサンプリングとは異なってよいので、同等の離散化は保証されない可能性がある。軸xに沿って、L個の点(たとえば、
図4を参照して上述されたように、軸xに沿ったボクセルのサブセットの中心)は、間隔δ
xで等しく離間してよい。軸uに沿って、K個の点(たとえば、
図4を参照して上述されたように、軸uに沿ったビンのサブセットの中心)は、間隔δ
uで等しく離間してよい。
【0127】
したがって、間隔δを明示的に構成するために基底関数βn,δ(x)が導入されてよく、これは
【0128】
【数27】
のように様々に表されてよい。基底関数β
n,δ(x)を用いた基底集合拡張を採用すると、それぞれ、投影pおよび分布fに対して、2つの連続モデル:
p(u)=f○x(u)=f(x)=Σ
kf
kβ
δx(x) (30)
および
f(x)=p○u(x)=p(u)=Σ
lp
lβ
δu(u) (31)
のうちの1つが取得されてよい(ここで、β
n,δ(x)の表記は、間隔δ
xに対してはβ
δx(x)に、間隔δ
uに対してはβ
δu(u)に簡略化される)。
【0129】
間隔δは、サンプリングレートδ-1の逆数として理解されてよい。したがって、間隔δの変化は、サンプリングレートδ-1の変化をもたらしてよく、倍率、たとえばδx/δuとして定量化されてよい。いくつかの例では、連続モデル(たとえば、式(29)または(30)のいずれか)は、サンプリングレートがより高いいずれか(たとえば、1/δxまたは1/δu)に基づいて選択されてよい。
【0130】
次に
図5を参照すると、
図4Bを参照して上述された例示的な1次元ホモグラフィ再サンプリング変換476などの、例示的な1次元ホモグラフィ再サンプリング変換で再サンプリングされた連続関数の基底集合近似を示す概略
図500が示されている。再サンプリングの視点から、関数h(x)は、p(u)=f○h(x)であるように存在する。したがって、関数f(x)(たとえば、分布f)および関数p(u)(たとえば、投影p)は同じ関数であってよいが、異なるサンプリング位置、たとえば、関数f(x)の場合のx
lおよび関数p(u)の場合のu
kにあり、異なる軸に沿ってよい。しかしながら、位置x
lは、位置u
kと同じ軸上に配置され得る関数h(x)を介して位置h(x
l)に変換され得るので、関数f(x)およびp(u)は、単一の軸に沿って配置されてよい。次いで、関数p(u)は、同じ軸上のすべての位置の集合{u
1<k≦K,h(x
1<l≦L)}に関して定義された基底関数の和としてモデル化されてよい。次いで、選択された位置における基底関数の値を計算することにより、モデル化のための補間重みが取得されてよい。基底関数は大域的に連続であり得るので、その計算は、任意の時間に、任意の点で独立して、したがって並列に実行されてよい。このようにして、1次元ホモグラフィ再サンプリング変換を活用するアルゴリズムは、大規模並列コンピューティングアーキテクチャに容易に適合してよい。
【0131】
概略
図500に示されたように、例示的な位置510は位置h(x
l)を表すことができ、例示的な位置520は位置u
kを表すことができる。したがって、位置510、520は同じ軸532に沿ってプロットされ、それぞれ、同じ関数530に512、522でマッピングされ、関数530は基底関数の和としてp(u)=f○h(x)の連続近似を表すことができる。
図5を参照して記載された1次元ホモグラフィ再サンプリング変換の単軸表現は、軸458に沿ってサンプリングされた関数474が軸468に沿ってサンプリングされた関数478に変換されること476を示す、
図4Bを参照して記載された表現と比較されてよい。
図4Bでは、関数474、478が同様の形状で描写されており、それらの等価性を示すことに留意されたい。このようにして、
図3に示された幾何学的表現は、(検出器座標uの軸532として
図5に示されているが、サンプリング座標xの軸を使用すると、均等なフレームワークが提供される)単一の軸に沿った単一の関数によって置き換えられてよい。
【0132】
結果として得られるモデルが係数rklの(離散的な)集合から構築され得るので、上述された基底集合拡張は本質的に中間であり得ることに留意されたい。一例として、ボクセル駆動モデルでは、ボクセル位置xlごとに1つの基底関数βn,δ(x)が設定されてよく、そこから位置x(uk)でサンプルが計算されてよく、以下の係数が得られる。
【0133】
rkl=βn,δx(x(uk)-xl) (32)
【0134】
別の例として、光線駆動モデルでは、ビン位置ukごとに1つの基底関数βn,δ(x)が設定されてよく、そこから位置u(xl)でサンプルが計算されてよく、以下の係数が得られる。
【0135】
rkl=βn,δu(u(xl)-uk) (33)
当然、ホモグラフィ駆動モデルを光線駆動モデルおよびボクセル駆動モデルに適合させても、そのいかなる制限も是正されない可能性がある。しかしながら、ホモグラフィ表現は、有利なことに、代替の視点から、そのような制限に対する貴重な洞察を提供することができる。たとえば、ホモグラフィ表現では、光線駆動モデルおよびボクセル駆動モデルは、画像再構成の片側の視点に対応的に適した1つのサンプリング軸(たとえば、軸xまたは軸u)を選択することができる。しかしながら、ホモグラフィ表示が明らかになるにつれて、他の軸上に類似のモデルが誘導されてよい。たとえば、関数p(u)は、
p(u)=fox(u)=f(x)=Σlflβδx(x)=Σlflβδxox(u) (34)
および
p(u)=Σkpkβδux(u) (35)
(それぞれ、式(30)および(31)を参照)の両方として表されてよい。
【0136】
ホモグラフィは、(上述されたように)倍率として局所的に作用することができるので、軸x上で、基底関数βδx(x)は、固定間隔δxを用いて、
βδx(x)=βδxox(u) (36)
のように表されてよい。しかしながら、軸u上では、誘導基底関数βδu(x)(u)は、連続可変間隔δu(x)、たとえば、
【0137】
【0138】
連続可変間隔δu(x)は、(検出器設計によって課される固定間隔δuを有してよい)測定値plと一致しない可能性があるので、基底関数βδu(x)(u)は、均一な間隔の測定値plを使用する関数p(u)の適切な再サンプリング拡張を提供しない可能性があるが、サンプルflを使用する関数p(u)に、基底関数βδu(x)(u)によって適切な再サンプリング拡張が提供されてよい。逆に、基底関数βδu(x)(u)は、サンプルfkを使用する関数f(x)に適切な再サンプリング拡張を提供しない可能性があるが、サンプルpkを使用する関数f(x)に、基底関数βδu(x)(u)によって適切な再サンプリング拡張が提供されてよい。
【0139】
したがって、所与の関数を再サンプリングするとき、ホモグラフィ駆動モデルは、宛先駆動再サンプリングに使用されるとき、適切な再サンプリング拡張であってよい。具体的には、再サンプリング拡張は、均一な間隔の既知のサンプル(上述されたようなソースサンプル)を記述する軸に対して選択されてよく、(「宛先」と呼ばれる)再サンプリング位置は、(
図5を参照して上記で詳細に記載されたように)再サンプリング変換によって与えられてよい。ソース駆動再サンプリングは、反対の視点から定義されてよい。一例として、光線駆動モデルは、再投影の(したがって、式(6)の条件を検証する)場合には宛先駆動されてよく、逆投影の場合にはソース駆動されてよい。別の例として、ボクセル駆動モデルは、逆投影の(したがって、式(8)の条件を検証する)場合には宛先駆動されてよく、再投影の場合にはソース駆動されてよい。
【0140】
いくつかの例では、上述された1次元ホモグラフィ再サンプリング変換は、フラットパネル検出器ベースのコーンビーム断層撮影幾何形状内のホモグラフィであることが知られてよく(たとえば、X線検出器は平坦であり、すべての光線は、
図4を参照して上述されたように、X線源の焦点に向かって収束する)、そのために実施されてよい。そのような幾何形状は、介入X線Cアームシステム、ならびにフラットパネルX線検出器でコーンビームCT(CBCT)を実行するために採用されたすべてのシステムに固有である。ホモグラフィ一般化の具体的な用途には、平行幾何形状(核医学)またはデジタル乳房トモシンセシス(DBT)における投影を記述する変換が含まれてよい。
【0141】
湾曲したX線検出器を有するCTスキャナなどの他の例では、関数h(x)はホモグラフィではない場合がある。そのようなシステムへのホモグラフィ駆動モデルの1つの可能な適応は、CT画像データの事前サンプリングステップを実行することを含み、関数h(x)がホモグラフィである仮想X線検出器が構築されてよい。そのようなシステムへのホモグラフィ駆動モデルの別の可能な適応は、関数h(x)が(少なくとも局所的に)ホモグラフィである幾何形状をモデル化するアドホック関数を定義することを含む。有利なことに、このようにしてアドホック機能を定義することは、フラットパネルCT画像システム以外の画像システムを含むように一般化されてよい。
【0142】
したがって、本明細書に記載された実施形態では、再投影と逆投影の両方に適切な拡張を提供する基底関数の単一集合に基づく離散化方式を提供することにより、幾何学ベースのモデルの制限を緩和することができるホモグラフィックサンプリングのためのより一般化された多様な拡張が提供される(たとえば、適切な再サンプリング変換は、拡張のソース駆動および宛先駆動の両方の使用において実現されてよい)。このようにして、本明細書に記載されたホモグラフィベースのモデルは、幾何学的表現を完全に回避しながら、類似の手法を実現するための幾何学ベースのモデルの作り直しを可能にすることができる。そのような作り直しは、大規模に並列化された計算フレームワーク、たとえばGPUベースのアーキテクチャに対する実装の容易さを高めることができる。
【0143】
具体的には、距離駆動モデルなどのいくつかの幾何学ベースのモデルは、良好な画像品質、非常にシーケンシャルなメモリアクセスパターン、および低い演算コストのために望ましい場合があるが、容易な大規模並列実装は実現が困難な場合がある。たとえば、距離駆動アルゴリズムは、ボクセルと検出器セル(ビン)の縁部との間の相対位置に基づいて計算を調整するために内部分岐を含んでよい(
図3を参照)。しかしながら、結果として生じる分岐挙動の不規則性は、大規模並列コンピューティングデバイス、たとえばGPUに実装されると非効率性をもたらす可能性がある。
【0144】
ホモグラフィベースのモデルは、距離駆動モデルを作り直すことにより、または距離駆動モデルを完全に置き換えることにより、内部分岐を回避することによってより計算効率のよい代替案を提供することができる。さらに、ホモグラフィベースのモデルは、精度(たとえば、より高次の補間を介して)および速度(たとえば、容易な並列実装を介して)の両方の点で、幾何学ベースのモデルのGPU実装を凌駕することができる。そのような正確でGPUに適した計算方式は、(たとえば、GPUベースのアーキテクチャで訓練されることが多い畳み込みニューラルネットワークによる)深層学習ベースの画像再構成アルゴリズムに望ましい場合がある。
【0145】
幾何学的考察は、ホモグラフィ駆動補間に完全に存在しないとは限らないことに留意されたい。たとえば、最近傍補間方式の基底関数β0(x)は、有限の支持体にわたって均一であってよい。検出は有限の検出器表面で行われるので、基底関数β0(x)は、断層撮影幾何形状の検出器レベルの視点を記述するのによく適している場合がある。ボクセルレベルの視点から、基底関数β0(x)は、同様に、ボクセルの選択された線に沿った平坦なプロファイルを想定することができる。しかしながら、そのような場合の幾何学的解釈は、(たとえば、1の補間次数を有する)線形補間方式を使用して想定され得るものよりも小さい、分布の次数0の離散化である。
【0146】
いくつかの実施形態では、ホモグラフィベースのモデルは、足跡ベースのモデル(たとえば、距離駆動モデル)にさらに結合されてよい。そのような結合は、一方のサンプリング軸(たとえば、光線駆動モデルのX線検出器、ボクセル駆動モデルのサンプリンググリッド)に基づいて定義されるサンプリングの制限をバイパスすることによって達成されてよく、他方のサンプリング軸は連続的であり、一組の位置で計算される。
【0147】
上記で示されたように、L個の関数(ボクセル)の集合がサンプリンググリッドのサンプリング軸に沿って定義される場合、所与のモデルは、X線検出器のビンの数Kにかかわらず変更されない。足跡ベースのモデルでは、ボクセルとビンとの間の相互作用は、明示的に定量化されてよい。ホモグラフィの視点では、サンプリング位置は、幾何学的形状ではなく投影されてよい。たとえば、関数u(x)では、軸uに沿ったサンプリングは、(たとえば、拡大係数に従って)s2(x)のサンプリングレートでxに対して連続的に変更されてよい。したがって、グリッドサンプルが位置xlでモデル化されると、
【0148】
【数29】
のような間隔Δ
uの局所サンプリングレートにu(x)によってサンプリングレートが変換されることを無視しながら、固定間隔δ
xが想定されてよい。
【0149】
間隔Δuの局所サンプリングレートを含むように基底関数ξn(x)が定義されてよく、基底関数ξn(x)は、固定サンプリングδx用の基底関数βn,δx(x)と、間隔Δuの(変換された)局所サンプリングレート用の基底関数βn,Δu(x)との畳み込みであってよい。一般性を失うことなく、固定間隔δxは1に設定されてよく、間隔Δlの局所サンプリングレートは、
Δl=u’(xl)δx (39)
のように定義されてよい。
【0150】
(位置xlにおける)L個の基底関数ξn,l(x)の各々は、次いで、
【0151】
【0152】
L個の基底関数ξn,l(x)は、p(u)およびf(x)を
p(u)=f(x)=Σlflξn,l(x(uk)-xl) (41)
のように拡張することができ、K×L個の係数rklの各々は、それに応じて、
rkl=ξn,l(x(uk)-xl) (42)
のように取得されてよい。
【0153】
あるいは、(位置ukにおける)K個の基底関数χn,k(u)の各々は、
【0154】
【数31】
のように定義されてよく、ここで、間隔Δ
kの局所サンプリングレートは、
Δ
k=x’(u
k)δ
u (44)
のように定義されてよく、(固定)間隔δ
uは1に設定される。K個の基底関数χ
n,k(u)は、f(x)およびp(u)を
f(x)=p(u)=Σ
kp
kχ
n,k(u-u
k) (45)
のように拡張することができ、K×L個の係数r
klの各々は、それに応じて、
r
kl=χ
n,k(u(x
l)-u
k) (46)
のように取得されてよい。
【0155】
したがって、上記のように、各モデルがサンプリングおよびそのホモグラフィ変換を固定した2つの類似モデルが(xに1つおよびuに1つ)取得されてよい。
【0156】
式(24)~(28)の特性および定義を考慮することにより、n=0の特別な場合が開発されてよい。任意のサンプリングレートΔ>0を仮定し、
【0157】
【0158】
【数33】
を定義すると、畳み込みβ
0,Δ*β
0(t)は、
【0159】
【0160】
さらに、畳み込みβ0,Δ*β0(t)は、
【0161】
【数35】
のように定義されてよく、その結果、係数r
klは、
【0162】
【0163】
式(25)を考慮すると、式(51)の積分は、位置xlを中心とし、幅1を有する関数β0に対応する(ビンに由来する)支持体と、位置x(uk)を中心とし、幅Δl=u’(xl)(式(39)を参照)を有する関数β0,Δlに対応する支持体の足跡(たとえば、ビンの投影)との交点に等しい。したがって、関数β0,Δlは、位置ukを中心とし、幅δuを有するX線検出器のビンの投影を、位置x(uk)を中心とし、幅Δl=u’(xl)を有する投影ビンとしてモデル化することができる。
【0164】
距離駆動モデルの上記の説明は、直方体ボクセルと、その各側に次数0の基底関数を有する均一ビンとを有する排他的な幾何学的表現を想定する。距離駆動モデルとホモグラフィ駆動モデルの相互作用は、補間次数(たとえば、線形補間方式の補間次数)を1に増加させる。精度を改善し続けるために、(支持体ではなく)足跡が考慮されてよい。
【0165】
具体的には、基底関数ξn,l(x)を、
ξn,m,l=βm,Δl*βn(x) (52)
のように与えられる基底関数ξn,m,l(x)に一般化するためにインデックスmが導入されてよい。
【0166】
そのため、各軸は、任意の高レベルの精度を別々に提供されてよい。実際には、任意の得られたモデルが少なくとも2の補間次数を有することができるように、分布サンプリングに対する手法ごとに少なくとも1の補間次数が望ましい場合がある。
【0167】
距離駆動モデルにおいて均一ビンおよび均一ボクセルがさらに想定されてもよい。距離駆動モデルは、各(分離可能な)方向に沿ったビンおよびボクセルの縁部をさらに考慮することができる。
図3を参照して上述されたように、縁部の位置は、ビンおよびボクセルの線分(支持体)の集合を形成して、任意の共通投影軸上にさらに投影されてよい。したがって、係数r
klは、k番目のビンの投影軸上の投影によって画定される支持体と、l番目のボクセルの投影軸上の投影によって画定される支持体との間の投影軸上の交点に等しく設定されてよい。
【0168】
上述されたように、足跡ベースのモデルの考慮事項をホモグラフィベースのモデルに結び付けると、ボクセル、検出器、およびそれらの間の相互作用が同時に表され得るので、再投影および逆投影に等しく適することができるモデルを提供することができる。そのようなモデルは、それに対応して計算上の要求がより厳しい可能性がある。
【0169】
並列化を容易にするために、投影軸がX線検出器のビンの中心の位置ukおよび軸uへのボクセルの中心の投影の位置u(xl)を有する軸uであると仮定して、幾何学的表現およびホモグラフィ表現の両方を考慮する上述された補間方式が書き換えられてよい。この場合、関数u(x)はホモグラフィであると想定されなくてよいので、倍率によって近似されなくてよい。代わりに、関数u(x)は、幅δxを有するl番目のボクセルの縁部の投影を決定するために使用されてよい。ボクセルの投影された支持体は、L個の連続する線分Slの集合を形成することができ、それは、
【0170】
【0171】
同様に、ビンの投影された支持体は、K個の連続する線分Skの集合を形成することができ、それは、
【0172】
【0173】
それに応じて、(距離駆動)係数rklは、
rkl=Sk∩Sl (55)
のように与えられてよい。
【0174】
交点の決定は、セグメントの集合Sl、Skの境界の決定に基づいてよい。しかしながら、分離可能性の考慮事項を除き、そのような境界を決定することは、ベクトル化および並列化に適していない可能性がある。
【0175】
基底関数β0は代替手法を開発するために使用されてよく、ここで、セグメントSkは関数β0,1(u-uk)の支持体であってよく、セグメントSlは、
【0176】
【0177】
【数40】
の支持体であってよく、ここで、位置u
lは、
【0178】
【0179】
したがって、rklは、
【0180】
【0181】
式(58)によって提供されるξ0,δlの分析的定義を採用することにより、ソーティング演算が回避されてよく、アルゴリズムは、容易に並列化可能な関数呼び出しで開発されてよい。
【0182】
フラットパネル検出器ベースのコーンビーム断層撮影幾何形状の場合、上記で説明されたように、再サンプリング変換は、u’(x)またはx’(u)によって与えられる拡大係数によって局所的に近似され得るホモグラフィである。しかしながら、一例では、拡大係数が代わりにセグメントSkとSlの比として定義される場合、上述されたホモグラフィ駆動補間は、フラットパネル検出器ベースのコーンビーム断層撮影幾何形状用の距離駆動モデルの正確な作り直しであってよい。
【0183】
均一に離間したサンプルの集合と不均一に離間したサンプルの対応する集合の両方を表す拡張は、Bスプラインとの関連で上記で説明されているが、他の例では、基底関数の他のファミリ(たとえば、O-MOMS)が使用されてよい。さらなる例では、2つ以上の次元のより複雑な拡張が(分離性は低いが)考案されてよい。
【0184】
次に
図6を参照すると、例示的なホモグラフィベースのモデルによる反復再構成のための方法600を示すフローチャートが描写されている。後述されるように、1次元ホモグラフィ再サンプリング変換は、サンプリング画像データを再サンプリングし、対称プロジェクタ/バックプロジェクタのオペレータ対を形成するために活用されてよい。具体的には、対称プロジェクタ/バックプロジェクタのオペレータ対は、変換の線形結合に分解されてよく、各変換は、サンプリング画像データのサブセットを単一の連続関数にマッピングし、そこから未知のサンプリング点が既知のサンプリング点の補間を介して決定されてよい。幾何学ベースのモデル(たとえば、サンプリング画像データを幾何学的物体の集合にマッピングすることに基づくモデル)とは対照的に、例示的なホモグラフィベースのモデルは、単一の連続関数を任意のレベルの精度に拡張および近似することができる1次元基底関数として再サンプリング画像データを作り直す。いくつかの例では、各基底関数に関連付けられた係数(たとえば、重み)は、実質的に独立して決定されてよい。このようにして、再サンプリング画像データを符号化する係数の集合は、幾何学ベースのモデルの計算上の制限を克服して、並列に決定されてよい。
【0185】
図1および
図2に描写されたシステムおよび構成要素に関して、方法600が下記に記載される。たとえば、いくつかの実施形態では、方法600は、
図2の画像システム200上で実施されてよい。しかしながら、方法600は、本開示の範囲から逸脱することなく、他のシステムおよび構成要素で実施されてよいことが諒解されよう。いくつかの実施形態では、方法600は、
図1および
図2を参照して上述された医療画像システムのいずれかにおける実行可能命令として実装されてよい。一実施形態では、方法600は、
図2の画像システム200のコンピューティングデバイス216などのコンピューティングデバイスの非一時的メモリに実装されてよい。方法600を参照して説明される個々のステップは、本開示の範囲内で追加、削除、置換、または交換されてよいことがさらに諒解されよう。
【0186】
605において、方法600は、1つまたは複数の画像システム動作パラメータを決定することを含んでよい。一例では、1つまたは複数の画像システム動作パラメータは、画像源(たとえば、放射デバイス、注入された染料など)および画像データを受信するための検出器の初期構成を決定する画像プロトコルを含んでよい。画像プロトコルは、複数の画像が連続的に構築され得るように、対象の物体に対する画像源および検出器の動きをさらに決定することができる。
【0187】
追加または代替の例では、1つまたは複数の画像システム動作パラメータは、画像幾何形状を含んでよい。たとえば、画像幾何形状は、(たとえば、画像プロトコルによって決定された)対象の物体に対する画像源および検出器の相対的な位置決め、ならびに活用されている特定の画像モダリティを含んでよい。いくつかの例では、コンピューティングデバイスは、単一の画像モダリティに結合されてよい。他の例では、コンピューティングデバイスは、複数の画像モダリティ(たとえば、同じ場所または異なる場所に配置された複数の画像サブシステム)に結合されてよい。
【0188】
追加または代替の例では、1つまたは複数の画像システム動作パラメータは、事前定義されたホモグラフィベースのモデルを含んでよい。具体的には、画像システムを介して画像データを取得する前に、(たとえば、画像プロトコルおよび/または画像幾何形状に基づいて)1次元ホモグラフィ再サンプリング変換が選択されてよい。
【0189】
610において、方法600は、画像幾何形状がフラットパネル検出器ベースのコーンビーム断層撮影幾何形状であるかどうかを判定することを含んでよい。たとえば、コンピューティングデバイスは、1つまたは複数の画像システム動作パラメータに基づいて画像幾何形状を判定することができる。画像幾何形状がフラットパネル検出器ベースのコーンビーム断層撮影幾何形状ではない場合、方法600は615に進んでよく、そこで方法600は、事前サンプリングルーチンを実行すること、またはアドホックホモグラフィベースのモデルを定義することを含んでよい。上述された1次元ホモグラフィ再サンプリング変換は、すべての画像システムにおいてホモグラフィであることが保証されなくてよい。たとえば、1次元ホモグラフィ再サンプリング変換は、湾曲した検出器を有するCT画像システム用のホモグラフィでなくてよい。したがって、ホモグラフィが選択され実施され得る仮想検出器上で画像データの事前サンプリングが実行されてもよく、所望の画像幾何形状を少なくとも局所的にモデル化するアドホック変換が定義されてもよい。
【0190】
画像幾何形状がフラットパネル検出器ベースのコーンビーム断層撮影幾何形状である場合、または615で再サンプリングルーチンが実行されたか、もしくはアドホックホモグラフィベースのモデルが定義された場合、方法600は620に進んでよく、そこで方法600は、サンプリンググリッドおよび検出器でサンプリング画像データを取得することを含んでよい。具体的には、サンプリンググリッドは複数のボクセルに分割されてよく、検出器は複数のビンに分割されてよい。複数の線積分測定値は、画像再構成アルゴリズムを介して画像が再構成され得る複数のボクセルおよび複数のビンの各々について決定されてよい。
【0191】
625において、方法600は、所望のレベルの精度に基づいて1次元ホモグラフィ再サンプリング変換用の基底関数の集合を選択することを含んでよい。具体的には、1次元ホモグラフィ再サンプリング変換は、対称プロジェクタ/バックプロジェクタのオペレータ対を形成するために、サンプリング画像データを単一の連続関数にマッピングすることにより、サンプリング画像データを再サンプリングすることができる。基底関数の集合は、単一の連続関数を任意のレベルの精度に拡張および近似することができる1次元基底関数の集合を含んでよい。一例では、基底関数の集合のサイズは、それに対応して精度のレベルを高めるために増大してよい。サンプリング画像データからの既知の点に基づいて、単一の連続関数に沿って未知の点を決定するために、補間方式がさらに選択されてよい。このようにして、対称プロジェクタ/バックプロジェクタのオペレータ対は、基底関数の集合および補間方式が、以前に実装されたアルゴリズムを作り直すかもしくは一致させるように、またはサンプリング画像データの新規の処理を提供するように選択され得る、一般化されたフレームワークを提供することができる。
【0192】
630において、方法600は、選択された基底関数の集合用の係数(たとえば、重み)の集合を決定することを含んでよい。具体的には、基底関数の集合の各々は、係数の集合のそれぞれ1つと関連付けられてよい。係数の集合の各々は、所与のプロジェクタ/バックプロジェクタのオペレータ対のプロジェクタまたはバックプロジェクタのいずれかの行列表現において、(たとえば、それぞれのボクセル内の点でサンプリングされた)複数の分布サンプルのうちの1つと複数のビンのうちの1つとの間の相互作用を符号化することができる。いくつかの例では、係数の集合の各々は、実質的に同時に係数の集合の各々を計算するために(たとえば、GPUベースのアーキテクチャに実装された)大規模並列化アルゴリズムが活用され得るように、実質的に独立して決定されてよい。したがって、幾何学ベースのモデルの計算上の制限は、本明細書の実施形態によって記述されたホモグラフィベースのモデルを介して改善されてよい。
【0193】
635において、方法600は、1次元ホモグラフィ再サンプリング変換に基づいて反復再投影(たとえば、前方投影)および逆投影(たとえば、後方投影)を介して画像を再構成することを含んでよい。対称プロジェクタ/バックプロジェクタのオペレータ対の対称性は、そのような反復画像再構成によく適している場合があるが、基底関数の集合の選択、補間方式、および係数の集合の独立した決定を介して任意の精度および計算効率も可能にする。したがって、本明細書の実施形態によって記載されたホモグラフィベースのモデルは、高精度大規模並列アルゴリズムを活用して正確に再構成された画像を生成することができる、深層学習ベースの画像再構成技法に適応可能であり得る。
【0194】
640において、方法600は、再構成された画像を表示することを含んでよい。たとえば、再構成された画像は、
図2を参照して上記で詳細に記載された画像システム200のディスプレイデバイス232などの医療画像システムのディスプレイデバイスでユーザに表示されてよい。
【0195】
645において、方法600は、(表示された)再構成された画像に基づいて医療問題を診断することを含んでよい。たとえば、方法600は、再構成された画像によって描写された病変を識別することを含んでよい。いくつかの例では、基底集合および補間方式の選択を介して画像データの精度のレベルが任意に高められ得るので、病変は、固定されたレベルの精度を有する画像再構成アルゴリズムに比べてより高い精度で識別されてよい。識別後、病変は、次いで良性または悪性と診断されてよく、その後に治療が推奨されてよい。病変の診断は例示的かつ非限定的な例として提供され、被写体内のいくつかの組織、器官、または異物のいずれか1つが再構成された画像に基づいて識別され得ることが諒解されよう。本明細書に開示された他の実施形態は、たとえば、無生物の1つまたは複数の構成要素の識別などの、医療診断以外の他の用途を対象にしてもよいことがさらに諒解されよう。
【0196】
このようにして、1次元ホモグラフィ再サンプリング変換を利用する反復画像再構成方法が提供される。具体的には、1次元ホモグラフィ再サンプリング変換の所与の集合からなる対称プロジェクタ/バックプロジェクタ対は、再サンプリングされた関数の基底集合拡張を介して任意のレベルの精度を実現しながら、反復再投影および逆投影のパラダイムに課される数学的制約を満たすために活用されてよい。そのようなホモグラフィベースのモデルを介して反復再構成を実行することの技術的効果は、積分線の幾何学的表現が作り直される(たとえば、一般化される)か、または完全に回避され得、より容易かつ高度に並列化可能なアルゴリズムをもたらすことである。いくつかの例では、反復再構成モデル方法の実施形態は、それに応じて、画像再構成のための深層学習技法に付随して適合され得る大規模並列グラフィック処理装置アーキテクチャに実装されてよい。
【0197】
一実施形態では、方法は、複数の発散X線に対応する画像データを取得することと、複数の発散X線に単一の関数形式を割り当てることと、ホモグラフィ変換を介して、単一の関数形式に基づいて複数の分布サンプルと複数のX線検出器ビンとの間の相互作用の重みを決定することと、相互作用の重みに基づいて画像を再構成することとを含む。方法の第1の例は、所望のレベルの精度を得るために単一の関数形式をサンプリングすることをさらに含む。場合によっては方法の第1の例を含む方法の第2の例は、単一の関数形式をサンプリングすることが、1次元基底関数の集合で単一の関数形式を拡張することを含むことをさらに含む。場合によっては方法の第1および第2の例のうちの1つまたは複数を含む方法の第3の例は、相互作用の重みの各重みが、1次元基底関数の集合のそれぞれの1次元基底関数と関連付けられることをさらに含む。場合によっては方法の第1~第3の例のうちの1つまたは複数を含む方法の第4の例は、単一の関数形式をサンプリングすることが、取得された画像データから既知の点を補間することによって単一の関数形式に対応する未知の点を決定することを含むことをさらに含む。場合によっては方法の第1~第4の例のうちの1つまたは複数を含む方法の第5の例は、画像データがフラットパネル検出器ベースのコーンビーム断層撮影幾何形状でサンプリングされることをさらに含む。場合によっては方法の第1~第5の例のうちの1つまたは複数を含む方法の第6の例は、ホモグラフィ変換が画像データを取得する前に定義されることをさらに含む。場合によっては方法の第1~第6の例のうちの1つまたは複数を含む方法の第7の例は、画像を再構成することが、相互作用の重みに基づいて決定された対称プロジェクタ/バックプロジェクタのオペレータ対で画像を反復再構成することを含むことをさらに含む。場合によっては方法の第1~第7の例のうちの1つまたは複数を含む方法の第8の例は、相互作用の重みが並列に決定されることをさらに含む。場合によっては方法の第1~第8の例のうちの1つまたは複数を含む方法の第9の例は、再構成された画像に基づいて医療問題を診断することをさらに含む。
【0198】
別の実施形態では、医療画像システムは、X線源と、X線源によって放射され、対象の物体によって減衰したX線放射を検出するように構成されたX線検出器アレイと、X線検出器アレイに通信可能に結合され、非一時的メモリに命令を記憶するコントローラとを備え、命令は、X線検出器アレイのサンプリンググリッドおよびビンにわたってサンプリングされたサンプリング画像データを取得し、所望のレベルの精度に基づいてホモグラフィ再サンプリング変換の集合のための基底関数の集合を選択し、基底関数の集合のそれぞれ1つについての係数の集合の各係数を並列に決定し、係数の集合に基づいてサンプリング画像データを反復再投影および逆投影することによって対象の物体を描写する画像を再構成し、再構成された画像を表示するように実行可能である。システムの第1の例は、基底関数の集合の各基底関数が大域的に連続し、独立して計算されることをさらに含む。場合によってはシステムの第1の例を含むシステムの第2の例は、命令が、所望のレベルの精度に基づいて基底関数の集合用の補間方式を選択するようにさらに実行可能であることをさらに含む。場合によってはシステムの第1および第2の例のうちの1つまたは複数を含むシステムの第3の例は、コントローラが複数のGPGPUにさらに通信可能に結合され、複数のGPGPUが命令の少なくともいくつかを並列に実行するように構成されることをさらに含む。場合によってはシステムの第1~第3の例のうちの1つまたは複数を含むシステムの第4の例は、画像が深層学習ベースの画像再構成アルゴリズムを使用して再構成されることをさらに含む。
【0199】
さらに別の実施形態では、サンプリング画像データから画像を再構成するための方法は、1次元ホモグラフィ再サンプリング変換の集合を介してサンプリング画像データを再サンプリングして、再サンプリング画像データを複数の既知のサンプリング点として取得することと、複数の既知のサンプリング点の補間を介して複数の未知のサンプリング点を決定することと、複数の既知のサンプリング点および複数の未知のサンプリング点に基づいて対称プロジェクタ/バックプロジェクタのオペレータ対を形成することと、対称プロジェクタ/バックプロジェクタのオペレータ対を介して再サンプリング画像データを反復投影および逆投影することによって画像を再構成することとを含む。方法の第1の例は、既知のサンプリング点の補間を介して複数の未知のサンプリング点を決定することが、複数の既知のサンプリング点を複数の未知のサンプリング点と関連付けて、1次元基底関数の集合を形成することを含むことをさらに含む。場合によっては方法の第1の例を含む方法の第2の例は、対称プロジェクタ/バックプロジェクタのオペレータ対を形成することが、1次元基底関数の集合とそれぞれ関連付けられた係数の集合を決定することを含むことをさらに含む。場合によっては方法の第1および第2のうちの1つまたは複数の例を含む方法の第3の例は、係数の集合の決定が分析的に実行されることをさらに含む。場合によっては方法の第1~第3の例のうちの1つまたは複数を含む方法の第4の例は、1次元基底関数の集合の各1次元基底関数がBスプライン関数の畳み込みとして形成されることをさらに含む。
【0200】
本明細書において使用されるとき、単数形で列挙され、「a」または「an」という単語に続く要素またはステップは、特に明示的に述べられない限り、複数のそのような要素またはステップを排除しないと理解されるべきである。さらに、本発明の「一実施形態」への言及は、同様に列挙された特徴を組み込むさらなる実施形態の存在を排除すると解釈されるものではない。その上、明示的に反対の記載がない限り、特定の性状を有する要素または複数の要素を「備える(comprising)」、「含む(including)」、または「有する(having)」実施形態は、その性状をもたないさらなるそのような要素を含んでよい。「含む(including)」および「そこにある(in which)」という用語は、それぞれの用語「備える(comprising)」および「そこで(wherein)」の平易な言葉の均等物として使用される。その上、「第1の」、「第2の」、および「第3の」などの用語は、単にラベルとして使用され、それらの対象物に数値的な要件または特定の位置順序を課すものではない。
【0201】
本明細書は、最良の態様を含む本発明を開示するとともに、当業者が、任意のデバイスまたはシステムの作製および使用、ならびに任意の組み込まれた方法を実行することを含む本発明を実践することを可能にするために例を使用する。本発明の特許可能な範囲は特許請求の範囲によって定義され、当業者が思いつく他の例を含んでよい。そのような他の例は、それらが特許請求の範囲の文言から相違しない構造要素を有する場合、またはそれらが特許請求の範囲の文言から実質的に相違しない均等な構造要素を含む場合、特許請求の範囲の範囲内であるものとする。
【符号の説明】
【0202】
100 画像システム
102 ガントリ
104 X線源
106 X線放射ビーム
108 検出器アレイ
110 画像プロセッサユニット
112 被写体
114 テーブル
200 画像システム
202 検出器素子
204 被写体
206 回転の中心
208 制御機構
210 X線コントローラ
212 ガントリモータコントローラ
214 データ取得システム(DAS)
216 コンピューティングデバイス
218 ストレージデバイス/大容量ストレージ
220 オペレータコンソール
224 ピクチャ保管通信システム(PACS)
226 テーブルモータコントローラ
230 画像再構成器
232 ディスプレイデバイス
234 ユーザインターフェース
236 汎用GPU(GPGPU)
300 概略図
302 原点線
304 ボクセル
306 縁部
308 破線
312 宛先線
314 ビン
316 縁部
322 投影軸
324 焦点
400 概略図
402 破線
404 ボクセル
408 破線
410 中心
412 線
414 ビン
418 表面
420 中心
424 焦点
450 概略図
452 サンプル
458 軸
460 点
462 サンプル
468 軸
470 点
474 分布/関数
476 1次元ホモグラフィ再サンプリング変換
478 分布/関数
500 概略図
510 位置
512 位置
520 位置
522 位置
530 関数
532 軸
600 方法