IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ベーウントエル・インダストリアル・オートメイション・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングの特許一覧

<>
  • 特許-長固定子リニアモータの短絡ブレーキ 図1
  • 特許-長固定子リニアモータの短絡ブレーキ 図2a
  • 特許-長固定子リニアモータの短絡ブレーキ 図2b
  • 特許-長固定子リニアモータの短絡ブレーキ 図3
  • 特許-長固定子リニアモータの短絡ブレーキ 図4
  • 特許-長固定子リニアモータの短絡ブレーキ 図5
  • 特許-長固定子リニアモータの短絡ブレーキ 図6a
  • 特許-長固定子リニアモータの短絡ブレーキ 図6b
  • 特許-長固定子リニアモータの短絡ブレーキ 図7
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-04-01
(45)【発行日】2024-04-09
(54)【発明の名称】長固定子リニアモータの短絡ブレーキ
(51)【国際特許分類】
   H02P 25/064 20160101AFI20240402BHJP
   H02K 41/03 20060101ALI20240402BHJP
   B65G 54/02 20060101ALI20240402BHJP
【FI】
H02P25/064
H02K41/03 A
B65G54/02
【請求項の数】 11
【外国語出願】
(21)【出願番号】P 2019098191
(22)【出願日】2019-05-27
(65)【公開番号】P2019221131
(43)【公開日】2019-12-26
【審査請求日】2022-04-01
(31)【優先権主張番号】18177762.4
(32)【優先日】2018-06-14
(33)【優先権主張国・地域又は機関】EP
(73)【特許権者】
【識別番号】518184708
【氏名又は名称】ベーウントエル・インダストリアル・オートメイション・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング
(74)【代理人】
【識別番号】100069556
【弁理士】
【氏名又は名称】江崎 光史
(74)【代理人】
【識別番号】100111486
【弁理士】
【氏名又は名称】鍛冶澤 實
(74)【代理人】
【識別番号】100191835
【弁理士】
【氏名又は名称】中村 真介
(72)【発明者】
【氏名】アンドレアス・ヴェーバー
(72)【発明者】
【氏名】レオポルト・ファシャング
(72)【発明者】
【氏名】シュテファン・ブルッカー
【審査官】池田 貴俊
(56)【参考文献】
【文献】特開平06-197512(JP,A)
【文献】国際公開第2013/143783(WO,A1)
【文献】欧州特許出願公開第00294541(EP,A1)
【文献】欧州特許出願公開第00289868(EP,A2)
(58)【調査した分野】(Int.Cl.,DB名)
H02P 25/064
H02K 41/03
B65G 54/02
(57)【特許請求の範囲】
【請求項1】
長固定子リニアモータ(2)の複数個(m)の駆動コイル(Sm)を制御するための方法であって、
前記駆動コイル(Sm)は、搬送装置(1)の移動方向(x)に沿って前後して配置されており、
前記搬送装置(1)を移動方向(x)に沿って移動させるため、この搬送装置(1)と磁結合された磁場が、この移動方向(x)に沿って移動されるように、前記複数個のコイル(Sm)が、通常運転中に通電され、
前記搬送装置(1)の制動工程時に、調整された短絡モード(M)に切り替えられ、この短絡モード(M)では、前記複数個の駆動コイル(Sm)の少なくとも一部が、少なくとも第1期間にわたって短絡状態で運転される当該方法において、
前記調整された短絡モード(M)では、前記制動工程が開始された後に、前記複数個の駆動コイル(Sm)の少なくとも一部が、少なくとも第2期間にわたって無通電状態で運転されることを特徴とする方法。
【請求項2】
前記複数個の駆動コイル(Sm)に通電する全ての短絡電流(ic)が算出されること、
推進力を生成する最大の短絡電流成分icqを有する目標短絡電流(ic_soll)が、予め設定されている関係式(f)によって算出されること、
前記調整された短絡モード(M)において、
-前記短絡電流(ic)が前記目標短絡電流(ic_soll)よりも小さい短絡相(A)では、前記複数個の駆動コイル(Sm)の少なくとも一部が、前記短絡状態で運転され、
-前記短絡電流(ic)が前記目標短絡電流(ic_soll)に達するか又は超える無通電相(C)では、前記複数個の駆動コイル(Sm)の少なくとも一部が、無通電状態で運転されること、及び
前記予め設定されている関係式は、以下の
【数1】
のように規定され、ここで、Ψは、主磁束であり、Lは、不飽和インダクタンスであることを特徴とする請求項1に記載の方法。
【請求項3】
前記複数個の駆動コイル(Sm)に通電する全ての短絡電流(ic)が算出されること、
推進力を生成する最大の短絡電流成分icqを有する目標短絡電流(ic_soll)が、予め設定されている関係式(f)によって算出されること、
前記調整された短絡モード(M)において、
-前記短絡電流(ic)が1つの係数(a)で乗算された前記目標短絡電流(ic_soll)よりも小さい短絡相(A)では、前記複数個の駆動コイル(Sm)の少なくとも一部が、前記短絡状態で運転され、
-前記短絡電流(ic)が1つの係数(a)で乗算された前記目標短絡電流(ic_soll)に一致するか又は超え、且つ1つの係数2-aで乗算された前記目標短絡電流ic_sollよりも小さい混合相(B)では、前記複数個の駆動コイル(Sm)の少なくとも一部が、前記短絡状態と前記無通電状態とで交互に運転され、
-前記短絡電流(ic)が1つの係数2-aで乗算された前記目標短絡電流(ic_soll)に一致するか又は超える無通電相(C)では、前記複数個の駆動コイル(Sm)の少なくとも一部が、無通電状態で運転されること
前記予め設定されている関係式は、以下の
【数2】
のように規定され、ここで、Ψは、主磁束であり、Lは、不飽和インダクタンスであることを特徴とする請求項1に記載の方法。
【請求項4】
混合相(B)では、前記複数個の駆動コイル(Sm)の少なくとも一部がそれぞれ、交互に短絡期間(tc_ks)にわたって前記短絡状態で運転され、無通電期間(tc_ll)にわたって前記無通電状態で運転され、
前記短絡期間(tc_ks)の長さと前記無通電期間(tc_ll)の長さとが特定されることを特徴とする請求項3に記載の方法。
【請求項5】
前記混合相(B)では、前記無通電期間(tc_ll)の長さに対する前記短絡期間(tc_ks)の長さが、三次多項式によって誤差偏差(e_ic)を用いて計算されることを特徴とする請求項4に記載の方法。
【請求項6】
0.85の係数(a)が選択されることを特徴とする請求項3~5のいずれか1項に記載の方法。
【請求項7】
前記搬送装置(1)と磁気結合された駆動コイル(Sm)だけが、前記調整された短絡モード(M)に切り替えられることを特徴とする請求項1~のいずれか1項に記載の方法。
【請求項8】
前記搬送装置(1)と磁気結合された駆動コイル(Sm)は、位置センサによって特定されることを特徴とする請求項に記載の方法。
【請求項9】
前記搬送装置(1)と磁気結合された駆動コイル(Sm)は、それぞれの前記駆動コイル(Sm)で電磁誘導されたコイル短絡電流(icm)によって認識されることを特徴とする請求項に記載の方法。
【請求項10】
搬送装置(1)の移動方向(x)に沿って前後して配置されている複数個(m)の駆動コイル(Sm)と少なくとも1つの搬送装置(1)とを有する長固定子リニアモータ(2)であって、前記搬送装置(1)を移動方向(x)に沿って移動させるため、この搬送装置(1)と磁気結合された磁場が、この移動方向(x)に沿って移動されるように、前記複数個のコイル(Sm)が、コイル調整装置(R)を介して制御された長固定子リニアモータ制御装置(4)によって通電される当該長固定子リニアモータにおいて、
短絡制御装置(K)が設けられていて、この短絡制御装置(K)は、前記搬送装置(1)の制動工程時に前記複数個の駆動コイル(Sm)の少なくとも一部を少なくとも第1期間にわたって短絡状態で運転させ、前記制動工程が開始された後に、前記複数個の駆動コイル(Sm)の少なくとも一部を少なくとも第2期間にわたって無通電状態で運転させるように構成されていることを特徴とする長固定子リニアモータ。
【請求項11】
前記短絡制御装置(K)は、前記コイル調整装置(R)の前方に接続されていて、且つ制動工程時に前記複数個の駆動コイル(Sm)の少なくとも一部を少なくとも第1期間にわたって短絡することをこのコイル調整装置(R)に指示するように構成されていることを特徴とする請求項10に記載の長固定子リニアモータ。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、長固定子リニアモータの複数個の駆動コイルを制御するための方法に関する。搬送装置をその移動方向に沿って移動させるため、この搬送装置と磁結合された磁場が、この移動方向に沿って移動されるように、当該複数のコイルが、通常運転中に通電される。また、本発明は、複数個の駆動コイルと少なくとも1つの搬送装置とを有する長固定子リニアモータに関する。この場合、搬送装置をその移動方向に沿って移動させるため、この搬送装置と磁結合された磁場が、この移動方向に沿って移動されるように、当該複数のコイルが、コイル調整装置を介して制御されたリニアモータ制御装置によって通電される。
【背景技術】
【0002】
最近の適応性のある搬送装置の要求に適切に応えるため、長固定子リニアモータが、従来のベルトコンベヤ、例えばコンベヤベルトの回転モータのような、例えば回転を直進に変換する変換装置に対する代替として益々使用されている。長固定子リニアモータは、作業領域の全体にわたるより良好で且つより適応性のある使用を特徴とする。したがって、速度及び加速度の範囲が、零から最大まで使用され得る。このため、利点として、移動する複数の搬送装置(シャトル)が個別に調整又は制御され、エネルギー利用がより改善され、保守コストが、より少ない数の摩耗部品に起因して削減され、これらの搬送装置がより簡単に交換され、監視が効率的に実行され、エラー検出がより簡単になり、消費電力が、電力損失を排除することによって最適化される。
【0003】
長固定子リニアモータの固定子が、搬送装置の移動方向に並んで配置された、全体としてこの長固定子リニアモータの固定子を構成する複数の駆動コイルから成る。これらの駆動コイルは、個別に又は纏めて制御される。この場合、当該長固定子リニアモータの動作中に、これらの駆動コイルの極性、すなわち通電方向を変えることが常に望ましいか又は必要である。移動する磁場が、これらの駆動コイルを制御することによって生成される。当該搬送装置に対する推進力を生成するため、すなわち当該搬送装置を固定子に沿って移動させるため、当該磁場は、長固定子リニアモータ搬送装置の励磁磁石(通常は、永久磁石)と協働する。これらの駆動コイルに通電して磁場を生成するため、一般に、駆動電圧が、第1駆動電位と第2駆動電位との間で提供される。このような長固定子リニアモータの様々な構成が、幾つか列挙すると、例えば、国際公開第2013/143783号パンフレット、米国特許第6,876,107号明細書、米国特許出願公開第2013/0074724号明細書、又は国際公開第2004/103792号パンフレットから周知である。
【0004】
米国特許出願公開第2006/0220623号明細書に開示されているように、フルブリッジ回路を使用すると、複数の駆動コイルを制御することと、コイル電圧の極性を変えることとが可能になる。この場合、駆動電圧が、フルブリッジ回路の第1分岐部と第2分岐部とにそれぞれ印加され、駆動コイルが、当該フルブリッジ回路の側部分岐部に切り替えられる。当該フルブリッジ回路の4つのスイッチ(バイポーラトランジスタ、MOSFET、IGBT等)を適切に制御することによって、希望したコイル電圧又はコイル調整装置によって予め設定されているコイル電圧が、希望した極性及び高さで当該複数の駆動コイルに印加され得る。これらの駆動コイルを個別に制御できるようにするため、それぞれの駆動コイルが、1つのフルブリッジ回路を有する必要がある。しかしながら、これは、4つのスイッチが駆動コイルごとに必要になることを意味する。したがって、長固定子リニアモータの固定子の従来の多い数の駆動コイルの場合、スイッチの数が多いために、コストが高く、回路技術経費が高い。
【0005】
オーストリア特許出願公開第518721号明細書は、フルブリッジ回路の代わりにハーフブリッジ回路を使用することを開示する。この場合、ハーフブリッジ回路の中心点がそれぞれ、駆動コイルの第1端子に接続される。当該駆動コイルの第2端子が、調整点に接続され、この調整点の実際の電位が、調整装置によって予め設定されている電位に調整される。したがって、フルブリッジ回路を使用しないにもかかわらず、生の電圧及び負の電圧が、当該駆動コイルに印加され得る。
【0006】
搬送装置を速く制動することが望ましい。長固定子リニアモータ、システムの過負荷、電圧の過度な上昇、例えば位置情報又は速度情報の消失における人の安全性を損なう場合のような危険な状況では、例えば、即座の緊急停止を開始することが必要になり得る。このため、搬送装置の全て又は一部(例えば、特定の区域の全ての搬送装置)が、停止される必要がある。例えば、米国特許第2012/193172号明細書は、リニアモータに特別に取り付けられた、制動作用を生成するための制動巻線を開示する。しかし、このような追加の制動巻線は、構造経費と長固定子リニアモータのコストとを増大させ、したがって望ましくない。
【先行技術文献】
【特許文献】
【0007】
【文献】国際公開第2013/143783号パンフレット
【文献】米国特許第6,876,107号明細書
【文献】米国特許出願公開第2013/0074724号明細書
【文献】国際公開第2004/103792号パンフレット
【文献】米国特許出願公開第2006/0220623号明細書
【文献】オーストリア特許出願公開第518721号明細書
【文献】米国特許第2012/193172号明細書
【文献】オーストリア特許出願公開第519238号明細書
【発明の概要】
【発明が解決しようとする課題】
【0008】
本発明の課題は、長固定子リニアモータの搬送装置の確実な制動を簡単に可能にすることにある。
【課題を解決するための手段】
【0009】
本発明によれば、この課題は、当該搬送装置の制動工程時に、調整された短絡モードに切り替えられ、この短絡モードでは、当該複数個の駆動コイルの少なくとも一部が、少なくとも第1期間にわたって短絡状態で駆動されることによって解決される。また、この課題は、短絡制御装置によって解決される。この短絡制御装置は、当該搬送装置の制動工程時に当該複数個の駆動コイルの少なくとも一部を少なくとも第1期間にわたって短絡させる。搬送装置の制動工程が開始された後は、この搬送装置をもはや能動的にさらに移動させないため、通常は、関連する駆動コイルが、無通電に切り替えられる(このことは、基本的に無負荷に相当する)。しかしながら、当該搬送装置は、(搬送区間での当該搬送装置の望ましい摩擦なしの支承又は誘導に起因して)適切な動作なしに長固定子リニアモータの固定子に沿って小さい減速度で停止するまでさらに移動する。搬送装置は、一般に非常に迅速に停止されなければならないので、当該移動は望ましくない。搬送装置のさらなる移動時に、移動磁場が、励磁磁石自体によって生成される。この磁場は、搬送装置と一緒に固定子に沿って移動し、したがって当該搬送装置の速度を有する。この場合、この磁場は、当該固定子の複数の駆動コイルとも協働する。これらの駆動コイルの端子が開いていると、影響がない。しかしながら、当該搬送装置と磁結合されているこれらの駆動コイルはそれぞれ、端子が短期間閉じられているときに電磁力(EMK)によってコイル短絡電流を誘導する。このコイル短絡電流は、レンツの法則にしたがって当該搬送装置によって引き起こされる磁場に逆らって作用する。これにより、当該搬送装置は、比較的速く制動される。したがって、これらの駆動コイルの少なくとも一部の短絡が、特に全ての制動工程中に、すなわち当該搬送装置の停止まで保持される。このことは、当該第1期間が当該全ての制動工程にわたって及ぶことを意味する。この場合、当該短絡は、当該搬送装置の停止後に終結され得る。当該第1期間が、より短く選択されると、当該搬送装置は、この搬送装置を例えば「停止」し得る少なくとも危険でない速度に減速され得る。
【0010】
好ましくは、調整された短絡モードでは、複数個の駆動コイルの少なくとも一部が、少なくとも第2期間にわたって無通電状態で駆動される。短絡の場合、該当するコイル端子が閉じられていて、無通電(無負荷)の場合、該当するコイル端子が開かれている。第1期間と第2期間とを適切に選択することで、力方向(すなわち、デカルトdq座標系で磁場を方向付けたq方向)へのより大きい電流成分が得られるように、当該短絡電流が(通電するそれぞれのコイル短絡電流の和として)調整され得る。したがって、推進移動に働く磁場方向に対抗する短絡電流の成分が増大する。これにより、持続する短絡よりも大きい制動作用が得られ、これにより、搬送装置が、さらに速く停止する。したがって、より小さい短絡電流のときでも、搬送装置のより大きい制動力、すなわちより良好で且つより速い制動が得られる。このため、より小さい電流負荷及びより小さい磁場減衰が達成される。このため、より小さい磁場減衰が、垂直力のより小さい減少を引き起こす。これにより、場合によっては、搬送装置が、特定の速度で、例えば搬送区間のカーブ領域で固定子から脱線(離脱)し得ることがさらに回避され得る。
【0011】
好ましくは、複数の駆動コイルに通電する全体の短絡電流が算出され、推進力を生成する最大の短絡電流成分icqを有する目標短絡電流が、予め設定されている関係式によって算出される。調整された短絡モードにおいて、当該短絡電流が当該目標短絡電流よりも小さい短絡相では、当該複数個の駆動コイルの少なくとも一部が、当該短絡状態で駆動され得る。当該短絡電流が当該目標短絡電流に達するか又は超える無通電相では、当該複数個の駆動コイルの少なくとも一部が、無通電状態で駆動され得る。
【0012】
しかし、調整された短絡モードにおいて、当該短絡電流が1つの係数で乗算された当該目標短絡電流よりも小さい短絡相では、当該複数個の駆動コイルの少なくとも一部が、当該短絡状態で駆動され得る。当該短絡電流が1つの係数で乗算された当該目標短絡電流に一致するか又は超え混合相では、当該複数個の駆動コイルの少なくとも一部が、交互に当該短絡状態と当該無通電状態とで駆動される。当該短絡電流が1つの係数2-aで乗算された当該目標短絡電流に一致するか又は超える無通電相では、当該複数個の駆動コイルの少なくとも一部が、無通電状態で駆動される。
【0013】
特に、予め設定されている関係式は、
【0014】
【数1】
に相当する。この場合、Ψは、主磁束に相当し、Kは、不飽和インダクタンスに相当する。当該関係式は、多相給電時の固定子電圧方程式から導き出され得る。
【0015】
当該混合相では、当該複数個の駆動コイルの少なくとも一部がそれぞれ、交互に短絡期間にわたって当該短絡状態で駆動され、無通電期間にわたって当該無通電状態で駆動され得、当該短絡期間の長さと当該無通電期間の長さとが特定され得る。この場合、当該無通電期間の長さに対する当該短絡期間の長さが、算出され、好ましくは三次多項式によって誤差偏差を用いて計算される。
【0016】
さらに、0.85の係数が選択され得る。この係数は、実際に確認されているように、非常に良好な制動作用を引き起こす。
【0017】
当該搬送装置と磁結合された駆動コイルだけが、当該調整された短絡モードに切り替えられることが特に好ましい。したがって、長固定子リニアモータの全体の全ての駆動コイルが、短絡モードに切り替えられる必要はない。すなわち、例えば必要に応じて、ただ1つの搬送装置が制動されるのに対して、その他の搬送装置は、制動工程によって制動されなくてもよい。
【0018】
このため、当該搬送装置と磁結合された駆動コイルは、位置センサによって特定され得る。このことは、いずれにしても位置センサが既に長固定子リニアモータに設けられているときに有益であり得る。
【0019】
しかし、当該搬送装置と磁結合された駆動コイルは、それぞれの当該駆動コイルで電磁誘導されたコイル短絡電流によって認識されてもよい。この誘導されたコイル短絡電流は、搬送装置との磁結合を示唆している。
【0020】
当然に、希望に応じて、別の駆動コイルが、調整された短絡モードに切り替えられてもよい。例えば、搬送装置の前方に移動方向に存在する特定の数の駆動コイルが切り替えられる等でもよい。
【0021】
制動工程の長さは、第1期間又は第2期間の選択のほかに、搬送装置の重量に依存し、搬送装置に付加されている追加の重量(貨物、被加工材、…)にも依存し、及び/又は搬送装置の速度に依存する。制動工程中に解放されるエネルギーは、主に巻線抵抗(銅損)及び鉄(主に渦電流損)中で熱に変換される。
【0022】
短絡は、長固定子リニアモータ制御装置の様々な構成に対して異なるスイッチ位置を意味する。長固定子リニアモータ制御装置が、米国特許出願公開第2006/0220623号明細書でのように、駆動コイルごとにそれぞれ4つのスイッチを有するフルブリッジ回路を有する場合、完全な短絡が、調整された短絡モードにおいて短絡相又は短絡期間内に切り替えられる。しかしながら、長固定子リニアモータ制御装置が、駆動コイルごとに1つの上スイッチと1つの下スイッチとを有する場合(オーストリア特許出願公開第518721号明細書参照)、短絡が、短絡相又は短絡期間内に変調される。このことは、ハーフブリッジ回路の上スイッチが、特に50%のデューティー比で交互にこのハーフブリッジ回路の下スイッチに相互接続されることを意味する。しかしながら、この場合、この上スイッチとこの下スイッチとは同時に相互接続されてはならない。
【0023】
以下に、本発明を、本発明の好適な構成を概略的に且つ限定しないで例示する図1~7を参照して詳しく説明する。
【図面の簡単な説明】
【0024】
図1】長固定子リニアモータの構造を示す。
図2a】駆動コイルを制御するためのフルブリッジ回路を示す。
図2b】駆動コイルを制御するためのハーフブリッジ回路を示す。
図3】複数の重畳コイルの、トルクを生成する短絡電流と磁場を生成する短絡電流と合成された短絡電流との時間推移を示す。
図4】短絡電流の関数としてのブレーキ力の近似曲線を示す。
図5】短絡期間と無通電期間とに対する典型的なスイッチングパターンを示す。
図6a】短絡電流に対する短絡期間の推移を示す。
図6b】誤差偏差に対する短絡期間の推移を示す。
図7】複数のコイルの第1短絡電流と第2短絡電流との時間推移を示す。
【発明を実施するための形態】
【0025】
図1は、長固定子リニアモータ2の簡単な例を示す。この場合、この長固定子リニアモータ2は、閉じられている輸送区間20として構成されている。この輸送区間20上では、m個の駆動コイルSmが、搬送装置1の移動方向xに沿って前後して配置されている。通常運転では、コイル電流iが、移動磁場を生成するために(幾つかの駆動コイルSmだけに対して示された)コイル調整装置Rの監視の下でこの搬送装置1にそれぞれ通電される。さらに、ここではコイル調整装置Rに組み込まれた構成要素である長固定子リニアモータ制御装置4が設けられている。この場合、iで示された複数の矢印が、明らかに概略的に見て取れる。図2a,2bに基づいて以下でさらに例示するように、コイル電流iをこれらの駆動コイルSmに通電するため、これらの駆動コイルSmは、別の方法で制御装置に接続されてもよい。コイル調整装置R及び長固定子リニアモータ制御装置はいずれも、適切なハードウェア(同じハードウェア)として及び/又は適切なハードウェア上で実行されるソフトウェアとして構成され得る。長固定子リニアモータ制御装置は、駆動コイルごとにSm個の(4つのスイッチから成る)フルブリッジ回路VB又は(2つのスイッチから成る)ハーフブリッジHBを有し、これらの駆動コイルSmに直接に配置され得る複数の下位装置から構成されてもよい。通常運転では、長固定子リニアモータ制御装置のフルブリッジ回路VB又はハーフブリッジHBの複数のスイッチのスイッチ位置によって、コイル電流Iが、これらの駆動コイルSmに供給されるか、又は、コイル電流Iが遮断される。
【0026】
移動方向xに並んで配置されたこれらの駆動コイルSmは、輸送区間20の(図1だけに示された)不動の保持構造体3に配置されている。搬送装置1が、輸送区間20に沿って移動方向xに移動され、このため固定配置された運送区間20で適切な方法でその都度誘導されていて且つ保持されている。
【0027】
搬送装置1は、移動方向xに沿って横に配置された複数の第1磁石M1を有し、図1に示されたように、移動方向xに対して直角な横方向にこれらの第1磁石M1に対向して存在し得る横に配置された複数の磁石M2をさらに有し得る。搬送装置1が、2つの側面にそれぞれ複数の第1磁石M1又は複数の第2磁石M2を有する場合、これらの磁石に対応するように、搬送装置1の移動を引き起こすためにそれぞれの磁石M1,M2と協働する複数の駆動コイルSmが、(移動方向xに見て)輸送区間20の両側にそれぞれ設けられ得る。当該移動のため、特に磁石M1,M2の範囲内の駆動コイルSmだけが、コイル調整装置Rによって給電される。この場合、この範囲は、搬送装置1の前及び/又は後に存在する駆動コイルSmも含み得る。当然に、一台よりも多い搬送装置1も、輸送区間20に沿って移動され得る。この場合、それぞれの搬送装置1は、その搬送装置1の範囲内の駆動コイルSmに適切に給電することによってその他の搬送装置1(の方向、位置、速度及び加速度)に依存しないで移動され得る。搬送装置1の輸送区間に沿って存在する固定子、すなわち実際に給電すべきコイルSmに対する搬送装置1の位置を測定するため、例えば電流センサが設けられ得る。
【0028】
この場合、輸送区間20は、用途及び需要に応じて任意に敷設され得、閉じられている区間部分及び/又は開かれている区間部分を含み得る。輸送区間20は、平面状に敷設する必要はなくて、空間内に任意に敷設されてもよい。一般に、1つの輸送区間20は、繋ぎ合わされた、複数の駆動コイルをそれぞれ有する複数の輸送部分から成る。また、搬送装置20を第1輸送区間20から第2輸送区間20に移すためのポイントも知られている。搬送装置1の移動に必要な推進力が、固定子電流iの推進力を生成する電流成分iq(q成分)によって公知の方法で生成される。固定子電流iは、q成分とd成分(垂直力を生成する電流成分)とを有する電流ベクトルであり、搬送装置1に作用する駆動コイルSmの全てのコイル電流iのベクトル和電流に相当する。したがって、搬送装置1の通常の前進移動に対しては、推進力を生成する電流成分iq(q成分)で十分である。当該前進移動に使用されない垂直力は、固定子電流iの垂直力を生成する電流成分id(成分d)によって生成される。長固定子リニアモータでは、移動方向xへの移動を達成するため、大抵は複数の駆動コイルSmが、搬送装置1に同時に作用する。d成分が存在しない場合、推進力を生成する電流成分iqは、搬送装置1に作用する駆動コイルSmの全てのコイル電流iのベクトル和電流に相当する。それ故に、コイル調整装置Rで計算された推進力を生成する当該電流成分iqはさらに、当該複数の駆動コイルSmの実際に作用するコイル電流iに換算され分配され当該複数の駆動コイルSmに印加される必要がある。このことは良く知られている。長固定子リニアモータ2の基本的な機能原理は良く知られているので、ここでは、当該機能原理に関してさらに言及しない。
【0029】
例えば搬送装置1と協働する付随の駆動コイルSm、又は全ての駆動コイルSm、又は例えば移動方向に配置された駆動コイルSm等が短絡されることによって、搬送装置1が、制動工程中に制動され得る。このため、例えば、長固定子リニアモータ制御装置4のフルブリッジ回路VB/ハーフブリッジ回路HBのスイッチが、適切な位置に切り替えられる。当該切り替えは、短絡制御装置Kによって起動され得る。しかし、当然に、当該短絡は、別の方法でも、例えば駆動コイルSmに対して並列なスイッチによって実行され得る。フルブリッジ回路を長固定子リニアモータ制御装置4で使用する場合、「短絡」は、完全な短絡を意味する。
【0030】
図2aは、コイル電流iを駆動コイルSmに通電するためのフルブリッジ回路VBを示す。この駆動コイルSmは、第1コイル端子Sm1及び第2コイル端子Sm2を有する。フルブリッジ回路VBは、2つのハーフブリッジ回路から成る。この場合、第1主分岐部が、フルブリッジ回路VBの複数の入力端子の第1駆動電位Ub1と第2駆動電位Ub2との差によって生成される駆動電圧Ubで直列に印加されている2つのスイッチS11,S12から成る。第2主分岐部も、駆動電圧Ubで印加されている2つのスイッチS11′,S21′から成る。側部分岐部用の第1側部端子Q1が、第1スイッチS11の接続点と第2スイッチS21の接続点との間に存在する。同様に、側部分岐部の第2側部端子Q2が、第2主分岐部の第1スイッチS11′の接続点と第2スイッチS21′の接続点との間に存在する。駆動コイルSmの第1コイル端子Sm1が、第1側部端子Q1に接続されていて、この駆動コイルSmの第2コイル端子Sm2が、第2側部端子Q2に接続されている。(ここでは図示されなかった)長固定子リニアモータ制御装置4によってスイッチS11,S21,S11′,S21′を適切に制御することで、同じ電位が、第1コイル端子Sm1と第2コイル端子Sm2との間に印加され得る一方で、コイル電流iが通電する。したがって、完全な短絡の場合は、(スイッチS21,S21′が開いているときに)スイッチS11及びS11′が相互接続され、又は、(スイッチS11,S11′が開いているときに)スイッチS21,S21′が相互接続される。
【0031】
例えば図2bに示されているように、コイル電流iを駆動コイルSmに通電するため、ハーフブリッジ回路HBが、長固定子リニアモータ制御装置4によって制御されてもよい。この場合、フルブリッジ回路VBの第2分岐部が省略される。これにより、駆動電圧Ubが、第1入力端子A1及び第2入力端子B1とこれらの入力端子間に直列に接続された第1スイッチS11及び第2スイッチS21との間の第1主分岐部だけに印加される。第1スイッチS11と第2スイッチS21との間の接続点が、中心点C1と呼ばれ、駆動コイルSmの第1端子Sm1に接続されている。この駆動コイルSmの第2端子L12が、調整点Cの、例えば電位調整装置によって予め設定されている電位Uxで印加されている。一般に、(ここでは図示されなかった)全ての駆動コイルSmの第2端子Sm2が、調整点Cに接続されていて、通常は駆動電圧Ubの半分に相当する電位Uxに調整される。
【0032】
ハーフブリッジ回路HBを使用する場合、スイッチS11及びS21は、決して同時に接続されてはならないので、当該両スイッチS11及びS12による駆動コイルSmの直接の短絡は不可能である。したがって、駆動電圧Ubを短絡させないため、ハーフブリッジ回路HBを使用する場合は、「PWM短絡」が提唱されている。PWM短絡は、ハーフブリッジ回路HBの上のスイッチS11及び下のスイッチS21がそれぞれ、例えば周期Tに対する50%のデューティー比によって交互に切り替えられることを意味する。したがって、図2aで示されたフルブリッジ回路VBと同様に、同じ電位Uxが、駆動コイルSmの両端子Sm1,Sm2に印加される。当該フルブリッジ回路VBの場合、両コイル端子Sm1,Sm2が、完全な短絡時に第1駆動電位Ub1に印加されるか又は第2駆動電位Ub2に印加される。ハーフブリッジ回路HBのこれらのスイッチが交互に開閉されるときに、場合によっては存在し得る残留電荷を除去するため、最小の保護期間が確保されてもよい。
【0033】
PWM短絡は、決して完全な短絡に相当しないが、開閉サイクルにわたるコイル電圧の時間積分によって短絡と解され得る。この場合、当然に、該当する駆動コイルSmは、もはや調整装置Rによってコイル電流iによって給電されない。しかしながら、EMK(電磁力)によって誘導された電圧に起因するコイル短絡電流icmが、移動方向xへのさらなる移動に起因して、搬送装置1と磁気結合された複数の駆動コイルSmに発生する。
【0034】
(dq座標系における)固定子電流iが、全てのコイル電流iのベクトル和電流に相当するので、(dq座標系における)短絡電流icも、コイル短絡電流icmのベクトル和として発生する。図3は、制動工程中の持続する短絡時の短絡電流icの時間推移を示す。短絡電流icが、固定子の短絡電流icの典型的な推移の初期の制動点O以降に振動挙動を呈することが明らかである。初期過渡推移後に過渡推移に移行すると、ほぼ一定の推移が、当該初期過渡推移に続く。次いで、当該ほぼ一定の推移は、最終的に降下して零に向かう。この降下は、発生する電磁力が減少することによって引き起こされる。何故なら、搬送装置1の速度が、この時点に既に小さいからである。
【0035】
同様に、図3には、短絡電流icの、推進力を生成する短絡電流成分icqと磁場を生成する、すなわち磁場方向に向いている短絡電流成分icdとの推移が示されている。この場合、推進力を生成する短絡電流成分iqが、通常運転中に移動方向xへの搬送装置1の移動に寄与するのと同様に、当該推進力を生成する短絡電流成分icqは、搬送装置1の制動にも寄与する。それ故に、推進力を生成する短絡電流成分icqを、調整された短絡モードM中にさらに大きく又は最大にすることが望ましい。当該推進力を生成する短絡電流成分icqの増大は、短絡期間及び無通電期間を適切に選択することによって実行される。
【0036】
位置又は角度に関する追加の情報を必要とすることなしに、推進力を生成する複数の電流成分iq間の関係が、短絡電流icの全体の関数として評価される。このため、最初に、固定子電圧方程式が、多相給電のために作成される。当該固定子方程式は、速度にしたがって解かれ、停止状態(すなわち、時間にわたって変化がなく、速度が零である状態を意味する)が記録される。当該固定子方程式は、関係
【0037】
【数2】
を考慮して
【0038】
【数3】
にしたがって解かれる。永久磁石の磁束Ψは、ほぼ一定とみなされ得る。これによって算出された関係が、力方程式に代入される。これにより、当該力方程式が、短絡電流icにしたがって導かれる。当該導かれた力方程式の零設定が、短絡電流icの全体に対する推進力を生成する複数の電流成分iqの最適な関係、すなわち推進力を生成する複数の電流成分iqの最大値に相当する。これから、最適な目標短絡電流ic_sollに対する関係式fが導かれる:
【0039】
【数4】
したがって、推進力を生成する最大の短絡電流成分icqを有する最適な目標短絡電流ic_sollが、関係式f:
【0040】
【数5】
にしたがう固定子電圧方程式に基づいて算出され得る。
【0041】
インダクタンスL及び磁束Ψに対する対応する値が、例えば実験によって特定され得る。
【0042】
図4には、制動力Fbの大まかな関係が、搬送装置1の特定の速度に対する短絡電流icの関数として示されている。この場合、短絡電流icが、横軸に記入されていて、作用する制動力fbが、縦軸に記入されている。推進力を生成する短絡電流成分icqが最大であるので、当該最適な目標短絡電流ic_sollも、同様に記入されていて、最大の制動力Fbを付与する短絡電流icを示す。
【0043】
制動工程の開始時と、この制動工程の開始後のそれぞれのサイクルごとに実際の短絡電流icを測定するため、全ての駆動コイルSm、1つの区間の駆動コイルSm、又は(既知であるならば)搬送装置1と磁結合された駆動コイルSmが、短い期間に短絡され得る。当該短絡電流icは、測定される複数のコイル短絡電流icmのベクトル和として計算され得る。
【0044】
図5は、短絡期間tc_ksと無通電期間tc_llとが交互する典型的な周期Tを示す。周期Tは、ここでは例えば一定とみなされているが、当然に変化してもよい。
【0045】
フルブリッジ回路VB(図2a参照)を使用する場合、スイッチS11,S21,S11′,S21′が、無通電期間tc_ll内に開かれていて、スイッチS21及びS21′又はS11及びS11′が、完全な短絡に対する短絡期間tc_kc内に相互接続されている。フルブリッジ回路VBの全ての4つのスイッチS11,S21′,S11′,S21が、無通電期間tc_ll内に開かれている。ハーフブリッジ回路HB(図2b参照)を使用する場合、スイッチS11及びS21が、無通電期間tc_ll内に開かれていて、短絡期間tc_ks内に、例えば50%のデューティー比でそれぞれ交互に閉じられている。
【0046】
零の短絡期間tc_ll(すなわち、周期Tに達する無通電期間tc_ll)又は周期Tに達する短絡期間tc_ll(すなわち、零の無通電期間tc_ll)が、限界状態として提供可能である。しかしながら、短絡期間tc_llは、特にハーフブリッジ回路HBのPWM短絡の場合は、好ましくは零ではなくて、零よりも僅かに大きくすべきであり、特に最小の保護期間にあるべきである。
【0047】
無通電期間tc_llに対する短絡期間tc_ksの適切な比率は、(図1に示されているように)調整装置Rの前方に接続され得るか又は調整装置Rの組み込まれた構成要素であり得る短絡制御装置Kによって選択され得る。
【0048】
好ましくは、3つの相A,B,Cが、調整された短絡モードM中に設けられる。短絡電流icが、係数aで乗算された目標短絡電流ic_sollよりも小さい短絡相A、ic<ic_soll・aでは、実際の短絡電流icが、目標短絡電流ic_sollよりも小さいので、搬送装置1と協働する複数の駆動コイルSmの少なくとも一部が、それぞれの周期Tにわたって、すなわち短絡中に持続して駆動される。このことは、フルブリッジ回路VBを長固定子リニアモータ制御装置4で使用する場合は完全な短絡を意味し、又はハーフブリッジ回路HBを長固定子リニアモータ制御装置4で使用する場合は「PWM短絡」を意味する。このことは、短絡相Aでは、それぞれの周期T内に、短絡期間tc_ksが最大になり、無通電期間tc_llが最小になることを意味する。この場合、短絡期間tc_llが、周期Tの全体にわたって延在し得る。このため、無通電期間tc_llは零である。基本的に短絡相Aに対しては、既定の最小保護期間に相当し得る最小期間が、無通電期間tc_llに対して設けられ得る(すなわち、最大期間が、短絡期間tc_ksに対して設けられ得る)。例えば、25μsの周期Tに対しては、無通電期間tc_llの最小期間が、既定の最小保護期間、例えば500nsに相当し得る。
【0049】
短絡電流icが、係数aで乗算された目標短絡電流ic_sollに相当するか又は超えic≧ic_soll・a、好ましくは(2-a)で乗算された目標短絡電流ic_sollよりも小さい:ic<ic_soll・(2-a)混合相Bでは、複数の駆動コイルSmの少なくとも一部が、交互に短絡と無通電とに存在する。このことは、短絡電流tc_ksと無通電期間tc_llとが1つの周期T内で交互することを意味する。特に、混合相Bに対する1つの周期T内の短絡期間tc_ksと無通電期間tc_llとのそれぞれの長さが、三次多項式によって誤差偏差e_icを用いて計算され得る。誤差偏差e_icは、短絡電流icと目標短絡電流ic_sollとの偏差を示す。
【0050】
短絡電流icが、係数(2-a)で乗算された目標短絡電流ic_sollに相当するか又は超える無通電相C、ic≧ic_soll・(2-a)では、複数の駆動コイルSmの少なくとも一部が、無通電で駆動される。短絡制御装置Kによって、無通電期間tc_llが最大にされ、短絡期間tc_ksが最小にされる。この場合、無通電期間tc_llが、周期Tの全体にわたって延在し得る。これにより、短絡期間tc_ksは零である。しかしながら、最小短絡期間tc_ksが、零よりも大きく設けられてもよく、又は、最大の無通電期間tc_llが、周期Tよりも小さく設けられてもよい。例えば零の係数が選択される場合、混合相Bだけが使用される。
【0051】
例えば1の係数aが選択されると、短絡電流icが、目標短絡電流ic_sollよりも小さいときは、当該駆動が、短絡相Aで実行され、短絡電流icが、目標短絡電流ic_soll以上であるときは、無通電相Cが実行される。したがって、この特別な場合では、混合相Bがない。
【0052】
係数aは、前もって決定され得るか又は予め設定され得る。この場合、a=0.85の係数が、長固定子リニアモータの短絡電流の調整に対して特に有益であると実証されている。無通電相Aから混合相Bへの境界が、係数a=0.85に対して図4に破線で示されていて、同様に混合相Bから短絡相Cへの境界も破線で示されている。
【0053】
好ましくは、混合相Bでは、駆動コイルSmの少なくとも一部がそれぞれ交互に、短絡期間tc_ksにわたって短絡で駆動され、無通電期間tc_llにわたって無通電で駆動される。この場合、短絡期間tc_ksの長さは、無通電期間tc_llの長さに対して特定される。
【0054】
図6aには、無通電期間tc_llにわたる短絡電流icの推移が示されている。この場合、短絡相Aから混合相Bを介して無通電相Cに切り替えられる。ここでは、最小期間が、無通電期間tc_llに対して設けられているので、この無通電期間tc_llは、短絡相Aでも完全に零でない。図6bには、無通電相Cから第2相Bを介した第1の短絡相Aへの無通電期間tc_llにわたる誤差偏差e_icの推移が示されている。混合相Bにおいて無通電期間tc_llと短絡期間tc_ksとを計算するために、三次多項式が、誤差偏差e_icに対して使用されるので、混合相Bへの移行と混合相Bからの移行とが、短絡電流icに対して達成され得る。これにより、短絡電流icのノイズが僅かに保持され得る。代わりに、混合相Bを設けないこと、及び短絡相Aから無通電相Cに又は短絡相Cから無通電相Aに直接に切り替えることも可能である。
【0055】
図7には、一定の又は50%のデューティー比のPWM短絡に対する第1短絡電流ic1の時間推移と、本発明にしたがって生成される第2短絡電流ic2の時間推移とが示されている。最大の短絡期間tc_ks、すなわち持続する相Aが、第1短絡電流ic1に対して選択される。図7の下の部分には、第1短絡電流ic1から発生する第1制動力Fb1の時間推移と、第2短絡電流ic2から発生する第2制動力Fb2の時間推移とが示されている。特に制動工程の開始直後の第2制動力Fb2が、第1制動力Fb1よりも高い一方で、第2短絡電流ic2が、第1短絡電流ic1よりも小さいことが明らかである。このことは、本発明にしたがって高められた推進力を生成する短絡電流成分icqから発生する。このため、第2短絡電流ic2の振動挙動が改善される。
【0056】
調整された短絡モードMにしたがって制御される複数の駆動コイルSmは、基本的に任意に選択され得る。したがって、全ての駆動コイルSn又はこれらの駆動コイルSnの一部が調整された短絡モードMで切り替えられ得る。好ましくは、搬送装置T1と磁結合された駆動コイルSmが、調整された短絡モードMで切り替えられ得る。
【0057】
どの駆動コイルSmが搬送装置1と磁結合されているかは、搬送装置1の実際の位置によって特定され得る。この位置決めは、適切な位置センサによって実行され得る。例えばオーストリア特許出願公開第519238号明細書に記載されているように、当該位置センサは、長固定子リニアモータで既に設けられ得る。
【0058】
しかし、どの駆動コイルSmが、短絡状態中に(測定される)コイル短絡電流icmを通電するかも認識され得る。当該認識から、これらの駆動コイルSmのうちのどの駆動コイルが、搬送装置1と磁結合されているかが推定され得る。
【0059】
(例えば、コイル短絡電流icmが電磁誘導されるので)移動方向xに存在する別の1つの駆動コイルSmが、搬送装置1と磁結合されているように、この搬送装置1が、制動工程中にさらに移動すると、この駆動コイルSmが、同様に短絡モードMに切り替えられ得る。その結果、通常は、移動方向xに対抗する1つの駆動コイルSmが、搬送装置1ともはや磁結合されていない。これにより、この駆動コイルは、もはや短絡モードMのままである必要がない。しかしながら、移動方向xに対抗するこの駆動コイルSmが、もはや搬送装置1と磁結合されていないことは、同様に位置センサ又はコイル短絡電流icmの非電磁誘導によって認識され得る。移動方向xに対抗して磁結合された最後の駆動コイルSmが、もはや搬送装置1と磁結合されていないことが認識され得る。これにより、最初に述べた駆動コイルSmの代わりに、移動方向xに存在するその次のコイルSmが、短絡モードMで駆動されることが推定され得る。
【0060】
好ましくは、短絡電流icが、短絡制御装置Kによって、例えば閾値icmaxに限定され得る。当該限定は、短絡から無通電に切り替えられることによって実行され得る。したがって、十分な運動エネルギーが、搬送装置1に存在する限り、(平均)短絡電流icを調整することが可能である。
なお、本願は、特許請求の範囲に記載の発明に関するものであるが、他の態様として以下の構成も包含し得る:
1.
長固定子リニアモータ(1)の複数個(m)の駆動コイル(Sm)を制御するための方法であって、搬送装置(2)を移動方向(x)に沿って移動させるため、この搬送装置(2)と磁気結合された磁場が、この移動方向(x)に沿って移動されるように、前記複数個のコイル(Sm)が、通常運転中に通電される当該方法において、
前記搬送装置(2)の制動工程時に、調整された短絡モード(M)に切り替えられ、この短絡モード(M)では、前記複数個の駆動コイル(Sm)の少なくとも一部が、少なくとも第1期間にわたって短絡状態で駆動される当該方法。
2.
前記調整された短絡モード(M)では、前記複数個の駆動コイル(Sm)の少なくとも一部が、少なくとも第2期間にわたって無通電状態で駆動される上記1に記載の方法。
3.
前記複数個の駆動コイル(Sm)に通電する全ての短絡電流(ic)が算出されること、
推進力を生成する最大の短絡電流成分icqを有する目標短絡電流(ic_soll)が、予め設定されている関係式(f)によって算出されること、
前記調整された短絡モード(M)において、
-前記短絡電流(ic)が前記目標短絡電流(ic_soll)よりも小さい短絡相(A)では、前記複数個の駆動コイル(Sm)の少なくとも一部が、前記短絡状態で駆動され、
-前記短絡電流(ic)が前記目標短絡電流(ic_soll)に達するか又は超える無通電相(C)では、前記複数個の駆動コイル(Sm)の少なくとも一部が、無通電状態で駆動される上記2に記載の方法。
4.
前記複数個の駆動コイル(Sm)に通電する全ての短絡電流(ic)が算出されること、
推進力を生成する最大の短絡電流成分icqを有する目標短絡電流(ic_soll)が、予め設定されている関係式(f)によって算出されること、
前記調整された短絡モード(M)において、
-前記短絡電流(ic)が1つの係数(a)で乗算された前記目標短絡電流(ic_soll)よりも小さい短絡相(A)では、前記複数個の駆動コイル(Sm)の少なくとも一部が、前記短絡状態で駆動され、
-前記短絡電流(ic)が1つの係数(a)で乗算された前記目標短絡電流(ic_soll)に一致するか又は超え、且つ1つの係数2-aで乗算された前記目標短絡電流ic_sollよりも小さい中間相(B)では、前記複数個の駆動コイル(Sm)の少なくとも一部が、交互に前記短絡状態と前記無通電状態とで駆動され、
-前記短絡電流(ic)が1つの係数2-aで乗算された前記目標短絡電流(ic_soll)に一致するか又は超える無通電相(C)では、前記複数個の駆動コイル(Sm)の少なくとも一部が、無通電状態で駆動される上記2に記載の方法。
5.
混合相(B)では、前記複数個の駆動コイル(Sm)の少なくとも一部がそれぞれ、交互に短絡期間(tc_ks)にわたって前記短絡状態で駆動され、無通電期間(tc_ll)にわたって前記無通電状態で駆動され、
前記短絡期間(tc_ks)の長さと前記無通電期間(tc_ll)の長さとが特定される上記4に記載の方法。
6.
前記混合相(B)では、前記無通電期間(tc_ll)の長さに対する前記短絡期間(tc_ks)の長さが、三次多項式によって誤差偏差(e_ic)を用いて計算される上記5に記載の方法。
7.
0.85の係数(a)が選択される上記4~6のいずれか1つに記載の方法。
8.
前記予め設定されている関係式は、以下の
【数6】
のように規定され、ここで、Ψは、主磁束であり、Lは、不飽和インダクタンスである上記3~7のいずれか1つに記載の方法。
9.
前記搬送装置(1)と磁気結合された駆動コイル(Sm)だけが、前記調整された短絡モード(M)に切り替えられる上記2~7のいずれか1つに記載の方法。
10.
前記搬送装置(1)と磁気結合された駆動コイル(Sm)は、位置センサによって特定される上記9に記載の方法。
11.
前記搬送装置(1)と磁気結合された駆動コイル(Sm)は、それぞれの前記駆動コイル(Sm)で電磁誘導されたコイル短絡電流(icm)によって認識される上記9に記載の方法。
12.
複数個(m)の駆動コイル(Sm)と少なくとも1つの搬送装置(1)とを有する長固定子リニアモータ(2)であって、前記搬送装置(1)を移動方向(x)に沿って移動させるため、この搬送装置(1)と磁気結合された磁場が、この移動方向(x)に沿って移動されるように、前記複数個のコイル(Sm)が、コイル調整装置(R)を介して制御された長固定子リニアモータ制御装置(4)によって通電される当該長固定子リニアモータにおいて、
短絡制御装置(K)が設けられていて、この短絡制御装置(K)は、前記搬送装置(1)の制動工程時に前記複数個の駆動コイル(Sm)の少なくとも一部を少なくとも第1期間にわたって短絡させることを特徴とする長固定子リニアモータ。
13.
前記短絡制御装置(K)は、前記コイル調整装置(R)の前方に接続されていて、制動工程時に前記複数個の駆動コイル(Sm)の少なくとも一部を少なくとも第1期間にわたって短絡することをこのコイル調整装置(R)に指示する上記12に記載の長固定子リニアモータ。
【符号の説明】
【0061】
1 搬送装置(輸送車両)
2 長固定子リニアモータ
3 保持構造体
4 長固定子リニアモータ制御装置
20 輸送区間
Sm 駆動コイル
M1 第1磁石
M2 第2磁石
R コイル調整装置
K 短絡制御装置
図1
図2a
図2b
図3
図4
図5
図6a
図6b
図7