IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社ダイセルの特許一覧 ▶ 株式会社日立製作所の特許一覧

<>
  • 特許-骨格検出システム及び作業管理装置 図1
  • 特許-骨格検出システム及び作業管理装置 図2
  • 特許-骨格検出システム及び作業管理装置 図3
  • 特許-骨格検出システム及び作業管理装置 図4
  • 特許-骨格検出システム及び作業管理装置 図5
  • 特許-骨格検出システム及び作業管理装置 図6
  • 特許-骨格検出システム及び作業管理装置 図7
  • 特許-骨格検出システム及び作業管理装置 図8
  • 特許-骨格検出システム及び作業管理装置 図9
  • 特許-骨格検出システム及び作業管理装置 図10
  • 特許-骨格検出システム及び作業管理装置 図11
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-04-01
(45)【発行日】2024-04-09
(54)【発明の名称】骨格検出システム及び作業管理装置
(51)【国際特許分類】
   G06T 7/00 20170101AFI20240402BHJP
   G06T 7/20 20170101ALI20240402BHJP
【FI】
G06T7/00 300F
G06T7/20 300Z
【請求項の数】 11
(21)【出願番号】P 2020101986
(22)【出願日】2020-06-12
(65)【公開番号】P2021196783
(43)【公開日】2021-12-27
【審査請求日】2023-05-19
(73)【特許権者】
【識別番号】000002901
【氏名又は名称】株式会社ダイセル
(73)【特許権者】
【識別番号】000005108
【氏名又は名称】株式会社日立製作所
(74)【代理人】
【識別番号】110000556
【氏名又は名称】弁理士法人有古特許事務所
(72)【発明者】
【氏名】豊田 泰嗣
(72)【発明者】
【氏名】稲富 泰彦
(72)【発明者】
【氏名】石戸 裕貴
(72)【発明者】
【氏名】山田 敏広
(72)【発明者】
【氏名】吉川 裕
【審査官】小太刀 慶明
(56)【参考文献】
【文献】特開2008-077424(JP,A)
【文献】特開2017-102808(JP,A)
【文献】特開2019-152802(JP,A)
【文献】国際公開第2018/131630(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
G06T 7/00 - 7/90
(57)【特許請求の範囲】
【請求項1】
作業者が行う繰り返し動作である基準動作の少なくとも1サイクル分に関する基準動作情報を記憶する第1記憶部と、
作業中の前記作業者を撮影した作業中動画から前記作業者の骨格情報を検出する骨格情報検出部と、
前記骨格情報検出部によって検出された作業中の複数の作業者の各々の骨格情報のうち、前記基準動作情報と、作業中の動作情報である検査対象情報との差異が予め設定された動作許容範囲であるとのターゲット要件を満たす動作を示す前記作業者の骨格情報を、ターゲットとして特定するターゲット特定部と、を備える、骨格検出システム。
【請求項2】
前記第1記憶部は、前記作業者の基準動作を撮影した基準動画から得られる前記作業者の前記基準動作情報を記憶する、請求項1に記載の骨格検出システム。
【請求項3】
前記検査対象情報を記憶する第2記憶部を更に備える、請求項1又は2に記載の骨格検出システム。
【請求項4】
前記作業中動画から検出される前記複数の作業者の前記骨格情報の中から、所定の候補要件を満たす候補を選択する候補選択部を更に備え、
前記ターゲット特定部は、前記基準動作情報と、前記候補選択部が選択した作業者の前記検査対象情報との差異が、予め設定された動作許容範囲であるとのターゲット要件を満たす動作を示す前記作業者の骨格情報を、前記ターゲットとして特定する、請求項1~3のいずれか1項に記載の骨格検出システム。
【請求項5】
前記候補要件は、前記作業中動画から検出される前記骨格情報が示す骨格の大きさが、前記作業中動画から検出される前記複数の作業者の前記骨格情報のうちで最大であるとの条件を含む、請求項4に記載の骨格検出システム。
【請求項6】
前記骨格情報が示す骨格の大きさは、前記作業中動画から検出される前記作業者の身体の3点以上の位置を頂点とする多角形の面積、及び、前記作業中動画から検出される前記作業者の骨格長さの総和のいずれかで表わされる、請求項5に記載の骨格検出システム。
【請求項7】
前記候補要件は、前記骨格情報が、前記作業中動画により示される撮影範囲の所定領域内に位置するとの条件を含む、請求項4に記載の骨格検出システム。
【請求項8】
前記ターゲット特定部は、前記作業中動画から検出される前記作業者の身体の中心線を挟む両側に離隔する第1及び第2位置と、前記身体の前記第1及び第2位置の各々に離隔する第3位置の各々の変化により表わされる前記骨格情報が示す動作に基づいて、前記ターゲットを特定する、請求項1~7のいずれか1項に記載の骨格検出システム。
【請求項9】
前記作業中動画の前記第1~第3位置の位置データが、前記検査対象情報に含まれる、請求項8に記載の骨格検出システム。
【請求項10】
前記骨格情報は、前記作業者の複数部位、又は、前記作業者の前記複数部位のうち2以上の部位を結ぶ線の少なくともいずれかの位置を示すデータを含む、請求項1~9のいずれか1項に記載の骨格検出システム。
【請求項11】
請求項1~10のいずれかに記載の骨格検出システムと、
前記ターゲットが示す前記検査対象情報と、前記ターゲットに対応する前記基準動作情報との差異が、予め設定された基準範囲内か否かに基づいて、前記ターゲットに対応する前記作業者の動作の合否を判定する合否判定処理を行う判定部と、
前記判定部の判定結果を出力する出力部と、を備える、作業管理装置。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、骨格検出システム及び作業管理装置に関する。
【背景技術】
【0002】
コンピュータを利用した検査システムにより、作業者が行う作業を検査する方法が知られている。この方法では、例えば特許文献1に示されるように、作業中の作業者を撮影した画像データをコンピュータにより解析し、画像データに現れる作業者の行動を判定基準と比較して作業者が適切に作業を行なっているか否かを判定する。
【先行技術文献】
【特許文献】
【0003】
【文献】特開2011-048547号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
しかしながら、特許文献1に開示された方法では、複数の作業者が同時に撮影される場合、作業者の動作の変化によっては、例えば検査対象とすべき作業者がコンピュータにより別の作業者と誤認されるおそれがある。また、検査に用いる画像データの容量等によっては、検査システムの負荷が増大するおそれがある。
【0005】
そこで本開示は、作業中の作業者を撮影した画像データを用いて検査システムにより作業者の作業を検査する場合など、作業者の骨格を検知するシステムでの情報処理の負荷を軽減することを目的とする。
【課題を解決するための手段】
【0006】
上記課題を解決するために、本開示に係る骨格検出システムは、作業者が行う繰り返し動作である基準動作の少なくとも1サイクル分に関する基準動作情報を記憶する第1記憶部と、作業中の前記作業者を撮影した作業中動画から前記作業者の骨格情報を検出する骨格情報検出部と、前記骨格情報検出部によって検出された作業中の複数の作業者の各々の骨格情報のうち、前記基準動作情報と、作業中の動作情報である検査対象情報との差異が予め設定された動作許容範囲であるとのターゲット要件を満たす動作を示す前記作業者の骨格情報を、ターゲットとして特定するターゲット特定部と、を備える。
【0007】
上記構成によれば、作業中動画から検出される作業者の骨格情報の中からターゲットを特定できる。つまり作業者の検査対象情報と、この作業者の第1記憶部に記憶された基準動作情報とを比較することで、ターゲットを特定できる。特に本開示の骨格検出システムは、作業者の繰り返し動作を検査対象としており、検査対象の作業者の動作に規則性及び周期性がある。よって、本開示の骨格検出システムを用いて、ターゲットの特定を正確且つ迅速に行える。また、ターゲット特定部によりターゲットを特定することで、作業中動画に撮影された作業者から、検査対象の作業者を特定することができる。よって、骨格検出システムの負荷を抑制できる。
【発明の効果】
【0008】
本開示によれば、作業中の作業者を撮影した画像データを用いて検査システムにより作業者の作業を検査する場合において、複数の作業者が同時に撮影される場合でも、作業者を適切に検査できると共に、検査システムの負荷を抑制できる。
【図面の簡単な説明】
【0009】
図1】第1実施形態に係る骨格検出システムの機能ブロック図である。
図2図1の骨格情報検出部により検出された作業者の正面側の骨格情報を示す図である。
図3図1の骨格情報検出部により検出された作業者の側面側の骨格情報を示す図である。
図4図1の骨格検出システムのターゲット特定処理についてのフローチャートである。
図5】第1実施形態のターゲット特定処理において作業中動画の撮影データからターゲットが特定されるまでの様子を模式的に示す図である。
図6】第3変形例に係る骨格情報に含まれる作業者の正面側の位置情報を示す図である。
図7】第3変形例に係る骨格情報に含まれる作業者の側面側の位置情報を示す図である。
図8】第4変形例に係る骨格検出システムの全体動作を示すフローチャートである。
図9】第2実施形態に係る作業管理装置の機能ブロック図である。
図10図9の作業管理装置の全体動作を示すフローチャートである。
図11図10の合否判定処理についてのサブフローチャートである。
【発明を実施するための形態】
【0010】
以下、各実施形態について、各図を参照して説明する。
(第1実施形態)
[骨格検出システム]
図1は、第1実施形態に係る骨格検出システム1の機能ブロック図である。骨格検出システム1は、作業者の動作を検査する検査システムであり、作業中の作業者を撮影した作業中動画(以下、単に作業中動画とも称する。)から、作業者の動作を示す骨格情報を検出する。骨格検出システム1が検出した骨格情報は、作業中の作業者が行う繰り返し動作の検査に用いられる。検査対象となる繰り返し動作としては、例えば、製品の組立作業が挙げられるが、これに限定されない。
【0011】
骨格検出システム1は、作業中動画を撮影する撮影装置2と、作業中動画から骨格情報を検出する検出装置3とを備える。撮影装置2は、一例としてCCD等の撮像素子を有するビデオカメラであり、作業中動画を生成して、そのデータを出力する。撮影装置2は、作業中の作業者を撮影可能な位置に配置される。一例として、撮影装置2は、作業者が作業を行う作業場の一定領域を撮影するように配置される。撮影装置2と検出装置3とは、無線又は有線で接続される。
【0012】
検出装置3は、撮影装置2から出力される作業中動画のデータを受信する演算部30と、演算部30により個別に制御される第1記憶部31、第2記憶部32、及び出力部33とを有する。第1記憶部31は、作業中動画から得られ且つ作業者が行う繰り返し動作である基準動作の少なくとも1サイクル分に関する基準動作情報を記憶する。基準動作は、作業者の繰り返し動作の手本となる動作であり、各作業ごとに設定される。本実施形態での基準動作は、同一内容の作業を行う複数の作業者の基準動作を基に設定してもよい。本実施形態の第1記憶部31は、一例として、作業者の基準動作を撮影した基準動画(以下、単に基準動画とも称する。)から得られる作業者の基準動作情報を記憶する。この基準動画は、一例として、作業者の動作を明瞭に確認できる状態(例えば作業者と撮影装置2との間に障害物のない状態)で作業者を撮影した動画である。基準動画には、作業者の少なくとも1サイクル分以上の基準動作に対応する基準動作情報が含まれる。基準動作の1サイクルに係る時間は、例えば数秒から数分程度であるが、これに限定されない。
【0013】
第2記憶部32は、作業者が実際の作業として行う繰り返し動作(本動作)の少なくとも1サイクル分に関する検査対象情報を記憶する。この繰り返し動作(本動作)は、撮影装置2によって撮影される。第2記憶部32に繰り返し動作(本動作)の検査対象情報を記憶させることで、事後の検証を行うことができる。第1記憶部31と第2記憶部32とに記憶された情報は、所定のタイミングで演算部30に読み出されてもよいが、第1記憶部31に記憶された情報と、撮影装置2により撮影された繰り返し動作(本動作)の検査対象情報を、演算部30に適宜読み出されるようにすることもできる。出力部33は、第1記憶部31と第2記憶部32とに記憶された情報を出力する。出力部33は、一例として表示部である。
【0014】
検出装置3は、一例として、CPU等のプロセッサ、ROM、RAM、HDD等の記録媒体、及び、LCD等のディスプレイを備えたコンピュータにより実現される。演算部30は、プロセッサにより実現される。プロセッサの個数は、単一又は複数のいずれでもよい。第1記憶部31と第2記憶部32とは、上記記録媒体により実現される。更に上記記録媒体には、演算部30が本実施形態の各処理を実行するためのプログラムと、後述する候補要件とターゲット要件とに関する情報とが記憶されている。上記記録媒体は、検出装置3の外部に設けられた外部記憶装置であってもよい。
【0015】
演算部30は、骨格情報検出部301、候補選択部302、及びターゲット特定部303を有する。骨格情報検出部301は、撮影装置2から出力される作業中動画から、作業者の骨格情報を検出する。この骨格情報の検出方法としては、公知の方法を採用してもよい。この骨格情報の検出方法としては、例えば、カーネギーメロン大学により発表され、記録後又はリアルタイムに撮影画像中の複数人の位置検出が可能なオープンソースライブラリーである「Open Pose」技術(Zhe Cao, Tomas Simon, Shih-En Wei, Yaser Sheikh, 「Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields」, arXiv:1611.08050v2を参照)を用いた方法が挙げられる。この方法によれば、作業中動画において複数の作業者の身体が重なって撮影された場合でも、各作業者の骨格情報を区別して検出できる。
【0016】
図2は、図1の骨格情報検出部301により検出された作業者Wの正面側の骨格情報を示す図である。図3は、図1の骨格情報検出部301により検出された作業者Wの側面側の骨格情報を示す図である。図2及び3では、作業者Wの骨格情報を出力部33の表示面331に表示したときの様子を模式的に示している。また図2及び3の他、後述する図4、5、及び8では、作業者Wの骨格情報を模式的に示すと共に骨格情報の所定位置を黒丸で示している。
【0017】
図2及び3に示すように、一例として、骨格情報は、作業者Wの複数部位Pの位置、又は、作業者Wの複数部位Pのうち2以上の部位(例えば関節部位等)を結ぶ線Lの長さ、あるいは、それら複数部位Pや線Lで形成される骨格形状の少なくともいずれかの情報である。この情報は、2次元座標の位置情報を含む。骨格情報は、作業中動画内での作業者Wの姿勢に伴って変化する。演算部30は、作業中動画に含まれる複数の連続するフレームにわたって、骨格情報の変化を把握する。
【0018】
候補選択部302は、作業中動画から検出される複数の作業者Wの骨格情報の中から、所定の候補要件を満たす候補を選択する。これにより候補選択部302は、検査対象の作業者Wの人数を絞り込む。候補要件は、作業中動画内の複数の骨格情報からターゲットとなる骨格情報を候補選択部302が絞り込むための要件として予め設定されている。このように、候補選択部302が候補要件を用いて、作業中動画内に撮影された骨格情報を絞り込むことで、骨格検出システム1の負担を軽減できる。
【0019】
ここで本実施形態の候補要件は、一例として、骨格情報が、作業中動画により示される撮影範囲の所定領域内に位置するとの条件を含む。この所定領域としては、例えば、作業中動画の中央領域や、左右両側のうち少なくとも一方側の領域、或いは、作業者Wの作業領域(一例として作業机とその近傍とを含む領域)が挙げられるが、これに限定されない。このような候補要件によれば、候補選択部302は、上記所定領域を設定することで、作業中動画内の複数の骨格情報の中からターゲットとなる可能性の高い候補を選択でき、骨格検出システム1の負担を一層軽減できる。
【0020】
ターゲット特定部303は、ターゲット要件を満たす動作を示す作業者Wの骨格情報を、ターゲットとして特定する。この前述のターゲット要件は、骨格情報検出部301によって検出された作業中の複数の作業者Wの各々の骨格情報のうち、基準動作情報と、検査対象情報との差異が、予め設定された動作許容範囲であるとの要件である。候補選択部302によって検出された候補(作業者W)の検査対象情報と基準動作情報との差異が、前記ターゲット要件を満たせば、ターゲット特定部303は、前記候補をターゲットとして特定する。なお本実施形態では、ターゲットが存在しないとターゲット特定部303が判定した場合、候補選択部302は、候補要件を満たす別の候補を選択する。候補選択部302とターゲット特定部303とは、ターゲットが決定されるまで同様の処理を繰り返す。
【0021】
上記動作許容範囲(ターゲット要件を満たす動作範囲)は、適宜設定可能である。動作許容範囲としては、例えば、1サイクル分の繰り返し動作中における基準動作情報と検査対象情報との骨格情報の所定位置(一例として、いずれか一方の手の位置)の位置ずれ量が所定距離未満である範囲や、1サイクル分の繰り返し動作中に前記所定位置が描く軌道の位置ずれ量が所定距離未満である範囲を例示できる。或いは動作許容範囲としては、例えば、骨格情報の繰り返し動作の1サイクルの少なくとも一部に掛かる動作のずれ時間が所定時間未満である範囲を例示できる。なお、動作に要する時間が所定時間に対して短すぎる場合も動作許容範囲から外してもよい。このため所定時間は作業内容に応じて設定する。
【0022】
本実施形態のターゲット特定部303は、基準動作情報と検査対象情報とを同期させた状態で、基準動作情報と検査対象情報との差異を算出する。具体的にターゲット特定部303は、検査対象情報に含まれる作業者の身体の所定位置の骨格情報が、基準動作情報に含まれる作業者の身体の所定位置の骨格情報と一定範囲(例えば、位置ずれが数センチ以内の範囲)内で一致するタイミングを基準時刻として設定することで、基準動作情報と検査対象情報とに示される繰り返し動作の開始時刻を一致させる。そしてターゲット特定部303は、基準時刻以後の少なくとも1サイクル分の繰り返し動作中における基準動作情報と検査対象情報との差異を算出する。前記差異とは、例えば、動作の開始時刻を一致させたときの基準動作情報と検査対象情報とに含まれる作業者の身体の所定位置の骨格情報の最大位置ずれ量、動作の開始時刻を一致させたときの基準動作情報と検査対象情報とに含まれる作業者の身体の所定位置の骨格情報が描く軌道の最大位置ずれ量、又は、基準動作情報と検査対象情報との間の動作の周期のずれ量であってもよい。
【0023】
[骨格検出システムの動作]
骨格検出システム1の動作時には、まず演算部30が、作業中動画内の複数の作業者Wの骨格情報の中からターゲットを特定するターゲット特定処理を行う。本実施形態のターゲット特定処理では、まず骨格情報検出部301が、作業中動画から作業者Wの骨格情報を検出する。その後、候補選択部302が、検出された骨格情報の中から候補を選択し、検査対象の作業者Wの人数を絞り込む。続いて、ターゲット特定部303が、選択された候補の中から検査対象のターゲットを特定する。これによりターゲット特定処理が行われる。演算部30は、検査者からの検査中止の指示がない限り、本処理のフローを繰り返し実行する。
【0024】
このように、本実施形態の骨格検出システム1によれば、作業中動画から検出される作業者Wの骨格情報の中からターゲットを特定できる。つまり作業者Wの検査対象情報と、この作業者Wの第1記憶部31に記憶された基準動作情報とを比較することで、ターゲットを特定できる。特に骨格検出システム1は、作業者Wの繰り返し動作を検査対象としており、検査対象の作業者Wの動作に規則性及び周期性がある。よって、骨格検出システム1を用いて、ターゲットの特定を正確且つ迅速に行える。また、ターゲット特定部303によりターゲットを特定することで、作業中動画に撮影された作業者Wから、検査対象の作業者Wを特定することができる。よって、骨格検出システム1の負荷を抑制できる。
【0025】
また第1記憶部31は、基準動画から得られる作業者Wの基準動作情報を記憶する。このため演算部30は、第1記憶部31を参照することにより、いつでも基準動作情報を利用できる。よって、演算部30が要求するタイミングに応じて演算部30が基準動作情報を参照することで、ターゲットの繰り返し動作の検査を効率よく行える。
【0026】
また本実施形態の骨格検出システム1は、検査対象情報を記憶する第2記憶部32を備える。このため演算部30は、第2記憶部32を参照することにより、検査対象情報をいつでも利用できる。よって、例えば作業者Wが繰り返し動作を行った後でも、検査者或いは演算部30が要求するタイミングに応じて演算部30が検査対象情報を参照することで、事後的にターゲットの繰り返し動作の検査を行える。
【0027】
また本実施形態のターゲット特定部303は、ターゲット要件を満たす動作を示す作業者Wの骨格情報をターゲットとして特定する。このように、ターゲット要件を用いることで、ターゲット特定部303は、ターゲットとして特定すべき作業者Wの骨格情報を安定して特定できる。
【0028】
また一例として、骨格情報は、作業者Wの複数部位Pの位置、又は、作業者Wの複数部位Pのうち2以上の部位を結ぶ線Lの長さ、あるいはそれら複数部位Pや線Lで形成される骨格形状の少なくともいずれかのデータを含む。このように骨格情報は、作業者Wの身体を繰り返し動作が把握できる程度に簡単化した身体情報であるため、例えば作業者Wの画像データ自体に比べて情報量が少ない。よって演算部30は、このようなデータを含む骨格情報に基づいて、ターゲットの繰り返し動作の検査を、作業負担を軽減しながら高精度で行える。
【0029】
以下、本実施形態のターゲット特定処理の具体的内容を例示する。図4は、骨格検出システム1のターゲット特定処理についてのフローチャートである。この図4に示されるフローが、本実施形態のターゲット特定処理である。本フローでは、演算部30は、まず骨格検出システム1に、作業内容の基準動作情報が第1記憶部31に記憶されているか否かを判定する(ステップS11)。ステップS11において、演算部30は、作業内容の基準動作情報が第1記憶部31に記憶されていないと判定した場合(ステップS11:No)、必要な基準動作情報を取得して第1記憶部31に記憶させ(ステップS12)、その後、ステップをステップS13に進める。ステップS11において、演算部30は、作業内容の基準動作情報が第1記憶部31に記憶されていると判定した場合(ステップS11:Yes)、ステップをステップS13に進める。
【0030】
ステップS12では、演算部30は、例えば出力部33を通じて、作業内容の基準動作情報が不足していることを検査者に報知し、必要な基準動作情報を含む基準動画のデータを検出装置3に入力するように検査者に促してもよい。演算部30は、検査者が基準動画のデータが検出装置3に入力されたことを検知すると、その基準動画のデータから、作業者Wの基準動作情報として、骨格情報検出部301が骨格情報を検出してもよい。
【0031】
次に骨格情報検出部301は、作業中の作業者Wを撮影した作業中動画から作業者Wの骨格情報を検出する(ステップS13)。その後、演算部30は、骨格情報検出部301が検出した骨格情報に基づいて、作業中動画に撮影されている作業者Wの人数をカウントする(ステップS14)。
【0032】
その後、候補選択部302は、作業中動画から検出された作業者Wの骨格情報の中から、候補要件を満たす候補を選択する(ステップS15)。これにより、検査対象とする骨格情報が更に絞り込まれる。本フローでの候補要件は、一例として、骨格情報が、作業中動画により示される撮影範囲の所定領域内に位置するとの条件を含む。所定領域は、適宜設定可能であるが、例えば、作業者Wが作業を行う作業領域(一例として作業机とその近傍とを含む領域)に設定できる。或いは所定領域は、例えば、作業中動画の中央領域に設定されてもよい。これにより、作業中動画に撮影された作業者Wのうち、前記所定領域内に位置する作業者Wの骨格情報が候補として選択される。
【0033】
次に、ターゲット特定部303は、ステップS15で選択された候補がターゲット要件を満たすか否かを判定する(S16)。ステップS16において、ターゲット特定部303は、候補がターゲット要件を満たさないと判定した場合(ステップS16:No)、ステップをステップS13に戻す。ステップS16において、ターゲット特定部303は、候補がターゲット要件を満たすと判定した場合(ステップS16:Yes)、ステップをステップS17に進める。
【0034】
ステップS17において、ターゲット特定部303は、ステップS16でターゲット要件を満たすと判定した候補が1つであれば、この候補をターゲットとして特定する。ステップS17において、ターゲット特定部303は、ステップS16でターゲット要件を満たすと判定した候補が複数であれば、この複数の候補のうち、ターゲット要件の動作許容範囲のずれが最も小さい候補をターゲットとして特定する。演算部30は、一例として、ターゲットの特定結果を第1記憶部31に記憶する。演算部30は、ステップS17の実施後、本フローを終了する。
【0035】
ここで図5(a)~図5(d)は、第1実施形態のターゲット特定処理において作業中動画からターゲットが特定されるまでの様子を模式的に示す図である。図5に示す例では、ステップS13において、作業中画面内から4人の作業者W1~W4の骨格情報が、骨格情報検出部301により検出される(図5(a))。またステップS15において、作業中動画の所定領域S内に位置する3人の作業者W1~W3の骨格情報が、候補選択部302により候補として選択される(図5(b))。これにより、作業中動画の撮影領域に映った骨格情報のうち、所定領域S外に位置する骨格情報(ここでは作業者W4の骨格情報)が、候補の対象とならず、候補から外される。
【0036】
またステップS17において、候補である作業者W1~W3の骨格情報について、作業内容毎に設定された基準動作情報と、作業中の動作情報である検査対象情報との差異が、予め設定された動作許容範囲であるとのターゲット要件を満たすか否かが、ターゲット特定部303により判定される。一例として、W3、W2、W1の順で各作業者の検査対象情報と基準動作情報を比較し、ターゲット要件を満たす作業者(例えばW1)をターゲットとして特定する。また、ターゲット要件を満たさないと判定された作業者W2、W3の骨格情報が、ターゲットの対象とならず、ターゲットから外される(図5(c)、図5(d))。
【0037】
本実施形態によれば、作業者Wの動作検査に必要な全ての基準動作情報が第1記憶部31に記憶されている。よって本フローでは、第1記憶部31に記憶された全ての基準動作情報の中から対象とすべき情報を抽出し、作業中動画から検出される骨格情報と基準動作情報とを対比させてターゲットが特定される。よって、漏れのない検査が可能となる。また、作業中動画により示される撮影範囲の所定領域S内に位置するとの条件を含む候補要件に基づいて、候補選択部302により候補が選択されるため、候補を選択する際の骨格検出システム1の負荷を軽減できる。よって、ターゲットを迅速に特定できる。
【0038】
以下、本実施形態の変形例について説明する。第1変形例に係る候補要件は、一例として、基準動作情報と、作業中動画から検出される骨格情報の検査対象情報との差異が、予め設定された動作許容範囲であるとの要件を含む。このように本変形例では、作業中動画内の骨格情報の繰り返し動作に基づいて、候補選択部302により候補が選択される。これにより、本変形例によれば、ターゲット特定部303がターゲットを特定する前に、比較的適切な繰り返し動作を行う骨格情報が候補として選択される。このため、適切な候補を候補選択部302により高精度で選択できると共に、ターゲット特定部303がターゲットを特定する際の負担を軽減できる。
【0039】
また、検査対象の作業者Wは、複数の作業者Wのうち、例えば撮影装置2に一番近い位置で作業を行う場合がある。この場合、検査対象の作業者Wは、作業中動画内では、複数の作業者Wの中で最も大きく撮影される。そこで第2変形例に係る候補要件は、一例として、作業中動画から検出される骨格情報が示す骨格の大きさが、作業中動画から検出される複数の作業者Wの骨格情報のうちで最大であるとの条件を含む。ここで言う骨格情報が示す骨格の大きさは、例えば、作業中動画から検出される作業者Wの身体の3点以上の位置を頂点とする多角形の面積(例えば以下の図6に示す位置P1~P3を頂点とする三角形の面積)、及び、作業中動画から検出される作業者Wの骨格長さ(例えば図2及び3に示す線L)の総和のいずれかで表わされる。上記した多角形は、頂点の数が4以上の形状を有していてもよい。また、多角形の面積や骨格長さの総和を組み合わせてもよい。このような候補要件に基づくことで、作業中動画で最も大きく撮影される作業者Wが、候補として選択される。
【0040】
図6は、第3変形例に係る骨格情報に含まれる作業者Wの正面側の位置情報を示す図である。図7は、第3変形例に係る骨格情報に含まれる作業者Wの側面側の位置情報を示す図である。図6及び7では、出力部33の表示面331に表わされる骨格情報を模式的に示している。
【0041】
図6及び7に示すように、第3変形例に係るターゲット特定部303は、作業中動画から検出される作業者Wの身体の中心線Xを挟む両側に離隔する第1位置P1及び第2位置P2(右肩と左肩との各位置)と、第1位置P1及び第2位置P2の各々に離隔する第3位置P3(頭の中央位置)の各々の変化により表わされる骨格情報が示す動作に基づいて、ターゲットを特定する。
【0042】
本変形例によれば、比較的少ない位置情報を含む骨格情報に基づいてターゲット特定部303がターゲットを特定することで、例えば作業者Wの身体全体の骨格情報を用いた場合に比べて、ターゲット特定部303がターゲットを迅速に特定できると共に、ターゲットを特定する際の骨格検出システム1の負担を更に軽減できる。
【0043】
また本変形例では、第1~3位置P1~P3の位置データは、検査対象情報に含まれる。これによりターゲット特定部303は、第1~3位置P1~P3のデータに基づいて、候補の中からターゲットを迅速に特定できる。なお、第1変形例において、候補選択部302が候補を選択する際、候補選択部302が、第1~3位置P1~P3の各々の変化により表わされる骨格情報が示す動作に基づいて候補を選択してもよい。
【0044】
図8は、第4変形例に係る骨格検出システムの全体動作を示すフローチャートである。本変形例の骨格検出システムは、ターゲット特定処理(ステップS1)を行った後、ターゲットの繰り返し動作を検査するターゲット検査処理を行う(ステップS2)。ステップS2の後、演算部30は、検査者からの検査中止の指示があるか否かを判定する(ステップS3)。本変形例の骨格検出システムは、ステップS3において、演算部30が、検査者からの検査中止の指示がないと判定する限り(ステップS3:No)、ステップS1~S3のフローを繰り返し実行する。なお、本変形例の骨格検出システムは、ターゲット検査結果を記録する記録部を備えていてもよい。この場合、演算部30は、ターゲット検査結果を当該記録部に記録する。
【0045】
本変形例の骨格検出システムは、一例として、撮影中の作業中動画に基づいて、リアルタイムでターゲット特定処理(ステップS1)及びターゲット検査処理(ステップS2)を行う。これにより検査者は、骨格検出システムを用いて、作業者Wの作業の繰り返し動作をリアルタイムで迅速に検査できる。よって、検査結果を現在の作業者Wの繰り返し動作にすぐに反映できる。また、リアルタイムでターゲット検査処理(ステップS2)が行われることにより、その検査処理の検査結果を解析する装置を用いれば、例えば、作業者Wの不適切な動作で品質基準に達しない組立品が組み立てられた場合でも、検査者は当該組立品を特定し易くできる。これにより、組立品の無駄が低減できる。このように本変形例によれば、ターゲット検査処理(ステップS2)の検査結果を用いて、様々な作業解析が可能となる。
【0046】
本変形例のように、骨格検出システムにおいて、リアルタイムでターゲット検査処理が行われる場合、演算部30は、例えば、撮影装置2により撮影された作業中動画を第2記憶部32に記憶させることなく、ターゲット特定処理(ステップS1)とターゲット検査処理(ステップS2)とを実行してもよい。又は、撮影装置2により撮影された作業中動画を第2記憶部32に記憶させながら、ターゲット特定処理(ステップS1)とターゲット検査処理(ステップS2)とを実行してもよい。また、骨格検出システムが備える記憶部(例えば第1記憶部31及び第2記憶部32の少なくともいずれか)には、基準動画及び作業中動画の少なくともいずれかが録画されていてもよい。
【0047】
次に、ターゲット検査処理(ステップS2)の具体的内容を例示する。本処理では、一例として演算部30が、ステップS17で特定したターゲット(例えばW1)について、作業中動画内の骨格情報に基づき、本動作での繰り返し動作の動作検査を行う。この動作検査は、例えば、基準動作情報と検査対象情報との差異が、予め設定された動作許容範囲であるターゲット検査要件を満たすか否かを演算部30が判定することで行われる。ターゲット検査要件の動作許容範囲は、例えば、ターゲット要件の動作許容範囲よりも狭い範囲に設定できるが、これに限定されない。
【0048】
以上の構成によれば、検査者は、報知されたターゲットの検査結果に基づいて、ターゲットの繰り返し動作を適切且つ迅速に動作検査できる。以下、第2実施形態について、第1実施形態との差異を中心に説明する。
【0049】
(第2実施形態)
以下、第2実施形態について説明する。第2実施形態では、前述の第1実施形態の第4変形例のターゲット検査処理と同様の処理を行い、この処理の検査結果に基づき、ターゲットに対応する作業者の動作の合否を判定する処理を行う装置を示す。
【0050】
図9は、第2実施形態に係る作業管理装置100の機能ブロック図である。図9に示すように、作業管理装置100は、撮影装置2と、撮影装置2が接続された判定装置4とを備える。判定装置4は、演算部40、第1記憶部41、第2記憶部42、及び出力部43を有する。演算部40は、骨格情報検出部401、候補選択部402、及びターゲット特定部403の他、判定部404を有する。この判定部404は、所定のタイミングで、ターゲットの検査対象情報と、ターゲットに対応する基準動作情報との差異が、予め設定された基準範囲内か否かに基づいて、ターゲットに対応する作業者の動作の合否を判定する合否判定処理を行う。出力部43は、判定部404の行った合否判定処理の判定結果を出力する。このように作業管理装置100は、実質的には、第1実施形態の骨格検出システム1と、判定部404とを備えた構成を有する。
【0051】
図10は、図9の作業管理装置100の全体動作を示すフローチャートである。以下、図10を用いて、作業管理装置100の全体動作を説明する。図10に示すように、作業管理装置100の動作時には、まず演算部40により、ステップS1と同様にターゲット特定処理が行われる(ステップS4)。その後、判定部404は、ターゲットの検査対象情報と、ターゲットに対応する基準動作情報との差異が、予め設定された基準範囲内か否かを判定する。これにより合否判定処理が行われる(ステップS5)。
【0052】
次に演算部40は、検査者からの検査中止の指示があるか否かを判定する(ステップS6)。ステップS6において、演算部40は、検査者からの検査中止の指示があると判定した場合(ステップS6:Yes)、本フローの実行を中止する。ステップS6において、演算部40は、検査者からの検査中止の指示がないと判定した場合(ステップS6:No)、ステップS4に戻す。これにより、検査者からの検査中止の指示がない限り、演算部40は、本フローを繰り返し実行する。以上が、作業管理装置100の全体動作である。
【0053】
以下、図10の合否判定処理(ステップS5)での具体的な処理内容を例示する。図11は、図10の合否判定処理についてのサブフローチャートである。本サブフローでは、演算部40は、特定されたターゲットの繰り返し動作の動作検査を行う(ステップS51)。この動作検査では、上記したように、判定部404が、ターゲットの検査対象情報と、ターゲットに対応する基準動作情報との差異が、予め設定された基準範囲(一例として、上記したターゲット検査要件の動作許容範囲)内か否かを判定する。
【0054】
次に演算部40は、ステップS51の検査結果で測定した前記差異が基準範囲内であったか否かに基づいて、ターゲットに対応する作業者の動作の合否を判定する(ステップS52)。ステップS52において、演算部40は、ステップS51の検査結果での前記差異が基準範囲内ではない(ここではターゲット検査要件を満たさない)ため、ターゲットに対応する作業者の動作が基準を満たさないと判定した場合(ステップS52:No)、その旨を示す判定結果を出力部43に出力させ(ステップS54)、本フローの実行を終了する。ステップS52において、演算部40は、ステップS51の検査結果での前記差異が基準範囲内である(ここではターゲット検査要件を満たす)ため、ターゲットに対応する作業者の動作が基準を満たすと判定した場合(ステップS52:Yes)、その旨を示す判定結果を出力部43に出力させ(ステップS53)、本フローの実行を終了する。
【0055】
このような動作を行う作業管理装置100によっても、第1実施形態の骨格検出システム1と同様の効果が奏される。また、演算部40が判定部404を有するため、検査者は、ターゲットが示す繰り返し動作について判定部404が判定した判定結果を、出力部43から出力される内容を通じて確認できる。これにより検査者は、自ら動作検査を行う検査負担を軽減できる。また検査者は、作業者Wの繰り返し動作を長時間でも安定して高精度で検査できる。
【0056】
なお、出力部43は音声出力部であってもよい。この場合、演算部40は、ステップS51の検査結果での前記差異が基準範囲内ではないと判定した場合(ステップS52:No)、ステップS54において、警告音を出力部43に出力させてもよい。また、作業管理装置100は、判定部404の判定結果を記録する記録部を備えていてもよい。この場合、演算部40は、ステップS52で得られた判定部404の判定結果を当該記録部に記録する。
【0057】
各実施形態における各構成及びそれらの組み合わせ等は、一例であって、本開示の趣旨から逸脱しない範囲内で、適宜、構成の付加、省略、置換、及びその他の変更が可能である。本開示は、実施形態によって限定されることはなく、特許請求の範囲によってのみ限定される。また、本明細書に開示された各々の態様は、本明細書に開示された他のいかなる特徴とも組み合わせることができる。
【0058】
骨格検出システム1と作業管理装置100とは、複数の撮影装置2を備えていてもよい。この場合、骨格検出システム1と作業管理装置100は、例えば、複数の場所での作業者Wの繰り返し動作を検査できる。
【0059】
また第1実施形態では、複数の候補を順番に判定してターゲットを特定する例を示したが、複数の候補を同時に判定してターゲットを特定してもよい。この場合、骨格検出システム1は、例えば、複数の演算部30を有していてもよい。
【符号の説明】
【0060】
W、W1~W4 作業者
1 骨格検出システム
31、41 第1記憶部
32、42 第2記憶部
43 出力部
100 作業管理装置
301、401 骨格情報検出部
302、402 候補選択部
303 、403 ターゲット特定部
404 判定部
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11