(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-04-01
(45)【発行日】2024-04-09
(54)【発明の名称】数値制御装置、及び制御方法
(51)【国際特許分類】
G05B 19/4093 20060101AFI20240402BHJP
B23Q 15/00 20060101ALI20240402BHJP
【FI】
G05B19/4093 F
B23Q15/00 301K
(21)【出願番号】P 2022536348
(86)(22)【出願日】2021-07-12
(86)【国際出願番号】 JP2021026155
(87)【国際公開番号】W WO2022014535
(87)【国際公開日】2022-01-20
【審査請求日】2023-02-07
(31)【優先権主張番号】P 2020122609
(32)【優先日】2020-07-17
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】390008235
【氏名又は名称】ファナック株式会社
(74)【代理人】
【識別番号】100106002
【氏名又は名称】正林 真之
(74)【代理人】
【識別番号】100165157
【氏名又は名称】芝 哲央
(74)【代理人】
【識別番号】100160794
【氏名又は名称】星野 寛明
(72)【発明者】
【氏名】渡邉 俊大
【審査官】臼井 卓巳
(56)【参考文献】
【文献】特開昭53-037989(JP,A)
【文献】特開昭54-020490(JP,A)
【文献】特開昭61-178104(JP,A)
【文献】特開昭62-054649(JP,A)
【文献】特表2002-533223(JP,A)
【文献】特開2018-034254(JP,A)
【文献】登録実用新案第3141295(JP,U)
(58)【調査した分野】(Int.Cl.,DB名)
G05B 19/18-19/46
B23Q 15/00-15/28
(57)【特許請求の範囲】
【請求項1】
旋削加工用のマルチエッジ工具を用いてワークを旋削加工する工作機械を制御する数値制御装置であって、
加工プログラムの指令を解読するNC指令解読部と、
前記マルチエッジ工具の工具情報及びエッジ情報を保持する記憶部と、
前記記憶部に保持された前記工具情報及びエッジ情報に基づいて前記マルチエッジ工具の幾何学的情報を生成する工具情報生成部と、を備え、
前記NC指令解読部は、
前記加工プログラムの指令から前記マルチエッジ工具の工具経路を算出する工具経路生成部と、
前記マルチエッジ工具のエッジ切換えが必要か否かを判定するエッジ切換判定部と、
前記エッジ切換判定部により前記エッジ切換えが必要と判定された場合に前記エッジ切換えのための退避経路、前記マルチエッジ工具の回転方向及び回転量、及び前記退避経路から前記工具経路に戻る戻り経路を含むエッジ切換経路を算出するエッジ切換経路生成部と、
前記工具経路に前記エッジ切換経路を結合する工具経路再生成部と、を備える
数値制御装置。
【請求項2】
前記エッジ切換判定部は、前記数値制御装置の外部からの信号入力、前記工作機械に含まれる駆動軸にかかる物理量、及び前記工具経路の少なくとも1つに基づいて前記エッジ切換えが必要か否かを判定する請求項1に記載の数値制御装置。
【請求項3】
前記エッジ切換経路生成部は、前記加工プログラムの指令、及び前記工具経路の少なくとも1つに基づいて、前記エッジ切換経路を算出する請求項1又は請求項2に記載の数値制御装置。
【請求項4】
前記エッジ切換経路生成部により算出された前記エッジ切換経路は、前記エッジ切換経路の途中で前記マルチエッジ工具と前記ワークとの干渉が発生しない請求項1から請求項3のいずれか1項に記載の数値制御装置。
【請求項5】
前記エッジ切換経路生成部は、前記エッジ切換えに要する時間、及び前記エッジ切換えに要する経路の少なくとも1つを短くするように、前記退避経路、前記マルチエッジ工具の回転方向及び回転量、及び前記戻り経路を算出する請求項1から請求項4のいずれか1項に記載の数値制御装置。
【請求項6】
コンピュータにより実現される、旋削加工用のマルチエッジ工具を用いてワークを旋削加工する工作機械の制御方法であって、
加工プログラムの指令を解読するNC指令解読ステップと、
記憶部に保持された前記マルチエッジ工具の工具情報及びエッジ情報に基づいて前記マルチエッジ工具の幾何学的情報を生成する工具情報生成ステップと、を備え、
前記NC指令解読ステップは、
前記加工プログラムの指令から前記マルチエッジ工具の工具経路を算出する工具経路生成ステップと、
前記マルチエッジ工具のエッジ切換えが必要か否かを判定するエッジ切換判定ステップと、
前記エッジ切換えが必要と判定された場合に前記エッジ切換えのための退避経路、前記マルチエッジ工具の回転方向及び回転量、及び前記退避経路から前記工具経路に戻る戻り経路を含むエッジ切換経路を算出するエッジ切換経路生成ステップと、
前記工具経路に前記エッジ切換経路を結合する工具経路再生成ステップと、を備える
制御方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、数値制御装置、及び制御方法に関する。
【背景技術】
【0002】
複数のエッジを有し、各エッジに異なる用途の刃具を実装しアプローチ角を変化させることであらゆる形状のワークに対応可能なマルチエッジ工具がある。マルチエッジ工具のエッジ毎の寿命データと累積使用時間データとに基づいて、加工作業指令が出力された際にエッジ毎の残り寿命を演算し、少なくとも1つのエッジが残り寿命を超える場合、マルチエッジ工具が寿命であると判定する技術が知られている。例えば、特許文献1参照。
【先行技術文献】
【特許文献】
【0003】
【発明の概要】
【発明が解決しようとする課題】
【0004】
ところで、マルチエッジ工具の特性を利用して、工具交換せずに1つの工具の異なるエッジを使用して一連の加工を行う場合、ワークの形状や工具寿命の延長等の観点によりマルチエッジ工具の1つのエッジから別のエッジに切り換える必要となることがある。この場合、エッジの切換えによりサイクルタイムが増大してしまうという問題がある。また、エッジ切換えを行うためのプログラムを追加する必要があり、作業者にとって手間がかかる。
【0005】
そこで、マルチエッジ工具のエッジ切換えを自動的に行うことが望まれている。
【課題を解決するための手段】
【0006】
本開示の数値制御装置の一態様は、旋削加工用のマルチエッジ工具を用いてワークを旋削加工する工作機械を制御する数値制御装置であって、加工プログラムの指令を解読するNC指令解読部と、前記マルチエッジ工具の工具情報及びエッジ情報を保持する記憶部と、前記記憶部に保持された前記工具情報及びエッジ情報に基づいて前記マルチエッジ工具の幾何学的情報を生成する工具情報生成部と、を備え、前記NC指令解読部は、前記加工プログラムの指令から前記マルチエッジ工具の工具経路を算出する工具経路生成部と、前記マルチエッジ工具のエッジ切換えが必要か否かを判定するエッジ切換判定部と、前記エッジ切換判定部により前記エッジ切換えが必要と判定された場合に前記エッジ切換えのための退避経路、前記マルチエッジ工具の回転方向及び回転量、及び前記退避経路から前記工具経路に戻る戻り経路を含むエッジ切換経路を算出するエッジ切換経路生成部と、前記工具経路に前記エッジ切換経路を結合する工具経路再生成部と、を備える。
【0007】
本開示の制御方法の一態様は、コンピュータにより実現される、旋削加工用のマルチエッジ工具を用いてワークを旋削加工する工作機械の制御方法であって、加工プログラムの指令を解読するNC指令解読ステップと、記憶部に保持された前記マルチエッジ工具の工具情報及びエッジ情報に基づいて前記マルチエッジ工具の幾何学的情報を生成する工具情報生成ステップと、を備え、前記NC指令解読ステップは、前記加工プログラムの指令から前記マルチエッジ工具の工具経路を算出する工具経路生成ステップと、前記マルチエッジ工具のエッジ切換えが必要か否かを判定するエッジ切換判定ステップと、前記エッジ切換えが必要と判定された場合に前記エッジ切換えのための退避経路、前記マルチエッジ工具の回転方向及び回転量、及び前記退避経路から前記工具経路に戻る戻り経路を含むエッジ切換経路を算出するエッジ切換経路生成ステップと、前記工具経路に前記エッジ切換経路を結合する工具経路再生成ステップと、を備える。
【発明の効果】
【0008】
一態様によれば、マルチエッジ工具のエッジ切換えを自動的に行うことができる。
【図面の簡単な説明】
【0009】
【
図1】一実施形態に係る数値制御装置の機能的構成例を示す機能ブロック図である。
【
図5】加工プログラムで切削されるワークの仕上げ形状の一例を示す図である。
【
図6A】工具経路生成部により算出された工具経路の一例を示す図である。
【
図6B】
図6Aの工具経路を番号付けした一例を示す図である。
【
図6C】入力信号や駆動軸の物理量によってエッジ切換えを判定する例を示す図である。
【
図7】
図6Aに示す工具経路の加工プログラムの一例を示す図である。
【
図8A】退避経路、マルチエッジ工具の回転方向及び回転量、及び戻り経路の一例を示す図である。
【
図8B】退避経路、マルチエッジ工具の回転方向及び回転量、及び戻り経路の一例を示す図である。
【
図8C】退避経路、マルチエッジ工具の回転方向及び回転量、及び戻り経路の一例を示す図である。
【
図8D】退避経路、マルチエッジ工具の回転方向及び回転量、及び戻り経路の一例を示す図である。
【
図8E】遠回りの場合と近回りの場合との退避量(逃げ量)が異なる場合の一例を示す図である。
【
図9】エッジ切換経路が予め指定された加工プログラムの一例を示す図である。
【
図10A】工具経路再生成部の動作を説明する一例を示す図である。
【
図10B】マルチエッジ工具の戻り動作の次の動作が切削を伴わない場合の工具経路再生成部の動作を説明する一例を示す図である。
【
図11】数値制御装置のNC指令実行処理の一例について説明するフローチャートである。
【発明を実施するための形態】
【0010】
<一実施形態>
まず、本実施形態の概略を説明する。本実施形態では、数値制御装置は、加工プログラムの指令を解読し、解読された加工プログラムの指令に基づいてマルチエッジ工具の工具経路を算出する。数値制御装置は、算出した工具経路に基づいてマルチエッジ工具のエッジ切換えが必要か否かを判定し、エッジ切換えが必要な場合にエッジ切換えのための退避経路、マルチエッジ工具の回転方向及び回転量、及び退避経路から工具経路に戻る戻り経路を含むエッジ切換経路を算出する。数値制御装置は、算出したエッジ切換経路を工具経路に結合し、結合した工具経路で工作機械にワークの加工を行わせる。
【0011】
これにより、本実施形態によれば、「マルチエッジ工具のエッジ切換えを自動的に行う」という課題を解決することができる。
以上が本実施形態の概略である。
【0012】
次に、本実施形態の構成について図面を用いて詳細に説明する。
図1は、一実施形態に係る数値制御装置の機能的構成例を示す機能ブロック図である。
数値制御装置10、及び工作機械20は、図示しない接続インタフェースを介して、互いに直接接続されてもよい。なお、数値制御装置10、及び工作機械20は、LAN(Local Area Network)やインターネット等の図示しないネットワークを介して相互に接続されていてもよい。この場合、数値制御装置10、及び工作機械20は、かかる接続によって相互に通信を行うための図示しない通信部を備えている。
【0013】
工作機械20は、例えば、当業者にとって公知の旋盤加工する旋盤等であり、後述する数値制御装置10からの動作指令に基づいて動作する。
【0014】
数値制御装置10は、当業者にとって公知の数値制御装置であり、制御情報に基づいて動作指令を生成し、生成した動作指令を工作機械20に送信する。これにより、数値制御装置10は、工作機械20の動作を制御する。
図1に示すように、数値制御装置10は、制御部100、及び工具情報メモリ200を有する。さらに、制御部100は、NC指令解読部110、補間処理部120、工具補正部130、パルス分配部140、及び工具形状記憶・生成部150を有する。さらに、NC指令解読部110は、工具経路生成部111、エッジ方向決定部112、エッジ切換判定部113、エッジ切換経路生成部114、及び工具経路再生成部115を有する。
【0015】
<工具情報メモリ200>
工具情報メモリ200は、SSD(Solid State Drive)やHDD(Hard Disk Drive)等の記憶部である。工具情報メモリ200は、工具情報データ210を記憶する。
【0016】
工具情報データ210は、例えば、工作機械20に選択可能なマルチエッジ工具に関する工具情報及びエッジ情報を含む。また、工具情報データ210は、マルチエッジ工具毎にエッジ数分のエッジ番号を登録することで、エッジ毎の情報を格納できる領域を確保する。そして、工具情報データ210は、エッジ属性(加工用途、材質、刃先R補正量等)が全て同じエッジに対して、同じエッジ種類番号を付与してエッジ毎に登録する。
【0017】
図2は、工具情報データ210の一例を示す図である。
図2に示すように、工具情報データ210は、例えば、登録されるマルチエッジ工具毎に付与される工具番号、マルチエッジ工具毎の各エッジに付与されるエッジ番号、各エッジの種類を示すエッジ種類番号、及び残り寿命(使用回数)等を格納する格納領域を有する。
なお、工具情報データ210は、マルチエッジ工具毎の工具位置オフセット量(例えば、旋削加工工具)、及び刃先R補正量等を格納する格納領域を有してもよい。
【0018】
工具情報データ210は、上述したように、登録されるマルチエッジ工具毎に付与される「0101」、「0102」等の工具番号を格納してもよい。
また、工具情報データ210では、工具番号「0101」のマルチエッジ工具に対してエッジ番号「1」から「3」が付与され格納されている。このことから、工具番号「0101」のマルチエッジ工具は、3つのエッジを有することを示す。一方、工具番号「0102」のマルチエッジ工具に対してエッジ番号「1」から「4」が付与され格納されている。このことから、工具番号「0102」のマルチエッジ工具は、4つのエッジを有することを示す。
【0019】
図3A及び
図3Bは、マルチエッジ工具の一例を示す図である。
図3Aは、工具番号「0101」のマルチエッジ工具を示す。工具番号「0101」のマルチエッジ工具は、エッジ番号「1」に荒加工用のエッジ、エッジ番号「2」に仕上げ加工用のエッジ、エッジ番号「3」に荒加工用のエッジをそれぞれ有する。これにより、前記マルチエッジ工具は、B軸(Y軸)周りに回転させることで、荒加工から仕上げ加工を連続的に行うことができる。そして、工具情報データ210では、エッジ番号「1」から「3」それぞれに対してエッジ種類番号に、「11」、「13」、「11」が予め格納される。
【0020】
図3Bは、工具番号「0102」のマルチエッジ工具を示す。工具番号「0102」のマルチエッジ工具は、エッジ番号「1」に荒加工用のエッジ、エッジ番号「2」に中仕上げ加工用のエッジ、エッジ番号「3」に荒加工用のエッジ、エッジ番号「4」に仕上げ加工用のエッジをそれぞれ有する。これにより、前記マルチエッジ工具は、B軸(Y軸)周りに回転させることで、荒加工、中仕上げ加工、及び仕上げ加工を連続的に行うことができる。そして、工具情報データ210では、エッジ番号「1」から「4」それぞれに対してエッジ種類番号に「11」、「12」、「11」、「13」が予め格納される。
【0021】
また、工具情報データ210は、マルチエッジ工具のエッジ毎に残り寿命(使用回数)が格納される。例えば、工具情報データ210の残り寿命(使用回数)は、新品の工具交換時等に初期値として最大の使用回数がエッジ毎又は工具毎に設定され、使用される毎に1ずつマイナスカウントされる。
なお、寿命(使用回数)は、0から1ずつプラスカウントしてもよい。この場合、数値制御装置10は、寿命(使用回数)が最大の使用回数に達したか否かを判定することで、寿命が尽きたか否かを判定してもよい。あるいは、寿命(使用回数)は、マルチエッジ工具のエッジ毎の累積使用時間や切削距離等でもよい。この場合、数値制御装置10は、マルチエッジ工具のエッジ毎の累積使用時間が予め設定された所定時間に達したか否か、あるいは切削距離が予め設定された所定距離に達したか否かを判定することで、寿命が尽きたか否かを判定してもよい。
【0022】
<制御部100>
制御部100は、CPU、ROM、RAM、CMOSメモリ等を有し、これらはバスを介して相互に通信可能に構成される、当業者にとって公知のものである。
CPUは数値制御装置10を全体的に制御するプロセッサである。CPUは、ROMに格納されたシステムプログラム及びアプリケーションプログラムを、バスを介して読み出し、前記システムプログラム及びアプリケーションプログラムに従って数値制御装置10全体を制御する。これにより、
図1に示すように、制御部100が、NC指令解読部110、補間処理部120、工具補正部130、パルス分配部140、工具形状記憶・生成部150、工具経路生成部111、エッジ方向決定部112、エッジ切換判定部113、エッジ切換経路生成部114、及び工具経路再生成部115の機能を実現するように構成される。RAMには一時的な計算データや表示データ等の各種データが格納される。CMOSメモリは図示しないバッテリでバックアップされ、数値制御装置10の電源がオフされても記憶状態が保持される不揮発性メモリとして構成される。
【0023】
<NC指令解読部110>
NC指令解読部110は、例えば、CAD/CAM装置等の外部装置により生成された加工プログラム30を取得し、取得された加工プログラム30を解析する。
【0024】
図4は、加工プログラム30の一例を示す図である。
図5は、加工プログラム30で切削されるワークWの仕上げ形状の一例を示す図である。
図5の実線は、加工プログラムで切削されるワークWの仕上げ形状を示し、実線より右側のワークWの部分が切削される。また、「N101」から「N110」は、
図4の加工プログラム30のうち8番目から14番目のブロックのシーケンス番号を示し、実線で示す仕上げ形状のうち対応する部分を示す。
図4に示すように、加工プログラム30は、14個のブロックを有するプログラムである。1番目のブロックの「Gxx」は、簡略化されたプログラム指令であり、
図5の実線が示す仕上げ形状にワークWを切削するメインプログラムである。
なお、「Gxx」の引数「P101」は、仕上げ形状を決める最初のブロックのシーケンス番号を示す。また、「Gxx」の引数「Q110」は、仕上げ形状を決める最後のブロックのシーケンス番号を示す。また、「Gxx」の引数「U2.0」は、工具の切り込み量を示す。また、「Gxx」の引数「F0.1」は、工具の送り速度を示す。また、「Gxx」の引数「S1000」は、1分間あたりの主軸回転数を示す。また、「Gxx」の引数「T1010」は、工具番号を示す。また、「Gxx」の引数「E1」は、後述する往路用のエッジ番号を示す。また、「Gxx」の引数「H2」は、後述する復路用のエッジ番号を示す。
【0025】
<工具経路生成部111>
工具経路生成部111は、加工プログラム30に含まれる複数のブロックを先読みし、先読みした複数のブロックにおけるNC指令からマルチエッジ工具の工具経路を算出する。
具体的には、工具経路生成部111は、例えば、加工プログラム30の複数のブロックそれぞれのNC指令から
図5の実線で示す仕上げ形状の経路を算出する。ただし、マルチエッジ工具の切り込み量には限界があることから、最初から
図5の実線で示す仕上げ形状に沿って切削することは不可能である。そこで、工具経路生成部111は、加工プログラム30の複数のブロックそれぞれのNC指令に基づいて、マルチエッジ工具の切り込み量の範囲内で切削が可能な工具経路を算出する。
図6Aは、工具経路生成部111により算出された工具経路の一例を示す図である。
図6Bは、
図6Aの工具経路を番号付けした一例を示す図である。
図6A及び
図6Bに示すように、工具経路生成部111は、番号(1)から(14)の順序でZ軸方向に往復しながら-X軸方向に設定された切り込み量でワークWを切削する工具経路を算出する。
図7は、
図6Aに示す工具経路の加工プログラムの一例を示す図である。すなわち、
図4に示す加工プログラム30は、
図7に示す加工プログラムを簡略化したものである。
図7の加工プログラムのうち(A)に含まれるブロックでは、
図6Bに示した番号(1)から(14)の工具経路でマルチエッジ工具がワークWを切削する。次に、(B)に含まれるブロックでは、仕上げ加工を行うためマルチエッジ工具を加工開始位置に戻す。そして、(C)に含まれるブロックでは、マルチエッジ工具が
図5の実線で示す工具経路で仕上げ加工を行う。
なお、(A)のブロックによる番号(1)から(14)の工具経路による切削加工は、1回に限定されず、2回以上の複数回行われてもよい。
また、以下の説明において、マルチエッジ工具がワークWに沿って動く方向(
図6AではZ軸方向)を「往復軸」ともいう。また、往復軸を基準にして加工開始位置から加工終了位置を見たときの方向(
図6A及び
図6Bでは-Z軸方向)を「往路方向」ともいう。また、往復軸を基準にして加工終了位置から加工開始位置を見たときの方向(
図6A及び
図6Bでは+Z軸方向)を「復路方向」ともいう。
【0026】
<エッジ方向決定部112>
エッジ方向決定部112は、工具経路生成部111で算出された工具経路と、後述する工具形状記憶・生成部150から取得したマルチエッジ工具の幾何学的情報と、に基づいて、マルチエッジ工具とワークWとが干渉しないエッジ割出し角度を計算する。
【0027】
<エッジ切換判定部113>
エッジ切換判定部113は、指定された条件に基づいて、マルチエッジ工具のエッジ切換えが必要か否かを判定する。
具体的には、例えば、
図4に示した加工プログラムのように、エッジ番号により、往路用のエッジ及び復路用のエッジがそれぞれ指定された場合、エッジ切換判定部113は、工具経路生成部111により算出された
図6Bの工具経路に基づいてマルチエッジ工具のエッジ切換えが必要か否かを判定する。
具体的には、エッジ切換判定部113は、
図6Bの工具経路に基づいて、条件(a):番号(N)の工具経路では往復軸の座標値が往路方向又は復路方向に移動、条件(b):番号(N+1)~(N+M)の工具経路では往復軸の座標値が変化しないような方向に移動、条件(c):番号(N+M+1)の工具経路では往路方向から復路方向、又は復路方向から往路方向に移動、の3つの条件を満たすか否かを判定する。なお、Nは1以上の自然数であり、Mは0以上の自然数である。また、Mが「0」の場合、条件(b)は考慮しない。
エッジ切換判定部113は、例えばエッジ番号により、往路用のエッジ及び復路用のエッジがそれぞれ指定されたとき、3つの条件(a)~(c)を満たす場合、すなわち、往路方向から復路方向、又は復路方向から往路方向に移動であると判定した場合、マルチエッジ工具のエッジ切換えが必要と判定することができる。
【0028】
図6Bを参照すると、
図6Bに示す番号(1)から(14)の工具経路の場合、エッジ切換判定部113は、破線の丸印で示す、番号(2)の工具経路から番号(3)の工具経路、番号(6)の工具経路から番号(7)の工具経路、番号(8)の工具経路から番号(9)の工具経路、及び番号(12)の工具経路から番号(13)の工具経路に切り換わるときにマルチエッジ工具のエッジ切換えが必要と判定する。なお、番号(2)の工具経路から番号(3)の工具経路、及び番号(8)の工具経路から番号(9)の工具経路では、往路方向から復路方向に切り換わる。また、番号(6)の工具経路から番号(7)の工具経路、及び番号(12)の工具経路から番号(13)の工具経路では、復路方向から往路方向に切り換わる。
そうすることで、例えば、往路と復路とでマルチエッジ工具の各エッジで切削負荷を一定にすること、又はマルチエッジ工具のエッジ間で切削距離を均一となるようにすることができる。
【0029】
なお、エッジ切換判定部113は、例えばエッジ番号により、往路用のエッジ及び復路用のエッジがそれぞれ指定されたとき、工具経路と条件(a)~(c)とに基づいてマルチエッジ工具のエッジ切換えが必要か否かを判定したが、指定される条件は、これに限定されない。
指定される条件として、例えば入力信号や駆動軸の物理量(例えば、速度やトルク等)を指定するようにしてもよい。この場合、エッジ切換判定部113は、前記指定された条件(入力信号や駆動軸の物理量)に基づいて、マルチエッジ工具のエッジ切換えが必要か否かを判定するようにしてもよい。
図6Cは、入力信号や駆動軸の物理量によってエッジ切換えを判定する例を示す図である。
図6Cに示すように、例えば、マルチエッジ工具40が番号(6)の工具経路の終点付近にきて、Z軸方向の負荷が指定された閾値よりも小さくなったことを検知することで、エッジ切換え可能と判定することができる。また、X軸、Z軸が所定の位置に来たことを検知することで信号を入力し、エッジ切換え可能と判定することができる。
例えば、指定される条件として、Z軸方向の負荷が予め設定された所定値より小さくなった場合を指定するようにしてもよい。この場合、エッジ切換判定部113は、Z軸方向の負荷が予め設定された所定値より小さくなったことを判定したときにエッジ切換可能と判定するようにしてもよい。あるいは、指定される条件として、例えばマルチエッジ工具40のX軸及び/又はZ軸の位置が予め設定された位置に来たことを指定するようにしてもよい。この場合、エッジ切換判定部113は、例えばマルチエッジ工具40のX軸及び/又はZ軸の位置が予め設定された位置に来たことを示す入力信号に基づいて、エッジ切換えを行うと判定するようにしてもよい。
また、指定される条件として、工具経路全体における中間地点等を指定するようにしてもよい。その場合、エッジ切換判定部113は、例えば工具経路全体が
図6Bに示した番号(1)から(14)とすると、工具経路全体における中間地点等であることを判定して、エッジ切換えを行うと判定するようにしてもよい。
こうすることで、ユーザが考える切削加工のきりがよい任意のタイミングにおいてエッジ切換えを行うことが可能となる。
【0030】
なお、エッジ切換判定部113により、マルチエッジ工具のエッジ切換えが必要でないと判定された場合、制御部100は、工具経路生成部111により算出された工具経路を補間処理部120により補間される経路に沿って切削するように制御する。
【0031】
<エッジ切換経路生成部114>
エッジ切換経路生成部114は、指定された条件に基づいて、エッジ切換えが必要とエッジ切換判定部113により判定された場合にエッジ切換えのための退避経路、マルチエッジ工具の回転方向及び回転量、及び退避経路から工具経路に戻る戻り経路を含むエッジ切換経路を算出する。
図8Aから
図8Dは、退避経路、マルチエッジ工具の回転方向及び回転量、及び戻り経路の一例を示す図である。
具体的には、
図8Aに示すように、例えば、工具経路生成部111により生成されたマルチエッジ工具40の工具経路A1から工具経路A2に切り換わる点Pにおいてエッジ切換判定部113によりエッジ切換えが必要と判定された場合、エッジ切換経路生成部114は、
図8Bに示すように、工具経路A1と工具経路A2とに基づいて破線で示す方向(例えば、工具経路の法線方向、又は工具経路間の二等分線の方向等)を退避方向(逃げ方向)として決定する。エッジ切換経路生成部114は、例えば、マルチエッジ工具40が
図3Aに示す工具番号「0101」の荒加工用のエッジ1から荒加工用のエッジ3に切り換える場合、マルチエッジ工具40を回転させたときにワークWとエッジとが干渉しない退避量(逃げ量)を、当業者にとって公知の手法を用いて設定する。
【0032】
次に、エッジ切換経路生成部114は、
図8Cに示すように、マルチエッジ工具40のエッジ1からエッジ3への回転方向及び回転量を、当業者にとって公知の手法を用いて設定する。具体的には、エッジ切換経路生成部114は、マルチエッジ工具40のエッジ1からエッジ3への回転量が最小となる(以下、「近回り」ともいう)ように回転方向を時計周りに設定する。そして、エッジ切換経路生成部114は、
図8Dに示すように、戻り経路を退避経路(逃げ動作)の逆動作として設定する。
【0033】
なお、エッジ切換経路生成部114は、マルチエッジ工具40のエッジ1からエッジ3への回転方向及び回転量を近回りとなるように設定したが、これに限定されない。
例えば、マルチエッジ工具40が
図3Bに示す工具番号「0102」であり、荒加工用のエッジ3から荒加工用のエッジ1に切り換える場合、
図8Eに示すように、エッジ4とB軸との距離(例えば、12mm)がエッジ2とB軸との距離(例えば、5mm)より長い。この場合、エッジ切換経路生成部114は、エッジ4を介したエッジ3からエッジ1に回転する回転量(例えば、150度)が小さい近回りよりも、エッジ2を介したエッジ3からエッジ1に回転する回転量(例えば、210度)が大きい遠回りを設定するようにしてもよい。これは、
図3Bのマルチエッジ工具40の場合、近回りする場合エッジ4とB軸との距離以上の退避量(逃げ量)(例えば、12mm+α)を遠回りする場合の退避量(逃げ量)(例えば、5mm+α)と比べて長く設定する必要があり、エッジ切換えに時間がかかる。このため、エッジ切換経路生成部114は、退避量(逃げ量)が短い遠回りを選択するようにしてもよい。なお、αは、0mmより大きな長さである。
【0034】
また、エッジ切換経路生成部114は、エッジ切換経路を工具経路から算出したが、これに限定されない。例えば、エッジ切換経路は予め加工プログラム30に指定されてもよい。
図9は、エッジ切換経路が予め指定された加工プログラム30の一例を示す図である。
図9に示すように、2番目から4番目のブロックは、往路方向から復路方向におけるエッジ切換動作を示し、5番目から7番目のブロックは復路方向から往路方向におけるエッジ切換動作を示す。
【0035】
<工具経路再生成部115>
工具経路再生成部115は、工具経路生成部111により算出された工具経路にエッジ切換経路生成部114により算出されたエッジ切換経路を結合する。
具体的には、工具経路再生成部115は、例えば、
図8Aから
図8Dの場合、工具経路A1から工具経路A2に切り換わる点Pにおいて、エッジ切換経路生成部114により算出された、マルチエッジ工具40の退避方向、退避量、回転方向、回転量、及び戻り経路を含むエッジ切換経路を結合する。そして、工具経路再生成部115は、エッジ切換経路を結合した工具経路を補間処理部120に出力する。
【0036】
図10Aは、工具経路再生成部115の動作を説明する一例を示す図である。
図10Aに示すように、例えば、工具経路生成部111により工具経路B1~B3が算出され、工具経路B1~B3は、マルチエッジ工具40がワークWを順番に切削する経路である。
この場合、上述したように、例えば、エッジ切換判定部113が工具経路B1から工具経路B2に切り換わる点Pにおいてエッジ切換えが必要と判定した場合、エッジ切換経路生成部114は、
図8Aから
図8Dの場合と同様に、工具経路B1の終点(点P)からのマルチエッジ工具40の退避方向、退避量、回転方向、回転量、及び戻り経路を含むエッジ切換経路を算出する。
そして、工具経路再生成部115は、
図10Aに示すように、工具経路B1と工具経路B2との間に、(a)退避動作(逃げ動作)、(b)回転動作、及び(c)戻り動作のエッジ切換経路を連結する。
【0037】
なお、工具経路再生成部115は、マルチエッジ工具40の戻り動作の次の動作が切削を伴わない動作(例えば、早送り等)の場合、退避動作(逃げ動作)や戻り動作の終点を次の動作の終点と重ねるようにしてもよい。
図10Bは、マルチエッジ工具の戻り動作の次の動作が切削を伴わない場合の工具経路再生成部115の動作を説明する一例を示す図である。
図10Bに示すように、例えば、工具経路生成部111により工具経路C1~C4が算出され、工具経路C1~C4は、マルチエッジ工具40が順番に通る経路である。なお、工具経路C1、C4は、マルチエッジ工具40がワークWを切削する経路であり、工具経路C2、C3は、マルチエッジ工具40が工具経路C1の終点(点P)から工具経路B4の始点に早送りされる経路である。
例えば、エッジ切換判定部113が工具経路C1から工具経路C2に切り換わる点Pにおいてエッジ切換えが必要と判定した場合、エッジ切換経路生成部114は、
図8Aから
図8Dの場合と同様に、マルチエッジ工具40の退避方向、退避量、回転方向、回転量、及び戻り経路を含むエッジ切換経路を算出する。
工具経路再生成部115は、
図10Aの場合と同様に、工具経路C1の終点に、(a)退避動作(逃げ動作)、及び(b)回転動作を連結する。ただし、工具経路C2は工具経路C1の次の経路であり切削を伴わないことから、工具経路再生成部115は、(c)戻り動作を(a)退避動作(逃げ動作)の逆動作として連結せず、工具経路C2の終点に(c)戻り動作の終点を重ねるように結合するようにしてもよい。なお、
図10Bの場合、工具経路C3も工具経路C1の次の次の経路であり工具経路C2とともに切削を伴わないことから、工具経路再生成部115は、工具経路C3の終点に(c)戻り動作の終点を重ねるように結合してもよい。
そうすることで、数値制御装置10は、エッジ切換動作を高速化することができ、サイクルタイムを短縮することができる。
また、工具経路再生成部115は、工具経路C2、C3の終点をすり替えた退避動作(逃げ動作)や戻り動作とエッジ回転動作とをオーバーラップさせるようにしてもよい。
【0038】
補間処理部120は、NC指令解読部110から受信した工具経路に対して補間処理を行い、指令位置や指令速度を算出する。
【0039】
工具補正部130は、選択されたマルチエッジ工具40の位置オフセット量、及び刃先R補正量と、後述する工具形状記憶・生成部150により生成されたマルチエッジ工具40の幾何学的情報と、を用いて、工具補正量を計算する。
【0040】
パルス分配部140は、計算された工具補正の各軸移動分のパルスが工作機械20に含まれる各サーボモータ(図示しない)に出力する。
【0041】
工具形状記憶・生成部150は、工具情報生成部として、工具情報メモリ200に保持された工具情報データ210に基づいてマルチエッジ工具40の幾何学的情報を生成する。
【0042】
<数値制御装置10のNC指令実行処理>
次に、マルチエッジ工具のエッジを用いて加工処理する加工プログラムにおいて、指定された条件に基づいて、マルチエッジ工具のエッジ切換えを行う場合の、数値制御装置10のNC指令実行処理に係る動作の一例について説明する。
図11は、数値制御装置10のNC指令実行処理の一例について説明するフローチャートである。ここで示すフローは、エッジ番号により、往路用のエッジ及び復路用のエッジがそれぞれ指定された場合に、マルチエッジ工具のエッジ切換えを行うNC指令実行処理に係る処理フローである。
【0043】
ステップS11において、NC指令解読部110は、加工プログラム30のブロックを読み込む。
【0044】
ステップS12において、工具経路生成部111は、ステップS11で読み込まれた加工プログラム30に含まれる複数のブロックを先読みし、先読みした複数のブロックにおけるNC指令から、例えば
図6A及び
図6Bに示すマルチエッジ工具40の番号(1)から(14)の工具経路を算出する。
【0045】
ステップS13において、エッジ方向決定部112は、ステップS12で算出された工具経路と、工具形状記憶・生成部150から取得したマルチエッジ工具40の幾何学的情報と、に基づいて、マルチエッジ工具40とワークWとが干渉しないエッジ割出し角度を計算する。
【0046】
ステップS14において、エッジ切換判定部113は、工具経路生成部111により算出された工具経路に基づいてマルチエッジ工具40のエッジ切換えが必要か否かを判定する。マルチエッジ工具40のエッジ切換えが必要と判定した場合、処理はステップS15に進む。一方、マルチエッジ工具40のエッジ切換えが必要でないと判定した場合、処理はステップS17に進む。
【0047】
ステップS15において、エッジ切換経路生成部114は、マルチエッジ工具40のエッジ切換えのための退避経路、マルチエッジ工具の回転方向及び回転量、及び退避経路から工具経路に戻る戻り経路を含むエッジ切換経路を算出する。
【0048】
ステップS16において、工具経路再生成部115は、ステップS12で算出された工具経路にステップS15で算出されたエッジ切換経路を結合する。
【0049】
ステップS17において、補間処理部120は、NC指令解読部110から受信した工具経路に対して補間処理を行い、指令位置や指令速度を算出する。
【0050】
ステップS18において、工具補正部130は、選択されたマルチエッジ工具40の位置オフセット量(例えば、旋削加工工具)、及び刃先R補正量と、工具形状記憶・生成部150から取得したマルチエッジ工具40の幾何学的情報と、を用いて、工具補正量を計算する。
【0051】
ステップS19において、数値制御装置10は、算出された工具経路に基づいて、(エッジ切換え動作指令が算出されている場合は、エッジ切換え動作指令を含めて)加工処理を制御する。
【0052】
ステップS20において、全ての工具経路に基づく加工処理の制御が終了したか、否かを判定する。全ての工具経路に基づく加工処理の制御が終了していない場合、ステップS14に移る。
【0053】
以上により、エッジ番号により、往路用のエッジ及び復路用のエッジがそれぞれ指定された場合に、数値制御装置10は、マルチエッジ工具40のエッジ切換えを自動的に行うことができる。
また、「Gxx」という簡略化されたプログラム指令を用いることにより、ユーザの負担軽減を図ることができ、エッジ切換動作指令のミスによるマルチエッジ工具40とワークWとの干渉を回避することができる。
また、数値制御装置10は、往路方向と復路方向とでマルチエッジ工具40のエッジを切り換えることで、往路と復路とで切削負荷を一定にでき、エッジ間で切削距離を均一にすることができる。また、数値制御装置10は、エッジ切換動作の高速化により、サイクルタイムを短縮することができる。
【0054】
以上、一実施形態について説明したが、数値制御装置10は、上述の実施形態に限定されるものではなく、目的を達成できる範囲での変形、改良等を含む。
【0055】
<変形例>
上述の実施形態では、数値制御装置10は、工作機械20と異なる装置としたが、これに限定されない。例えば、数値制御装置10は、工作機械20に含まれてもよい。
【0056】
なお、一実施形態における、数値制御装置10に含まれる各機能は、ハードウェア、ソフトウェア又はこれらの組み合わせによりそれぞれ実現することができる。ここで、ソフトウェアによって実現されるとは、コンピュータがプログラムを読み込んで実行することにより実現されることを意味する。
【0057】
プログラムは、様々なタイプの非一時的なコンピュータ可読媒体(Non-transitory computer readable medium)を用いて格納され、コンピュータに供給することができる。非一時的なコンピュータ可読媒体は、様々なタイプの実体のある記録媒体(Tangible storage medium)を含む。非一時的なコンピュータ可読媒体の例は、磁気記録媒体(例えば、フレキシブルディスク、磁気テープ、ハードディスクドライブ)、光磁気記録媒体(例えば、光磁気ディスク)、CD-ROM(Read Only Memory)、CD-R、CD-R/W、半導体メモリ(例えば、マスクROM、PROM(Programmable ROM)、EPROM(Erasable PROM)、フラッシュROM、RAM)を含む。また、プログラムは、様々なタイプの一時的なコンピュータ可読媒体(Transitory computer readable medium)によってコンピュータに供給されてもよい。一時的なコンピュータ可読媒体の例は、電気信号、光信号、及び電磁波を含む。一時的なコンピュータ可読媒体は、電線及び光ファイバ等の有線通信路、又は、無線通信路を介して、プログラムをコンピュータに供給できる。
【0058】
なお、記録媒体に記録されるプログラムを記述するステップは、その順序に沿って時系列的に行われる処理はもちろん、必ずしも時系列的に処理されなくとも、並列的あるいは個別に実行される処理をも含むものである。
【0059】
以上を換言すると、本開示の数値制御装置、及び制御方法は、次のような構成を有する各種各様の実施形態を取ることができる。
【0060】
(1)本開示の数値制御装置10は、旋削加工用のマルチエッジ工具40を用いてワークWを旋削加工する工作機械20を制御する数値制御装置であって、加工プログラム30の指令を解読するNC指令解読部110と、マルチエッジ工具40の工具情報及びエッジ情報を保持する工具情報メモリ200と、工具情報メモリ200に保持された工具情報及びエッジ情報に基づいてマルチエッジ工具40の幾何学的情報を生成する工具形状記憶・生成部150と、を備え、NC指令解読部110は、加工プログラム30の指令からマルチエッジ工具40の工具経路を算出する工具経路生成部111と、マルチエッジ工具40のエッジ切換えが必要か否かを判定するエッジ切換判定部113と、エッジ切換判定部113によりエッジ切換えが必要と判定された場合にエッジ切換えのための退避経路、マルチエッジ工具40の回転方向及び回転量、及び退避経路から工具経路に戻る戻り経路を含むエッジ切換経路を算出するエッジ切換経路生成部114と、工具経路にエッジ切換経路を結合する工具経路再生成部115と、を備える。
この数値制御装置10によれば、マルチエッジ工具40のエッジ切換えを自動的に行うことができる。
【0061】
(2) (1)に記載の数値制御装置10において、エッジ切換判定部113は、数値制御装置の外部からの信号入力、工作機械20に含まれる駆動軸にかかる物理量、及び工具経路の少なくとも1つに基づいてエッジ切換えが必要か否かを判定してもよい。
そうすることで、数値制御装置10は、切削加工のきりのよいタイミングでエッジ切換えを行うことができる。
【0062】
(3) (1)又は(2)に記載の数値制御装置10において、エッジ切換経路生成部114は、加工プログラム30の指令、及び工具経路の少なくとも1つに基づいて、エッジ切換経路を算出してもよい。
そうすることで、数値制御装置10は、最適なエッジ切換経路を算出することができる。
【0063】
(4) (1)から(3)のいずれかに記載の数値制御装置10において、エッジ切換経路生成部114により算出されたエッジ切換経路は、エッジ切換経路の途中でマルチエッジ工具40とワークWとの干渉が発生しないようにしてもよい。
そうすることで、数値制御装置10は、エッジ切換時の安全性を優先することができる。
【0064】
(5) (1)から(4)のいずれかに記載の数値制御装置10において、エッジ切換経路生成部114は、エッジ切換えに要する時間、及びエッジ切換えに要する経路の少なくとも1つを短くするように、退避経路、マルチエッジ工具40の回転方向及び回転量、及び戻り経路を算出してもよい。
そうすることで、数値制御装置10は、エッジ切換動作の高速化をすることができ、サイクルタイムを短縮することができる。
【0065】
(6)本開示の制御方法は、コンピュータにより実現される、旋削加工用のマルチエッジ工具40を用いてワークWを旋削加工する工作機械20の制御方法であって、加工プログラム30の指令を解読するNC指令解読ステップと、工具情報メモリ200に保持された前記マルチエッジ工具の工具情報及びエッジ情報に基づいてマルチエッジ工具40の幾何学的情報を生成する工具情報生成ステップと、を備え、NC指令解読ステップは、加工プログラム30の指令からマルチエッジ工具40の工具経路を算出する工具経路生成ステップと、マルチエッジ工具40のエッジ切換えが必要か否かを判定するエッジ切換判定ステップと、エッジ切換えが必要と判定された場合にエッジ切換えのための退避経路、マルチエッジ工具の回転方向及び回転量、及び退避経路から工具経路に戻る戻り経路を含むエッジ切換経路を算出するエッジ切換経路生成ステップと、工具経路に前記エッジ切換経路を結合する工具経路再生成ステップと、を備える。
この制御方法によれば、(1)と同様の効果を奏することができる。
【符号の説明】
【0066】
10 数値制御装置
100 制御部
110 NC指令解読部
111 工具経路生成部
112 エッジ方向決定部
113 エッジ切換判定部
114 エッジ切換経路生成部
115 工具経路再生成部
120 補間処理部
130 工具補正部
140 パルス分配部
150 工具形状記憶・生成部
200 工具情報メモリ
210 工具情報データ
20 工作機械
30 加工プログラム
40 マルチエッジ工具