(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-04-02
(45)【発行日】2024-04-10
(54)【発明の名称】端末、通信システム及び通信方法
(51)【国際特許分類】
H04W 28/06 20090101AFI20240403BHJP
H04W 72/0446 20230101ALI20240403BHJP
H04W 92/18 20090101ALI20240403BHJP
【FI】
H04W28/06 130
H04W72/0446
H04W92/18
(21)【出願番号】P 2020572062
(86)(22)【出願日】2019-02-15
(86)【国際出願番号】 JP2019005718
(87)【国際公開番号】W WO2020166090
(87)【国際公開日】2020-08-20
【審査請求日】2022-02-02
(73)【特許権者】
【識別番号】392026693
【氏名又は名称】株式会社NTTドコモ
(74)【代理人】
【識別番号】100107766
【氏名又は名称】伊東 忠重
(74)【代理人】
【識別番号】100070150
【氏名又は名称】伊東 忠彦
(74)【代理人】
【識別番号】100124844
【氏名又は名称】石原 隆治
(72)【発明者】
【氏名】吉岡 翔平
(72)【発明者】
【氏名】小原 知也
(72)【発明者】
【氏名】永田 聡
(72)【発明者】
【氏名】ワン ホワン
【審査官】吉村 真治▲郎▼
(56)【参考文献】
【文献】Sharp,Considerations on synchronization design for NR V2X[online],3GPP TSG RAN WG1 adhoc_NR_AH_1901 R1-1900832,2019年01月11日
【文献】Huawei, HiSilicon,Frame and slot structure for sidelink[online],3GPP TSG RAN WG1 adhoc_NR_AH_1901 R1- 1900856,2019年01月11日
(58)【調査した分野】(Int.Cl.,DB名)
H04B 7/24- 7/26
H04W 4/00-99/00
3GPP TSG RAN WG1-4
SA WG1-4
CT WG1、4
(57)【特許請求の範囲】
【請求項1】
Time Division Duplex(TDD)構成を示す設定情報を基地局から受信する受信部と、
前記設定情報に含まれる
、前記TDD構成のパターン
を示すパラメータである、TDD-UL-DL-Pattern、に
含まれる情報から、端末間通信における
TDD構成のパターンの周期
を示す第1の情報を取得し、前記
TDD-UL-DL-Patternに含まれる情報及びサブキャリア間隔に基づいて、
前記端末間通信におけるTDD構成のパターンの1周期に含まれる、端末間通信で使用可能なスロット
の数を示す第2の情報を取得する制御部と、
前記第1の情報と前記第2の情報を他の端末に送信する送信部と、
を有する端末。
【請求項2】
前記送信部は、端末間通信用の報知チャネルを用いて前記第1の情報と前記第2の情報を送信する
請求項1に記載の端末。
【請求項3】
Time Division Duplex(TDD)構成を示す設定情報を端末に送信する送信部
、
を有する基地局と、
前記設定情報を前記基地局から受信する受信部と、
前記設定情報に含まれる前記TDD構成のパターン
を示すパラメータである、TDD-UL-DL-Pattern、に
含まれる情報から、端末間通信における
TDD構成のパターンの周期
を示す第1の情報を取得し、前記
TDD-UL-DL-Patternに含まれる情報及びサブキャリア間隔に基づいて、
前記端末間通信におけるTDD構成のパターンの1周期に含まれる、端末間通信で使用可能なスロット
の数を示す第2の情報を取得する制御部と、
前記第1の情報と前記第2の情報を他の端末に送信する送信部と、
を有する端末と、
を有する通信システム。
【請求項4】
Time Division Duplex(TDD)構成を示す設定情報を基地局から受信するステップと、
前記設定情報に含まれる
、前記TDD構成のパターン
を示すパラメータである、TDD-UL-DL-Pattern、に
含まれる情報から、端末間通信における
TDD構成のパターンの周期
を示す第1の情報
である、dl-UL-TransmissionPeriodicity、を取得し、前記
TDD-UL-DL-Patternに含まれる情報及びサブキャリア間隔に基づいて、
前記端末間通信におけるTDD構成のパターンの1周期に含まれる、端末間通信で使用可能なスロット
の数を示す第2の情報を取得するステップと、
前記第1の情報と前記第2の情報を他の端末に送信するステップと、
を有する端末の通信方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、無線通信システムにおける通信装置及び通信方法に関連する。
【背景技術】
【0002】
LTE(Long Term Evolution)及びLTEの後継システム(例えば、LTE-A(LTE Advanced)、NR(New Radio)(5Gとも呼ぶ))では、User Equipment(UE)等の通信装置同士が基地局を介さないで直接通信を行うサイドリンク(D2D(Device to Device)とも呼ぶ)技術が検討されている(非特許文献1)。
【0003】
また、V2X(Vehicle to Everything)を実現することが検討され、仕様化が進められている。ここで、V2Xとは、ITS(Intelligent Transport Systems)の一部であり、
図1に示すように、自動車間で行われる通信形態を意味するV2V(Vehicle to Vehicle)、自動車と道路脇に設置される路側機(RSU:Road-Side Unit)との間で行われる通信形態を意味するV2I(Vehicle to Infrastructure)、自動車とドライバーのモバイル端末との間で行われる通信形態を意味するV2N(Vehicle to Nomadic device)、及び、自動車と歩行者のモバイル端末との間で行われる通信形態を意味するV2P(Vehicle to Pedestrian)の総称である。
【先行技術文献】
【非特許文献】
【0004】
【文献】3GPP TS 38.213 V15.4.0 (2018-12)
【文献】3GPP TS 38.211 V15.4.0 (2018-12)
【文献】3GPP TS 38.331 V15.4.0 (2018-12)
【発明の概要】
【発明が解決しようとする課題】
【0005】
LTEのサイドリンク通信の場合、TDDのUL-DL構成のサイドリンクでの通知は、Physical Sidelink Broadcast Channel(PSBCH)を介して行われる。このため、NRにおいても、TDDのUL-DL構成のサイドリンクでの通知は、PSBCHを介して行われることが想定される。
【0006】
NRでは、1スロット内のアップリンクシンボル、フレキシブルシンボル、及びダウンリンクシンボルの設定の自由度が高い。この場合、サイドリンクを介して通知すべきスロットフォーマットの情報量が、増大する可能性がある。TDD構成又はスロットフォーマットをサイドリンクを介して通知する際の情報量を削減することを可能とする技術が必要とされている。
【課題を解決するための手段】
【0007】
本発明の一態様によれば、Time Division Duplex(TDD)構成を示す設定情報を基地局から受信する受信部と、前記設定情報に含まれる、前記TDD構成のパターンを示すパラメータである、TDD-UL-DL-Pattern、に含まれる情報から、端末間通信におけるTDD構成のパターンの周期を示す第1の情報を取得し、前記TDD-UL-DL-Patternに含まれる情報及びサブキャリア間隔に基づいて、前記端末間通信におけるTDD構成のパターンの1周期に含まれる、端末間通信で使用可能なスロットの数を示す第2の情報を取得する制御部と、前記第1の情報と前記第2の情報を他の端末に送信する送信部と、を有する端末、が提供される。
【発明の効果】
【0008】
実施例によれば、TDD構成又はスロットフォーマットをサイドリンクを介して通知する際の情報量を削減することを可能とする技術が提供される。
【図面の簡単な説明】
【0009】
【
図3】サイドリンク通信に用いられるMAC PDUを説明するための図である。
【
図4】SL-SCH subheaderのフォーマットを説明するための図である。
【
図5】サイドリンクで使用されるチャネル構造の例を説明するための図である。
【
図6】実施の形態に係る無線通信システムの構成例を示す図である。
【
図7】通信装置のリソース選択動作を説明するための図である。
【
図8A】NRのV2Xで規定されるSL transmission mode 1の概要を示す図である。
【
図8B】SL transmission mode 2aの概要を示す図である。
【
図8C】SL transmission mode 2cの概要を示す図である。
【
図8D】SL transmission mode 2dの概要を示す図である。
【
図9A】ユニキャストPSCCH/PSSCH送信の例を示す図である。
【
図9B】グループキャストPSCCH/PSSCH送信の例を示す図である。
【
図9C】ブロードキャストPSCCH/PSSCH送信の例を示す図である。
【
図11】動的なTDD構成の設定方法の例を示す図である。
【
図12】動的なTDD構成の設定方法に使用されるスロットフォーマットの例を示す図である。
【
図13】動的なTDD構成の設定方法において、スロットフォーマットを通知するためのパラメータの例を示す図である。
【
図14】準静的なTDD構成設定方法において、TDD構成を通知するためのパラメータの例を示す図である。
【
図15】スロットフォーマットのグループ化の例を示す図である。
【
図16】実施の形態に係る基地局の機能構成の一例を示す図である。
【
図17】実施の形態に係る通信装置の機能構成の一例を示す図である。
【
図18】実施の形態に係る基地局及び通信装置のハードウェア構成の一例を示す図である。
【発明を実施するための形態】
【0010】
以下、図面を参照して本発明の実施の形態(本実施の形態)を説明する。なお、以下で説明する実施の形態は一例に過ぎず、本発明が適用される実施の形態は、以下の実施の形態に限られるわけではない。
【0011】
本実施の形態における通信装置間の直接通信の方式はLTEあるいはNRのサイドリンク(SL(Sidelink))であることを想定しているが、直接通信の方式は当該方式に限られない。また、「サイドリンク」という名称は一例であり、「サイドリンク」という名称が使用されずに、UL(Uplink)が、SLの機能を含むこととしてもよい。SLは、DL(Downlink)又はULと周波数又は時間リソースの違いによって区別されてもよく、他の名称であってもよい。
【0012】
また、ULとSLとが、時間リソース、周波数リソース、時間・周波数リソース、送信電力制御においてPathlossを決定するために参照する参照信号、同期するために使用する参照信号(PSS/SSS/PSSS/SSSS)のいずれか1つ又はいずれか複数の組み合わせの違いによって区別されてもよい。
【0013】
例えば、ULでは、送信電力制御においてPathlossを決定するために参照する参照信号として、アンテナポートXの参照信号を使用し、SL(SLとして使用するULを含む)では、送信電力制御においてPathlossを決定するために参照する参照信号として、アンテナポートYの参照信号を使用する。
【0014】
また、本実施の形態では、通信装置が車両に搭載される形態を主に想定しているが、本発明の実施形態は、この形態に限定されない。例えば、通信装置は人が保持する端末であってもよいし、通信装置がドローンあるいは航空機に搭載される装置であってもよいし、通信装置が基地局、RSU、中継局(リレーノード)、スケジューリング能力を有するユーザ装置等であってもよい。
【0015】
(サイドリンクの概要)
本実施の形態では、サイドリンクを基本技術とすることから、まず、基本的な例として、サイドリンクの概要について説明する。ここで説明する技術の例は3GPPのRel.14等で規定されている技術である。当該技術は、NRにおいて使用されてもよいし、NRでは、当該技術と異なる技術が使用されてもよい。ここで、サイドリンク通信は、E-UTRA技術を使用しながらネットワークノードを介さずに、隣接する2つ以上のユーザ装置間で行われる直接通信と定義されてもよい。サイドリンクは、サイドリンク通信におけるユーザ装置間のインタフェースと定義されてもよい。
【0016】
サイドリンクには、大きく分けて「ディスカバリ」と「コミュニケーション」がある。「ディスカバリ」については、
図2Aに示すように、Discovery period毎に、Discoveryメッセージ用のリソースプールが設定(configured)され、通信装置(UEと称される)はそのリソースプール内でDiscoveryメッセージ(発見信号)を送信する。より詳細にはType1、Type2bがある。Type1では、通信装置が自律的にリソースプールから送信リソースを選択する。Type2bでは、上位レイヤシグナリング(例えばRRC信号)により準静的なリソースが割り当てられる。
【0017】
「コミュニケーション」についても、
図2Bに示すように、SCI(Sidelink Control Information)/データ送信用のリソースプールが周期的に設定される。送信側の通信装置はControlリソースプール(PSCCHリソースプール)から選択されたリソースでSCIによりデータ送信用リソース(PSSCHリソースプール)等を受信側に通知し、当該データ送信用リソースでデータを送信する。「コミュニケーション」について、より詳細には、モード1とモード2がある。モード1では、基地局から通信装置に送られる(E)PDCCH((Enhanced) Physical Downlink Control Channel)によりダイナミックにリソースが割り当てられる。モード2では、通信装置はリソースプールから自律的に送信リソースを選択する。リソースプールについては、SIBで通知される等、予め定義されたものが使用される。
【0018】
また、Rel-14では、モード1とモード2に加えて、モード3とモード4がある。Rel-14では、SCIとデータとを同時に(1サブフレームで)、周波数方向に隣接したリソースブロックで送信することが可能である。なお、SCIをSA(scheduling assignment)と称する場合がある。
【0019】
「ディスカバリ」に用いられるチャネルはPSDCH(Physical Sidelink Discovery Channel)と称され、「コミュニケーション」におけるSCI等の制御情報を送信するチャネルはPSCCH(Physical Sidelink Control Channel)と称され、データを送信するチャネルはPSSCH(Physical Sidelink Shared Channel)と称される。PSCCHとPSSCHはPUSCHベースの構造を有し、DMRS(Demodulation Reference Signal、復調参照信号)が挿入される構造になっている。
【0020】
サイドリンクに用いられるMAC(Medium Access Control)PDU(Protocol Data Unit)は、
図3に示すように、少なくともMAC header、MAC Control element、MAC SDU(Service Data Unit)、Paddingで構成される。MAC PDUはその他の情報を含んでも良い。MAC headerは、1つのSL-SCH(Sidelink Shared Channel)subheaderと、1つ以上のMAC PDU subheaderで構成される。
【0021】
図4に示すように、SL-SCH subheaderは、MAC PDUフォーマットバージョン(V)、送信元情報(SRC)、送信先情報(DST)、Reserved bit(R)等で構成される。Vは、SL-SCH subheaderの先頭に割り当てられ、通信装置が用いるMAC PDUフォーマットバージョンを示す。送信元情報には、送信元に関する情報が設定される。送信元情報には、ProSe UE IDに関する識別子が設定されてもよい。送信先情報には、送信先に関する情報が設定される。送信先情報には、送信先のProSe Layer-2 Group IDに関する情報が設定されてもよい。
【0022】
サイドリンクのチャネル構造の例を
図5に示す。
図5に示すように、「コミュニケーション」に使用されるPSCCHのリソースプール及びPSSCHのリソースプールが割り当てられている。また、「コミュニケーション」のチャネルの周期よりも長い周期で「ディスカバリ」に使用されるPSDCHのリソースプールが割り当てられている。
【0023】
また、サイドリンク用の同期信号としてPSSS(Primary Sidelink Synchronization signal)とSSSS(Secondary Sidelink Synchronization signal)が用いられる。また、例えばカバレッジ外動作のためにサイドリンクのシステム帯域、フレーム番号、リソース構成情報等のブロードキャスト情報(broadcast information)を送信するPSBCH(Physical Sidelink Broadcast Channel)が用いられる。PSSS/SSSS及びPSBCHは、例えば、1つのサブフレームで送信される。PSSS/SSSSをSLSSと称してもよい。
【0024】
なお、本実施の形態で想定しているV2Xは、「コミュニケーション」に係る方式である。ただし、本実施の形態では、「コミュニケーション」と「ディスカバリ」の区別が存在しないこととしてもよい。また、本実施の形態に係る技術が、「ディスカバリ」で適用されてもよい。
【0025】
(システム構成)
図6は、本実施の形態に係る無線通信システムの構成例を示す図である。
図6に示すように、本実施の形態に係る無線通信システムは、基地局10、通信装置20A、及び通信装置20Bを有する。なお、実際には多数の通信装置が存在し得るが、
図6は例として通信装置20A、及び通信装置20Bを示している。
【0026】
図6において、通信装置20Aは送信側、通信装置20Bは受信側を意図しているが、通信装置20Aと通信装置20Bはいずれも送信機能と受信機能の両方を備える。以下、通信装置20A、20B等を特に区別しない場合、単に「通信装置20」あるいは「通信装置」と記述する。
図6では、一例として通信装置20Aと通信装置20Bがともにカバレッジ内にある場合を示しているが、本実施の形態における動作は、全部の通信装置20がカバレッジ内にある場合と、一部の通信装置20がカバレッジ内にあり、他方の通信装置20がカバレッジ外にある場合と、全部の通信装置20がカバレッジ外にある場合のいずれにも適用できる。
【0027】
本実施の形態において、通信装置20は、例えば、自動車等の車両に搭載された装置であり、LTEあるいはNRにおけるUEとしてのセルラ通信の機能、及び、サイドリンク機能を有している。更に、通信装置20は、GPS装置、カメラ、各種センサ等、報告情報(位置、イベント情報等)を取得する機能を含む。また、通信装置20が、一般的な携帯端末(スマートフォン等)であってもよい。また、通信装置20が、RSUであってもよい。当該RSUは、UEの機能を有するUEタイプRSUであってもよいし、基地局の機能を有するBSタイプRSU(gNBタイプUEと呼ばれてもよい)、又は中継局であってもよい。
【0028】
なお、通信装置20は1つの筐体の装置である必要はなく、例えば、各種センサが車両内に分散して配置される場合でも、当該各種センサを含めた装置が通信装置20である。また、通信装置20は各種センサを含まずに、各種センサとデータを送受信する機能を備えることとしてもよい。
【0029】
また、通信装置20のサイドリンクの送信の処理内容は基本的には、LTEあるいはNRでのUL送信の処理内容と同様である。例えば、通信装置20は、送信データのコードワードをスクランブルし、変調してcomplex-valued symbolsを生成し、当該complex-valued symbols(送信信号)を1又は2レイヤにマッピングし、プリコーディングを行う。そして、precoded complex-valued symbolsをリソースエレメントにマッピングして、送信信号(例:CP-OFDM、DFT-s-OFDM)を生成し、各アンテナポートから送信する。
【0030】
また、基地局10については、LTEあるいはNRにおける基地局10としてのセルラ通信の機能、及び、本実施の形態における通信装置20の通信を可能ならしめるための機能(例:リソースプール設定、リソース割り当て等)を有している。また、基地局10は、RSU(gNBタイプRSU)、中継局、又はスケジューリング機能を有する通信装置であってもよい。
【0031】
また、本実施の形態に係る無線通信システムにおいて、通信装置20がSLあるいはULに使用する信号波形は、OFDMAであってもよいし、SC-FDMAであってもよいし、その他の信号波形であってもよい。また、本実施の形態に係る無線通信システムにおいては、一例として、時間方向には、複数のサブフレーム(例:10個のサブフレーム)からなるフレームが形成され、周波数方向は複数のサブキャリアからなる。1サブフレームは1送信時間間隔(TTI:Transmission Time Interval)の一例である。ただし、TTIは、サブフレームであるとは限らない。例えば、TTIは、slot又はmini-slot、その他の時間領域の単位であってもよい。また、サブキャリア間隔に応じて、1サブフレームあたりのスロット数が定まることとしてもよい。また、1スロットあたりのシンボル数が14シンボルであってもよい。
【0032】
本実施の形態では、通信装置20は、基地局10から通信装置に送られる(E)PDCCH((Enhanced)Physical Downlink Control Channel)によりダイナミックにリソースが割り当てられるモードであるモード1、通信装置が自律的にリソースプールから送信リソースを選択するモードであるモード2、基地局10からSL信号送信のためのリソースが割り当てられるモード(以降、モード3と呼ぶ)、自律的にSL信号送信のためのリソースを選択するモード(以降、モード4と呼ぶ)のいずれのモードも取り得る。モードは、例えば、基地局10から通信装置20に設定される。
【0033】
図7に示すように、モード4の通信装置(
図7ではUEとして示す)は、同期した共通の時間・周波数グリッドから無線のリソースを選択する。例えば、通信装置20は、バックグラウンドでセンシングを行って、センシング結果の良好なリソースであって、他の通信装置に予約されていないリソースを候補リソースとして特定し、候補リソースから送信に使用するリソースを選択する。
【0034】
(NRのV2Xの概要)
NRのV2Xでは、LTEのV2Xで規定されている、SL transmission mode 3及びSL transmission mode 4と同様の送信モードが規定されている。
【0035】
以下、
図8A~
図8Dを参照して、NRのV2Xで規定されている送信モードの概要を説明する。
【0036】
図8Aは、NRのV2Xで規定されるSL transmission mode 1の概要を示す図である。NRのV2Xで規定されるSL transmission mode 1は、LTEのV2Xで規定されている、SL transmission mode 3に対応する。NRのV2Xで規定されるSL transmission mode 1では、基地局10が送信リソースをスケジューリングして、送信側の通信装置20Aに送信リソースを割り当てる。通信装置20Aは、割り当てられた送信リソースにより、信号を受信側の通信装置20Bに送信する。
【0037】
図8B、
図8C、及び
図8Dは、NRのV2Xで規定されているSL transmission mode 2の概要を示す図である。NRのV2Xで規定されるSL transmission mode 2は、LTEのV2Xで規定されている、SL transmission mode 4に対応する。
【0038】
図8Bは、SL transmission mode 2aの概要を示す図である。SL transmission mode 2aでは、例えば、送信側の通信装置20Aは、自律的に送信リソースを選択して、選択した送信リソースにより、信号を受信側の通信装置20Bに送信する。
【0039】
図8Cは、SL transmission mode 2cの概要を示す図である。SL transmission mode 2cでは、例えば、基地局10が一定周期の送信リソースを、通信装置20Aに対して事前に設定して、通信装置20Aは、事前に設定された一定周期の送信リソースにより、信号を受信側の通信装置20Bに送信する。ここで、基地局10が通信装置20Aに対して一定周期の送信リソースを事前に設定することに代えて、例えば、仕様により、一定周期の送信リソースが通信装置20Aに対して事前に設定されていてもよい。
【0040】
図8Dは、SL transmission mode 2dの概要を示す図である。SL transmission mode 2dでは、例えば、通信装置20が基地局10と同様の動作を行う。具体的には、通信装置20は、送信リソースをスケジューリングして、送信側の通信装置20Aに送信リソースを割り当てる。通信装置20Aは、割り当てられた通信リソースにより、受信側の通信装置20Bに送信してもよい。すなわち、通信装置20は、他の通信装置20の送信を制御してもよい。
【0041】
また、NRでは、
図9A~
図9Cに示すように、通信の種別として、ユニキャスト、グループキャスト、及びブロードキャストの3種類の通信の種別が現在検討されている。
【0042】
図9Aは、ユニキャストPhysical Sidelink Shared Channel(PSCCH)/Physical Sidelink Control Channel(PSSCH)送信の例を示す図である。ユニキャストとは、例えば、送信側の通信装置20Aから受信側の通信装置20Bへの1対1の送信のことをいう。
【0043】
図9Bは、グループキャストPSCCH/PSSCH送信の例を示す図である。グループキャストとは、例えば、送信側の通信装置20Aから受信側の通信装置20のグループである、通信装置20B及び通信装置20B'への送信のことをいう。
【0044】
図9Cは、ブロードキャストPSCCH/PSSCH送信の例を示す図である。ブロードキャストとは、例えば、送信側の通信装置20Aから所定範囲内の受信側の全通信装置20である、通信装置20B、通信装置20B'、及び通信装置20B''への送信のことをいう。
【0045】
<Multi-numerology>
5Gにおける幅広い周波数やユースケースをサポートするためには、複数のNumerology(サブキャリア間隔やシンボル長等の無線パラメータ)をサポートする必要がある。このため、LTEのNumerologyを基準として、スケーラブルに可変パラメータを設計することが有効である。この考え方の下で、NRのMulti-Numerologyが導入されている。具体的には、基準サブキャリア間隔は、LTEのサブキャリア間隔と同じで、15kHzとされている。基準サブキャリア間隔に2のべき乗を乗算することで、その他のサブキャリア間隔が規定されている。
【0046】
複数のOFDM numerology、すなわち、サブキャリア間隔構成(subcarrier spacing configuration)μが規定されている。具体的には、μ=0、1、2、3、4に対してサブキャリア間隔Δf=15kHz、30kHz、60kHz、120kHz、240kHzが規定されている。
【0047】
ここで、サブキャリア間隔構成μ=0、1、2、3、4のいずれに対しても、1つのスロットに含まれるOFDMシンボルの数は、14とされている。しかしながら、サブキャリア間隔構成μ=0、1、2、3、4に対して、1フレームに含まれるスロット数は、10、20、40、80、160であり、かつ1サブフレームに含まれるスロット数は、1、2、4、8、16である。ここで、フレームの長さは、10msであり、サブキャリア間隔構成μ=0、1、2、3、4に対して、スロット長は、1ms、0.5ms、0.25ms、0.125ms、0.0625msとされている。サブキャリア間隔構成μ=0、1、2、3、4のいずれに対しても、1つのスロットに含まれるOFDMシンボルの数は、14であるため、サブキャリア間隔構成毎にOFDMシンボル長は異なる。サブキャリア間隔構成μ=0、1、2、3、4に対して、OFDMシンボル長は、(1/14)ms、(0.5/14)ms、(0.25/14)ms、(0.125/14)ms、(0.0625/14)msとなる。このように、スロット長及びOFDMシンボル長を短くすることで、低遅延の通信を実現することができる。
【0048】
<Dynamic TDD>
LTEと同様にNRでは、FDD(Frequency Division Duplex)とTDD(Time Division Duplex)の両方がサポートされている。特に、TDDでは、効率的なトラフィック収容のため、通信方向(UL/DL)を時間領域(又は周波数領域)でダイナミックに切り替える、dynamic TDD (flexible duplex)がサポートされている。
【0049】
LTEのTDDでは、通信方向は、UL/DL configurationにより、static/semi-staticに設定される。これに対して、NRのTDDでは、セル内のトラフィック状況に応じて通信方向をダイナミックに切り替える。
【0050】
非特許文献1のTable11.1.1-1には、様々なスロットフォーマット(slot format)が規定されている。非特許文献1によれば、1スロット内のOFDMシンボルは、下りリンク(Table11.1.1-1ではDと記載される)、フレキシブル(Table11.1.1-1ではFと記載される)、又は上りリンク(Table11.1.1-1ではUと記載される)に分類される。Table11.1.1-1に示されるように、NRのスロットフォーマットにおいて、DLとULの割り当ては、シンボル単位で行われる。これに対して、LTEの場合、UL・DL割り当ては、サブフレーム単位で行われている。
【0051】
フレームに含まれる複数のスロットのうちの各スロットに対して、Table11.1.1-1に示されるいずれかのスロットフォーマットを割り当てるための割り当て情報のシグナリングにより、通信方向(UL/DL)を時間領域(又は周波数領域)でダイナミックに切り替える、dynamic TDD(flexible TDD)を実現することができる。
【0052】
3GPPのRAN会合では、NR-V2Xにおいて、NR-Uu(5Gのユーザ装置と5GのRadio Access Network(RAN)との間のインタフェース)と同じ周波数(すなわち、ライセンスバンド)を使用することについて合意が得られている。
【0053】
このため、NR-UuでTime Division Duplex configuration (TDD構成)が設定されると、そのTDD構成の一部がサイドリンク送信に使用されることになる。
【0054】
例えば、
図10は、TDD構成の例を示す図である。
図10のPeriodicityとして示される部分には、下りリンクの部分(Downlink (DL) part)、上りリンクの部分(Uplink (UL) part)、及びフレキシブルな部分(Flexible(Flex) part)が含まれる。これらのDL part、UL part、及びFlex partのうち、例えば、UL partのみ、又はUL part及びFlex partがサイドリンクの通信に使用され得る。
【0055】
NR-UuでTDD構成が設定された状況において、例えば、通信装置20Aと通信装置20Bとの間で、TDD構成のUL partのみを使用するか、又はUL part及びFlex partを使用してサイドリンクの通信を行う場合、通信装置20A及び通信装置20Bは、事前にスロットフォーマットを取得することが必要となる。つまり、スロットフォーマットが通知されることにより、通信装置20A及び通信装置20Bは、TDD構成を把握し、スロット内のアップリンクシンボル位置及びフレキシブルシンボル位置を把握することができる。
【0056】
NR-Uuにおいて、上述のTDD構成又はスロットフォーマットは、System Information Block(SIB)又はRadio Resource Control (RRC)シグナリングにより、RANからユーザ装置に通知される。
【0057】
LTEのサイドリンク通信の場合、TDDのUL-DL構成のサイドリンクでの通知は、Physical Sidelink Broadcast Channel(PSBCH)を介して行われる。このため、NRにおいても、TDDのUL-DL構成のサイドリンクでの通知は、PSBCHを介して行われることが想定される。
【0058】
このような、TDDのUL-DL構成のサイドリンクでの通知は、例えば、基地局10のカバレッジ内の通信装置20が、基地局10のカバレッジ外の通信装置20に対して、TDDのUL-DL構成を通知する場合に行われることも想定される。
【0059】
NRでは、1スロット内のアップリンクシンボル、フレキシブルシンボル、及びダウンリンクシンボルの設定の自由度が高い。この場合、PSBCHを介して通知すべきスロットフォーマットの情報量は、大きくなると考えられる。つまり、スロットフォーマットをPSBCHを介して通知する場合には、PSBCHに対して割り当てられるリソースの量を大きくする必要がある。このため、リソースの利用効率が低下する可能性がある。また、PSBCHに対して割り当てられるリソースの量をできるだけ小さく制限しようとした場合、伝送ビットレートが高くなるように、例えば、高いレベルの多値変調方式を使用することが必要となる可能性があり、この場合、カバレッジが狭くなり、サイドリンク通信の効率が低下する可能性がある。
【0060】
(NR-UuのTDD構成)
NR-UuのTDD構成は、準静的(semi-static)な方法、又は動的(dynamic)な方法により設定することが可能である。
【0061】
(準静的な設定方法)
準静的なTDD構成設定方法の場合、RRCシグナリング等の上位レイヤの信号を用いてTDD構成の設定を行う。TDD構成の設定は、セル固有(Cell-specific)の設定又はユーザ装置固有(UE-specific)の設定とすることが可能である。セル固有のTDD構成の設定の場合、1つ又は2つのDL-Flex-UL構成のパターンが1つの周期に対して設定される。ユーザ装置固有のTDD構成の設定の場合、1つの周期の各スロットに対して、いずれかのDL-Flex-UL構成のパターンが設定される。
【0062】
例えば、
図10に示されるような、DL part、Flex part、及びUL partと、Periodicityと、をRRCシグナリングによりユーザ装置に対して送信することにより、DL part、Flex part、及びUL partが各周期毎に生じるように、ユーザ装置に対してTDD構成の設定を行うことができる。Periodicityとしては、例えば、0.5 ms、0.625 ms、1 ms、1.25 ms、2 ms、5 ms、及び10 msのうちのいずれかを設定することができる。
【0063】
(動的な設定方法)
動的なTDD構成の設定方法の場合、
図11に示されるように、例えば、RRCシグナリングにより、DL-Flex-UL構成の複数の候補パターンをユーザ装置に対して設定した上で、slot-format indicator (SFI)と呼ばれるDownlink Control Information(DCI)により、複数の候補パターンのうちのいずれかのパターンを通知することで、ユーザ装置に対してTDD構成の設定を動的に行う。なお、TDD構成のPeriodicityとしては、例えば、1スロット、2スロット、4スロット、5スロット、8スロット、10スロット、16スロット、及び20スロットのうちのいずれかを設定することができる。
【0064】
図12は、動的なTDD構成の設定方法に使用されるスロットフォーマットの例を示す図である。1スロット内のシンボルの番号(0、1、2、...、13)が
図12に示される表の横方向に並んでいる。例えば、
図12に示される表のスロットフォーマット0の場合、1スロット内の全てのシンボルがダウンリンクに割り当てられる。スロットフォーマット1の場合、1スロット内の全てのシンボルがアップリンクに割り当てられる。
【0065】
例えば、
図12に示されるような56パターンのスロットフォーマットのうちの2
nのスロットフォーマットを上位レイヤのシグナリングにより、ユーザ装置に設定する。その上で、2
nのスロットフォーマットのうちのいずれか1つのスロットフォーマットをSFIと呼ばれるDCIにより通知する。この方法により、TDD構成を動的にユーザ装置に対して設定することができる。ここで、nは、SFI(DCI)のビット数である。
【0066】
図13は、動的なTDD構成の設定方法において、スロットフォーマットを通知するためのパラメータの例を示す図である。
図13に示される「SlotFormatCombination」というパラメータの中に、「SlotFormats」が含まれており、この「SlotFormats」に
図12に示されるような、スロットフォーマットを示す0から55のうちから選択される値の系列が格納される。例えば、「SlotFormats」の中にスロットフォーマットの系列{0、0、3、1、1}が格納されてもよい。前述の動的なTDD構成の設定方法では、例えば、「SlotFormatCombination」を1又は複数個設定しておき、その中でどの「SlotFormatCombination」を使用するかをSFIで動的にユーザ装置に通知することになる。
【0067】
図14は、準静的なTDD構成設定方法において、TDD構成を通知するためのパラメータの例を示す図である。
図14に示される「TDD-UL-DL-Pattern」というパラメータがTDD構成を設定するための情報に該当する。「TDD-UL-DL-Pattern」に含まれる「nrofDownlinSlots」は、1つの周期に含まれる下りリンクのスロットの数を指定し、「nrofDownlinkSymbols」は、1つの周期に含まれる下りリンクのシンボルの数を指定し、「nrofUplinkSlots」は、1つの周期に含まれる上りリンクのスロットの数を指定し、「nrofUplinkSymbols」は、1つの周期に含まれる上りリンクのシンボルの数を指定する。「TDD-UL-DL-Pattern」に含まれる「dl-UL-TransmissionPeriodicity」は、TDD構成の周期を指定する。周期とニューメロロジ(numerology)が定まると、1周期に含まれるスロット数が定まり、前述の各パラメータにより、1周期におけるダウンリンクの部分及びアップリンクの部分が明示的に定まる。ダウンリンクの部分とアップリンクの部分との間の部分が黙示的にFlex partとして定まる。
【0068】
(準静的なTDD構成の設定方法における情報量の削減方法1)
NR-UuでTDD構成が設定される場合において、特に、サイドリンクの通信がダウンリンクの通信に干渉することを防止するため、ダウンリンクに割り当てられる部分については、サイドリンクの通信には使用しないことが多い。つまり、通常、サイドリンクの通信に使用可能な部分は、TDD構成のうち、アップリンクに割り当てられる部分となる。従って、TDD構成のうち、サイドリンクの通信には使用できない部分の構成を示す情報、すなわち、ダウンリンクに割り当てられる部分の構成を示す情報については送信しないことにより、TDD構成をPSBCHを介して通知する際の情報量を削減することができる。すなわち、サイドリンクの通信に使用可能な部分の情報のみを、PSBCHを介して通知しても良い。
【0069】
例えば、
図14に示される「TDD-UL-DL-Pattern」というパラメータのうち、少なくとも、「nrofDownlinSlots」及び「nrofDownlinkSymbols」は、サイドリンクの通信に使用しない部分を指定するパラメータなので、通信装置20から別の通信装置20にPSBCHを介してTDD構成を通知する場合には、「nrofDownlinSlots」及び「nrofDownlinkSymbols」を通知する必要はないと考えられる。このため、準静的なTDD構成の設定方法における情報量の削減方法1では、例えば、通信装置20は、TDD構成のうち、上りリンクの部分のみ、すなわち、「TDD-UL-DL-Pattern」というパラメータのうち、「nrofUplinkSlots」、「nrofUplinkSymbols」、及び「dl-UL-TransmissionPeriodicity」だけを、他の通信装置20に、PSBCHを介して通知してもよい。
【0070】
なお、NR-UuでTDD構成が設定される場合において、TDD構成のうち、アップリンクに割り当てられる部分に加えて、Flex partもサイドリンクの通信に使用可能である場合がある。この場合には、通信装置20は、TDD構成のうち、アップリンクに割り当てられる部分の構成を示す情報に加えて、Flex partの構成を示す情報を、他の通信装置20に、PSBCHを介して通知してもよい。
【0071】
しかしながら、
図14に示される「TDD-UL-DL-Pattern」というパラメータの例の場合、Flex partは、アップリンクに割り当てられる部分及びダウンリンクに割り当てられる部分以外の部分として、黙示的に示されている。従って、TDD構成のうち、ダウンリンクに割り当てられる部分の構成を示す情報を通知しないで、アップリンクに割り当てられる部分の構成を示す情報に加えて、Flex partの構成を示す情報を通知する場合には、Flex partの構成を示すパラメータ、例えば、「nrofFlexSlots」及び「nrofFlexSymbols」を定義した上で、上述の「nrofUplinkSlots」、「nrofUplinkSymbols」、及び「dl-UL-TransmissionPeriodicity」と共に、他の通信装置20に、PSBCHを介して通知してもよい。
【0072】
代替的に、Flex partとアップリンクに割り当てられる部分とを区別しない場合には、Flex partとアップリンクに割り当てられる部分との構成を示すパラメータ、例えば、「nrofSLSlots」及び「nrofSLSymbols」を定義した上で、「dl-UL-TransmissionPeriodicity」と共に、他の通信装置20に、PSBCHを介して通知してもよい。なお、パラメータの名前はこれらに限定されない。
【0073】
(準静的なTDD構成の設定方法における情報量の削減方法2)
NR-UuでTDD構成が設定される場合において、サイドリンクでTDD構成を通知する際の情報量の削減方法2では、通信装置20は、まず、TDD構成のうち、サイドリンク通信に使用可能な部分(例えば、アップリンクに割り当てられる部分を示す1又は複数のパターン候補(アップリンクのスロット数に対応する1又は複数のパターン候補など))を事前に設定しておく。その上で、通信装置20は、NR-Uuで設定されるTDD構成のうちでサイドリンク通信に使用可能な部分(例えば、アップリンクに割り当てられる部分(アップリンクのスロット数など))に対応するパターンを、事前に設定されるパターン候補の中から選択して、選択されたパターンを、他の通信装置20にPSBCHを介して通知する。
【0074】
例えば、通信装置20は、以下のパターン候補を事前に設定しておく。あるいは、仕様で定義しておく。
pattern00={****U}、pattern01={***UU}、pattern10={**UUU}
この場合において、NR-Uuで設定されるTDD構成のアップリンクに割り当てられる部分に対応するパターンが、{***UU}であった場合(すなわち、アップリンクのスロットが2つであった場合)には、通信装置20は、pattern01に対応するインデックス01を他の通信装置20にPSBCHを介して通知することで、サイドリンク通信に使用可能なスロットの構成を通知することができる。この例の場合では、5つのスロットからなるスロット構成のうち、時間に関して最後尾に配置されるスロット及び後ろから2番目のスロットをサイドリンクの通信に使用可能であることを通知することが可能である。
【0075】
上述の準静的なTDD構成の設定方法における情報量の削減方法1の場合と同様に、TDD構成のうち、アップリンクに割り当てられる部分に加えて、Flex partもサイドリンクの通信に使用可能である場合がある。アップリンクに割り当てられる部分と、Flex partとを区別する場合には、例えば、{**FUU}といったパターン候補を事前に設定してもよい。アップリンクに割り当てられる部分と、Flex partとを区別しない場合には、例えば、{**SSS}といったパターン候補を事前に設定してもよい。
【0076】
なお、上述の準静的なTDD構成の設定方法における情報量の削減方法1及び2は、準静的なTDD構成の設定方法だけでなく、動的なTDD構成の設定方法にも適用可能である。
【0077】
(動的なTDD構成の設定方法における情報量の削減方法1)
次に、動的なTDD構成の設定方法がNR-Uuに適用される場合において、サイドリンクでTDD構成を通知する際の情報量の削減方法1を説明する。動的なTDD構成の設定方法がNR-Uuに適用される場合、スロットフォーマットの候補をユーザ装置に対して設定した上で、SFIにより、使用されるスロットフォーマットが動的に指定される。
【0078】
このような場合において、サイドリンクでTDD構成を通知する際の情報量を削減するために、まず、スロットフォーマットをグループ化する。グループ化は、サイドリンクの通信に使用可能なシンボルが同一か否かに基づいて実施されても良い。
【0079】
図15を参照して、スロットフォーマットのグループ化の例を説明する。
【0080】
上述の通り、通常、サイドリンクの通信に使用可能な部分は、TDD構成のうち、アップリンクに割り当てられる部分となる。そこで、アップリンクのシンボル数に基づき、
図15に示されるスロットフォーマットを分類することができる。
【0081】
図15に示されるように、スロットフォーマット0、2~7、16~18にはアップリンクのシンボルは含まれない。従って、スロットフォーマット0、2~7、16~18をグループ0に分類することができる。
【0082】
また、
図15において、スロットフォーマット1は、アップリンクのシンボルだけを含む。従って、スロットフォーマット1をグループ1に分類することができる。
【0083】
さらに、
図15において、スロットフォーマット8、19~21、28~30、43は、アップリンクのシンボルを1つだけ含む。従って、スロットフォーマット8、19~21、28~30、43をグループ2に分類することができる。
【0084】
このようにスロットフォーマットに含まれるアップリンクのスロット数に基づいて、
図15に示されるスロットフォーマットを複数のグループ、すなわち、グループ0、1、2、...、に分類することができる。
【0085】
例えば、NR-Uuに適用されるTDD構成が
図15のスロットフォーマットにより、{0、0、6、8、1、0、0、28、1、1}で示される場合、通信装置20は、他の通信装置20に対して、上記のグループのインデックスを用いて、{0、0、0、2、1、0、0、2、1、1}を通知することで、サイドリンクに使用可能なシンボルの位置(アップリンクシンボルの位置)を通知することができる。すなわち、グループ化によって、スロットフォーマットの候補数が少なくなる。従って、情報量を削減することができる。
【0086】
なお、サイドリンクの通信に使用可能な部分が、TDD構成のうち、アップリンクに割り当てられる部分及びFlex partである場合には、上記のグループ化を行う際に、アップリンクのシンボルの数及びFlexibleシンボルの数に基づいて分類を行えばよい。例えば、
図15の表において、スロットフォーマット8~15は、同じグループとして分類されてもよい。
【0087】
(動的なTDD構成の設定方法における情報量の削減方法2)
動的なTDD構成の設定方法における情報量の削減方法2では、NR-Uuで定義されている全てのスロットフォーマットをPSBCHで送信しておき、その中で共通のサイドリンク通信に使用可能な部分(例えば、アップリンク部分、又は共通のアップリンク部分及び共通のFlex part)のみをサイドリンクの通信に使用する。NR-Uuで定義されている全てのスロットフォーマットをPSBCHで送信する際に、上述の動的なTDD構成の設定方法における情報量の削減方法1を適用してもよい。
【0088】
例えば、上述の動的なTDD構成の設定方法における情報量の削減方法1の場合のように、{0、0、0、2、1、0、0、2、1、1}というグループインデックスのセットが通知され、さらに{0、0、0、0、0、0、0、1、1、1}というグループインデックスのセットが通知されたとする。これら2つのグループインデックスのセットの中でアップリンクの部分が共通するのは、末尾のスロットのグループインデックスが1となる点、及び末尾から2番目のスロットのグループインデックスが1となる点である。そこで、末尾の{1、1}の部分だけをサイドリンクの通信に使用することとしてもよい。
【0089】
動的なTDD構成の設定方法がNR-Uuに適用される場合には、NR-Uuに適用されるスロットフォーマットが動的に変化する。このような場合において、ダウンリンクに使用する予定の部分をサイドリンクに使用してしまうと、サイドリンクの通信がNR-Uuに悪影響を与える可能性がある。従って、アップリンクとして定義されている部分だけをサイドリンクに使用することで、サイドリンクの通信がNR-Uuに悪影響を与える可能性を低減できる。
【0090】
(動的なTDD構成の設定方法における情報量の削減方法3)
動的なTDD構成の設定方法における情報量の削減方法3では、NR-Uuで定義されている全てのスロットフォーマットに対して、サイドリンク通信に使用可能な部分(例えば、アップリンク部分(又はアップリンク部分及びFlex part))が共通するスロットフォーマットを1つ定めて、その1つのスロットフォーマットだけをPSBCHで送信するようにしてもよい。
【0091】
なお、上述の動的なTDD構成の設定方法における情報量の削減方法1~3については、準静的なTDD構成の設定方法に対して適用されてもよい。
【0092】
なお、「TDD UL-DL config」又は「slot format」について、適用可能なパラメータは、上述の実施例に記載されているパラメータには限定されない。例えば、「SlotFormatIndicator」、「SlotFormatCombinationsPerCell」、「SlotFormatCombination」、「SlotFormats」、「TDD-UL-DL-ConfigCommon」、「TDD-UL-DL-Pattern」、「TDD-UL-DL-SlotConfig」等が適用されてもよく、又はサイドリンク用に新たなパラメータが定義されて、それらの新たなパラメータが適用されてもよい。
【0093】
上述の実施例では、通信装置20は、PSBCHでTDD構成又はスロットフォーマットを通知しているが、本発明の実施例は上述の実施例には限定されない。通信装置20は、Physical Sidelink Control Channel(PSCCH)、Physical Sidelink Shared Channel(PSSCH)、及びPhysical Sidelink Feedback Channel(PSFCH)のうち少なくとも一つでTDD構成を通知してもよい。
【0094】
例えば、NR-UuにおけるRemaining minimum System Information (RMSI)をサイドリンクに対して定義して(SL-RMSI(SL-SIB))、このSL-RMSI(SL-SIB)をPSSCHで送信してもよい。この場合、PSBCHでPSCCHの位置が通知され、PSCCHがPSSCHの位置を通知し、SL-RMSI(SL-SIB)がPSSCHを介して通知されてもよい。
【0095】
(装置構成)
次に、これまでに説明した処理動作を実行する基地局10及び通信装置20の機能構成例を説明する。
【0096】
<基地局10>
図16は、基地局10の機能構成の一例を示す図である。
図16に示されるように、基地局10は、送信部101と、受信部102と、設定情報管理部103と、制御部104とを有する。
図16に示す機能構成は一例に過ぎない。本実施の形態に係る動作を実行できるのであれば、機能区分及び機能部の名称はどのようなものでもよい。なお、送信部101を送信機と称し、受信部102を受信機と称してもよい。
【0097】
送信部101は、通信装置20側に送信する信号を生成し、当該信号を無線で送信する機能を含む。受信部102は、通信装置20から送信された各種の信号を受信し、受信した信号から、例えば、より上位のレイヤの情報を取得する機能を含む。また、受信部102は受信する信号の測定を行って、品質値を取得する機能を含む。
【0098】
設定情報管理部103には、予め設定した設定情報、通信装置20から受信する設定情報等が格納される。なお、送信に関わる設定情報が送信部101に格納され、受信に関わる設定情報が受信部102に格納されることとしてもよい。制御部104は、基地局10の制御を行う。なお、送信に関わる制御部104の機能が送信部101に含まれ、受信に関わる制御部104の機能が受信部102に含まれてもよい。
【0099】
例えば、設定情報管理部103には、TDD構成及びスロットフォーマットを示す情報が含まれていてもよい。例えば、準静的にTDD構成の設定を行う場合、制御部104は、設定するTDD構成又はスロットフォーマットを設定情報管理部103から読出、送信部101に送信させるための信号に含めてもよい。また、例えば、動的にTDD構成の設定を行う場合、制御部104は、送信部101に信号を送信させることにより、通信装置20に対して、DL-Flex-UL構成の複数の候補パターンを設定してもよい。
【0100】
<通信装置20>
図17は、通信装置20の機能構成の一例を示す図である。
図17に示されるように、通信装置20は、送信部201と、受信部202と、設定情報管理部203と、制御部204を有する。
図17に示す機能構成は一例に過ぎない。本実施の形態に係る動作を実行できるのであれば、機能区分及び機能部の名称はどのようなものでもよい。なお、送信部201を送信機と称し、受信部202を受信機と称してもよい。また、通信装置20は、送信側の通信装置20Aであってもよいし、受信側の通信装置20Bであってもよい。
【0101】
送信部201は、送信データから送信信号を作成し、当該送信信号を無線で送信する。受信部202は、各種の信号を無線受信し、受信した物理レイヤの信号からより上位のレイヤの信号を取得する。また、受信部202は受信する信号の測定を行って、品質値を取得する機能を含む。
【0102】
設定情報管理部203には、予め設定した設定情報、基地局10から受信する設定情報等が格納される。なお、送信に関わる設定情報が送信部201に格納され、受信に関わる設定情報が受信部202に格納されることとしてもよい。制御部204は、通信装置20の制御を行う。なお、送信に関わる制御部204の機能が送信部201に含まれ、受信に関わる制御部204の機能が受信部202に含まれてもよい。
【0103】
TDD構成が準静的に設定される場合、受信部202は、基地局10からRRCシグナリング等の上位レイヤの信号を受信する。制御部204は、受信部202が受信した上位レイヤの信号に基づいて、TDD構成の設定を行う。送信部201は、設定されたTDD構成を示す情報を、PSBCHを介して、他の通信装置20に送信してもよい。制御部204は、設定されたTDD構成のうち、アップリンクに関するパラメータだけを抽出し、送信部201は当該アップリンクに関するパラメータを示す情報だけを、PSBCHを介して、他の通信装置20に送信してもよい。また、制御部204は、設定されたTDD構成のうち、アップリンクに関するパラメータに加えて、Flex partに関するパラメータを抽出し、送信部201は当該アップリンクに関するパラメータを示す情報に加えて、Flex partに関するパラメータを示す情報を、PSBCHを介して通知してもよい。また、制御部204は、TDD構成のうち、アップリンクに割り当てられる部分を示す1又は複数のパターン候補(アップリンクのスロット数に対応する1又は複数のパターン候補)を事前に設定してもよい。その上で、制御部204は、NR-Uuで設定されるTDD構成のアップリンクに割り当てられる部分(アップリンクのスロット数)に対応するパターンを、事前に設定されるパターン候補の中から選択し、送信部201は選択されたパターンを、PSBCHを介して他の通信装置20に送信してもよい。
【0104】
TDD構成が動的に設定される場合、受信部202は、基地局10からRRCシグナリング等の上位レイヤの信号を受信する。制御部204は、受信した上位レイヤの信号に基づいて、スロットフォーマットの複数の候補パターンを設定する。また、受信部は、基地局10からSFIを受信する。制御部204は、SFIに基づき、複数のスロットフォーマットの候補パターンのうちのいずれかのパターンを選択して、通信装置20に対してTDD構成の設定を動的に行う。また、制御部204は、設定されたスロットフォーマットの複数の候補パターンを、例えば、アップリンクのシンボル数に基づいてグループ分けしてもよい。その上で、制御部204は、NR-Uuに適用されるスロットフォーマットに対応するグループのインデックスを選択し、送信部201は当該グループのインデックスを他の通信装置20に送信してもよい。
【0105】
<ハードウェア構成>
上記実施の形態の説明に用いたブロック図(
図16~
図17)は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、見做し、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。たとえば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)や送信機(transmitter)と呼称される。いずれも、上述したとおり、実現方法は特に限定されない。
【0106】
また、例えば、本発明の一実施の形態における通信装置20と基地局10はいずれも、本実施の形態に係る処理を行うコンピュータとして機能してもよい。
図18は、本実施の形態に係る通信装置20と基地局10のハードウェア構成の一例を示す図である。上述の通信装置20と基地局10はそれぞれ、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
【0107】
なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。通信装置20と基地局10のハードウェア構成は、図に示した1001~1006で示される各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
【0108】
通信装置20と基地局10における各機能は、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004による通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。
【0109】
プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU:Central Processing Unit)によって構成されてもよい。例えば、上述のベースバンド信号処理部104、呼処理部105などは、プロセッサ1001によって実現されてもよい。
【0110】
また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、通信装置20の制御部204は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。上述の各種処理は、1つのプロセッサ1001によって実行される旨を説明してきたが、2以上のプロセッサ1001により同時又は逐次に実行されてもよい。プロセッサ1001は、1以上のチップによって実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されても良い。
【0111】
メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically Erasable Programmable ROM)、RAM(Random Access Memory)などの少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施の形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
【0112】
ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、CD-ROM(Compact Disc ROM)などの光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップなどの少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。上述の記憶媒体は、例えば、メモリ1002及びストレージ1003の少なくとも一方を含むデータベース、サーバその他の適切な媒体であってもよい。
【0113】
通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(FDD:Frequency Division Duplex)及び時分割複信(TDD:Time Division Duplex)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信アンテナ101、アンプ部102、送受信部103、伝送路インターフェース106などは、通信装置1004によって実現されてもよい。送受信部103は、送信部103aと受信部103bとで、物理的に、または論理的に分離された実装がなされてもよい。
【0114】
入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
【0115】
また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
【0116】
また、通信装置20と基地局10はそれぞれ、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
【0117】
(実施の形態のまとめ)
本明細書には、少なくとも下記の通信装置及び通信方法が開示されている。
【0118】
Time Division Duplex(TDD)構成を示す情報を受信する受信部と、受信したTDD構成を示す情報のうち、上りリンクに関する情報を取得する制御部と、前記上りリンクに関する情報をサイドリンクで送信する送信部と、を有する通信装置。
【0119】
NR-UuでTDD構成が設定される場合において、特に、サイドリンクの通信がダウンリンクの通信に干渉することを防止するため、ダウンリンクに割り当てられる部分については、サイドリンクの通信には使用しないことが多い。つまり、通常、サイドリンクの通信に使用可能な部分は、TDD構成のうち、アップリンクに割り当てられる部分となる。上記の構成によれば、TDD構成のうち、サイドリンクの通信には使用できない部分の構成を示す情報、すなわち、ダウンリンクに割り当てられる部分の構成を示す情報については送信しないことにより、サイドリンクの通信に適用するTDD構成をサイドリンクを介して通知する際の情報量を削減することができる。
【0120】
前記制御部は、事前に設定される上りリンクの複数のスロットパターンのうち、前記上りリンクに関する情報に対応する上りリンクのスロットパターンを選択してもよく、前記送信部は、前記選択された上りリンクのスロットパターンを示す情報をサイドリンクで送信してもよい。このような構成によれば、スロットパターンを示す情報として、例えば、インデックスを送信することにより、サイドリンクの通信に適用するTDD構成をサイドリンクを介して通知する際の情報量をさらに削減することができる。
【0121】
前記受信部は、特定のスロットフォーマットを示す情報を受信し、前記制御部は、前記TDD構成を示す情報として、複数のスロットフォーマットを示す情報を取得し、前記複数のスロットフォーマットのうち、各スロットフォーマットに含まれるアップリンクシンボルの数に基づいて、前記複数のスロットフォーマットをグループ分けし、かつ前記特定のスロットフォーマットを示す情報に対応するグループを示すインデックスを取得してもよく、前記送信部は、前記インデックスをサイドリンクで送信してもよい。この構成によれば、動的なTDD構成の設定方法がNR-Uuに適用される場合において、サイドリンクでスロットフォーマットを通知する際に、スロットフォーマットのインデックスそのものではなく、アップリンクシンボルの構成が共通のスロットフォーマットをグループ化したグループのインデックスが通知されるので、サイドリンクの通信に適用するTDD構成をサイドリンクを介して通知する際の情報量を削減することができる。
【0122】
前記制御部は、前記TDD構成を示す情報として、複数のスロットフォーマットを示す情報を取得し、前記複数のスロットフォーマットのうち、各スロットフォーマットに含まれるアップリンクシンボルの数に基づいて、前記複数のスロットフォーマットをグループ分けし、分類された複数のグループをそれぞれ識別する複数のインデックスを取得し、
送信部は、前記複数のインデックスをサイドリンクで送信してもよい。また、前記制御部は、前記複数のスロットフォーマットの間で共通する上りリンクの部分をサイドリンクの通信に使用する無線リソースとして設定してもよい。この構成によれば、送信側の通信装置及び受信側の送信装置において、複数のスロットフォーマットに共通な上りリンクの部分だけをサイドリンクの通信に使用する無線リソースとして設定することが可能となるため、NR-Uuに適用されるスロットフォーマットが動的に変化する場合であっても、サイドリンクの通信がNR-Uuに悪影響を与える可能性を低減できる。
【0123】
Time Division Duplex(TDD)構成を示す情報を受信するステップと、受信したTDD構成を示す情報のうち、上りリンクに関する情報を取得するステップと、前記上りリンクに関する情報をサイドリンクで送信するステップと、を有する通信装置による通信方法。
【0124】
前記制御部が前記第一の設定を選択した場合、前記送信部は、前記受信部が前記第二の通信方式に基づいてサイドリンクで受信したデータに対する送達確認情報を前記第一の通信方式に基づいてサイドリンクで送信してもよく、前記制御部が前記第二の設定を選択した場合、前記送信部は、前記受信部が前記第一の通信方式に基づいてサイドリンクで受信したデータに対する送達確認情報を前記第二の通信方式に基づいてサイドリンクで送信してもよい。
【0125】
上記の構成によれば、サイドリンクの通信に適用するTDD構成をサイドリンクを介して通知する際の情報量を削減することができる。
【0126】
(実施形態の補足)
以上、本発明の実施の形態を説明してきたが、開示される発明はそのような実施形態に限定されず、当業者は様々な変形例、修正例、代替例、置換例等を理解するであろう。発明の理解を促すため具体的な数値例を用いて説明がなされたが、特に断りのない限り、それらの数値は単なる一例に過ぎず適切な如何なる値が使用されてもよい。上記の説明における項目の区分けは本発明に本質的ではなく、2以上の項目に記載された事項が必要に応じて組み合わせて使用されてよいし、ある項目に記載された事項が、別の項目に記載された事項に(矛盾しない限り)適用されてよい。機能ブロック図における機能部又は処理部の境界は必ずしも物理的な部品の境界に対応するとは限らない。複数の機能部の動作が物理的には1つの部品で行われてもよいし、あるいは1つの機能部の動作が物理的には複数の部品により行われてもよい。実施の形態で述べた処理手順については、矛盾の無い限り処理の順序を入れ替えてもよい。処理説明の便宜上、通信装置20と基地局10は機能的なブロック図を用いて説明されたが、そのような装置はハードウェアで、ソフトウェアで又はそれらの組み合わせで実現されてもよい。本発明の実施の形態に従って通信装置20が有するプロセッサにより動作するソフトウェア及び本発明の実施の形態に従って基地局10が有するプロセッサにより動作するソフトウェアはそれぞれ、ランダムアクセスメモリ(RAM)、フラッシュメモリ、読み取り専用メモリ(ROM)、EPROM、EEPROM、レジスタ、ハードディスク(HDD)、リムーバブルディスク、CD-ROM、データベース、サーバその他の適切な如何なる記憶媒体に保存されてもよい。
【0127】
情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、DCI(Downlink Control Information)、UCI(Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、MAC(Medium Access Control)シグナリング、報知情報(MIB(Master Information Block)、SIB(System Information Block)))、その他の信号又はこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。
【0128】
本開示において説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、FRA(Future Radio Access)、NR(new Radio)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及びこれらに基づいて拡張された次世代システムの少なくとも一つに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE及びLTE-Aの少なくとも一方と5Gとの組み合わせ等)適用されてもよい。
【0129】
本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。
【0130】
本開示において基地局10によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局10を有する1つ又は複数のネットワークノード(network nodes)からなるネットワークにおいて、端末との通信のために行われる様々な動作は、基地局10及び基地局10以外の他のネットワークノード(例えば、MME又はS-GWなどが考えられるが、これらに限られない)の少なくとも1つによって行われ得ることは明らかである。上記において基地局10以外の他のネットワークノードが1つである場合を例示したが、複数の他のネットワークノードの組み合わせ(例えば、MME及びS-GW)であってもよい。
【0131】
入出力された情報等は特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報等は、上書き、更新、又は追記され得る。出力された情報等は削除されてもよい。入力された情報等は他の装置へ送信されてもよい。
【0132】
判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:true又はfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
【0133】
本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。
【0134】
ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
【0135】
また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(DSL:Digital Subscriber Line)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。
【0136】
本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
【0137】
なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及びシンボルの少なくとも一方は信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。
【0138】
本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースはインデックスによって指示されるものであってもよい。
【0139】
上述したパラメータに使用する名称はいかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式等は、本開示で明示的に開示したものと異なる場合もある。様々なチャネル(例えば、PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。
【0140】
本開示においては、「基地局(BS:Base Station)」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNodeB(eNB)」、「gNodeB(gNB)」、「アクセスポイント(access point)」、「送信ポイント(transmission point)」、「受信ポイント(reception point)、「送受信ポイント(transmission/reception point)」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。
【0141】
基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(RRH:Remote Radio Head)によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。
【0142】
本開示においては、「移動局(MS:Mobile Station)」、「ユーザ端末(user terminal)」、「ユーザ装置(UE:User Equipment)」、「端末」などの用語は、互換的に使用され得る。
【0143】
移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、又はいくつかの他の適切な用語で呼ばれる場合もある。
【0144】
基地局及び移動局の少なくとも一方は、送信装置、受信装置、通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのIoT(Internet of Things)機器であってもよい。
【0145】
また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数のユーザ端末間の通信(例えば、D2D(Device-to-Device)、V2X(Vehicle-to-Everything)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上り」及び「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。
【0146】
同様に、本開示におけるユーザ端末は、基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を基地局10が有する構成としてもよい。
【0147】
「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。本開示で使用する場合、2つの要素は、1又はそれ以上の電線、ケーブル及びプリント電気接続の少なくとも一つを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。
【0148】
参照信号は、RS(Reference Signal)と略称することもでき、適用される標準によってパイロット(Pilot)と呼ばれてもよい。
【0149】
本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
【0150】
本開示において、「含む(include)」、「含んでいる(including)」及びそれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
【0151】
本開示において、例えば、英語でのa、an及びtheのように、翻訳により冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。
【0152】
本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。
【0153】
以上、本発明について詳細に説明したが、当業者にとっては、本発明が本明細書中に説明した実施形態に限定されるものではないということは明らかである。本発明は、特許請求の範囲の記載により定まる本発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本明細書の記載は、例示説明を目的とするものであり、本発明に対して何ら制限的な意味を有するものではない。
【符号の説明】
【0154】
101 送信部
102 受信部
103 設定情報管理部
104 制御部
201 送信部
202 受信部
203 設定情報管理部
204 制御部
1001 プロセッサ
1002 メモリ
1003 ストレージ
1004 通信装置
1005 入力装置
1006 出力装置