(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-04-02
(45)【発行日】2024-04-10
(54)【発明の名称】無方向性電磁鋼板およびその製造方法
(51)【国際特許分類】
C22C 38/00 20060101AFI20240403BHJP
C22C 38/06 20060101ALI20240403BHJP
C22C 38/60 20060101ALI20240403BHJP
C21D 8/12 20060101ALI20240403BHJP
H01F 1/147 20060101ALI20240403BHJP
【FI】
C22C38/00 303U
C22C38/06
C22C38/60
C21D8/12 A
H01F1/147 175
(21)【出願番号】P 2022537607
(86)(22)【出願日】2020-12-17
(86)【国際出願番号】 KR2020018610
(87)【国際公開番号】W WO2021125856
(87)【国際公開日】2021-06-24
【審査請求日】2022-08-17
(31)【優先権主張番号】10-2019-0171284
(32)【優先日】2019-12-19
(33)【優先権主張国・地域又は機関】KR
(73)【特許権者】
【識別番号】592000691
【氏名又は名称】ポスコホールディングス インコーポレーティッド
(74)【代理人】
【識別番号】110000051
【氏名又は名称】弁理士法人共生国際特許事務所
(72)【発明者】
【氏名】ホン,ジェワン
(72)【発明者】
【氏名】パク,ジュンス
【審査官】河口 展明
(56)【参考文献】
【文献】国際公開第2018/117598(WO,A1)
【文献】特開2001-107145(JP,A)
【文献】特開2000-034521(JP,A)
【文献】国際公開第2014/148328(WO,A1)
【文献】国際公開第2016/002904(WO,A1)
【文献】国際公開第2019/181945(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
C22C 38/00-38/60
C21D 8/12
H01F 1/147
(57)【特許請求の範囲】
【請求項1】
重量%で、Si:2.1~3.8%、Mn:0.001~0.6%、Al:0.001~0.6%、Bi:0.0005~0.003%およびGe:0.0003~0.001%を含み、残部はFeおよび不可避な不純物からな
り、
鋼板厚さの1/6~1/4領域で、集合組織の{411}面と圧延面が15゜角度内で平行な集合組織の分率(V{411})に対する、集合組織の{100}面と圧延面との角度が15゜角度内で平行な集合組織の分率(V{100})の比率(V{100}/V{411})が0.150~0.450であり、
鋼板厚さの1/6~1/4領域で、集合組織の{411}面と圧延面が10゜内で平行な集合組織の分率(V{411})に対する、集合組織の{100}面と圧延面が10゜内で平行な集合組織の分率(V{100})の比率(V{100}/V{411})が0.350~0.550であることを特徴とする無方向性電磁鋼板。
【請求項2】
P:0.08重量%以下、Sn:
0.01~0.08重量
%およびSb:
0.01~0.08重量
%のうちの1種以上をさらに含むことを特徴とする請求項1に記載の無方向性電磁鋼板。
【請求項3】
C:0.01重量%以下、S:0.01重量%以下、N:0.01重量%以下およびTi:0.005重量%以下のうちの1種以上をさらに含むことを特徴とする請求項1又は2に記載の無方向性電磁鋼板。
【請求項4】
Cu、NiおよびCrのうちの1種以上をそれぞれ0.05重量%以下
でさらに含むことを特徴とする請求項1乃至3のいずれか一項に記載の無方向性電磁鋼板。
【請求項5】
Zr、MoおよびVのうちの1種以上をそれぞれ0.01重量%以下でさらに含むことを特徴とする請求項
1乃至4のいずれか一項
に記載の無方向性電磁鋼板。
【請求項6】
鋼板厚さの1/6~1/4領域をEBSD試験する時、ODF上で圧延方向を基準として<112>方向をながめている{111}面の強度がランダム(Random)方位に比べて2以下であることを特徴とする請求項1乃至5のいずれか一項に記載の無方向性電磁鋼板。
【請求項7】
鋼板厚さの1/6~1/4領域で、集合組織の{411}面と圧延面が5゜内で平行な集合組織の分率(V{411})に対する、集合組織の{100}面と圧延面が5゜内で平行な集合組織の分率(V{100})の比率(V{100}/V{411})が0.450~0.650であることを特徴とする請求項1乃至
6のいずれか一項に記載の無方向性電磁鋼板。
【請求項8】
重量%で、Si:2.1~3.8%、Mn:0.001~0.6%、Al:0.001~0.6%、Bi:0.0005~0.003%およびGe:0.0003~0.001%を含み、残部はFeおよび不可避な不純物からなるスラブを熱間圧延して熱延板を製造する段階、
前記熱延板を冷間圧延して冷延板を製造する段階および
前記冷延板を最終焼鈍する段階を含
み、
製造された無方向性電磁鋼板は、鋼板厚さの1/6~1/4領域で、集合組織の{411}面と圧延面が15゜角度内で平行な集合組織の分率(V{411})に対する、集合組織の{100}面と圧延面が15゜角度内で平行な集合組織の分率(V{100})の比率(V{100}/V{411})が0.150~0.450であり、
鋼板厚さの1/6~1/4領域で、集合組織の{411}面と圧延面が10゜内で平行な集合組織の分率(V{411})に対する、集合組織の{100}面と圧延面が10゜内で平行な集合組織の分率(V{100})の比率(V{100}/V{411})が0.350~0.550であることを特徴とする無方向性電磁鋼板の製造方法。
【請求項9】
前記熱延板を製造する段階の後、熱延板を900~1195℃の温度で30~95秒間焼鈍する段階をさらに含むことを特徴とする請求項
8に記載の無方向性電磁鋼板の製造方法。
【請求項10】
前記最終焼鈍する段階は、850~1080℃の温度で60~150秒間焼鈍することを特徴とする請求項
8又は
9に記載の無方向性電磁鋼板の製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、無方向性電磁鋼板およびその製造方法に係り、より詳しくは、Bi、Geを添加することにより、析出物を選択的に形成、または制御して集合組織を改善した磁束密度と鉄損に優れた無方向性電磁鋼板およびその製造方法に関する。
【背景技術】
【0002】
電磁鋼板は、変圧機、モータ、電気機器用素材として使用される材料であり、機械の材料などの加工性を重要視する一般炭素鋼とは異なり、電気的特性を重要視する機能性製品である。要求される電気的特性には、鉄損が低いこと、磁束密度、透磁率および点滴率が高いこと、などがある。
電磁鋼板は、方向性電磁鋼板と無方向性電磁鋼板に大別される。方向性電磁鋼板は、2次再結晶と呼ばれる特殊な結晶粒成長現象を利用してGoss集合組織({110}<001>集合組織)を鋼板全体に形成させて圧延方向の磁気的特性に優れる電磁鋼板である。無方向性電磁鋼板は、圧延板上の全ての方向に磁気的特性が均一な電磁鋼板である。
【0003】
無方向性電磁鋼板の生産工程として、スラブ(slab)を製造した後、熱間圧延、冷間圧延および最終焼鈍を経て絶縁コーティング層を形成する。
方向性電磁鋼板の生産工程として、スラブ(slab)を製造した後、熱間圧延、予備焼鈍、冷間圧延、脱炭焼鈍、最終焼鈍を経て絶縁コーティング層を形成する。
このうち、無方向性電磁鋼板は、全ての方向に均一な磁気的特性を有しており、一般的にモータコア、発電機の鉄芯、電動機、小型変圧機の材料として使用される。無方向性電磁鋼板の代表的な磁気的特性は、鉄損と磁束密度であり、無方向性電磁鋼板の鉄損が低いほど鉄芯が磁化される過程で損失される鉄損が減少して効率が向上し、磁束密度が高いほど同じエネルギーでより大きい磁気鋼を誘導することができ、同じ磁束密度を得るためには少ない電流を印加することができるため、銅損を減少させてエネルギー効率を向上させることができる。
【0004】
無方向性電磁鋼板の磁気的特性を向上させるために通常使用される方法は、Siなどの合金元素を添加することである。このような合金元素の添加を通して鋼の比抵抗を増加させることができるが、比抵抗が高まるほど渦電流損失が減少して全体鉄損を低くすることができる。反面、Si添加量が増加するほど磁束密度が劣位になり、脆性が増大する短所があり、一定量以上添加すると冷間圧延が困難となり商業的生産が不可能になる。特に電磁鋼板は厚さを薄く作るほど鉄損が減少する効果を得ることができるが、脆性による圧延性低下は致命的な問題になる。追加的な鋼の比抵抗増加のためにAl、Mnなどの元素を添加して磁性に優れた最高級無方向性電磁鋼板を生産することができる。
しかし、実際のモータの使用においては、その用途により鉄損と磁束密度を同時に要求する場合があり、比抵抗が高くて鉄損が低いと同時に、磁束密度が高い無方向性電磁鋼板が必要とされる。
【発明の概要】
【発明が解決しようとする課題】
【0005】
本発明の目的とするところは、無方向性電磁鋼板およびその製造方法を提供することにある。より具体的には、Bi、Geを添加することにより、析出物を選択的に形成、または制御して集合組織を改善し、これによって磁束密度と鉄損に優れた無方向性電磁鋼板およびその製造方法を提供する。
【課題を解決するための手段】
【0006】
本発明の無方向性電磁鋼板は、重量%で、Si:2.1~3.8%、Mn:0.001~0.6%、Al:0.001~0.6%、Bi:0.0005~0.003%およびGe:0.0003~0.001%を含み、残部はFeおよび不可避な不純物からなることを特徴とする。
【0007】
P:0.08重量%以下、Sn:0.08重量%以下およびSb:0.08重量%以下のうちの1種以上をさらに含むことができる。
C:0.01重量%以下、S:0.01重量%以下、N:0.01重量%以下およびTi:0.005重量%以下のうちの1種以上をさらに含むことがよい。
Cu、NiおよびCrのうちの1種以上をそれぞれ0.05重量%以下でさらに含むことが好ましい。
Zr、MoおよびVのうちの1種以上をそれぞれ0.01重量%以下でさらに含むことができる。
【0008】
鋼板厚さの1/6~1/4領域で、集合組織の{411}面と圧延面が15゜角度内で平行な集合組織の分率(V{411})に対する、集合組織の{100}面と圧延面が15゜角度内で平行な集合組織の分率(V{100})の比率(V{100}/V{411})が0.150~0.450であることがよい。
鋼板厚さの1/6~1/4領域で、集合組織の{411}面と圧延面が10゜内で平行な集合組織の分率(V{411})に対する、集合組織の{100}面と圧延面が10゜内で平行な集合組織の分率(V{100})の比率(V{100}/V{411})が0.350~0.550であることが好ましい。
【0009】
鋼板厚さの1/6~1/4領域で、集合組織の{411}面と圧延面が5゜内で平行な集合組織の分率(V{411})に対する、集合組織の{100}面と圧延面が5゜内で平行な集合組織の分率(V{100})の比率(V{100}/V{411})が0.450~0.650であることができる。
【0010】
本発明の無方向性電磁鋼板の製造方法は、重量%で、Si:2.1~3.8%、Mn:0.001~0.6%、Al:0.001~0.6%、Bi:0.0005~0.003%およびGe:0.0003~0.001%を含み、残部はFeおよび不可避な不純物からなるスラブを熱間圧延して熱延板を製造する段階、熱延板を冷間圧延して冷延板を製造する段階および冷延板を最終焼鈍する段階を含むことを特徴とする。
【0011】
熱延板を製造する段階の後、熱延板を900~1195℃の温度で30~95秒間焼鈍する段階をさらに含むことができる。
最終焼鈍する段階は、850~1080℃の温度で60~150秒間焼鈍することがよい。
【発明の効果】
【0012】
本発明の一実施形態によれば、集合組織が改善されて鉄損と磁束密度に優れた無方向性電磁鋼板を提供することができる。
【発明を実施するための形態】
【0013】
第1、第2および第3などの用語は、多様な部分、成分、領域、層および/またはセクションを説明するために使用されるが、これらに限定されない。これら用語は、ある部分、成分、領域、層またはセクションを他の部分、成分、領域、層またはセクションと区別するためだけに使用される。したがって、以下で叙述する第1部分、成分、領域、層またはセクションは、本発明の範囲を逸脱しない範囲内で第2部分、成分、領域、層またはセクションと言及することができる。
ここで使用される専門用語は、単に特定の実施形態を言及するためのものであり、本発明を限定することを意図しない。ここで使用される単数の形態は、文言がこれと明確に反対の意味を示さない限り、複数の形態も含む。明細書で使用される「含む」の意味は、特定の特性、領域、整数、段階、動作、要素および/または成分を具体化し、他の特性、領域、整数、段階、動作、要素および/または成分の存在や付加を除外させるものではない。
【0014】
ある部分が他の部分の「上に」あると言及する場合、これは直ちに他の部分の上にあるか、またはその間に他の部分が介され得る。対照的に、ある部分が他の部分の「真上に」あると言及する場合、その間に他の部分が介されない。
また、特に言及しない限り、%は重量%を意味し、1ppmは0.0001重量%である。
本発明の一実施形態で追加元素をさらに含むことの意味は、追加元素の追加量の分、残部である鉄(Fe)を代替して含むことを意味する。
異なって定義しなかったが、ここで使用される技術用語および科学用語を含む全ての用語は、本発明が属する技術分野における通常の知識を有する者が一般的に理解する意味と同一の意味を有する。通常使用される辞書に定義された用語は、関連技術文献と現在開示された内容に符合する意味を有すると追加解釈され、定義されない限り、理想的または非常に公式的な意味に解釈されない。
【0015】
以下、本発明の実施形態について本発明が属する技術分野における通常の知識を有する者が容易に実施することができるように詳細に説明する。しかし、本発明は多様な異なる形態に実現することができ、ここで説明する実施形態に限定されない。
本発明の一実施形態による無方向性電磁鋼板は、重量%で、Si:2.1~3.8%、Mn:0.001~0.6%、Al:0.001~0.6%、Bi:0.0005~0.003%およびGe:0.0003~0.001%を含み、残部はFeおよび不可避な不純物からなる。
以下、無方向性電磁鋼板の成分限定の理由について説明する。
【0016】
Si:2.10~3.80重量%
シリコン(Si)は、鋼の比抵抗を増加させて鉄損中の渦流損失を低めるために添加される主要元素である。Siが過度に少なく添加されると、鉄損が劣化する問題が発生する。反対にSiが過度に多く添加されると、磁束密度が大きく減少し、加工性に問題が発生する虞がある。したがって、上記の範囲でSiを含むことがよい。より具体的にSiを2.50~3.70重量%含むことが好ましい。さらに具体的にSiを2.60~3.50重量%含むことがより好ましい。
【0017】
Mn:0.001~0.600重量%
マンガン(Mn)は、Si、Alなどと共に比抵抗を増加させて鉄損を低くする元素でありながら、集合組織を向上させる元素である。Mnが過度に少なく添加されると、硫化物が微細に析出されて磁性を低下させる虞がある。反対にMnが過度に多く添加されると、磁性に不利な{111}集合組織の形成を助長して磁束密度が減少する虞がある。したがって、上記の範囲でMnを含むことができる。より具体的にMnを0.005~0.59重量%含むことがよい。さらに具体的にMnを0.01~0.57重量%含むことがより好ましい。
【0018】
Al:0.001~0.600重量%
アルミニウム(Al)は、Siと共に比抵抗を増加させて鉄損を減少させる重要な役割を果たし、また圧延性を改善したり冷間圧延時に作業性を良くする。Alが過度に少なく添加されると、高周波鉄損低減の効果がなく、AlNの析出温度が低くなって窒化物が微細に形成されて磁性を低下させる虞がある。Alが過度に多く添加されると、窒化物が過剰に形成されて磁性を悪化させ、製鋼と連続鋳造などの全ての工程上に問題を発生させて生産性を大きく低下させる虞がある。したがって、上記の範囲でAlを含むことができる。より具体的にAlを0.005~0.590重量%含むことがよい。さらに具体的にAlを0.010~0.580重量%含むことがより好ましい。
【0019】
Bi:0.0005~0.0030重量%
ビスマス(Bi)は、偏析元素であり、結晶粒系に偏析することによって結晶粒系の強度を低下させ、電位が結晶粒系に固着される現象を抑制する。これによって析出物を形成することができる条件を減らして析出物を制御することに寄与することができる。Biが過度に少なく含まれる場合、上記の役割を期待し難い。Biを過量で含む場合、むしろ磁性を低下させる虞がある。したがって、Biを上記の範囲で含むことがよい。より具体的にBiを0.0010~0.0025重量%含むことがより好ましい。
【0020】
Ge:0.0003~0.0010重量%
ゲルマニウム(Ge)も、Biと同様に、偏析元素であり、極微量の添加だけでもS、C、N系析出物の挙動に影響を与えて析出物を制御することに寄与する。Geが過度に少なく含まれる場合、上記の役割を期待し難い。Geを過量で含む場合、むしろ磁性を悪化させることがある。したがって、Geを上記の範囲で含むことがよい。より具体的にGeを0.0005~0.0010重量%含むことがより好ましい。
【0021】
本発明の一実施形態による無方向性電磁鋼板は、P:0.08重量%以下、Sn:0.08重量%以下およびSb:0.08重量%以下のうちの1種以上をさらに含むことができる。上記のように、追加元素をさらに含む場合、残部であるFeを代替して含むことになる。
【0022】
P:0.080重量%以下
リン(P)は、材料の比抵抗を高める役割を果たすだけでなく、粒界に偏析して集合組織を改善して比抵抗を増加させ、鉄損を少なくする役割を果たすため、追加的に添加することができる。ただし、Pの添加量が過度に多ければ磁性に不利な集合組織の形成を招いて集合組織改善の効果がなく、粒界に過度に偏析して圧延性および加工性が低下して生産が困難になる虞がある。したがって、上記の範囲でPを添加することができる。より具体的にPを0.001~0.080重量%含むことがよい。さらに具体的にPを0.001~0.030重量%含むことがより好ましい。
【0023】
Sn:0.08重量%以下
スズ(Sn)は、結晶粒系および表面に偏析して材料の集合組織を改善し、表面酸化を抑制する役割を果たすため、磁性を向上させるために追加的に添加することができる。Snが過度に多く添加されると、結晶粒系偏析が激しくなって表面品質が劣化し、硬度が上昇して冷延板破断を起こして圧延性が低下する虞がある。したがって、上記の範囲でSnを添加することができる。より具体的にSnを0.001~0.080重量%含むことがよい。さらに具体的にSnを0.010~0.080重量%含むことがより好ましい。
【0024】
Sb:0.080重量%以下
アンチモン(Sb)は、結晶粒系および表面に偏析して材料の集合組織を改善し、表面酸化を抑制する役割を果たすため、磁性を向上させるために追加的に添加することができる。Sbが過度に多く添加されると、結晶粒系偏析が激しくなって表面品質が悪化し、硬度が上昇して冷延板破断を起こして圧延性が低下する虞がある。したがって、上記の範囲でSbを添加することがよい。より具体的にSbを0.001~0.080重量%含むことが好ましい。さらに具体的にSbを0.010~0.080重量%含むことがより好ましい。
【0025】
本発明の一実施形態による無方向性電磁鋼板は、C:0.01重量%以下、S:0.01重量%以下、N:0.01重量%以下およびTi:0.005重量%以下のうちの1種以上をさらに含むことができる。
【0026】
C:0.0100重量%以下
炭素(C)は、Ti、Nbなどと結合して炭化物を形成して磁性を低下させ、最終製品の電気製品として加工後の使用時、磁気時効により鉄損が高まり、電気機器の効率を低下させるため、その上限を0.0100重量%にすることがよい。より具体的にCを0.0050重量%以下にさらに含むことが好ましい。より具体的にCを0.0001~0.0030重量%さらに含むことがより好ましい。
【0027】
S:0.0100重量%以下
硫黄(S)は、母材内部に微細な硫化物を形成して結晶粒成長を抑制して鉄損を低下させるため、できるだけ少なく添加することが好ましい。Sが多量含まれる場合、Mnなどと結合して析出物を形成したり熱間圧延中に高温脆性を誘発する虞がある。したがって、Sを0.0100重量%以下にさらに含むことがよい。具体的にSを0.0050重量%以下にさらに含むことが好ましい。具体的にSを0.0001~0.0030重量%さらに含むことがより好ましい。
【0028】
N:0.0100重量%以下
窒素(N)は、Al、Ti、Nbなどと結合して母材内部に微細で長い析出物を形成するだけでなく、その他の不純物と結合して微細な窒化物を形成して結晶粒成長を抑制するなど鉄損を悪化させるため、少なく含有させることが好ましい。本発明の一実施形態では、Nを0.0100重量%以下にさらに含むことがよい。より具体的にNを0.0050重量%以下にさらに含むことが好ましい。さらに具体的にNを0.0001~0.0030重量%さらに含むことがより好ましい。
【0029】
Ti:0.0050重量%以下
チタン(Ti)は、鋼内析出物の形成傾向が非常に強い元素であり、母材内部に微細な炭化物または窒化物を形成して結晶粒成長を抑制するため、多く添加されるほど炭化物と窒化物が多く形成されて鉄損を悪化させるなど磁性を劣位にさせる。本発明の一実施形態では、Tiを0.0050重量%以下にさらに含むことがよい。より具体的にTiを0.0030重量%以下にさらに含むことが好ましい。さらに具体的にTiを0.0005~0.0030重量%さらに含むことがより好ましい。
【0030】
本発明の一実施形態による無方向性電磁鋼板は、Cu、NiおよびCrのうちの1種以上をそれぞれ0.05重量%以下にさらに含むことができる。
製鋼工程で不可避に添加される元素である銅(Cu)、ニッケル(Ni)、クロム(Cr)の場合、不純物元素と反応して微細な硫化物、炭化物および窒化物を形成して磁性に有害な影響を与えるため、これら含有量をそれぞれ0.05重量%以下に制限する。
【0031】
本発明の一実施形態による無方向性電磁鋼板は、Zr、MoおよびVのうちの1種以上をそれぞれ0.01重量%以下にさらに含むことができる。
ジルコニウム(Zr)、モリブデン(Mo)、バナジウム(V)などは、強力な炭窒化物形成元素であるため、できるだけ添加されないことが好ましく、それぞれ0.01重量%以下に含有されるよう制限する。
製鋼工程で不可避に添加される元素であるCu、Ni、Crの場合、不純物元素と反応して微細な硫化物、炭化物および窒化物を形成して磁性に有害な影響を与えるため、これら含有量をそれぞれ0.05重量%以下に制限する。またZr、Mo、Vなども強力な炭窒化物形成元素であるため、できるだけ添加されないことが好ましく、それぞれ0.01重量%以下に含有されるように制限する。
【0032】
残部は、Feおよび不可避な不純物からなる。不可避な不純物については、製鋼段階および方向性電磁鋼板の製造工程過程で混入される不純物であり、これは当該分野で広く知られているため、具体的な説明は省略する。本発明の一実施形態で前述した合金成分以外に元素の追加を排除するのではなく、本発明の技術思想を害しない範囲内で多様に含まれることがある。追加元素をさらに含む場合、残部であるFeを代替して含まれる。
上記のSi、Mn、Al、Bi、Geの添加量を適切に制御することによって、析出物を選択的に形成および制御して集合組織を改善することができる。
【0033】
具体的に鋼板厚さの1/6~1/4領域を後方散乱電子回析(EBSD)試験する時、結晶方位分布関数(ODF)上の{111}<112>の強度(Inetnsity)がランダム(Random)方位に比べて2以下であることがよい。無方向性電磁鋼板の磁化は、磁化方向を基準としてその結晶面の方向が<100>である時に最も有利であり、<110>、<111>の順に有利である。したがって、磁化に不利な方位である{111}<112>の比率を減らすようになると鋼板を構成している結晶粒の方位が磁化に有利な方向に構成されて磁性が向上する。より具体的にODF上の{111}<112>の強度(Inetnsity)がランダム(Random)方位に比べて0.5~1.9であることがよい。ODF上の{111}<112>の強度(Inetnsity)がランダム(Random)方位に比べて0.8~1.8であることが好ましい。
【0034】
また、鋼板厚さの1/6~1/4領域で、集合組織の{411}面と圧延面が15゜角度内で平行な集合組織の分率(V{411})に対する、集合組織の{100}面と圧延面が15゜角度内で平行な集合組織の分率(V{100})の比率(V{100}/V{411})が0.150~0.450であることがよい。
鋼板厚さの1/6~1/4領域で、集合組織の{411}面と圧延面が10゜内で平行な集合組織の分率(V{411})に対する、集合組織の{100}面と圧延面が10゜内で平行な集合組織の分率(V{100})の比率(V{100}/V{411})が0.350~0.550であることがよい。
鋼板厚さの1/6~1/4領域で、集合組織の{411}面と圧延面が5゜内で平行な集合組織の分率(V{411})に対する、集合組織の{100}面と圧延面が5゜内で平行な集合組織の分率(V{100})の比率(V{100}/V{411})が0.450~0.650であることができる。
{411}面と圧延面が平行な集合組織の分率(V{411})が{100}面と圧延面が平行な集合組織の分率(V{100})に比べて多量形成されることによって、磁性向上に寄与することができる。
【0035】
上記のとおり、Si、Mn、Al、Bi、Geの添加量を適切に制御することによって、析出物を選択的に形成および制御して集合組織を改善することによって磁性を向上させることができる。
具体的に電磁鋼板の鉄損(W15/50)が2.50W/Kg以下、磁束密度(B50)が1.67T以上であることがよい。鉄損(W15/50)は、50Hzの周波数で1.5Tの磁束密度を誘起した時の鉄損である。磁束密度(B50)は、5000A/mの磁場で誘導される磁束密度である。より具体的に電磁鋼板の鉄損(W15/50)が2.40W/Kg以下、磁束密度(B50)が1.68T以上であることがよい。さらに具体的に電磁鋼板の鉄損(W15/50)が1.90~2.40W/Kg、磁束密度(B50)が1.68~1.75Tであることがより好ましい。この時、磁性測定の基準は0.35mm厚さである。
【0036】
本発明の一実施形態による無方向性電磁鋼板の製造方法は、スラブを熱間圧延して熱延板を製造する段階、熱延板を冷間圧延して冷延板を製造する段階および冷延板を最終焼鈍する段階を含む。
スラブの合金成分については、上記の無方向性電磁鋼板の合金成分で説明したため、重複する説明は省略する。無方向性電磁鋼板の製造過程で合金成分が実質的に変動しないため、無方向性電磁鋼板とスラブの合金成分は実質的に同一である。
【0037】
具体的にスラブは、重量%で、Si:2.1~3.8%、Mn:0.001~0.6%、Al:0.001~0.6%、Bi:0.0005~0.003%およびGe:0.0003~0.001%を含み、残部はFeおよび不可避な不純物からなる。
その他の追加元素については、無方向性電磁鋼板の合金成分で説明したため、重複する説明は省略する。
【0038】
スラブを熱間圧延する前にスラブを加熱することができる。スラブの加熱温度は、制限されないが、スラブを1150~1250℃範囲で0.1~1時間加熱することがよい。スラブ加熱温度が過度に高ければ、スラブ内に存在するAlN、MnSなどの析出物が再固溶された後、熱間圧延および焼鈍時に結晶粒成長が抑制され、微細析出し、磁性を低下させる虞がある。より具体的にスラブを1100~1200℃範囲で0.5~1時間加熱することがよい。
次に、スラブを熱間圧延して熱延板を製造する。熱延板厚さは1.6~2.5mmであることがよい。熱延板を製造する段階で仕上げ圧延温度は800~1000℃であることが好ましい。熱延板は700℃以下の温度で巻き取られる。
【0039】
熱延板を製造する段階の後、熱延板を熱延板焼鈍する段階をさらに含むことができる。この時、熱延板焼鈍温度は900~1195℃であることがよい。焼鈍時間は30~95秒である。熱延板焼鈍温度が過度に低ければ、組織が成長しないかまたは微細に成長して冷間圧延後の焼鈍時に磁性に有利な集合組織を得ることが困難となる。焼鈍温度が過度に高ければ磁結晶粒が過度に成長し、板の表面欠陥が過剰になる虞がある。熱延板焼鈍は、必要に応じて磁性に有利な方位を増加させるために行われるものであり、省略も可能である。焼鈍された熱延板を酸洗することができる。
【0040】
次に、熱延板を冷間圧延して冷延板を製造する。冷間圧延は0.10mm~0.35mmの厚さになるように最終圧延する。必要に応じ、1次冷間圧延と中間焼鈍後、2次冷間圧延することができ、最終圧下率は50~95%の範囲とすることができる。
次に、冷延板を最終焼鈍する。冷延板を焼鈍する工程で焼鈍温度は、通常無方向性電磁鋼板に適用される温度であれば特に制限はない。無方向性電磁鋼板の鉄損は、結晶粒サイズと密接に関連しているため、850~1080℃で60~150秒間焼鈍することができる。温度が過度に低い場合、結晶粒が過度に微細で履歴損失が増加し、温度が過度に高い場合は、結晶粒が過度に粗大化し、渦流損が増加して鉄損が劣位になる虞がある。より具体的に最終焼鈍は900~1060℃の温度で60~120秒間焼鈍することがよい。
【0041】
最終焼鈍後、鋼板は平均結晶粒直径が70~150μmになることができ、冷間圧延で加工された組織を全部(99%以上)再結晶することができる。
最終焼鈍後、絶縁被膜を形成することができる。前記絶縁被膜は有機質、無機質および有機-無機複合被膜で処理されることができ、その他の絶縁が可能な被膜剤で処理することも可能である。
以下、実施例を通じて本発明をより詳細に説明する。しかし、この実施例は、単に本発明を例示するためのものであり、本発明はこれに限定されない。
【実施例】
【0042】
下記表1および表2で整理された合金成分および残部のFeおよび不可避な不純物からなるスラブを製造した。スラブを1150℃で加熱し、熱間圧延した後に巻き取った。巻き取って冷却した熱延鋼板を下記表2の温度で熱延板焼鈍および酸洗した後、表2の厚さに冷間圧延し、最終的に冷延板焼鈍を施した。この時の焼鈍温度を表2に示した。
製造された最終焼鈍板をL方向(圧延方向)およびC方向(圧延垂直方向)から磁性測定のための長さ305mm、幅30mmのエプスタイン試験片で形成し、鉄損(W15/50)と磁束密度(B50)を測定してその結果を下記表3に示した。
【0043】
また、集合組織を測定するために5mmx5mm領域をEBSDを使用して観察した。観察したデータ(data)に基づいて集合組織の特性を求め、その結果を下記表3に示した。
鉄損(W15/50)は、50Hz周波数で1.5Teslaの磁束密度が誘起された時の圧延方向と圧延方向垂直方向の平均損失(W/kg)である。
磁束密度(B50)は、5000A/mの磁場を付加した時に誘導される磁束密度の大きさ(Tesla)である。
【0044】
【0045】
【0046】
【0047】
表1~表3に示したとおり、Si、Al、Mn、Bi、Geがそれぞれの成分添加量の範囲を満足した発明材1~発明材11は、集合組織が改善され、鉄損W15/50と磁束密度B50も非常に優れることが確認された。
反面、比較例1は、Biを過度に少なく含み、集合組織が改善されず、磁性が劣位にであることが確認できる。
比較例2は、Geを過度に少なく含み、集合組織が改善されず、磁性が劣位であることが確認できる。
比較例3は、Biを過量含み、集合組織が改善されず、磁性が劣位であることが確認できる。
比較例4は、Geを過量含み、集合組織が改善されず、磁性が劣位であることが確認できる。
【0048】
本発明は、上記の実施形態に限定されるのではなく、互いに異なる多様な形態で製造可能であり、本発明が属する技術分野における通常の知識を有する者は、本発明の技術的な思想や必須の特徴を変更せずに他の具体的な形態で実施可能であることを理解できるはずである。したがって、以上で記述した実施形態は全ての面で例示的なものであり、限定的なものではないことを理解しなければならない。